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Understanding animal movements that underpin ecosystem processes is fundamental

to ecology. Recent advances in animal tags have increased the ability to remotely locate

larger species, however, this technology is not suitable for up to 70% of the world’s bird

and mammal species. The most widespread technique for tracking small animals is to

manually locate low-power radio transmitters from the ground using hand-held equip-

ment. Despite this labour-intensive technique being used for decades, efforts to reduce

or automate this process have had limited success. Here we present a new approach for

tracking small radio-tagged animals using an autonomous and lightweight aerial robot.

We present a series of experimental results where we use the robot to locate migratory

swift parrots (Lathamus discolor), a critically endangered species. The robot system

combines a miniaturised sensor with novel estimation algorithms to yield unambigu-

ous bearing- and range-based measurements with associated measures of uncertainty.

We incorporate these measurements into Bayesian data fusion and information-based

planning algorithms to control the position of the robot as it collects data. We re-

port estimated positions that lie within 50 m of the true positions of the birds, which

are sufficiently accurate for recapture or observation. Further, in a head-to-head race

with experienced human trackers, we found our system to perform comparably, and
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often faster. These results provide the first unequivocal validation of robotic systems

for wildlife radio telemetry since its inception in the 1960s, and pave the way for their

widespread use as human-assistive or autonomous devices.

Introduction

Conservation management of certain critically endangered species relies on understanding how these

species interact with their environment. This is achieved by tagging and tracking individual animals in

the wild (1–3). Aerial robot systems can access rugged areas that are difficult for humans to traverse, and

thus are viewed as a potentially revolutionary tool for data collection in wildlife ecology (4,5). However,

this potential remains largely unrealised. Robot systems have yet to achieve a level of signal detection,

tracking accuracy, and speed that is sufficient to legitimise their role as a replacement for human trackers.

Despite recent advances in automated wildlife telemetry tracking, very little is known about the

movement of small, dynamic migratory species, of which many have reached critically endangered sta-

tus. For large to medium animals, the miniaturisation of GPS tags with remote data readout has facilitated

a dramatic increase in understanding the movements of a diversity of species (6, 7). Methods such as

satellite telemetry have far reaching applications from investigating migration routes and wintering areas

of large migratory birds (8–10) to studying the dynamics of aquatic predators (11, 12). Unfortunately,

these approaches are still only suitable for about 70% of bird species and 65% of mammal species (2). In

the case of smaller species that return to the same breeding areas seasonally, miniature non-transmitting

data loggers can be used (2); however, retrieving this data requires relocating the animals in situ. Due

to this challenge, VHF tracking has become one of the most useful techniques in ecology and man-

agement (13). This involves attaching small radio transmitters to animals and subsequently tracking the

target species. Although scientists have been using VHF tracking since the early 1960s (14), data yielded

by this approach is sparse due to the manual labour involved (2). Thus, researchers are more frequently

exploiting the abundance of low-cost unmanned aerial vehicles (UAVs) equipped with visual sensors for
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this type of conservation management and wildlife monitoring (4, 5). However, the capability of these

systems is limited in terms of identifying individual animals and locating animals in unknown locations.

In recent years, there has been increased interest in end-to-end wildlife telemetry tracking with

robotic systems (4), where the robot moves autonomously to track a live target animal. The useful-

ness of these systems, however, is yet to be proven in direct performance comparison to the traditional

manual approach. Most notably, ongoing research is aimed at tracking radio-tagged carp in Minnesotan

lakes using autonomous surface vehicles (ASVs) on the water and mobile ground vehicles (MGVs) when

the lake is frozen (15–20). While this project has yielded seminal work in the field, the use of ground and

surface vehicles is untenable for wildlife situated in rugged habitats. We recently validated the use of a

multirotor UAV for autonomously localising live radio-tagged birds in such environments (the Manorina

Melanocephala) (21). Here, we present the first unequivocal validation that robotic systems can perform

comparably to experienced human trackers in head-to-head experiments.

The majority of research in radio tracking with an aerial vehicle focuses on isolated subsystems.

Although these systems are typically motivated by the idea of tracking small animals (e.g., bird (22–25)

and fish species (26, 27)), only simulations or prototypes are presented with limited field testing. Al-

ternatively, when tracking a relatively stationary target, the observations can be considered more robust

and thus attention in this field has shifted to optimising planning for single (17, 19, 20) or multi-robot

systems (18, 28). The main assumption the authors make is that the sequential observations are ho-

moscedastic, meaning that the uncertainty over each measurement is constant or bounded. However,

with a sporadic and unpredictable live target, this assumption is violated due to the resulting wide spec-

trum of observation quality from noisy to precise. As we show in this paper, this induces heteroscedastic

observations, where the uncertainty varies with every observation. Failing to distinguish between low and

high quality observations can lead to overconfident measurements that cause spurious location estimates,

or to highly uncertain location estimates that are of little value.

A mathematically valid observation model is also critical in planning the motion of the robot to
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Figure 1: The aerial robot system is designed to track small animals with lightweight radio tags attached,
e.g., swift parrots (Lathamus discolor) 1a, brush-tailed rock-wallabies (Petrogale penicillata) 1b, and
noisy miners (Manorina melanocephala) 1c. This work demonstrates that the robot is able to track swift
parrots and yield comparable performance to an expert human operator performing traditional wildlife
telemetry tracking 1d. The multirotor platform 1e-1f includes a lightweight directional antenna system
and payload that receives the signal strength from the tag. This data is then transmitted to a ground
control station for processing and online decision making.
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improve the location estimate. In robotics this general problem is known as active perception (29,30) and

introduces a coupling between data collection and planning. The idea of passively locating transmitting

radio sources has been investigated in operations research motivated by search and rescue missions where

stationary distress beacons must be recovered rapidly. Hence, the task is a coverage problem solved

via offline strategies with an emphasis on minimising path cost over the entire area or teleoperated by

humans (31). Alternatively, when the wildlife habitat is known and bounded, sensor networks can be

placed in order to precisely track an animal’s location (32, 33). In our case, we require fast, precise

estimates without intervention and thus employ active strategies where the observation quality relies

crucially on an appropriate sequence of viewpoints (34). Our objective is reduce uncertainty (entropy)

of the target location; thus, the task of actively tracking targets falls under the informative path planning

paradigm (35). This problem is known to be NP-hard (36) and has been studied extensively over the last

decade (37) with many applications focusing specifically on UAVs (38–43). In this paper we leverage

these results to obtain an approximately optimal sequence of actions by greedily selecting the most

informative viewpoints at each decision step.

In this work, we present rigorous analysis and validation of a complete system for autonomous

wildlife tracking. We show that this system addresses the associated theoretical and engineering chal-

lenges to a degree that is sufficient to match or surpass the performance of skilled human trackers. First,

we provide mathematical derivation for our data-driven sensor model, which has previously been val-

idated over a number of trials on real birds and stationary targets (21). This range-azimuth model is

further used to predict the quality of future viewpoints in planning an approximately optimal sequence of

observations. We then directly compare this system against human operators in the problem of tracking

the critically endangered swift parrot (Lathamus discolor) species in the wild. Across eight field trials,

the estimated bird locations are precise to within 50 m, which is sufficient for recapture, detailed field

observation, or data readout. Moreover, the time taken to achieve these estimates is comparable to, and

often faster than, experienced human trackers. This result is significant because it is the first time in
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over 50 years of wildlife telemetry tracking research that a robotic system has been validated as an au-

tonomous or human-assistive device. This milestone paves the way for the widespread use of robots in

migration ecology and conservation management for small, dynamic species.

Results

In this section we report on the approaches used for sensor modelling, data fusion and decision making.

Then we show, in head-to-head competition, that the autonomous system’s performance is comparable

to experienced human trackers. Finally, we discuss insights into the global and local spatiotemporal

movements of swift parrots that were gathered from trials.

The material in this section is based on the bearing-only, heuristic approach presented in previous

work (21). Here, we present a full range-azimuth algorithm derived rigorously from first principles.

We also provide variance analysis and proof that the objective function is monotone submodular, an

important property that is useful in designing efficient planning algorithms.

Likelihood Functions for Observations

The most critical component of the system is the sensor model, which allows us to convert the signal

received from the radio tag to an instantaneous estimate of the target’s location. An inaccurate or over-

confident observation can lead to poor decision making and imprecise final location estimates.

Let X ∈ S denote the vehicle location, Y ∈ S the targets’ geographic coordinates within some

workspace S ⊂ R2, and Z an observation in some measurement space H. We are interested in learning

the likelihood function `(y;x, z), i.e., the probability of receiving the measurement z at location x, given

the target location y:

`(y;x, z) = Pr (X = x,Z = z | Y = y) for y ∈ S. (1)

Note that we could consider uncertainty in the vehicle location x by including it in the measurement

z, however, we assume full knowledge of vehicle state in this paper. We use the convention that upper
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case symbols (e.g., Y and Z) are random variables, lower case symbols (e.g., y and z) denote their

realisations, and bold denotes a set. Further, true (or optimal) quantities are denoted with an asterisk

(e.g., y∗ is the true location of the bird) and estimates are denoted with a hat (e.g., ŷ is the target

estimate).

To construct our sensor models, we must determine what we are measuring and the uncertainty over

these measurements. In this work we take both range and azimuth readings of the target, where both

observations are assumed to be normally distributed. This results in each measurement comprising the

mean and variance z = {µ, σ2}. Given a measurement function h : (S × S)→ H that maps the vehicle

x and target state y to the measurement spaceH, the Gaussian likelihood function is:

`(y;x, z) = f(h(x,y);µ, σ2), (2)

where f is the probability density function (PDF) of the normal distribution.

Observed and Expected Sensor Data

To derive our likelihood functions we first describe the raw sensor data collected and the model used for

obtaining our measurement. More details on the system collecting these measurements are given in the

Materials and Methods section.

The radio tag emits an on-off keyed pulse signal; this transmission is received by the payload on-

board the UAV and the received signal strength indicator (RSSI) values of the signal are captured and

filtered. These RSSI values are linearly related to the power received during a transmission and are used

as the raw sensor data for the observation. The range and bearing likelihood functions are based on these

raw values and the learned sensor model.

The antenna used on-board the UAV is a two-point phased array: a lightweight, unambiguous di-

rectional antenna designed for radio telemetry with multirotor vehicles (21). The array comprises two

monopoles fed through a passive combiner circuit, which yields a radiation pattern with a front lobe

and back null. In order to reduce noise and spurious readings due to multipath propagation, the UAV
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remains stationary while yawing through a full rotation. During this rotation, the continuous RSSI val-

ues are filtered and sampled at a constant rate to give a scalar value gn associated with the bearing of

the nth value φn. These values are then transmitted to a base station, giving the recorded gain pattern

g = (g1, g2, . . . , gN ). As a result, the random vector G = g is a function of the vehicle X and target

Y location. Further, let b(x,y) denote the bearing from x to y. The true bearing to the target from

robot location x is then θ∗ = b(x,y∗). We assume that the error for each recorded RSSI value is nor-

mally distributed with unknown variance σ2(θ∗) that remains constant throughout an observation, i.e.,

for arbitrary gn ∈ g

gn = E[Gn | Θ = θ∗] + νG, νG ∼ N (0, σ2(θ∗)), (3)

where σ2(θ∗) = V (Gn | Θ = θ∗).

We obtain the expected gain pattern E[G | Θ] by linear regression. Specifically, we fit the expected

gain pattern to a J th-order Fourier series ϕ : R→ R, i.e., given the true bearing θ∗,

E [Gn | Θ = θ∗] = ϕ(φn + θ∗)

= a0 +
J∑
j=1

aj cos(j(φn + θ∗)) +
J∑
j=1

bj sin(j(φn + θ∗)). (4)

From this Fourier model, we obtain the expected gain patternϕ(θ) = E [G | Θ = θ], whereϕ : R→

RN is generated by sampling the Fourier series (Eq. (4)) with a phase offset θ at N regular intervals, i.e.,

ϕ(θ) = (ϕ(θ), ϕ(θ + 2π/N), . . . , ϕ(θ + 2π)).

Given the expected and observed sensor output, ϕ and g, the main goal of Bayesian sensor data

fusion is to compute PDFs of the bearing and range to a target from the robot. Given that the likelihoods

are assumed to be Gaussian, the measurement tuple Z = {µ(G), σ2(G)}. To learn the mapping from

G to Z, we use a data-driven approach based on training experiments, described below.
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Figure 2: Obtaining range-azimuth likelihood functions from observations. The top row illustrates two
example observations taken online with a stationary target. The radial plots illustrate real RSSI readings
(green line) g and a third-order Fourier series model ϕ(θ) of the radiation pattern (black line). The
model is offset (rotated) such that it is oriented towards the true bearing to the target θ∗, and the RSSI
values are offset by the maximum correlation µΘ(g) = arg maxθ rϕ(θ),g. These offsets are illustrated
with dotted green and black radial lines. On the left subfigure, the maximum value correlation coefficient
rϕ̂,g maps to a bearing-error σ2

Θ(g), which is illustrated in the grid plots below. On the right subfigure,
the maximum RSSI value gmax maps to an expected range µR(g) with a fixed range-error σ̂2

R giving the
associated grid plots below.
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Azimuth Likelihood Function

We model the likelihood of each azimuth measurement with a Gaussian bearing-error model (44) where

ZΘ = {µΘ(G), σ2
Θ(G)}. That is, the difference between the true bearing to the target θ∗ and the

estimated bearing θ̂ (i.e., the bearing-error) is Gaussian distributed. Importantly, the bearing estimate

θ̂ = µΘ(g) and its variance σ2
Θ(g) are not measured directly but instead are given as functions of

observation quality (i.e., the correlation coefficient, discussed below). As a result, when G = g, the

bearing-error likelihood function `Θ is given by

`Θ(y;x, zΘ) = f
(
b(x,y);µΘ(g), σ2

Θ(g)
)
. (5)

Now, given our model ϕ of the gain pattern, our problem becomes that of inverse regression to find

the expected bearing and uncertainty. The Gaussian bearing-error assumption states

θ̂ = θ∗ + νΘ, νΘ ∼ N (0, σ2
Θ(g)), (6)

when θ̂ = E[Θ | g] and σ2
Θ(G) = V(Θ | g). We find the expected azimuth by minimising the sum of

squares of the residuals, i.e.,

θ̂ = µΘ(g) = arg min
θ∈[0,2π)

‖g −ϕ(θ)‖2. (7)

To infer the variance V(Θ | g) for a given signal g, we note that the collection of {G} is het-

eroscedastic, i.e., the conditional variance can change with each observation. This is shown in the scat-

tergram in Fig. 2 where the bearing error is plotted against observation quality (correlation). We assume

this unexplained variance is due to hidden causes of observation noise, such as the target animal mov-

ing during a measurement, or spurious recordings due to multipath interference. In typical regression,

heteroscedasticity is considered undesirable and is reduced by introducing more regressors or non-linear

transformations of the existing variables. In our case, given that this knowledge is hidden, we cannot

introduce more variables and instead marginalise out this quantity to infer the conditional variance from
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data. Below, we show how the coefficient of determination expresses the proportion of variability in our

model (i.e., the heteroscedasticty is attributed to bearing error).

In the context of regression, we can obtain the fraction of variance unexplained (FVU) for a response

variable through the coefficient of determination. In linear regression, where we have the sample variance

s2
g as an estimate of the population variance V(G), the FVU is given by the sample correlation coefficient

r2:

V(G | Θ = θ̂)

V(G)
'
s2
g|θ̂

s2
g

= 1− r2
g,ϕ(θ̂)

. (8)

However, we are interested in the bearing variance V(Θ | G), which we can approximate from the

model variance V(ϕ(Θ) | G) by Taylor expansion. Recall that our estimate θ̂ = µΘ(g1, g2, . . . , gN ) is

a function of the random vector G. We can approximate the variance of this mapping via a first-order

Taylor expansion (45),

V(Θ | G) '
N∑
i=1

N∑
j=1

Σij
∂µΘ(ϕ(Θ))

∂Gi

∂µΘ(ϕ(Θ))

∂Gj
. (9)

Now, because the measurement G comprises i.i.d. variables Gn, the covariance matrix is given by

Σ = V(G | Θ)IN where IN is the identify matrix. This gives the conditional variance in Eq. (9) as

V(Θ | G) ' V(G | Θ)N
N∑
n=1

(
∂µΘ(G)

∂Gn

)2

. (10)

Since small changes in each realisation of G will introduce small changes in µΘ, the variance in Eq. (10)

is approximately linear for low noise νG; however, the approximation becomes worse as νG becomes

large. By using the coefficient of determination (Eq. (8)), we can express the variance of a given sensor

reading g in Eq. (10) as

σ2(g) = V(Θ | G = g) ' s2
g

(
1− r2

ϕ(θ̂),g

)
N

N∑
n=1

(
∂µΘ(g)

∂gn

)2

. (11)

Thus, σ2(g) can be expressed as a function of s2
g

(
1− r2

ϕ(θ̂),g

)
.

In practice, we regress only on σ2(g), assuming the variable is a piecewise continuous function
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of the explanatory variable (1 − rϕ(θ̂),g). We can also determine azimuth θ̂ = µΘ(g) for each mea-

surement g by the correlation coefficient rϕ(θ̂),g. That is, following each observation, the recorded

gain pattern is correlated against the model ϕ(θ) with regular phase offsets θ and the lag that cor-

responds to the maximum correlation then gives the estimated angle of arrival, i.e., Eq. (7) becomes

µΘ(g) = arg maxθ∈[0,2π) rϕ(θ),g. This process of obtaining an azimuth observation is illustrated on the

left of Fig. 2 and example likelihood functions from one trial can be seen in Fig. 3.

Range Likelihood Function

Next, we estimate the distance to the target using a Gaussian range-error model where the set ZR =

{µR(G), σ̂2
R}. The range errors are assumed to be logarithmic, as discussed below. Furthermore, unlike

the bearing observations, the scattergram in Fig. 2 does not indicate the noise is heteroscedastic, i.e., the

variance is constant for each observation. This yields the likelihood function

`R(y;x, zR) = f
(
log (d(x,y)) ;µR(g), σ̂2

R

)
. (12)

In general, range measurements in cluttered environments can be highly imprecise due to multipath

interference. We anticipate the vehicle to be deployed in similar environments and estimate the variance

under these conditions. Although the error in range measurements can be significant, including such

observations is still useful. Because the noise is homoscedastic, we can rely on range measurements

to provide an approximate location. The ability to focus on an approximate location is particularly

beneficial when the search area would otherwise be expansive, such as in tracking scenarios where there

is little prior knowledge of the target’s location, and when bearing uncertainty is high.

We are interested in mapping the sensor output g to the distance between transmitter and receiver.

Due to atmospheric interactions, the signal amplitude will decrease with range. Denote d(x,y) as the

Euclidean distance between our receiver x and the transmitter y. Then, the received power pr is a
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function of the transmitted power pt and the attenuation per meter α (46):

pr = pte
αd(x,y). (13)

In Eq. (13) we have assumed that pr and pt take into account the link budget, which characterises all

gains and losses in the telecommunication system. Most of these components are fixed for a given

system (e.g., transmitter and receiver losses), however, for a directional antenna, the gain relative to the

average radiation intensity (the isotropic directivity) depends on the immediate angle of arrival φn. As a

result, the RSSI values gn are a function of the received power pr and angle of arrival φn. The isotropic

directivity is approximately constant if we take the maximum RSSI value gmax = maxn gn. Thus, we

use the value gmax to estimate distance.

Now, let the true distance to the target be r∗ = d(x,y∗) and its estimate be a function of g, i.e.,

r̂ = µR(g). From the above discussion and Eq. (13), pr = p(gmax) for some linear function p : R→ R.

Moreover, r∗ is a function of log p(gmax) and the Gaussian range-error assumption may be expressed as

log r̂ = log r∗ + νR, νR ∼ N (0, σ2
R), (14)

where σ2
R = V(logR). We thus obtain the estimated range r̂ as

log r̂ = µR(g) = α−1(log p(gmax)− log pt). (15)

The function µR(G) can be fitted to a first degree polynomial function of log gmax. The variance σ2
R

is estimated by the sample variance σ̂2
R = s2

R. The procedure for obtaining a Gaussian range-error

observation is illustrated on the right of Fig. 2 and example range likelihood functions can be seen in

Fig. 3.

Combined Likelihood Function

The individual likelihood functions may be combined to obtain a range-azimuth likelihood function

`(y;u), where Z =
{
µΘ(G), σ2

Θ(G), µR(G), σ̂2
R

}
. That is, assuming independent errors νΘ and νR,
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Figure 3: Bayesian data fusion to obtain target estimates. The distributions shown are spatially discrete
grids over a 750 m squared area (with grid-lines every 100 m for illustrative purposes only). From left
to right: the bearing-only likelihood function `Θ, the range-only likelihood function `R, the combined
likelihood function `, and the posterior belief p(·). In each subfigure, the first observation (k = 1) is
shown in the lowermost grid, the last observation (k = 4) is uppermost, and higher probability mass is
represented as darker, raised regions. The UAV location xk is indicated by a green dot, the target location
y∗k in purple, and the maximum likelihood estimate ŷk in yellow.

the likelihood functions are multiplied pointwise (44), i.e.,

`(y;u) = `Θ(y;x, zΘ) ◦ `R(y;x, zR). (16)

We tested the null hypothesis that these errors are independent by computing the sample corre-

lation coefficient. Since the errors are assumed to be normal, the hypothesis was tested via a Stu-

dent’s t-distribution with 95% confidence and 150 observations. The results showed a correlation of

rνΘ,νR = −0.08± 0.136, giving a confidence of less than 66% that the errors are correlated. This result

further supports the heteroscedasticity assertion, i.e., that poor quality observations are not significantly

correlated with distance.

Bayesian Data Fusion

Given the likelihood function in Eq. (16), we can combine numerous observations to determine the most

likely position of the target animal. To achieve this, we use Bayesian data fusion, assuming independent

observations; this process is illustrated in Fig. 3.
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By time t we have obtained observations of the target animal at a set of times 0 ≤ t1 ≤ . . . ≤ tk ≤ t.

The above notation is extended to include the observation number k. Denote Y k = Y (tk) as the target’s

location at time tk and, similarly, Zk = Z(tk) is the observation taken at this time. Moreover, let

Uk = {Xk,Zk}; denote the measurement process as Z1:k = (Z1, . . . ,Zk) and the values it takes on

as z1:k = (z1, . . . ,zk). We are ultimately interested in knowing the probability of the target’s state after

all K observations, i.e., the posterior belief (35, 44),

p(tK ,yK) = Pr (Y K = yK | U1:K = u1:K) . (17)

Further, we assume that the target can transition between observations such that yk = yk−1 + νY with

νY ∼ N (0,ΣY ) for some covariance ΣY . This leads to the transition density

q(yk | yk−1) = Pr
(
Y k = yk | Y k−1 = yk−1

)
. (18)

Computing the posterior belief (Eq. (17)) becomes simpler if the process (Y (t))t≥0 is assumed to be

Markovian and each observation Zk only depends on Y k, i.e., `(y1:K ;u1:K) =
∏K
k=1 `(yk;uk). As

the likelihood function in Eq. (16) is defined this way, recursive Bayesian filtering (44) can be used to

update the belief. That is, the posterior belief is computed as

p−(tk,yk) =

∫
dyk−1q(yk | yk−1)p(tk−1,yk−1) (19)

p(tk,yk) = η`(yk;uk)p
− (tk,yk) , (20)

where η is a normalisation constant such that
∫

dykp(tk,yk) = 1 and `(yk;uk) is the likelihood function

(Eq. (16)). The first step, Eq. (19), gives a motion update, and the second step, Eq. (20), gives the

information update to obtain a new belief of the target location (44).

Early approaches to recursive Bayesian filtering focused on Gaussian implementations due to con-

venient analytical solutions to computing the posterior belief in Eq. (17), e.g., Kalman filters (KFs)

and extensions such as the unscented and extended KFs. However, these methods are approximations
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to the nonlinear, non-Gaussian Bayesian filter (shown in Eqs. (19)-(20)). Grid-based filtering allows

for resolution-complete recursive estimation (44, 47) and can be computed in reasonable time over our

workspace. Thus, we represent our workspace S as an I × J grid in R2.

The evolution model, Eq. (19), is functionally equivalent to Gaussian convolution. Further, given our

grid-based workspace S , this convolution is simply a Gaussian blur, a spatial (low-pass) filter commonly

used in image processing. To efficiently implement this model, we leverage results from computer vision

for convolution and use a separable Gaussian kernel of width 3|ΣY |.

Finally, we require an estimate of the location of the target ŷk given the posterior p(tk,yk). Two

obvious choices are the expected value of the posterior E [Y k] =
∫

dyk yk p(tk,yk), or the maximum a

posteriori probability (MAP) estimate arg maxyk∈S p(tk,yk). The MAP estimate performed marginally

better in preliminary trials; however, in practice the target does not remain stationary and so we instead

maximise recursively over all posteriors:

ŷk = arg max
u∈[1,k),yu∈S

p(tu,yu) .

In this way, the location estimate likelihood is strictly increasing.

Decision Making by Information Gain

Our overall objective is to know where our target animal is and with what certainty. Thus, the problem

can be considered under the framework of information gathering (35). To quantify uncertainty, we use

Shannon entropy, a standard measure for this purpose. The conditional (Shannon) entropy of a random

variable V , given another variable W , quantifies the uncertainty over the outcomes of V in the context

of W ; mathematically, this is given by H(V |W ) = E[log Pr(V |W )].

In this context, we aim to choose a sequence u1:K = {x1:K , z1:K} of state-measurement pairs such

that the final entropy of the belief H(Y N ) is minimised. That is, letting U = (S × H) and fixing the

16



measurement spaceH, the objective can be stated as

U∗1:K = arg min
U1:K⊆U

EU1:K
[H (Y 1:K)] , (21)

where the posterior belief p(tk,yk) is a function of the robot position and measurements u1:k.

However, it is more convenient to consider the equivalent problem of maximising the information

gain of each observation. Let Y −k be distributed according to the target belief after the motion update

step, i.e., Eq. (19)). The information gained in taking the action Uk = uk is quantified by the mutual

information I(Y k;Y
−
k ) between the posterior and the prior belief:

I(Y k;Y
−
k ) = H(Y k)−H(Y k | Y −k ). (22)

Decomposing Eq. (22) using the chain rule, the entropy minimisation problem defined in Eq. (21) can be

expressed as

U∗1:K = arg max
U1:K⊆U

EU1:K

[
H(Y 1) +

K∑
k=2

I
(
Y k;Y

−
k )
)]
. (23)

The objective of Eq. (23) is equivalent to entropy minimisation and is, in general, non-convex and

analytically intractable. However, the mutual information given in Eq. (22) is monotone submodular and

thus the quality of the solution provided by a greedy algorithm is at least 63% of optimal (36). That is,

given a deterministic greedy algorithm that selects the action

Uk = arg max
Uk∈U

E
[
I(Y k;Y

−
k )
]

(24)

at each decision step, the resulting path û1:K is within a constant factor of optimal of the objective shown

in Eq. (23), i.e.,

û1:K ≥
(

1− 1

e

)
u∗1:K . (25)

Furthermore, this is the most efficient algorithm to obtain such a bound unless P = NP (36).

Optimising each observation Uk is constrained in that only the vehicle locations xk ⊂ uk can be

selected, and consequently only the expected information gain at each sample s can be computed, i.e.,
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we choose future waypoints xk such that

xk = arg max
s∈S

E
[
I(Y k;Y

−
k ) |Xk = s

]
. (26)

As mentioned above, we assume independent errors in the likelihood functions shown in Eq. (16), giving

Pr(Z) = Pr(ZΘ) Pr(ZR). However, even solving for independent priors requires inverting all possible

distributions at all sample locations s ∈ S; this is generally intractable.

As an efficient alternative, we assume that the target location for the next observation is the maximum

likelihood position after the motion update, i.e., Y k = ŷ−k . As a result, for a fixed viewpoint s, the

expected range measurement E[R |Xk = s,Y k = ŷ−k ] = d(s, ŷ−k ) and expected bearing measurement

E[Θ | Xk = s,Y k = ŷ−k ] = b(s, ŷ−k ) to the target are given. Moreover, the expected variance σ̂2
Θ

is given by marginalising out G such that σ̂2
Θ = E[σ2

Θ(G)] ' 0.2 radians. In this case, the expected

observation is a function of the viewpoint s:

ẑk(s) = {d(s, ŷ−k ), σ̂2
Θ, b(s, ŷ

−
k ), σ̂2

R},

and the optimisation over potential viewpoints s from Eq. (26) becomes

xk = arg max
s∈S

I
(
Zk = ẑk(s);Y k = ŷ−k

)
. (27)

To reduce computation time, instead of sampling every location in the workspace s ∈ S as indicated in

Eq. (27), we simply sample a uniformly distributed subset. Given the stochastic nature of observations

this does not appear to affect the quality of the planner.

Evaluating the Performance of the System

To validate our approach, we compared the performance of the robotic system against human tracker

performance in locating swift parrots in the wild. The results indicate that the robot is able to approximate

the location of the target species in less time than human trackers. Moreover, the reported position

estimates are obtained in less than 5 observations (approximately 10 minutes) and lie within 50m of the
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Figure 4: Evaluating the performance of the robotic system through comparison with human trackers.
We performed two flights at each of four trial sites (eight flights in total). The box plot shows 1) the error
in the robot system’s target estimate ŷk for each observation k, and 2) the Euclidean distance between
the human tracker’s location at time tk and their final estimate. In two of the flights, the final location
was uncertain because the bird moved during the flight and visual confirmation was lost. The case where
data from these two flights are removed is labelled Robot (certain) (blue boxes).

true bird location.

The boxplot in Fig. 4 collates the tracking performance from eight flights at four different sites near

Temora, New South Wales, Australia. At each site, we obtained the GPS trajectory of a novice and

an expert tracker performing manual wildlife telemetry. Once a human tracker had established the true

location y for the target, the UAV began its flight trial. A flight was performed for each type of tracker

(novice, expert). Thus, we obtained two tests of the robot system at each site with known true bird

location.

For fair comparison, both the robot and the humans began trials from the same initial coordinates,

with the target animal location unknown. This starting location was chosen such that the radio signal was

strong enough to be measured by the on-board payload. In order to quantify performance, we compare

the robotic tracker estimate ŷk with the Euclidean distance between the human tracker and the final

ground truth y at that time tk. These locations are plotted in Fig. 4, where the robot, on average, takes
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less time to locate the bird to within 50 m (around Observation 2, between 143–289 s).

Ecological Significance of Trials

The quantitative data from our trials provide significant insight into the movement and habitat of swift

parrots. The Temora region was chosen because, based on a small number of sightings, it was assumed

that numerous swift parrots had migrated to the area in the weeks leading up to the trial (see Materials and

Methods). The results in this paper were obtained over a seven-day trial in the region and the posterior

estimates from all flights were aggregated to yield the heatmap shown in Fig. 5. The figure shows that

the flocks used two distinct areas for foraging and roosting, including sites where the species had not

previously been recorded.

Swift parrots are small, critically endangered migratory birds that are dependant on highly variable

winter nectar resources. As a result, the small population (less than 2000 birds) spreads across vast areas

of South-Eastern Australia each year in search of suitable food. Given their small body and hence tag

size, as well as their capacity for highly variable and large movements, this species has never before

been successfully radio-tracked. Figure 5 provides an example of the distribution and abundance of swift

parrots across their winter range in a single season, together with the location of our study site.

Discussion

In this paper, we validated that our customised aerial robot can be used to perform autonomous wildlife

tracking. We presented rigorous mathematical derivation of all algorithmic components of the system,

including a novel approach to computing the uncertainty of each bearing-only observation where het-

eroscedasticity is assumed. The resulting system performed comparably to and often better than skilled

humans in tracking the critically endangered swift parrot (Lathamus discolor).

Wildlife tracking is known to be an important but difficult problem and tracking members of this

species is particularly challenging due to their small size and highly dynamic movements. The ability

of our system to track such animals thus exemplifies the capability of robotic wildlife trackers and the
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Figure 5: Recorded spatial distribution of swift parrots. Main figure: swift parrot sightings in South-East
Australia for May 2007. Green circles denote sites where flocks were confirmed, red circles denote failed
surveys where no birds were found. The size of the green circles indicate the size of the flock, ranging
from 1 to 100 birds. Inset: heatmap illustrating aggregated posterior distributions from our trial in July
2017. The posterior distributions of all trials were normalised and aggregated to give an indication of
the most likely foraging and roosting areas. White symbols indicate locations where ground truth data
(confirmed by visual sightings) were available; each tag has a unique symbol: ‘o’, ‘×’, ‘+’, or ‘∗’.
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possibility of these systems to dramatically facilitate conservation management.

Although we performed this study within a landscape that is relatively easy to traverse on foot (as

discussed in Materials and Methods), the greatest benefits of this aerial tracking technology are likely to

be realised within densely vegetated areas or rugged and dangerous landscapes. These situations require

significantly increased amounts of time and effort on the ground to locate tagged animals (relative to flat

terrain) but no additional time or effort when tracking from the air.

There are many avenues of inquiry for improving the system hardware and decision making algo-

rithms. In particular, multi-robot extensions and long time-horizon planning with travel costs would

allow for efficient search and tracking of numerous animals simultaneously. The problem of multi-robot

wildlife telemetry tracking has been partially addressed by designing optimal information gathering al-

gorithms without considering travel cost (18). However, these are yet to be used in real tracking exper-

iments. A recent approach to information gathering for decentralised active perception allows for any

general reward functions in order to perform distributed optimisation (48).

When studying fine-scale movement patterns (e.g., of highly dynamic animals) it is desirable to

maintain real-time information about individual trajectories. In robotics, this general problem is known

as persistent monitoring. Existing approaches, however, often seek to maintain information about an

entire, continuous environment (49) rather than monitoring a small number of discrete features (e.g.,

birds). Recent approaches partition the environment into discrete spatial locations and model the likeli-

hood of observing birds using Poisson processes (50). Extensions to this model have been made where

it is assumed that the presence of a robot interferes with the animals’ behaviour (51).

Materials and Methods

Robot System

The aerial robot system used in this work was originally presented in (21). We summarise key details

here for convenience.
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The system comprised a commercial eight-rotor UAV (Ascending Technologies’ Falcon 8), custom

antenna array, sensor payload, and ground control station (GCS) laptop running ROS (52). All algo-

rithmic component implementations were executed on the GCS. A radio-link between the GCS and the

UAV allowed for telemetry and autonomous waypoint following.

The radio signal from each radio-tagged bird was received and filtered by custom electronics on-

board the UAV and transmitted to the GCS (producing the sampled signal described in Observed and

Expected Sensor Data). After each observation and subsequent decision making step, the GCS commu-

nicated a new waypoint to the UAV for autonomous navigation.

Experimental Setup

Here we present the procedure used to choose the survey location and describe its terrain. We then briefly

explain the manual and robotic tracking procedures.

The trials were performed on 3–7 July 2017 in Temora, New South Wales, Australia. Prior to these

trials, six birds were detected by an experienced volunteer undertaking targeted surveys in the surround-

ing Riverina region, where swift parrots are known to migrate on a regular basis. Follow-up surveys were

conducted by the authors in late June, confirming that the survey location was suitable for this trial by

detecting at least 30 birds. By the end of August, at least 200 swift parrots (10% of the global population)

were detected in the area. The study site is an open, grassy, Box Ironbark woodland, and thus relatively

easy to traverse on foot. However, locating the birds was often complicated by logistical issues such as

limited road accessibility, fence lines and different land tenures, including private property.

For the trials, several birds were captured and, subsequently, a BioTrack Pip Ag393 radio tag was

taped to their back feathers. Each tag transmitted on a unique frequency that was preprogrammed into

both the manual and robotic receiver systems. The tags emitted an on-off key modulated signal with a

pulse width of 10 ms and a period of 1.05 s. Moreover, they were lightweight (approximately 2 g) and,

subsequently, low-power (less than 1 mW) transmitters due to the small size of the species.
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Manual tracking was undertaken using a Titley Australis 26k very high frequency (VHF) radio re-

ceiver system and a Yagi three element hand-held directional antenna (shown earlier in Fig. 1). The

approximate location of a bird was identified by driving in an offroad-capable vehicle to different sites

until a radio signal was audible from the receiver. Once a signal was detected, the tracker continued

to point the antenna towards the strongest (loudest) signal while walking through the landscape. This

procedure involved constant adjustment of the volume and the gain of the receiver and continued until

the bird was sighted. The GPS trajectory followed by the manual tracker was recorded.

After achieving visual confirmation of a bird’s location, the UAV was launched approximately from

the manual tracker’s starting position. The UAV trajectory and raw sensor data were recorded in real-

time and later replayed to generate the figures reported. Each flight was performed at a constant altitude

of 75 m (such that the canopy was cleared) and each observation took approximately 45 s to complete.

For planning viewpoints, the UAV was constrained to choose locations within 300 m of the GCS (i.e.,

the starting position) for the pilot to maintain visual line-of-sight.

For Bayesian data fusion, the workspace S ⊂ R2 was discretised into a square, 300× 300 grid, i.e.,

I = 300 and J = 300. Each cell represented a 5× 5 m area and thus the workspace extended 750 m in

all cardinal directions from the GCS. We assumed a uniform prior on the target location and evolution

model covariance ΣY = σY I2, where σY = 20 m.
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