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Abstract Time-course correlation patterns can be positive or negative, and
time-lagged with gaps. Mining all these correlation patterns help to gain
broad insights on variable dependencies. Here, we prove that diverse types
of correlation patterns can be represented by a generalized form of positive
correlation patterns. We prove a correspondence between positive correlation
patterns and sequential patterns, and present an efficient single-scan algorithm
for mining the correlations. Evaluations on synthetic time course data sets, and
yeast cell cycle gene expression data sets indicate that: (i) the algorithm has
linear time increment in terms of increasing number of variables; (ii) negative
correlation patterns are abundant in real-world data sets; and (iii) correlation
patterns with time lags and gaps are abundant. Existing methods have only
discovered incomplete forms of many of these patterns, and have missed some
important patterns completely.
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1 Introduction

In real-world applications like finance and health-care, a correlation pattern
describes a tightly correlated trend of data changes between two time-course
variables. Correlations can be positive or negative. A positive correlation pat-
tern indicates data movements in same directions between a set of variables,
whereas a negative correlation pattern moves in opposite directions. Time-
course variables have also time-dependent interactions i.e after some time de-
lay. This time-lagged influence between variables is called time-lagged correla-
tion. Thus, four types of correlation patterns exist: basic positive and negative
correlation patterns, and time-lagged positive and negative correlation pat-
terns. Also, noise can interrupt the continuity of a correlation, leading to gaps
in the correlation. Figures 1(a), (b), (c) and (d) describe the correlations fur-
ther.
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Fig. 1 Examples of basic positive and negative correlation patterns, time-lagged
positive and negative correlation patterns. (a) A basic positive correlation pattern. (b)
A basic negative correlation pattern. (c) A time-lagged positive correlation pattern. (d) A
time-lagged negative correlation pattern. For these negative patterns, one group of variables
is drawn using dash lines, and the other group using solid lines. X-axis represents time
points. In (a) and (b), the areas in green denotes those time points used in the patterns,
while in (c) and (d), the lines in green represent those time points not occurring in the
patterns.

This work introduces ”pan-correlation patterns”, to maximize the sequence
of data movements in one pattern. A pan-correlation pattern consists of a max-
imized sub-list V0 of all variables, where all the listed variables are associated
with a segment of time points having the same length, such that V0 can be
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divided into two not necessarily mutually-exclusive lists of variables V1 and
V2, satisfying: (i) every pair of variables within V1 are positively correlated,
or time-lag positively correlated, or time-lag positively correlated with gaps;
(ii) every pair of variables within V2 are positively correlated, or time-lag pos-
itively correlated, or time-lag positively correlated with gaps; and (iii) every
pair of variables between V1 and V2 are negatively correlated, or time-lag neg-
atively correlated, or time-lag negatively correlated with gaps. V1 or V2 can
be empty—in this case, a pan-correlation pattern is simplified as a positive
pan-correlation pattern. Thus, a maximal pan-correlation pattern is a set of
all possible variables that share highly correlated movement trends, tolerating
time delay and noise.

2 Related Work

Mining all significant pan-correlation patterns is complex. Existing algorithms
separately detect time-lagged, gap-containing, or the basic subspace correla-
tion patterns. The union of these separate results is sub-optimal to mining sig-
nificant subspace pan-correlation patterns. Biclustering algorithms have been
proposed to detect positive subspace correlation patterns represented in the
form of constant-value, shifting and/or positively-scaling biclusters. They may
be able to detect a special sub-type of pan-correlation patterns, for example,
positive correlation patterns [6] [3] or negative correlation patterns [18], [8]
or both positive and negative correlations by [4], [19] or time-lagged positive
correlation patterns [2], [5]. Some algorithms have also been proposed to de-
termine time-lagged biclusters in time-course data [9,17,12,15].

We introduce an efficient algorithm for mining all significant pan-correlation
patterns. First, we prove that all the different types of correlation patterns can
be represented by a generalized form of positive correlation patterns. Second,
the time course data set is transformed into a sequential data set containing
sequences of ”up”, ”down”, and ”no-change”, for three movement trends of
variables. Using this commonly-used idea [13,8,11], the pan-correlation min-
ing problem is converted into a sequential pattern mining problem. For repre-
senting negative correlation patterns through the generalized form of positive
correlation patterns we employ an opposite-mirror copy [10] of the original se-
quential data set. Third, we modify the sequential pattern mining algorithm to
efficiently prune redundant patterns. Our pan-correlation mining algorithm is
tested on synthetic time course data sets and four microarray gene expression
time course data sets.

3 Problem formulation and Definitions

Let V be a set of NV variables v1, v2, . . . , vNV
. Let T be a set of NT consecutive

time points t1, t2, . . . , tNT
. Here, tj and tj+1 in NT are two ordered consecutive

time points with tj ≺ tj+1, indicating that tj precedes tj+1. Let mi,j denote
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the value of variable vi at time point tj . A time course data set is then defined
by the data matrix M = [mi,j ]NV ×NT

.

Definition 1 A positive correlation pattern p is a pair comprising a subset V0
of variables in V and a continuous segment Tp of time points in T such that,
for every pair of consecutive time points from tj to tj+1 in Tp, the values of
all variables in V0 decrease or increase simultaneously. A positive correlation
p is written as p = 〈V0, Tp〉.

Definition 2 (Cf. [8]) A negative correlation pattern n is a triplet comprising
two non-overlapping subsets V1 and V2 of variables in V and a continuous
segment Tn of time points in T such that, for every pair of consecutive time
points from tj to tj+1 in Tn, the values of all variables in V1 decrease while the
values of all variables in V2 increase, and vice versa. A negative correlation n
is written as n = 〈(V1, V2), Tn〉.

These two definitions describe a synchronized pace of value change without
time delay. In fact, some variables in the data matrix M may have influence
on others, but the effect may not take place immediately (i.e., after some time
delay).

Definition 3 A time-lagged positive correlation pattern kp is a list L of h
distinct pairs {(vx1

, T 1
p ), ..., (vxh

, Th
p )}, such that: (i) V0 = {vx1

, . . . , vxh
} is

a list of not necessarily distinct variables of V ; (ii) T 0
K = {T 1

p , . . . , T
h
p } is a

list of continuous time segments of the same length in T ; and (iii) for every
1 ≤ r < |T 1

p | and for every vxi
∈ V0, the value of vxi

increases (decreases)

from the rth time point in T i
p to the (r + 1)th time point in T i

p if and only if
for all other vxj ∈ V0, the value of vxj increases (decreases) from the rth time
point in T j

p to the (r + 1)th time point in T j
p . For convenience, a time-lagged

positive correlation pattern kp can be written as kp = 〈V0, T 0
K〉.

Definition 4 A time-lagged negative correlation pattern kn is a pair of dis-
tinct lists {(vx1

, T 1
p ), . . . , (vxh

, Th
p )} and {(vy1

, T 1
q ), . . . , (vyg

, T g
q )}, such that:

(i) V1 = {vx1
, . . . , vxh

} and V2 = {vy1
, . . . , vyg

} are two possibly overlapping
lists of not necessarily distinct variables of V ; (ii) T 1

K = {T 1
p , . . . , T

h
p } and

T 2
K = {T 1

q , . . . , T
g
q } are two lists of h and g continuous time segments of the

same length in T ; (iii) for every 1 ≤ r < |T 1
p | and for every vxi ∈ V1, the

value of vxi
increases (decreases) from the rth time point in T i

p to the (r+1)th

time point in T i
p if and only if for all other vxj

∈ V1, the value of vxj
increases

(decreases) from the rth time point in T j
p to the (r + 1)th time point in T j

p ;
(iv) for every 1 ≤ r < |T 1

p | and for every vyi ∈ V2, the value of vyi increases

(decreases) from the rth time point in T i
q to the (r + 1)th time point in T i

q if
and only if for all other vyj

∈ V2, the value of vyj
increases (decreases) from

the rth time point in T j
q to the (r + 1)th time point in T j

q ; and (v) for every
1 ≤ r < |T 1

p |, for every vxi
∈ V1, and for every vyj

∈ V2, the value of vxi

increases (decreases) from the rth time point in T i
p to the (r+ 1)th time point

in T i
p if and only if the value of vyj decreases (increases) from the rth time
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point in T j
q to the (r + 1)th time point in T j

q . For convenience, a time-lagged
negative correlation kn is written as kn = 〈(V1, V2), (T 1

K , T
2
K)〉.

A time segment can be extended into a discontinuous time segment to toler-
ate some small amount of noise. For example, Tp = [1, 2, 3, 4, 7, 8, 9, 10] is a dis-
continuous time segment containing a gap of length 2 between 4 and 7. The first
4 time points of Tp are continuous from 1 to 4, and the next 4 time points are
continuous from 7 to 10. The pattern p = {(v, Tp = [1, 2, 3, 4, 7, 8, 9, 10]), (v′, T ′p =
[1, 2, 3, 4, 5, 6, 7])} is defined as a positive correlation pattern with gaps if the
changes of the values of v for any two consecutive time points of [1, 2, 3, 4] are
in the same direction as the changes of the values of v′ for [1, 2, 3, 4], and the
changes of the values of v for any two consecutive time points of [7, 8, 9, 10] are
in the same direction as the changes of the values of v′ for [4, 5, 6, 7]. The data
movement trends between the time points 4 and 7 in v are not considered due
to the gap.

Next, we introduce the definitions for (time-lagged) positive/negative cor-
relation patterns that contain gaps. A pair of consecutive time points ti and
ti+1 is denoted as tpp(i,i+1). In this work, all time-point pairs are pairs of con-
secutive time points. Let Tpp = {tpp(ij ,ij+1) | j = 1, 2, . . . , h} be an ordered
list of h time-point pairs, where tij ≺ tij+1

. Tpp is continuous if and only if for
every 1 ≤ k ≤ h, ik + 1 = ik+1. Otherwise, Tpp is discontinuous and contains
gaps. A continuous Tpp corresponds to a continuous time segment. For ex-
ample, {tpp(1,2), tpp(2,3), tpp(3,4)} corresponds to time segment {t1, t2, t3, t4}.
A discontinuous Tpp may also corresponds to a continuous time segment. For
example, {tpp(1,2), tpp(3,4)} correspond to time segment {t1, t2, t3, t4}. So, a
time segment alone is not sufficient to define the data movements on the time-
point pairs and the movement gaps.

Definition 5 A positive pan-correlation pattern is a time-lagged positive cor-
relation pattern with gaps. That is, it is a list of h distinct pairs {(vx1

, Tpp1p), . . . ,

(vxh
, Tpphp)} such that: (i) V = {vx1 , . . . , vxh

} is a list of not necessarily dis-

tinct variables in V ; (ii) T PP = {Tpp1p, . . . , Tpphp} is a list of time-point-
pair lists of the same length and possibly containing gaps; and (iii) for every
1 ≤ r < |Tpp1p| and for every vxi

∈ V, the value of vxi
increases (decreases) at

the rth time-point pair in Tppip if and only if for all other vxj ∈ V, the value of

vxj increases (decreases) at the rth time-point pair in Tppjp. For convenience,
a positive pan-correlation pattern C is written as C = 〈V, T PP〉.

Every continuous time segment T∗ in the definitions from Definition 1
to Definition 4 can be converted into a continuous Tpp. Thus all correlation
patterns by these definitions can be rewritten by using time-point-pair list Tpp
to replace time segment T∗.

Definition 6 A partial order vp is defined on positive pan-correlation pat-
terns as follows. Let C = 〈V = {vx1 , . . . , vxh

}, T PP = {Tpp1p, . . . , Tpphp}〉 and

C′ = 〈V ′ = {vy1
, . . . , vyg

}, T PP ′ = {Tpp1q, . . . , Tppgq}〉 be two positive pan-
correlation patterns. We say C vp C′ if and only if for each variable vx∗ ∈ V
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and any of Tpp∗p ∈ T PP which are associated with vx∗ , there is vyj ∈ V ′ and

its Tppjq ∈ T PP ′, such that vx∗ = vyj and Tpp∗p ⊆ Tppjq. The space of positive
pan-correlation patterns under this partial order is denoted by CP.

Definition 7 A negative pan-correlation pattern is a time-lagged negative
correlation pattern with gaps. That is, it is a pair of distinct lists {(vx1

, Tpp1p), . . . ,

(vxh
, Tpphp)} and {(vy1 , Tpp

1
q), . . . , (vyg , Tpp

g
q)}, such that: (i) V1 = {vx1 , . . . , vxh

}
and V2 = {vy1

, . . . , vyg
} are two possibly overlapping lists of not necessar-

ily distinct variables in V ; (ii) T PP1
K = {Tpp1p, . . . , Tpphp} and T PP2

K =
{Tpp1q, . . . , Tppgq} are two lists of time-point-pair lists all with the same length
and possibly containing different gaps; (iii) for every 1 ≤ r < |Tpp1p| and for
every vxi

∈ V1, the value of vxi
increases (decreases) at the rth time-point pair

in Tppip if and only if for all other vxj
∈ V1, the value of vxj

increases (de-

creases) at the rth time-point pair in Tppjp; (iv) for every 1 ≤ r < |Tpp1p| and
for every vyi ∈ V2, the value of vyi increases (decreases) at the rth time-point
pair in Tppiq if and only if for all other vyj ∈ V2, the value of vyj increases

(decreases) at the rth time-point pair in Tppjq; (v) for every 1 ≤ r < |Tpp1p|, for
every vxi

∈ V1, and for every vyj
∈ V2, the value of vxi

increases (decreases)
at the rth time-point pair in Tppip if and only if the value of vyj

decreases

(increases) at the rth time-point pair in Tppjq. For convenience, a negative

pan-correlation pattern C is written as C = 〈(V1,V2), (T PP1
K , T PP2

K)〉.
Definition 8 A partial order vn is defined on negative pan-correlation pat-
terns as follows. Let C = 〈(V1,V2), (T PP1

K , T PP2
K)〉 and C′ = 〈(V1′ ,V2′),

(T PP1′

K , T PP2′

K)〉 be two negative pan-correlation patterns. We say C vn C′ if

and only if 〈V1, T PP1
K〉 vp 〈V1′ , T PP1′

K〉 and 〈V2, T PP2
K〉 vp 〈V2′ , T PP2′

K〉.
The space of negative pan-correlation patterns under this partial order is de-
noted by CN.

Definition 9 A partial order v is defined on the combined collection of pos-
itive and negative pan-correlation patterns as follows. Let C = 〈V, T PP〉 be a
positive pan-correlation pattern. Let C′ = 〈(V1,
V2), (T PP1

K , T PP2
K)〉 be a negative pan-correlation pattern. We say C vpn C′

if and only if 〈V, T PP〉 vp 〈V1, T PP1
K〉 or 〈V, T PP〉 vp 〈V2, T PP2

K〉. Then
for any two positive or negative pan-correlation patterns C1 and C2, we say
C1 v C2 if and only if C1 vp C2 when both patterns are in CP, or C1 vn C2
when both patterns are in CN, or C1 vpn C2 when C1 is in CP and C2 is in CN.
This combined partially-ordered space of patterns is denoted by C. We also
write v instead of vp, vn, and vpn when the context is clear or the distinction
is unimportant.

There are a huge number of positive and negative pan-correlation patterns
in the data matrix M . However, we are only interested in those patterns that
are maximal with respect to the partial ordering in the respective spaces.
These patterns are called closed patterns and more specifically C-, CP-, and
CN-closed patterns. The following relationships between the various types of
pan-correlation patterns can be easily proved.
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Proposition 1 Let C = 〈(V1,V2), (T PP1
K , T PP2

K)〉, C1 = 〈V1, T PP1
K〉, and

C2 = 〈V2, T PP2
K〉. Then

– C is in CN implies both C1 and C2 are in CP.
– C is in CN if, and only if, C′ = 〈(V2, V1), (T PP2

K , T PP1
K)〉 is in CN.

– C is closed in C if, and only if, it is closed in CN.
– C′1 = 〈(V1, {}), (T PP1

K , {})〉 is closed in CN implies C1 is closed in CP.
– C is closed in C implies for i ∈ {1, 2}, for every (closed) pattern C′ =
〈V ′, T PP ′〉 in CP where Ci vp C′, it is the case that Vi = V ′ (Note that
Ci = C′ does not hold).

The second point of Proposition 1 implies some degree of redundancy, as the
two patterns C and C′ capture the same correlation information. We will deal
with this redundancy later in Section 4.

3.1 Unified representation of all correlation patterns

Let V ∗ be a set of variables v1∗, v2∗, ..., vNV
∗. Let mi,j∗ = −mi,j denote the

value of variable vi∗ at time point tj , and this value of vi∗ at time point tj is
the negation of the value of vi at time point tj . A negated time course data
set is then defined by the data matrix M∗ = [mi,j∗]NV ×NT

. It is also called a
mirror-copy of M . Clearly, whenever the value of vi increases (decreases) from
time point tj to time point tj+1, the value of vi∗ decreases (increases) from
time point tj to time point tj+1. I.e., the value of vi∗ moves in the opposite
direction of vi. Let M ′ be the matrix obtained by adding the negated data
matrix M∗ to the original data matrix M (details are given in Section 4.1).
The lemma below follows from this observation and can be easily proved.

Lemma 1 C = 〈(V1 = {vx1 , . . . , vxh
}, V2 = {vy1 , . . . , vyg}),

(T PP1
K = {Tpp1p, . . . , Tpphp}, T PP2

K = {Tpp1q, . . . , Tppgq})〉 is in CN in the
data matrix M if, and only if, C∗ = 〈V = {vx1

, . . . , vxh
, vy1

∗, . . . , vyg
∗},

T PP = {Tpp1p, . . . , Tpphp , Tpp1q, . . . , Tppgq}〉 is in CP in the data matrix M ′.

Based on the equivalence above, for C in CN with regard to M , we write C∗
for its counterpart in CP with regard to M ′. Every closed CP pattern in the
data matrix M ′ is in a one-to-one correspondence with a closed CN pattern
(also a closed C pattern) in the data matrix M .

Theorem 1 C = 〈(V1 = {vx1
, . . . , vxh

}, V2 = {vy1
, . . . , vyg

}), (T PP1
K =

{Tpp1p, . . . , Tpphp}, T PP2
K = {Tpp1q, . . . , Tppgq})〉 is closed in C in the data

matrix M if, and only if, C∗ is closed in CP in the data matrix M ′. Thus, C-
closed patterns in M are in one-to-one correspondence with CP-closed patterns
in M ′.

It follows from Theorem 1 and the second-last bullet of Proposition 1 that
every CP-closed pattern, say 〈V, T PP〉, in the data matrix M ′ involving no
negated variables, corresponds to the C-closed pattern 〈(V, {}), (T PP, {})〉 in
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the data matrix M , which is also a closed CP-pattern in the data matrix M .
But note—and this is subtle, cf. the last point of Proposition 1—that not
every CP-closed pattern C′ = 〈V ′, T PP ′〉 in the data matrix M , which implies
〈(V ′, {}), (T PP ′, {})〉, is necessarily C-closed in the data matrix M (and is
thus also not necessarily closed in CP in the data matrix M ′).

4 Mining algorithms

Given a time-course data set M = [mi,j ]NV ×NT
, let si,j be the value movement

of the variable vi between time point tj and tj+1 (= tj + 1). Specifically, si,j
is U (up) if mi,j+1 ≥ mi,j + δi, and is D (down) if mi,j+1 ≤ mi,j − δi, and
is O otherwise. Let Ri = {si,1, si,2, · · · , si,NT−1} be the sequence of all value
movements of vi ∈ V . Let S = [si,j ]NV ×(NT−1) be a sequential transaction
data set which is easily transformed from M . S has the same variables V as
M does, but each variable in S has NT − 1 sequential value movements. In
the transformation, δi is used to define the scale of the variable vi’s value
movement in M .In this work, the δi for vi ∈ V is set as twenty percents of the
absolute difference between the second maximum value of mi,j and the second
minimum value of mi,j , 1 ≤ j ≤ NT . The maximum value and the minimum
value are discarded to avoid some outlier values of vi in M .

We view S as a set of sequential transactions. And each row Ri in S
corresponds to a sequential transaction and is viewed a sequence of value
movements (U, D, and O). Given any variable vi ∈ V and any ordered set of
time-point pairs Tpp = {tpp(ij ,ij+1) | j = 1, 2, . . . , h}. Let f(vi, Tpp) be the
list {si,i1 , . . . , si,ih}. Thus, f(vi, Tpp) gives the value movements of vi during
Tpp. We write f ′(vi, Tpp) to denote the list obtained by flipping every U to
D and every D to U in f(vi, Tpp). In S, a sequential pattern is a list of value
movements (U, D, and O). A sequential pattern sp = {s1, . . . , sh} is said
to occur in a sequential transaction Ri if there is a list of time-point pairs
Tpp = {tpp(ij ,ij+1) | j = 1, 2, . . . , h}, such that f(vi, Tpp) = sp. That is, the
value movements specified in the pattern sp occur in the transaction Ri in the
same order as they appear in sp, possibly separated by other value movements.
We write supp(sp, S) to denote the support of the sequential pattern sp in S.
I.e., supp(sp, S) = {Ri ∈ S | sp occurs in Ri}.

The space of all sequential patterns occurring in S is denoted by SP. A
closed sequential pattern in SP is defined below, which is similar to those in
previous works [16].

Definition 10 Let sp and sp′ be two sequential patterns. We say sp ≤ sp′

in SP if, and only if, sp is a subsequence of sp′ or is identical to sp′, and
supp(sp, S) = supp(sp′, S). The closed patterns of SP are the maximal patterns
in SP according to this partial order.

It is obvious that f(vxi
, Tppi) = f(vxj

, Tppj) for 1 ≤ i, j ≤ h, for any
pattern C = 〈V = {vx1

, ..., vxh
}, T PP = {Tpp1, . . . , Tpph}〉 in CP in M . The
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following easily-proved property connects the closed patterns in SP of S and
those in CP of M .

Proposition 2 For every SP-closed pattern sp in S, there is a unique CP-
closed pattern C = 〈V = {vx1

, . . . , vxh
}, T PP = {Tpp1, . . . , Tpph}〉 in M ,

such that sp = f(vxi
, Tppi) for 1 ≤ i ≤ h. And for every CP-closed pattern

C = 〈V = {vx1 , . . . , vxh
}, T PP = {Tpp1, . . . , Tpph}〉 inM , there is a SP-closed

pattern sp in S, such that sp = f(vxi , Tpp
i) for 1 ≤ i ≤ h. Thus, SP-closed

patterns in S are in one-to-one correspondence with CP-closed patterns of M .

4.1 Opposite mirror copy of S

In S = [si,j ]NV ×(NT−1), a positive correlation pattern is denoted by one se-
quence of value movements, while a negative correlation pattern is denoted
by two sequences of value movements whose value movements are opposite to
each other at every position, U vs. D, and D vs. U. To make available in S the
unified formulation of positive and negative correlation patterns, an opposite
mirror copy of each transaction in S is created and added into S. This data
management technique was similarly used by [10] for mining biclusters.

Given the value movements of vi in S, i.e., Ri = {si,1, si,2, . . . , si,NT−1},
let its opposite mirror copy be R∗i = {s∗i,1, s∗i,2, . . . , s∗i,NT−1} where s∗i,j
is up if si,j is down, s∗i,j is down if si,j is up, and otherwise s∗i,j = si,j .
The opposite mirror copy of all transactions in S are added into S. The new
transaction data set is denoted by S′ = [s′i,j ]2NV ×(NT−1), where all Ris of
vis are indexed from 0 to 2NV -2 with step 2 in S′, and all R∗is are indexed
from 1 to 2NV -1 with step 2. This index strategy is used later. S′ is also the
sequential transaction data set derived from M ′. Then, the crucial theorem
below follows immediately from Theorem 1 and Proposition 2.

Theorem 2 SP-closed patterns in S′ are in one-to-one correspondence with
C-closed patterns in M .

4.2 Mine frequent closed sequential value movements in S′

All SP-closed patterns in S′ can be detected using efficient algorithms of mining
closed sequential patterns. After that, given a SP-closed pattern in S′, by
Theorem 2, there is a corresponding CP-closed pattern in M ′, i.e., a C-closed
pattern in M . Then, all pan-correlation patterns can be easily obtained from
these frequent closed sequential value movements by restoring the time-point
pair information and the transaction id information: given a SP-closed pattern
sp and its supp(sp, S) with {vx1

, ..., vxh
, vy1
∗, ..., vyg

∗}, the variables from V
of M ′ are grouped in one set while those from V ∗ are grouped in another
set, indicating the negative correlation between the two sets; then, the time-
point pair information associated with sp is detected by matching sp with
each variable vxi

∈ supp(sp, S) where there might be multiple matches in vxi
,

indicating multiple occurrence of sp in vxi
.
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4.3 Opposite mirror copy causes redundancy in patterns

In M ′, every pan-correlation pattern has a mirror image that carries the same
information. For example, a negative correlation pattern C = 〈(V1,V2), (T PP1,
T PP2)〉 in M can be represented by C∗ = 〈V1 ∪ V2∗, T PP1 ∪ T PP2〉 or
C∗′ = 〈V1 ∗ ∪V2, T PP1 ∪ T PP2〉 in M ′. Here, V1∗ is the negation of V1 and
V2∗ is the negation of V2. Correspondingly in S′ from M ′, sp = f(vxi

, Tppi)
for vxi

∈ V1 ∪ V2∗ and sp′ = f(vyj
, Tppj) for vyj

∈ V1 ∗ ∪V2, and sp 6= sp′.
Thus, C is mined twice in terms of sp or sp′ in S′. And once one of sp and sp′ is
known, there is no need to mine the other because the other can be produced
according to the flip relationship between their components. Thus, sp and sp′

are redundant. It is easily proved that a closed C correlation pattern in M is
always detected twice in terms of sp and sp′ in S′.

Fortunately, each pair of redundant patterns has some unique property
below. Without loss of generality, let a pair of redundant patterns C∗ =
〈(vx1

, Tpp1p), . . . , (vxh
, Tpphp), (vy1

∗, Tpp1q), . . . , (vyg
∗, Tppgq)〉 and C∗′ = 〈(vx1

∗,
Tpp1p), . . . , (vxh

∗, Tpphp), (vy1
, Tpp1q), . . . , (vyg

, Tppgq)〉 on M ′ both capture the

same information as C = 〈(V1 = {vx1
, . . . , vxh

}, V2 = {vy1
, . . . , vyg

}), (T PP1
K =

{Tpp1p, . . . , Tpphp}, T PP2
K = {Tpp1q, . . . , Tppgq})〉 in M . Here v∗ is the nega-

tion of v. Then, we rewrite C∗ = {(vz1 , Tpp1), . . . , (vzh+g
, Tpph+g)} and C∗′ =

{(v′w1
, Tpp1

′
), . . . , (v′wh+g

, Tpph+g′)}. In C∗ and C∗′, assume that all pairs of

(vz∗ , Tpp
∗) are ordered first according to the transaction indexes of vz∗ and

then according to the time-point pairs in Tpp∗. After that, it is easily proved
that vz1 = vw1

∗, or z1 = w1 and Tpp1 ≤ Tpp1′ , or vice versa.

Thus to avoid producing redundant SP-closed patterns in S′, we must
modify the algorithm for mining sequential value movements. We apply two
constraints below to prune the redundant patterns. (i) On a sub-dataset S′s ⊆
S′ with the ascending order of the indexes of all transactions on S′ (Please
refer to Section 4.1 for the detail of the indexes), assume Rxj is the first
transaction on S′s , i.e., the transaction with the minimum transaction index.
If Rxj

is produced from a vi∗ ∈ V ∗, all sequential patterns on S′s are redundant
and thus the search of new sequential patterns on S′s should be pruned. (ii)
Otherwise, given a frequent value movement e (i.e. a value movement U, D or
O) on S′s, let Rxmin1 be the transaction with the minimum id where e occurs,
and pos1 be the first occurrence position of e in Rxmin1 ; let Rxmin2 be the
transaction with the second minimum id where e occurs, and pos2 be the first
occurrence position of e in Rxmin2

. If Rxmin1
is produced from vi ∈ V and

Rxmin2
is produced from vi∗ ∈ V ∗ and pos1 > pos2, the search in the branch

of frequent sequential patterns adding e is redundant and should be pruned.
The lemma below is easily proved.

Lemma 2 Our pruning strategy can guarantee that the closed sequential pat-
terns detected are complete and non-redundant in S′.
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ID 1 2 3 4 5 6 7 8
v1 5 11 14 ✁8 9 4 13 ✁4
v2 2 6 9 ✁5 ✁6 4 1 8
v3 ✁1 1 3 6 4 0 5 ✁5
v4 -6 -10 -14 -9 -3 -13   -3   -3
v5 -2 -5 -8 -5 -1 -9 ✟✟-10   -5
v6   -1 ✁0 0 -4 -7 -5 -1 -5

(a)

15
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v

v
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10
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v4

v5v5

 15

 10

 5
v5

v6

1

(b)

Figure 2. An example time-series data
ID 2−1 3−2 4−3 5−4 6−5 7−6 8−7

a b c d e f g
The discritized data set

v1 0 U U D  O D U  D
v2 2 U U D  O  O D U
v3 4  O U U D D U  O
v4 6 D D U U D  U  O
v5 8 D D U U D  O  U
v6 10  O  O D D U U D

The opposite discritized data set
v1 1 D D U  O U D U
v2 3 D D U  O  U U D
v3 5  O D D U U D  O
v4 7 U U D D U  D  O
v5 9 U U D D U  O  D
v6 11  O  O U U D D U

(c)

ID a b c d e f g
v1 0 U U D  O D U  D

1 D D U  O U D  U
v2 2 U U D  O  D D U

3 D D U  O  U U D
v3 4  O U U D D U  O

5  O D D U U D  O
v4 6 D D U U D  U  O

7 U U D D U  D  O
v5 8 D D U U D  O  U

9 U U D D U  O  D
v6 10  O  O D D U U D

11  O  O U U D D U
(d)

Pattern 1 U,U,D,D,U
Occurrence 1 0,2,4,7,9,11

Pattern 2 D,D,U,U,D
Occurrence 2 1,3,5,6,8,10

(e)

Pattern 1 U,U,D,D,U
Occurrence 1 group 1 v1,v2,v3

group 2 v4,v5,v6
(f)
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Fig. 2 An illustrative example of our algorithm. (a) An example of time-course data set M .
(b) The plot of the example data set. (c) The discretized data set. (d) The combined data
set using the opposite mirror copy strategy. (e) The negative pan-correlation patterns. (f)
The pattern matching in the original data. (g) The plot of the pattern with gaps and lagged
time points. (h) The plot of the pattern merging gaps and ignoring lagged time points (for
visualization only). The strike-through((((numbers,�U,�O and�D indicate those values and value
movements not in the detected patterns in (e). From (c) to (f), U indicates Up-changed, O
no change, while D Down-changed.

4.4 Parameter setting

Three parameters, minV , minTPP and maxO, are used to prune trivial corre-
lation patterns. In a given pan-correlation pattern C = 〈V, T PP〉, minV is the
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minimum size of V, minTPP is the minimum size of Tpp ∈ T PP, and maxO
is the maximum number of O contained.

An illustrative example. Figure 2 illustrates how our algorithm works.
A time-course data set M has six variables and eight time points. M is shown
in Figure 2(a) and visualized in Figure 2(b). Figure 2(b) does not easily show
a very nice pan-correlation between the six variables. But our algorithm can
discover a good negative correlation pattern among the six variables.

By our algorithm, M is firstly discretized to obtain a sequential data S in
the first part of Figure 2(c). Then the opposite mirror copy of all sequences in
S, as shown in the second part of Figure 2(c), is constructed using the strategy
in Section 4.1. All sequences in Figure 2(c) comprise S′ in Figure 2(d). With
minV = 5 and minTPP = 5, two pan-correlation patterns are available in S′,
as shown in Figure 2(e). It can be clearly seen from Figure 2(e) that these
two pan-correlation patterns are the same in the original data M , which can
be represented in Figure 2(f). Our algorithm can prune the redundancy and
only outputs this pattern (visualized in Figure 2(g)). If the gaps are merged
and the time points lagged are ignored (for visualization only), this correlation
pattern is shown in Figure 2(h).

5 Performance Evaluation and Application

Our algorithm was tested on both synthetic time-course data sets and real-
world time-course data sets of biomedical gene expression.

(a) (b)

Fig. 3 The assessment on the synthetic data. Both minTPP and minV are set to 2, and
maxO to the number of time points. (a) The computing time (sec.) when the number of
variables increases. (b) The computing time (sec.) when the number of time points increases.

Two series of synthetic data sets are used. The first series of data sets
have the same number of time points but have an increasing number of vari-
ables. The second series of data sets have the same number of variables but
have an increasing number of time points. The values in these data sets are
randomly chosen from {−150,−148,−146, . . . , 150}. The efficiency of BIDE+
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without our pruning strategies is also evaluated on the mirror-copy datasets
of the synthetic data. This performance is used for the comparison to show
the contribution of our algorithm.

Our algorithm was applied to the first series of data sets to see its scalability
when the variable size increases. We set the number of time points as NT = 20,
and increase NV from 100 to 500, 1,000, 2,000, 4,000, 6,000, 8,000, 16,000,
32,000, 64,000, and to 128,000. The data at each NV are randomly produced
three times to avoid some randomization effect. The average computing time
costs are shown in Figure 3(a). It can be seen that the computing time cost by
our algorithm increases very slowly. It has approximately linear increment of
time complexity with increasing NV . In particular when NV = 128, 000, the
average computing time is about 30 minutes. This indicates that our algorithm
is efficient to mine all pan-correlation patterns on those data sets with very
large number of variables or transactions, such as time-course gene expression
data set where hundreds of thousands of genes are detectable at the same
time. Figure 3(a) also shows that BIDE+ without our pruning strategies is
more than nine times slower than our algorithm when NV = 128, 000.

Both our algorithm and BIDE+ without our pruning strategies were also
applied to the second series of synthetic data sets to examine its scalability
when the size of time points increases. We keep the number of variables always
as NV = 5000 and randomly produce data sets with NT varying from 5 to
8, 10, 12, 15, 20, 25, 28, and to 30. The data sets of each NT are also ran-
domly produced three times to avoid the randomization effect. The average
computing time costs are shown in Figure 3(b). The computing costs increase
exponentially when the number of time points NT increases. This means that
the current algorithm cannot handle well for data sets of large NT . It is one of
our future works to overcome this problem. Again, Figure 3(b) suggests that
BIDE+ without our pruning strategies is more than 14 times slower than our
algorithm when NT = 28, and BIDE+ without our pruning strategies can-
not finish after 24 hours when NT = 30 (its computing time for NT = 30 is
thus not shown.). In conclusion, our algorithm is much faster than sequential
pattern mining algorithms to detect pan-correlation patterns.

Our algorithm was also evaluated on four real-life microarray gene expres-
sion data sets: alpha, cdc15, elu [14], and cdc28 [1]. All of them are time-course
gene expression data related to Yeast cell cycle. elu, cdc28, alpha and cdc15
involve 14, 17, 18 and 24 time points, respectively. The four data sets have
5,114 common genes each with less than 3 missing values. Our algorithm is
able to detect significant pan-correlation patterns efficiently with less than 7
minutes.

At the minTPP level of 70% of NT (i.e., spanning at least 10, 12, 13 and
17 time-point pairs in elu, cdc28, alpha and cdc15 respectively), our algorithm
detects 1,934 C pan-correlation patterns in elu, 5,942 in cdc28, 13,693 in alpha
and 139,811 in cdc15. This filtering results in 588, 2,392, 3,191 and 9,501 non-
overlapping C correlation patterns in elu, cdc28, alpha and cdc15, respectively.

We examine the correlation coefficient of the variables in our pan-correlation
patterns to demonstrate that highly correlated patterns cannot be observed,
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if the time lagging effect is not considered. Given a pan-correlation pattern
C = 〈V, T PP〉, its Pearson’s correlation coefficient PCC is calculated by Equa-
tion 1.

PCC =

∑
vxi
∈V,vxj

∈V,xi 6=xj
abs(p(vxi

, vxj
))

(‖V‖ × (‖V‖ − 1))
(1)

where abs(∗) returns the absolute value of ∗, p(vxi
, vxj

) is the Pearson’s cor-
relation coefficient between the value movements of two variables vxi

and vxj

on all time points in the original time-course data, and ‖V‖ is the number of
unique variables in V.

In comparison, we also calculate PCC only on T PP, and call it PCCT PP .
PCCT PP is calculated also by Equation 1 except that p(vxi , vxj ) is computed
only on those time-point pairs involving in T PP. When PCC or PCCT PP is 1,
it means that all the variables in V are correlated ideally with each other. When
PCC or PCCT PP is 0, there is completely no correlation for the variables.
PCC and PCCT PP are compared to signify particularly that time-lagged
correlation patterns can have strong correlations. The results are shown in
Table 1. It is observed that the variables in our C pan-correlation patterns are
highly correlated with each other, having an average PCCT PP > 0.82 across
the four datasets. However, their correlation on all time-point pairs without
consideration of time lagging effect is very low with an average PCC < 0.35
across the four datasets, implying that significant correlation patterns are
overlooked.

Table 1 PCC and PCCT PP on four time-course gene expression data.

Dataset mina meana stda maxa

elu PCC 0.191 0.294 0.026 0.450

PCCT PP 0.719 0.832 0.022 0.923
cdc28 PCC 0.069 0.264 0.036 0.483

PCCT PP 0.657 0.827 0.028 0.919
alpha PCC 0.133 0.299 0.048 0.565

PCCT PP 0.685 0.832 0.029 0.936
cdc15 PCC 0.122 0.347 0.083 0.799

PCCT PP 0.620 0.826 0.034 0.933

a: The minimum, mean, standard deviation and maximum PCC or PCCT PP of all
pan-correlation patterns in each data set.

We show one pan-correlation pattern for each of the four microarray time-
course data sets to partly illustrate the complexity of mining correlation pat-
terns in Figure 4(c), 4(d), 4(g) and 4(h). From Figure 4(a), 4(b), 4(e) and 4(f),
note that pan-correlation patterns are hardly visualized in the background of
original data due to the gaps and lagged time points, but are clear in Fig-
ure 4(c), 4(d), 4(g) and 4(h), after the removal of gaps.
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(g) A pan-correlation pattern in cdc28
with PCCT PP = 0.851
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(h) A pan-correlation pattern in cdc15
with PCCT PP = 0.870

Fig. 4 Four examples of pan-correlation patterns with two sets of variables: one set with
solid blue line and the other with dashed red line. (a), (b), (e) and (f): The original time-
course data of the involved variables in the four pan-correlation pattern examples on alpha,
elu, cdc28 and cdc15 data set of Yeast cell cycle, respectively. (c), (d), (g) and (h): The
corresponding pan-correlation pattern with smoothing after removing time-lagged points
and gaps. Small errors may be in the pattern due to smoothing.

6 Conclusion

In this work, we proposed an efficient algorithm for mining all significant
pan-correlation patterns from time-course data. Three novel ideas related to
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time-course discretization, generalized representation of positive patterns, and
using an opposite-mirror copy of the data for pattern mining were proposed.
The yeast cell cycle dataset results showed that the method captures many
significant patterns that are missed by existing algorithms.

7 Supplementary Material: Algorithms for mining pan-correlation
patterns

Algorithm 1 Mining pan-correlation patterns by single scan of the data set
Require:

1) A time course data MNV ×NT

2) Three parameters in C patterns:
(1) minTPP : the minimum number of time-point pairs
(2) minV : the minimum number of variables
(3) maxO: the maximum number of no change.

1: convert M into a sequential transaction data set S of Ri, i ∈ [1, NV ]
2: produce the opposite mirror sequences R∗i for S, i ∈ [1, NV ]
3: merge the two sequential data sets to obtain a new sequential data set S′ with all Ris

indexed from 0 to 2NV -2 with step 2, and all R∗is indexed from 1 to 2NV -1 with step
2.

4: call function mBIDE+(S′, minTPP , minV , maxO, {});
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