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Abstract In situations where robots need to closely co-operate
with human partners, consideration of the task combined
with partner observation maintains robustness when part-
ner behavior is erratic or ambiguous. This paper documents
our approach to capture human-robot interactive skills by
combining their demonstrative data with additional environ-
mental parameters automatically derived from observation
of task context without the need for heuristic assignment,
as an extension to overcome shortcomings of the Interac-
tion Primitives (IPs) framework. These parameters reduce
the partner observation period required before suitable robot
motion can commence, while also enabling success in cases
where partner observation alone was inadequate for plan-
ning actions suited to the task. Validation in a collabora-
tive object covering exercise with a humanoid robot demon-
strate the robustness of our Environment-adaptive Interac-
tion Primitives (EaIPs), when augmented with parameters
directly drawn from visual data of the task scene.

Keywords Learning from demonstration · Physical
human-robot interaction · Human-robot coordination

1 Introduction

The last decade has seen a significant increase in interest
towards ’social’ human-interactive robots (Vircikova et al,
2012), in both domestic and industrial environments. With
predictions that approximately 1.3 million new industrial
robots will be installed into factories worldwide between
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Fig. 1: Schematic overview of the complete EaIPs frame-
work: an extension of IPs to consider additional environ-
mental parameters from visual contextualization.

2015 and 2018 (International Federation of Robotics, 2015),
there follows a strong research incentive to accelerate the
rate at which robots can be incorporated into workspaces
alongside human workers. As an alternative to the manual
tuning of parameters for each task in the rapidly increasing
scope of activities that domestic and industrial robots will be
expected to perform, demonstration learning provides robots
the ability to synthesize their own operational parameters
from observations of the activity to be conducted. Demon-
stration learning is well suited to humanoid robots, due to
the intuitive correspondence between a teacher’s physical
movements and what can be considered to be acceptable
robot behaviour.

This paper presents the complete Environment-Adaptive
Interaction Primitives (EaIPs) framework initially proposed
in Cui et al (2016), which in turn builds upon Interaction
Primitives (IPs) (Ben Amor et al, 2014). IPs allow a robot to
generate suitable collaborative actions by inferring param-
eters for Dynamic Movement Primitives (DMPs) (Ijspeert
et al, 2013), following a brief observation of human part-
ner movement. Groups of people routinely handle objects
in a physically collaborative manner, such as the movement
of bulky furniture items or laying out a large table-cloth.
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The motivation behind EaIPs is to enable robots participat-
ing in such tasks to incorporate additional information from
the immediate environment as people instinctively do, in-
stead of solely relying upon observations of their partner as
is the case for IPs. EaIPs expanded upon IPs by allowing
for the consideration of these ‘environmental’ parameters,
which are taken alongside partner observations during train-
ing and runtime. The effects of including environmental pa-
rameters are twofold; firstly, a faster robot response is made
possible as an actionable level of confidence can be obtained
in less time. Secondly, the system becomes hardened against
partner observations that would not ensure safety or task
compliance, as such observations are no longer the sole in-
formation source for robot action planning.

The main contribution of this paper is the combination
of EaIPs with the automatic derivation of suitable environ-
mental parameters. The driving motivation behind this step
is to enable a more organic learning of human-robot collabo-
rative behaviors, towards a complete interaction framework.
Instead of relying upon parameters explicitly provided prior
to execution which are tuned to the task at hand, as per Cui
et al (2016), the objective of this work is to generate suitable
motor skills solely upon observations from scene and part-
ner as would naturally occur within a human-human team.
To draw such contextual parameters from the scene, we uti-
lize a Convolutional Neural Network (CNN) (Lecun et al,
1998) based object detector to yield contextual information
concerning the human-robot task. Here we obtain bounding
boxes and class labels of detected objects the CNN has been
trained upon; given image size properties about the object
that serves as the focus of the interaction task, the EaIPs
then also consider observations of its human partner for an
action that caters to both information sources. We utilize
YOLO (Redmon and Farhadi, 2017) to obtain such infor-
mation, as detailed in Section 4.2.1.

The advantage of utilizing CNNs as a preprocessing step
is their ability to recognize a broad range of objects beyond
the scope of IPs/EaIPs training data, thus greatly reducing
the risk of overfitting due to the difficulty of obtaining sub-
stantial quantity of training data for human-robot interac-
tions. The correlation of the bounding box to the object’s
position and size to physical space help reduce the likeli-
hood of unsuitable robot responses.

The remainder of the paper is structured as follows. Re-
lated work is outlined in Section 2. Details for IPs and EaIPs
are available under Section 3. Our validation task is the col-
laborative covering of large objects with a plastic bag in both
simulation (Section 4.1) and a Baxter humanoid robot (Sec-
tion 4.2). Discussions of results and conclusions follow in
Sections 5-6.

2 Related Work

It is common in the learning of more complex robot tasks
to base actions from inferences drawn from training data,
rather than to tune operating parameters manually. Depend-
ing on the scenario at hand this data is usually obtained by
teleoperation of the robot such as by kinesthetic teaching
e.g. Kormushev et al (2010); Kronander and Billard (2014)
or if possible, direct control of the robot which will be ex-
ecuting autonomous behaviors e.g. Goil et al (2013); Soh
and Demiris (2015) although the latter is often restricted
to lower DOF systems such as ground vehicles. By gath-
ering data consisting of desirable robot behavior and obser-
vations of a partner in a human-robot interactive exercise,
an aim of learning from this data is the synthesis of suitable
robot actions after anticipating outcomes of human actions
to achieve fluent interaction, as is the case with both IPs and
EaIPs.

Examples of partner anticipation include the work by
Huang and Mutlu (2016), using Support Vector Machines
to predict eye gaze and treat it as the human partner’s focus
of attention, which formed the basis for subsequent robot
activity. A reinforcement learning-based (Sutton and Barto,
1998) approach to human intention estimation is investi-
gated by Awais and Henrich (2013), where it is followed
by a particle filter for probabilistic action selection. Taha
et al (2011) used Partially Observable Markov Decision Pro-
cesses to infer the navigational intention of the user of a
sensor-equipped robotic mobility aid, used to determine suit-
able assistive driving behaviors for the robot. Another ex-
ample of user anticipation in the assistive robotics space is
the work by Patel et al (2014), utilizing Hierarchical Hid-
den Markov Models to predict a user’s intention to various
levels of abstraction ranging from lower level activities such
as ‘driving cardinal North’ to higher level activities such as
‘going to bed’.

DMPs have been used extensively for robot control due
to their robustness, guarantee of convergence and ease of
scaling spatially and temporally. As in Interaction Primi-
tives, they are commonly used as the basis for complex robot
behaviors which are then executed according to a higher-
level framework above them; recent examples of their uti-
lization in this manner include Fitzgerald et al (2015); Li-
outikov et al (2016); Mandery et al (2016); Ude et al (2010).

The collaborative manipulation of objects remains a chal-
lenging objective, as the nature of the object and any of its
interactive counterparts being manipulated must be consid-
ered in conjunction with the behavior of the human partner.
Sheng et al (2015) uses reinforcement learning and obser-
vations of human behavior to keep a table held between the
human and robot in a horizontal alignment, while Lawitzky
et al (2010) devised a framework that aimed to share the load
between the two agents. As an alternative for robots with
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multi-modal sensory capabilities, Kruse et al (2015) consid-
ered both the forces applied to a sheet of fabric held taut
between the human and the robot as well as perceived defor-
mations. The manipulation of deformable materials is still a
challenging area of investigation due to a prohibitively large
state space, although work is being done towards the mod-
eling of smaller deformable items such as pieces of clothing
e.g. Doumanoglou et al (2014).

Convolutional Neural Networks are designed around the
handling of structured input data such as images, as opposed
to conventional Neural Networks which treat input variables
with no particular regard to the potential for patterns within
regions of input elements. This makes them particularly well
suited to tasks such as object recognition and scene classi-
fication, as can be seen in recent works such as Krizhevsky
et al (2012); Simonyan and Zisserman (2014); Szegedy et al
(2015). The direct application of deep learning to robot con-
trol remains challenging primarily due to the difficulties in
accumulating requisite amounts of training data. As a result
this remains a relatively recent initiative, e.g. in Pervez et al
(2017) where CNNs are used to regress robot action param-
eters. Other recent works include Finn et al (2016); Pinto
and Gupta (2016). Rather than serving as an oracle aimed at
directly shaping robot actions, here a CNN serves as a mech-
anism to reduce uncertainty by examining the task scene for
additional information, which in turn augments observations
of the human partner for EaIPs.

3 Approach

3.1 Dynamic Movement Primitives

In the area of trajectory control and planning, Dynamic Move-
ment Primitives (Ijspeert et al, 2013) were proposed to sta-
bly represent complex motor actions that can be flexibly ad-
justed without manual parameter tuning. In this work, DMPs
are employed to encode trajectories of both human and robot
movements. For each degree of freedom, a trajectory is de-
fined as the following:

ÿ(t) =

(
αy

(
βy
(
g − y(t)

)
−
( ẏ(t)
τ

))
+ f(xt)

)
τ2 (1)

where αy and βy are constants, y, g are the state variable
and traget position of the trajectory, respectively. τ is a time
constant and t is the time step. f(xt) is the forcing function
built by M Gaussian basis functions and a corresponding
M × 1 weights vector w:

f(xt) =

∑M
i=1 ψi(xt)wixt∑M
j=1 ψj(xt)

= φ(xt)
Tw, (2)

x follows a canonical system: ẋ = −αxxτ where x is ini-
tialized as x0 = 1.

To encode a T step trajectory y = [y(t), ẏ(t), ÿ(t)]Tt=1:T

by a weight vector w in the DMP, the forcing function that
reproduces the sample trajectory from the t-th step is firstly
calculated according to Eq. (1):

f(xt) =
1

τ2
ÿ(t)− αy

(
βy
(
g − y(t)

)
− ẏ(t)

τ

)
. (3)

Expressing the DMP as f = Φw, with basis functions
Φ = [φ(x1), ..., φ(xT )]

T and f = [f(x1), ..., f(xT )]
T , the

weights vector w can be obtained via least squares regres-
sion:

w = (ΦTΦ)−1ΦTf . (4)

3.2 Interaction Primitives for collaborative human-robot
tasks

Motivated by the desire of engaging in cooperative activities
between human partners and robots using DMPs, Interaction
Primitives (IPs) (Ben Amor et al, 2014) were proposed to
extend DMPs to human-robot activities. After learning from
demonstration data and maintaining a distribution over DMP
parameters, IPs achieve human-robot cooperation through
the following steps:

1. observe partial trajectory from human partners and iden-
tify the current phase of the interaction

2. compute the distribution over DMP parameters to con-
trol robot to cooperate with human partners based on the
partially observed trajectory

In the first step, Dynamic Time Warping (DTW) (Sakoe
and Chiba, 1978) is employed to estimate the phase of ob-
served human movement. Given one partially observed hu-
man movement [y∗1 , ...,y

∗
T ′
]T , and one full human reference

movement observed during demonstration [y1, ...,yT ]
T , DTW

measures the similarity between these two time series and
yields the index t∗, reflecting the frame in the reference move-
ment which produces minimal costs with respect to the query
movement, i.e., [y∗1 , ...,y

∗
T ′
]T is close to [y1, ...,yt∗ ]

T . The
estimated phase of a partially observed human movement is
therefore:

x∗ = exp

(
− αx

(
t∗

T

)
τ

)
. (5)

In the second step, robot motor skills are predicted based
on a partial observation of the human’s movement. We first
prepare S sets of N DoFs trajectories that are temporally
normalized to the same length T as the training samples:

Y = [Yhuman,Yrobot] =

y
1
1 ... y1

N
...

. . .
...

yS1 ... ySN

 (6)
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where N is the total number of DoFs for both human and
robot. Defining yji ,wj

i and gji as the trajectory, weights vec-
tor and target position of the i-th DoF in the j-th demon-
stration respectively, θ[j] = [wj

1

T
, gj1, ...,w

j
N

T
, gjN ]T , j =

1, ..., S is the parameter vector for the DMPs as learned from
[yj1, ...,y

j
N ]. Thus p(θ), the distribution among the parame-

ter vector samples θ[j], j = 1, ..., S, follows:

p(θ) = N (θ|µθ,Σθ), (7)

µθ =

∑S
j=1 θ

[j]

S
, (8)

Σθ =

∑S
j=1(θ

[j] − µθ)(θ[j] − µθ)T

S
(9)

where θ = [θhuman,θrobot]
T contains the parameter vec-

tors of both human and robot.
After partially observing the human’s movement and es-

timating their phase x∗ according to a reference movement
via DTW, the trajectories Y ∗human = [y∗1 , ...,y

∗
n]
T are re-

sampled from the observed movement where n < N is
the DOF of the human’s movements. The unavailable tra-
jectories of the robot Y ∗robot are set to 0. Defining Y ∗ =

[Y ∗human,Y
∗
robot], the prediction of both human and robot’s

parameter vector is represented by:

p(θ|Y ∗) ∝ p(Y ∗|θ)p(θ). (10)

The likelihood p(Y ∗|θ) is modelled by a Gaussian dis-
tribution over the forcing function:

p(Y ∗|θ) ∼ N (F ∗|Ωθ, σ2I) (11)

where F ∗ has two parts: F ∗human = [f ∗1 , ...,f
∗
n ]
T is the

observed forcing function of Y ∗human, its element is given
by:

f ∗i (xt) =
1

τ2
ÿ∗i (t)− αy

(
− βyy∗i (t)−

ẏ∗i (t)

τ

)
. (12)

F ∗robot is the unavailable forcing function of robot and set as
0. The matrix Ωθ contains the forcing function with rela-
tionship to Φ̃t = [φ(xt)

T , αyβy] over learning samples for
1 ≤ t ≤ t∗:

Ωθ =


Φ̃ 0 ... ...

0 Φ̃ 0 ...
...

...
...

...
0 ... ... 0



w1

g1
...
wN
gN

 (13)

with the Φ̃ related to θrobot in Ω being set to 0. σ2 is the
observation variance.

Given likelihood p(θ|Y ∗), the p(Y ∗,θ) = p(θ|Y ∗)p(θ)
is another joint Gaussian distribution:

p(Y ∗,θ) = N
([
F ∗

θ

] ∣∣∣∣ [Ωθµθ
]
,

[
A ΣθΩ

T

ΩΣT
θ Σθ

])
(14)

withA = σ2I +ΩΣθΩ. The mean and variance of condi-
tional distribution p(θ|Y ∗) is therefore derived as:

µθ|y∗ = µθ +ΣθΩ
TA−1(F ∗ −Ωµθ),

Σθ|y∗ = Σθ −ΣθΩ
TA−1ΩΣθ.

(15)

After obtaining θ, the robot motor skills are operated by
running DMPs with parameter vector θrobot with estimated
phase x∗.

3.3 Environment-adaptive Interaction Primitives

An issue with IPs is that in situations where the initial hu-
man partner observation [y∗1 , ...,y

∗
T ′
]T is too ambiguous for

reliable DMP parameter inference. The system can either
wait for more distinctive partner activity which may result in
an unnaturally long pause before the robot’s response com-
mences, or risk prematurely executing unsafe or otherwise
undesirable actions.

To reduce uncertainty, EaIPs introduce environment pa-
rameters e representing features embodying task-critical en-
vironmental properties into IPs along with human observa-
tion trajectories p(y∗), i.e. computing a joint distribution
p(Y ∗,θ, e). Depending on context, the contents of e can
vary widely from physical sizes of objects or perceived ob-
structions; these parameters can also be provided from mod-
els built on the same training data for the underlying IPs or
from heuristics. However in this work we propose object de-
tection data, to encourage generalization in tasks focusing
on physical objects.

For recording trajectories with these environment pa-
rameters, a new training sample is defined as Ye with an
additional DOF for E = [e1, ..., eS ]T :

Ye = [Yhuman,Yrobot,E] =

y
1
1 ... y1

N e1

...
. . .

...
...

yS1 ... ySN e
S

 . (16)

Applying DMPs to learn θ from Ye, the environmental
weight vectorwe is obtained from the likelihood p(e|θ) via
least squares regression:

p(e|θ) ∼ N (e|θwe, σ2
eI). (17)

Given t∗ steps observing trajectories Y ∗ and environ-
mental parameter e∗, we combine the observing forcing func-
tion and environmental parameter toF ∗e = [f ∗1 , ...,f

∗
N , e

∗]T

and get a distribution similar to Eq. (14):

N
([
F ∗e
θ

] ∣∣∣∣ [Ωeθ

µθ

]
,

[
Ae ΣθΩ

T
e

ΩeΣ
T
θ Σθ

])
(18)
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Ωeθ =


Φ̃ ... 0
...

. . .
...

0 ... 0

we



w1

g1
...
wN
gN

 , (19)

Ae =


σ2 ... 0 0
...

. . .
...

...
0 ... σ2 0

0 ... 0 σ2
e

+ΩeΣθΩe. (20)

The mean and variance of the distribution p(θ|Y ∗e ) is then
derived by plugging Eqs. (19,20) into Eq. (15). The param-
eter σe in Eq. (20) is defined as the variance matrix of envi-
ronmental parameters. σe should be suitably defined to cap-
ture the magnitude of the observed parameters’ noise.

4 Experimentatal Results

We evaluate EaIPs in the task of covering large objects with
a plastic bag collaboratively alongside a human partner. This
is first done in a toy simulation of the exercise in Section 4.1,
followed by experiments with a Baxter humanoid robot in
Section 4.2.

4.1 Simulation Results

Performing this task in simulation successfully is defined
as neatly passing over a rectangular 2D object of varying
size. We expand the setting from Cui et al (2016) to nine
objects with different width and height, i.e., two environ-
mental parameters ex, ey ∈ [125, 215, 325] pixels, are made
available. As shown in Fig. 2, ten training trajectories (blue)
and five testing (green) trajectories (each with 200 steps) are
recorded from 2D mouse cursor movement across a GUI.
The DTW distance is taken as an error metric to assess com-
parative performance in two different scenarios: a partial ob-
servation (horizontal movements only) and a full observa-
tion (both horizontal and vertical movements) over five test-
ing trajectories with varying lengths of observed trajectories
for each object. Results are shown in Fig. 3. According to
the examples of both EaIPs and IPs with different length ob-
servation in two scenarios (Fig. 4), EaIPs yielded a much
reduced DTW distance to training samples when given a
short observation period while IPs only performing compa-
rably when given lengthy (≥ 100 steps) observations along
both horizontal and vertical image axes (Fig. 4b). When only
provided with observations along the horizontal image axis
(Fig. 4a) EaIPs were able to maintain similar performance

to observing both axes due to the consideration of additional
parameters, whereas the prediction accuracy of IPs was di-
minished. This result indicates that EaIPs can work with
short ambiguous observations (even only along the horizon-
tal axis), while IPs could not even if the partially observed
action is more informative.

It can be seen in Fig 5 that EaIPs are able to generate
suitable trajectories even when provided with very little ob-
servation to cover objects with novel environmental param-
eters ([400, 50] pixels in both axes). This demonstrates their
ability to capture an underlying ‘style’ of the motion to be
undertaken (Matsubara et al, 2011) and to accomplish the
task when augmented by environmental parameters.

The performance of EaIPs with noisy and biased envi-
ronmental parameters is further evaluated in an offline man-
ner. 500 trajectories are planned by EaIPs with only ten steps
along either axis provided as observation, while varying lev-
els of 0-mean Gaussian noise are added to the environmental
parameters as shown in in Fig. 6. With a suitable setting of
σe, the planned trajectories still outperform IPs. The aver-
age DTW distances are shown in Fig. 7. It can be seen that
by setting a larger σe, the performance of EaIPs with un-
certain environmental parameters approaches that of EaIPs
with noise-free environmental parameters. These results in-
dicate EaIPs’ ability to handle environmental observations
with significant associated uncertainty.

4.2 Real Robot Experimental Results

EaIPs are further evaluated with a Baxter research robot
(Fig. 9). Section 4.2.1 details the CNN-based extraction of
environmental parameters, followed by an overview of the
experimental setup in Section 4.2.2.

4.2.1 Environmental Parameters from Object Detection

For the real task, visual contextualization takes the form of
the label and bounding box properties of the object serving
as the focus of the interactive exercise; these serve as E in
Eq. (16). This information is obtained from the YOLO v2
(You Only Look Once) (Redmon and Farhadi, 2017) CNN-
based object detector (Fig. 8). YOLO is particularly well
suited to process scene information for EaIPs due to its capa-
bility to detect objects in real-time from a video stream, as its
runtime complexity is far less than that of competing archi-
tectures such as VGG-16 (Simonyan and Zisserman, 2014)
while its bounding boxes and object labels possess some cor-
relation to the physical space that EaIPs operate in. YOLO
processes images as grids, with each grid cell providing esti-
mates of class labels and bounding boxes of objects that may
reside within/around it. These estimates are then combined
into an overall probability map based on each cell’s likeliest
label, from which final object detections are drawn.
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Fig. 2: Training data for simulation experiment of passing over rectangular objects. Training paths are shown in blue, and
test paths are shown in green.
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(a) DTW distance, given observation of horizontal image axis only.
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(b) DTW distance, given observation of both image axes.

Fig. 3: Dynamic Time Warping distance (unitless) of IPs and
EaIPs predictions to training samples in the simulation task.
A smaller DTW distance indicates a better correlation be-
tween time series.

Although suitable environmental parameters can indeed
be also drawn from other information sources such as depth
cameras or additional sensory apparatus, we maintain it is
less cumbersome to use a vision-based object classifier. As
training data is often available in a limited quantity for EaIPs
modeling, models built for parameter regression upon such
data would easily be overfitting, and it is also undesirable
to have to craft heuristics for each task that EaIPs are to be
applied to. Since classifiers such as YOLO can be exposed
to a far broader range of objects than in the EaIPs training
set, its features immediately allow the EaIPs to generalize
to new objects and can be used directly as environmental
parameters without the need for task-specific modulation.

4.2.2 Baxter Research Robot Experimental Results

Three overhead Kinects provide visualization of the interac-
tion scene from left, overhead, and right views. Following
extrinsic calibration, their respective point cloud data can
then be interpreted in the robot’s co-ordinate frame. Partner
observation (Yhuman in Eq. (16)) consists of the Cartesian
positions of both hands with green color gloves in the point
cloud. The five dimensional environmental parameter vector
E comes from YOLO processing RGB image data from the
right-most Kinect (Kinect 3 in Fig. 9), and contains a nu-
meric object class label (chair, stepladder, table and book-
shelf), and the centroid and size of the estimated bounding
box in image space to capture some correlation to physical
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(a) Given observation of horizontal image axis only.

(b) Given observation of both image axes.

Fig. 4: Comparison of performance between IPs and EaIPs in the simulated task of passing over rectangular objects.
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Fig. 5: Testing of EaIPs in passing over rectangular objects. Dashed trajectories indicate the mean of numerous solid trajec-
tories generated for each object, with novel objects indicated by dashed borders.

Fig. 6: Testing of EaIPs in passing over rectangular objects when varying levels of Gaussian noise are added to the environ-
mental parameters.

space. To perform its share of the activity, the robot held a
point along the opening of a large bag stationary in its right
gripper, while its left swept over the object to be covered
while holding another part of the bag’s lip. The generated
robot action in each step is defined as a three dimensional
vector including the baxter’s left arm end-effector’s posi-
tion. The training objects used in our experiment are shown
in Fig. 11. Training data was generated by kinesthetic oper-
ation (Argall et al, 2009) of the robot’s left arm in tandem
with the interaction partner, with ten samples recorded for
each training object. Data communication and logging was

managed via the Robot Operating System (Quigley et al,
2009) middleware.

To ensure object recognition, a 31-layer YOLO network
was trained upon 300 manually labelled RGB images of the
four training objects in Fig. 11 as seen by Kinect 3.

EaIPs were run 1 with four new objects (Fig. 12) and
with partners that were not present during the collection of
training data. As shown in Fig. 10, the workflow of this ex-
periment is to first observe the human action Yhuman via
RGB-XYZ point cloud data, and extract E from the RGB

1 Video available at https://youtu.be/x872lLZ9MEc
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Fig. 7: Dynamic Time Warping distance (unitless) of EaIPs’
prediction results to training samples in the simulation task,
when Gaussian noise is added to the environmental parame-
ters.

Fig. 8: Deep-learning CNN topology for object detection.
YOLO’s network yields object label and bounding box esti-
mates.

Kinect 1

Kinect 2 Kinect 3

Fig. 9: NAIST Baxter platform with 3 overhead Kinect V2
sensors (red ellipses).

Table 1: Classification Accuracy (CA) of YOLO in real ex-
periment, for 0-50% and 0-100% task duration

Object CA (first 50%) CA (100%)
Stepladder 186/186 (100%) 293/371 (78.98%)

Folding table 194/194 (100%) 337/388 (86.86%)
Office chair 134/134 (100%) 258/267 (96.63%)

Brown bookshelf 130/130 (100%) 211/261 (80.84%)
Yellow bookshelf 193/193 (100%) 335/386 (86.79%)

End-table 224/224 (100%) 382/448 (85.27%)
4-legged chair 185/185 (100%) 309/370 (83.51%)
4-legged table 137/137 (100%) 220/274 (80.29%)

scene perceived by Kinect 3. EaIPs then generate a collab-
orative robot action. Figure 14 shows the left end-effector
paths from both IPs and EaIPs from a frontal view of the
robot’s YZ plane, for all eight objects when given a 1 sec-
ond observation period (approximately 10% of average task
duration). It can be seen that EaIPs better preserve the path
structure from training samples (Fig. 13), since IPs’ paths
possess very little variation between objects. The paths from
IPs (Fig. 14a) resulted in collisions with the three larger ob-
jects as shown in Figs. 16-17, whereas EaIPs were able to
cover all eight objects successfully.

The detection and generalization abilities of the trained
YOLO network are investigated with 1,968 RGB images
recorded from Kinect 3 during experimentation. As seen in
Table 1, the Classification Accuracy (CA) decreases from
100% to around 80% during the second half of the task du-
ration when the plastic bag partially obscures the objects.
However since these classification failures happen long af-
ter the observation period had ended, they would have no
negative impact on EaIPs’ performance. Hence the object
detection component utilized here is sufficiently reliable for
the scope of this exercise.

5 Discussion

In the real experiment, paths sufficiently close to the 100%
partner observation can be obtained by EaIPs given as little
as 10% of partner observation according to Fig. 15 while IPs
would require nearly 70% of partner observation to reach a
comparable RMSE as shown in Fig. 15b. The consideration
of environmental parameters can thus greatly enhance the
robustness of EaIPs, which is beneficial in cases where ob-
served partner behaviour would result in unsafe actions be-
ing planned. Even if the full partner observation in Fig. 16a
were to be provided as an observation to IPs, it would have
still resulted in unsafe robot motion as shown in Fig. 15a
due to similarity with training samples with smaller objects.

It is possible to run inferences continuously throughout
the duration of the interaction, however as seen in Fig.15a,
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Fig. 10: Workflow of the real experiment.

(a) Stepladder. (b) Folding table.

(c) Office chair. (d) Brown bookshelf.

Fig. 11: Training object set.

paths from EaIPs do not significantly change as more infor-
mation becomes available while IPs may benefit as the part-
ner’s movement becomes more defined. However depend-
ing on other conditions, such as those which would be suit-
able for representation in EaIPs’ environmental parameter
set, an extended observation of potentially ambiguous part-
ner movement may still be inadequate for ensuring success

(a) Yellow bookshelf. (b) End-table.

(c) 4-legged chair. (d) 4-legged table.

Fig. 12: Test object set.

even if the partner’s behavior is indeed suitable from their
side of the task.

The ability of the EaIPs framework to leverage increas-
ingly robust object detection methodologies from the vision
community (Google, 2017; Stallkamp et al, 2012) can allow
for improved adaptability towards novel objects not seen
in training data. At present this is particularly important in
demonstration-based systems, as training data would oth-
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Fig. 13: Mean training data of the Baxter’s left end-effector,
from ten samples for each training object.
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(a) Paths from IP.
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(b) Paths from EaIP.

Fig. 14: Baxter left end-effector paths from IPs and EaIPs.

erwise be inhibitively expensive to obtain in adequate vol-
umes. Our results show that even with a limited quantity of
training data, the use of a vision-based object detector was
sufficient for the planning of robust robot actions. Whereas
our earlier work relied upon ground-truth features to concep-
tually validate EaIPs, here we present the framework in its
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(a) Paths from IPs and EaIPs under increasing partner observation (%
in the colorbar), with the stepladder visualized in grey.
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(b) RMSE of the above to IP/EaIPs’ respective final paths.

Fig. 15: Top: convergence of a-posteriori paths given part-
ner observations of varying duration for IPs and EaIPs in the
stepladder covering exercise (Fig. 16a). Bottom: RMSE to
their respective ‘final’ paths generated under 100% partner
observation. For both figures, a minimum observation of 10
steps (<3%) is taken to avoid severely premature inferences.

entirety; capable of modeling human-robot object-focused
tasks from observations of partner and scene.

For future work we intend to utilize the object class la-
bel to a greater extent and further leverage bounding box
information (e.g. 3D bounding boxes from distributed RGB
cameras) and introduce the depth information in object de-
tection in order to handle EaIPs for higher level task abstrac-
tion that require more accurate environmental information,
e.g., human-robot cooperation in a dynamical work space
with several objects occluding each other. The nature of the
object in question would serve as a clearer discriminating
factor than partner behavior as in the work by Maeda et al
(2017), which solely relies upon differences in partner ob-
servations to determine a response. Vision-based approaches
to partner observation (Cao et al, 2017) may allow for these
kinds of collaborative activities without the need for 3D sens-
ing, as task parameters can be drawn through similar means.
Removing reliance upon hardware such as the Kinect will
allow for more versatile hardware configurations, as well as
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operation in traditionally less robot-friendly conditions such
as open sunlight.

6 Conclusion

This work presents an extension to the Interaction Primi-
tives framework that enhances fluency in physical human-
robot interaction. Task parameters from a CNN object de-
tector, consisting of class labels and bounding boxes in im-
age space, allow for the complete EaIPs modeling of a col-
laborative human-robot task from observations of partner
and scene. The correlation of these augmentative parame-
ters to physical space make them naturally better suited to
this problem than for example, abstract dimensionality re-
duction features which would easily be overfitting.

Experimental results in the joint task of sweeping a large
plastic bag over bulky objects, in both simulation and with
a humanoid Baxter robot, show an increased robustness to
ambiguity in partner activity compared to Interaction Primi-
tives. We aim to develop this framework further to consider
visual partner observation, as well as the leveraging of object
label information for more complex interactive activities.
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(a) Stepladder. *

(b) Folding table. *

(c) Office chair.

(d) Brown bookshelf.

Fig. 16: Behavior of IPs and EaIPs on the training set. * indicates the object resulted in collision (red ellipses).
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(a) Yellow bookshelf.

(b) End-table.

(c) 4-legged chair.

(d) 4-legged table. *

Fig. 17: Behavior of IPs and EaIPs on the novel object set. * indicates the object resulted in collision (red ellipses).
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