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Abstract  16 

Microplastics (MPs) as new pollutants of environmental concern have been 17 

widely detected in sewage sludge, and may act as significant vectors for metal 18 

pollutants due to their adsorption property. Our findings show that Cd, Pb, and Co, but 19 

not Ni, contents in sewage sludge are lower than that of corresponding metal irons 20 

adsorbed on sludge-based MPs, indicating that the MPs accumulate such metal 21 

pollutants as Cd in the sludge samples. In contrast to virgin MPs, sludge-based MPs are 22 

one order of magnitude higher adsorption capacity for Cd, which reaches up to 2.523 23 

mg g-1, implying that there is a considerable enhancement in adsorption potential of the 24 

MPs for metals after the wastewater treatment process. SEM analysis shows that 25 

sludge-based MPs have rougher and more porous surface than virgin MPs, and FTIR 26 

spectra reveal that functional groups such as C-O and O-H are found on sludge-based 27 

MPs. Further, two-dimensional FTIR correlation spectroscopy indicates that C-O and 28 

N-H functional groups play a vital role in the process that sludge-based MPs adsorb 29 

Cd, which are not found in virgin MPs. The results imply that increased adsorption 30 

potentials of the sludge-based MPs to Cd are attributed to changes in the MP 31 

physicochemical properties during wastewater treatment process. In addition, such 32 

factors as pH value, and sludge inorganic and organic components also have an effect 33 

on the MP adsorption to Cd. Principal component analysis shows that the MPs could be 34 

divided into three categories, i.e. polyamide, rubbery MPs (polyethylene and 35 

polypropylene) and glassy MPs (polyvinyl chloride and polystyrene). Their adsorption 36 

potentials to Cd follow the decreasing order: polyamide > rubbery MPs > glassy MPs. 37 
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In summary, these findings indicate that MPs may exert an important influence on fate 38 

and transport of metal pollutants during sewage sludge treatment process, which 39 

deserves to be further concerned.  40 

Keywords: Microplastics; Sewage sludge; Wastewater treatment process; Metal 41 

pollutants; Potential risk 42 

  43 
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1. Introduction 44 

Many researchers have found that wastewater treatment plants (WWTPs) are 45 

important sources of microplastics (MPs) (Murphy et al. 2016). The number of MPs 46 

decreases gradually during the different treatment stages, such that less than 3% of the 47 

MPs are released into effluent (Lares et al. 2018, Talvitie et al. 2017). Thus, most MPs 48 

are retained in sewage sludge (Lares et al. 2018, Mahon et al. 2017, Mason et al. 2016, 49 

Talvitie et al. 2017). In our previous work, an average of 22.7± 12.1×103 MP particles 50 

per kilogram of sewage sludge dry weight were detected (Li et al. 2018c). Using the 51 

sludge for agricultural applications means placing MPs directly into the soil, and 52 

researchers have estimated that 63 000–430 000 and 44 000–300 000 tons of MPs enter 53 

into the soil system annually when sewage sludge is applied to land in Europe and 54 

North America, respectively (Nizzetto et al. 2016), exceeding the estimated 93 000–55 

236 000 tons of MPs present in surface water (Sebille 2015). In China, approximately 56 

1.56 × 1014 particles of sludge-based MPs are discharged into the soil or other natural 57 

environments in 2015 (Li et al. 2018c). However, fate and behavior of the MPs in 58 

sewage sludge have yet not to be clarified.  59 

MPs act as vectors for pollutants due to their large specific surface area, and pose a 60 

potential threat to the environment (Koelmans et al. 2016). Field studies have indicated 61 

that persistent organic pollutants (POPs) and metal pollutants adhere to the MPs (Chen 62 

et al. 2018a, Koukina et al. 2016, Wang et al. 2017). Organic pollutants adsorbed on the 63 

MPs include dichlorodiphenyltrichloroethane, and phenylalanine 17 alpha ethinyl 64 

estradiol, etc. (Wang et al. 2015, Wang and Wang 2018, Xu and Liu 2018). Not only can 65 
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MPs adsorb organic pollutants, but they can adsorb metal pollutants as well. Adsorption 66 

of copper (Cu) and zinc (Zn) by polyethylene (PE) and polyvinyl chloride (PVC) has 67 

been investigated (Brennecke et al. 2016). Researchers found that MPs derived from 68 

sediment have greater adsorption capacities for metal ions than do virgin plastics, likely 69 

because the functional groups generated on plastics during the weathering process 70 

effectively adsorb metal ions (Holmes et al. 2014).  71 

In contrast to unmanaged natural environments (Song et al. 2017, Ter Halle et al. 72 

2016), managed man-made environments such as anaerobic digestion and composting 73 

can lead to higher biodegradation of plastics such as polylactic acid and 74 

polycaprolactone (Narancic et al. 2018). Thus, intensive mechanical abrasion and 75 

microbial function during the treatment processes in WWTPs might cause an enhanced 76 

effect on physicochemical properties of the MPs, compared to marine and freshwater 77 

environment. Mahon et al. (2017) showed that physicochemical properties of MPs in 78 

sewage sludge are changed during the treatment processes, for example, the MPs are 79 

sheared into smaller sizes in lime stabilization, thermal drying causes their surface to 80 

melt and blister, and the MP abundance decreases in anaerobic digestion. However, it 81 

is unclear whether these changes affect their potentials to adsorb pollutants.  82 

One of the challenges of applying sludge to land is the presence of some metal 83 

pollutants such as Pb, Cd, Ni, etc. Owing to their long-term accumulation in soil, 84 

humans are exposed to these metal pollutants through food chain (Ken E. Giller 1998, 85 

Smith 2009). Hence, we hypothesize that significant changes on physicochemical 86 
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properties of MPs during the treatment processes may enhance their adsorption 87 

potential for metal pollutants. The formation of MP-contaminant combination is 88 

potentially harmful to organisms, because the pollutants adsorbed on MPs would 89 

desorb in different organ sites (Bakir et al. 2014, Khan et al. 2017, Khan et al. 2015, 90 

Kim et al. 2017) and may have additional negative effects on the organism, such as, 91 

changes in biological activity of enzyme (Hodson et al. 2017, Kim et al. 2017, Luis et al. 92 

2015). Koelmans et al. (2016) suggested that MP ingestion is unlikely to increase the 93 

exposure to and thus risks of hydrophobic organic chemicals in marine environment, 94 

but Hodson et al. (2017) reported that the existence of MPs could increase the metal 95 

exposure in earthworms and enhance the pollutants bioavailability, indicating that 96 

MPs can act as vectors of pollutants and increase their risks in the terrestrial 97 

environment. 98 

Fourier transform infrared (FTIR) spectroscopy is a sensitive tool for exploring 99 

chemical structure of MPs, and has been widely applied to characterize them 100 

(Cabernard et al. 2018, Hendrickson 2018, Wang et al. 2017). However, it is difficult 101 

to detect significant changes in MP spectra during adsorption process of MPs to 102 

pollutants using conventional one-dimensional method. Two-dimensional FTIR 103 

correlation spectroscopy (2D FTIR COS), as a potential method, can be used to 104 

resolve the overlapped peak problems of conventional FTIR spectroscopy, and 105 

elucidate the interaction mechanism between MPs and pollutants. By distributing 106 

spectral intensity trends within a data set collected as a function of the perturbation 107 
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sequence (e.g. adsorption time) over a second dimension, one can get 108 

cross-correlations that define structural relations (Li et al. 2014). The relative 109 

direction and sequencing/ordering of band intensity changes can be determined by 110 

synchronous and asynchronous spectra generated with 2D FTIR COS (Chen et al. 111 

2018b, Li et al. 2014). The auto-peaks in the synchronous spectrum denote overall 112 

susceptibility of the corresponding spectral region to change in spectral intensity as an 113 

external perturbation is used to the system. The cross-peaks in asynchronous spectrum 114 

probe the specific sequencing/ordering of spectral intensity changes through 115 

asynchronous analysis (Noda 2005). In this study, 2D FTIR COS is used to determine 116 

order and degree of these changes in main functional groups on the MP surfaces 117 

during the adsorption to metal pollutants. 118 

The objectives of this study are to: 1) investigate the contents of metals in sewage 119 

sludge and those adsorbed on the sludge-based MPs; and 2) compare the adsorption and 120 

physicochemical characteristics of virgin and sludge-based MPs for Cd using various 121 

techniques, such as adsorption isotherms, X-ray photoelectron spectroscopy, scanning 122 

electron microscopy (SEM), microscope FTIR spectroscopy, and two-dimensional 123 

FTIR correlation spectroscopy; and 3) explore the effect of such factors as pH value, 124 

sludge inorganic matter (silica sand, SS) and organic matter (protein and humic 125 

substances) on adsorption potentials of MPs to Cd. 126 

2. Materials and methods  127 

2.1 Materials and reagents 128 
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Three sewage sludge samples were collected from three WWTPs, respectively. 129 

The S1 and S2 sludge samples were obtained from the W1 and W2 WWTPs, 130 

respectively, in Shenzhen in December 2016, while the S3 sample was collected from 131 

the W3 WWTP in Shanghai in September 2017. Physicochemical properties of the 132 

sludge samples including pH value, total solids (TS) content, volatile solids (VS)/TS, 133 

elemental composition (C, H, N and S), and metal contents were analyzed. Detailed 134 

methods for the parameters are provided in the Supporting Information (SI), and the 135 

results are shown in Table 1. Table S1 of the SI shows the detailed characteristics of the 136 

WWTPs. 137 

Virgin MPs including polyamide (PA), polyethylene (PE), polypropylene (PP), 138 

polyvinyl chloride (PVC), and polystyrene (PS) were purchased from the Micro 139 

Powders Inc., Shanghai, China. Cadmium chloride (CdCl2·2.5H2O), lead nitrate 140 

[Pb(NO3)2], nickel nitrate hexahydrate [Ni(NO3)2·6H2O], cobalt nitrate hexahydrate 141 

[Co(NO3)2·6H2O], zinc chloride (ZnCl2) and copper sulfate pentahydrate 142 

(CuSO4·5H2O) all are 99.0% pure and obtained from the Sinopharm Group Corp. 143 

Shanghai, China. Metal stock solutions of 1000 mg L-1 were prepared using deionized 144 

water. All metal standard solutions, standard bovine serum albumin, and commercial 145 

humic substances were purchased from the Aladdin Industrial Corp., Shanghai, China. 146 

2.2 MP extraction  147 

The methods used to extract MPs in sewage sludge have been reported in our 148 

previous work (Li et al. 2018c). In brief, 100 g of sludge was added to an Erlenmeyer 149 
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flask with 1000 mL saturated sodium chloride (1.2 g mL-1 NaCl). After stirring for 30 150 

min, the mixture was allowed to settle for 5 h. Then, the top water was filtered via a 151 

vacuum filtration unit using a 37-µm sieve. The extraction was carried out in triplicate, 152 

and all the MP extracts were collected in the sieve. The sieve in the vacuum filtration 153 

unit was then washed with more than 600 ml distilled water to remove any salt 154 

residues. The MP particles were hand-sorted from the filters with fine-tip tweezers 155 

under the stereomicroscope, and then carefully rinsed with deionized water to 156 

eliminate the attached organic matter (Leslie et al., 2017). After air-drying, the rinsed 157 

particles were used for the following adsorption experiment and analysis. 158 

2.3 Batch adsorption experiment 159 

In this experiment, five virgin MPs, i.e., PA, PE, PP, PVC and PS were used to 160 

evaluate adsorption property of MPs for metal pollutants, such as Pb, Cd, Zn, Cu, Co 161 

and Ni. All metal solutions were prepared by diluting stock solutions with deionized 162 

water and adjusting the pH with 0.1 M HCl and 0.1 M NaOH. The adsorption was 163 

conducted in centrifuge tubes, each of which contained 0.1 g MP particles and 10 mL 164 

aqua of 10 mg L-1 metal solution. The tubes were placed on an end-over-end shaker at 165 

30 rpm at room temperature for 24 h. Preliminary test showed that 24 h was sufficient 166 

to reach adsorption equilibrium (SI Figure S1). The control group was carried out in 167 

the same metal solution using the same procedure but without MP particles. Each test 168 

including the control, was run in triplicate.  169 

Cd was used to compare adsorption capacities of the virgin and sludge-based 170 
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MPs and investigate the influence of pH value, and sludge components on adsorption 171 

capacities of the virgin MPs. Cd solution concentrations used for the virgin MPs were 172 

2, 4, 6, 8, 10 and 15 mg L-1, while 2, 4, 6, 8, 10, 15, 20, 40, 60, 80 and 100 mg L-1 173 

metal were used for the sludge-based MPs. The pH values ranged from 5.0 to 9.0. 174 

Sludge components included inorganic matter (IOM) and organic matter (OM). 0.1 g 175 

SS was added to 10 mL aqua of 10 mg L-1 Cd solution with 0.1 g MP, to study the 176 

IOM influence on MP adsorption. To analyze the OM influence, protein solutions 177 

ranging from 0 to 40 mg L-1 were prepared, while humic substance solutions were 178 

used with the contents from 0 to 80 mg L-1. After 24 h of sorption, the MP particles 179 

were extracted, and the solutions were filtered using 0.45 µm membrane filter. The 180 

metal concentrations in the filtrates were measured using inductively coupled plasma 181 

optical emission spectrometer (ICP-OES) as described in the SI, and the metal 182 

contents adsorbed on the MPs were calculated by determining the difference between 183 

the control and sample filtrate. The MP particles from the tubes were air-dried for the 184 

following analysis.  185 

2.4 MP analysis 186 

Chemical composition of the sludge-based MP particles were identified by 187 

Microscope Fourier Transform infrared spectrometer (FTIR, IR/NicoletiN10 MX, 188 

Thermo Fisher Scientific Inc., USA) according to our previous study (Li et al. 2018c). 189 

Thermo Scientific Hummel Polymer and Additives FTIR Library and Synthetic Fibers 190 

by Microscope FTIR Library were used to analyze the spectra, and then the MP types 191 
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were determined and percentage of MP in potential MP particles for each WWTP was 192 

estimated. The contents of such metals as Cd, Pb, Ni and Co adsorbed on the 193 

sludge-based MPs were analyzed as the following method shown in the SI. Shortly, 194 

the metals were firstly desorbed into 10% aqua regia from the MP surfaces and then 195 

measured by the ICP-OES. SEM analyses was conducted in order to determine the 196 

surface structures of the virgin and sludge-based MPs using Hitachi SU-1500 197 

scanning electron microscopy (SEM, Hitachi High Technologies Corp., Japan) 198 

according to the previous studies as reported by Mahon et al. (2017). X-ray 199 

photoelectron spectroscopy (XPS) was applied to measure the Cd content on the 200 

surface of MP particles before and after the Cd adsorption experiment using X–ray 201 

photoelectron spectrometer (ESCALAB 250, Thermo Fisher Scientific Inc., USA) (Li 202 

et al. 2017). FTIR spectra of the virgin and sludge-based MPs were gained through a 203 

Nico 380 MX FTIR spectrometer using attenuated total reflectance module (Thermo 204 

Fisher Scientific Inc., USA). pH values at the point of zero charge (pHPZC) of the 205 

virgin MPs were estimated according to the pH drift method (Yang and Chun 2004). 206 

Specific surface areas of the virgin and sludge-based MPs were determined by N2 207 

adsorption-desorption at 77 K with an Autosorb-IQ2 surface area analyzer 208 

(Quantachrome Corp., USA).  209 

2.5 Two-dimensional FTIR correlation spectroscopy (2D FTIR COS)   210 

FTIR spectra of the MPs were analyzed using 2D COS according to the references 211 

(Li et al. 2015, Li et al. 2014), to further reveal subtle structural variations of the virgin 212 
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and sludge-based MPs after their interaction with different contents of Cd. The FTIR 213 

spectra were normalized by summing the absorbance from 4000–400 cm-1, and 214 

multiplying by 1000. Subsequently, the normalized data set were transformed into a 215 

new spectral matrix using principal component analysis (PCA) in Matlab R2012b (The 216 

Mathworks, USA) to reduce the level of noise (Babamoradi 2013), and then 2D FTIR 217 

COS maps were conducted using 2D Shige software (Kwansei Gakuin University, 218 

Japan) and re-plotted by Origin 9.0 software (OriginLab Corp., USA) . 219 

2.6 Data analysis 220 

Langmuir, Freundlich and Dubbin-Radushkevich models were applied to fit 221 

adsorption isotherms of Cd on the virgin and sludge-based MPs. The three models can 222 

be described by Equations (1), (2), and (3), respectively.  223 

e

max max

1 e

e L

C C

q k q q
= +  (1) 

1
ln ln ln ee Fq k C

n
= +  

(2) 

2exp( )e DR DR DRq q B ε= −  (3) 

In which Ce (mg L-1) is the Cd concentration remaining in the solution at equilibrium, qe 224 

(µg g-1) is the amount of Cd adsorbed per mass unit of adsorbent at equilibrium, qmax 225 

(µg g-1) is the maximum adsorption capacity, kL (L mg-1) is the Langmuir binding 226 

constant, kF (mg1-n Ln g-1) and n are Freundlich constants related to the adsorption 227 

capacity and the adsorption intensity, qDR (µg g-1) and BDR (mol2 J-2) are the D-R 228 
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isotherm constants and ɛDR is the Polanyi potential that is equal to 
e

1
ln(1 )RT

C
+ , where 229 

R is the gas constant (8.314 J mol-1 K-1) and T is the absolute temperature (K).  230 

Different types of MPs were categorized using PCA according to their adsorption 231 

properties to Cd in presence of such factors as pH, SS, protein, and humic substances. 232 

The data were normalized prior to analysis, to obtain standardized values on the 233 

ordination scores. PCA was carried out with the SPSS 13.0 software. 234 

 235 

3. Results and discussion 236 

3.1 Metal contents adsorbed on the sludge-based MPs 237 

As shown in Figure 1, the contents of Cd, Pb and Co adsorbed on the sludge-based 238 

MPs are higher than those of the corresponding metal irons in sewage sludge, but the Ni 239 

content is lower. This indicates that the MPs accumulate some metals in the sludge 240 

samples, in accordance to the previous results from the sea and river water. Brennecke 241 

et al. (2016) found that metal concentrations on plastics are higher than in the 242 

surrounding seawater, indicating that the MPs act as vectors for metal pollutants. 243 

Analysis of energy dispersive X-ray spectroscopy showed that the metals carried by 244 

MPs are not inherent but are instead derived from the environment, implying that the 245 

metal accumulation on the MPs in surface sediment from the Beijiang River (Wang et 246 

al. 2017).  247 

MP particles extracted from the sewage sludge were identified using microscope 248 

FTIR, and the results are shown in Figure S2 of the SI. Primarily, PA, PE, polyolefin 249 
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(olefin), PS, and alkyd resin (AR) are found in the sludge. To investigate the effect of 250 

MP type on metal accumulation, PA, PE, PP, PVC, and PS were used to adsorb Pb, Cd, 251 

Zn, Cu, Co, and Ni which are often found in the sewage sludge. In general, the metal 252 

contents adsorbed on the MPs decrease in the following order: Pb > Cd > Zn > Cu > 253 

Co > Ni. The potential capacities of different MPs for metal adsorption present the 254 

following descending order: PA > PE > PP > PVC > PS. Kołodyńska et al. (2012) and 255 

Rocha et al. (2009) reported similar results based on the biochar with the following 256 

order: Pb > Cd > Cu. Other researchers found the order of organic substances 257 

adsorbed on different types of plastics to be PA ≥ PE ≥ PP > PVC > PS (Li et al. 258 

2018a, O'Connor et al. 2016, Wang et al. 2018), consistent with the adsorption results 259 

of MPs and metals in this study. Thus, the results imply that the MP type has a 260 

significant effect on the adsorption of metal pollutants on MP. 261 

3.2 Comparison of adsorption capacity between virgin and sludge-based MPs  262 

Mahon et al. (2017) found that MPs have the characteristics of melting and 263 

blistering after thermal treatment, and shredding and flaking after lime stabilization. 264 

These changes in MP physicochemical properties during sludge treatments might 265 

cause a significant variation in adsorption potentials of the MPs for metal pollutants. 266 

Therefore, adsorption and physicochemical features of the virgin and sludge-based 267 

MPs are systematically investigated and compared in this study.    268 

As show in Figure 1, high contents of Cd are adsorbed on the virgin and 269 

sludge-based MPs. Meanwhile, Cd is one of the most toxic metals due to its solubility, 270 
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mobility, and biological accumulation potential (Nies 1991), and can be transported 271 

into cells, where it can disrupt protein structure and function (Belhalfaoui et al. 2009, 272 

Xu et al. 2017). Therefore, Cd is used as a representative metal to evaluate the 273 

difference in adsorption of the virgin and sludge-based MPs to metals in this study.  274 

XPS analysis shows that two additional Cd3d (405 eV and 411 eV) peaks are 275 

observed in XPS spectra of the MPs after the adsorption process (SI Figure S3), 276 

compared with the virgin MPs, indicating that Cd is indeed adsorbed on the MPs. Cd 277 

adsorption isotherms of the virgin and sludge-based MPs are shown in Figure 2. The 278 

isotherms of virgin PA, PE, PP and PS, and sludge-based MP fit the Langmuir model 279 

well (Table 2 and SI Figure S4), implying that the adsorptions are monolayer 280 

adsorption. The isotherm of PVC fits Freundlich model well, revealing that the 281 

adsorption belongs to multilayer adsorption. According to the Langmuir model, Cd 282 

adsorption capacity of the sludge-based MPs reaches a maximum of 2.523 mg g-1, 283 

which is one order of magnitude higher than that of the virgin MPs (Table 2), 284 

corresponding to the previous results from the comparison of virgin and aged MPs 285 

from the nature environment (Holmes et al. 2014, Turner and Holmes 2015, 286 

Wijesekara et al. 2018). Holmes et al. (2014) reported greater adsorption of metals on 287 

beached (aged) plastics than on virgin plastics. In another study, modified microbeads 288 

that were incubated for several days in soils, sediments and biosolids are found to 289 

adsorb more Cu than untreated microbeads (Wijesekara et al. 2018).  290 
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SEM analysis reveals that the surfaces of sludge-based MPs exhibit wrinkled and 291 

aggregated structures (Figure 3), in contrast to smooth surfaces of the virgin MPs 292 

(Mahon et al. 2017, Wijesekara et al. 2018). Specific surface area of the sludge-based 293 

MPs is higher than that of the virgin MPs except for PS (SI Table S2), indicating that 294 

more potential adsorption sites exist on the sludge-based MPs. FTIR spectra of the 295 

sludge-based MP present some characteristic peaks, distinct from the virgin MPs (SI 296 

Figure S5). Compared with virgin PE, the corresponding sludge-based MP shows 297 

stronger peaks at 1000–1100 cm-1 to the C-O stretching of primary and secondary 298 

alcohols, and at 1370–1376 cm-1 to the C-H and O-H deformation of alcohol and 299 

phenolic groups. The result implies the presence of O-containing (C-O and O-H) 300 

groups on the sludge-based MPs, which is possibly attributed to oxidative degradation 301 

and erosion of the MPs (Ceccarini et al. 2018), and the attachment of organic matter on 302 

them (Wijesekara et al. 2018). Turner and Holmes (2015) showed that the attachment 303 

of organic matter to MPs during the weathering process affects the adsorption of 304 

metal. Hence, these results indicate that the emergence of O-containing functional 305 

groups may play an important role in enhancing metal adsorption potential of the 306 

sludge-based MPs.  307 

To further understand the role of the functional groups during the MP adsorption 308 

to Cd, 2D COS was used to analyze the FTIR spectra. Significant spectral variations 309 

are found in the ranges of 900–1300 cm-1 and 1350–1600 cm-1, which contain the 310 

bands corresponding to amides, carboxylic acids, esters, aliphatic group, and 311 
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carbohydrates (Li et al. 2015, Li et al. 2014). As shown in Figure 4, four major 312 

auto-peaks in synchronous map of the sludge-based MPs follow in the decreasing 313 

order: 1580 > 1440 cm-1, implying that N-H functional group plays a greater role in 314 

adsorbing metals, compared with C-H functional group. Off-diagonal peaks 315 

(cross-peaks) in the synchronous map show correlated signals, implying simultaneous 316 

or coincidental changes in spectral intensities at two different spectral variables (Li et 317 

al. 2015, Li et al. 2014). Two main cross-peaks at (1460, 1580) and (1520, 1580) cm-1 318 

are positively correlated in the sludge-based MPs, suggesting the simultaneous 319 

changes. Three cross-peaks at (1390, 1580), (1440, 1580) and (1540, 1580) cm-1 show 320 

that the bands are correlated negatively, implying that the functional-group changes 321 

are not simultaneous. In contrast to synchronous maps of the virgin MPs (SI Figure 322 

S6-S9), specific C-O group at 1100 cm-1 is observed in that of the sludge-based MPs, 323 

complementing and confirming the finding of important role of C-O functional group 324 

in metal adsorption on the sludge-based MPs based on FTIR analysis. In the 325 

asynchronous map, cross-peaks can provide useful information about sequential order 326 

of the changes of different organic functional groups. According to Noda’s rule (Noda 327 

2005), the band changes follow the order: 1050→1250 cm-1 and 1580→1440 cm-1. 328 

The structural variation sequence in the adsorption process could be proposed as 329 

follows: C-O→C-H and N-H→C-H. The results indicate that the C-O and N-H 330 

functional groups are combined preferentially with Cd during the adsorption, 331 

compared with C-H group. The results complement and confirm the findings from 332 
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FTIR spectra that physicochemical changes of the sludge-based MPs such as 333 

generation of O-contain groups result in the enhancement of MP adsorption capacity. 334 

Fragmentation of MPs weathered by environment factors like wind, sunlight, and 335 

mechanical abrasion in natural environments has been reported widely (Song et al. 336 

2017, Ter Halle et al. 2016). However, these processes often require long periods of 337 

time (Ceccarini et al. 2018). In contrast to the natural environment, WWTPs are 338 

artificial ecosystems in which intensive physical, chemical, and biological processes 339 

occur in the presence of high contents of organic matter and various active microbes. 340 

MP surface may be abraded by shearing effect attributable to mechanical mixing at 341 

“grit & grease” removal stage and/or the aeration at activated sludge tank. Elevated 342 

pH in lime stabilization can fragment plastics, resulting in larger quantities and 343 

smaller size classes of plastics (Mahon et al. 2017, Zubris and Richards 2005). 344 

Microorganisms are critical community during biological treatment process in 345 

WWTPs. The MPs are colonized by microbe, leading to the formation of biofilm. 346 

PE-degrading bacteria have been found in the biofilm (De Tender et al. 2017), and can 347 

cause chain scission and oxidation of PE (Restrepo-Flórez et al. 2014). Therefore, the 348 

polymer-degrading bacteria in the biofilms can lead to changes in the MP surface 349 

during secondary wastewater treatment processes. Researchers suggested a decrease 350 

in MP abundance after sludge anaerobic digestion attributable to the biological 351 

breakdown of polymers (Shah et al. 2008, Yoshida 2016). Therefore, wastewater 352 

treatment processes cause changes in physicochemical properties of MPs, and thus 353 
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can enhance their capacity to adsorb such pollutants as metals.  354 

3.3 Factors affecting the Cd adsorption by virgin MPs 355 

Sewage sludge has a broad pH range, and it contains high contents of complex 356 

inorganic and organic matter, such as protein and humic substances. Enhancing our 357 

knowledge about the influences of environmental factors (e.g., pH value) and sludge 358 

components (e.g., inorganic and organic matter) is vital to understand adsorption 359 

potential of MPs in sewage sludge to metals. 360 

3.3.1 Effect of pH value 361 

The adsorption of metal ions depends on pH value of solution because it affects 362 

both surface charge of the adsorbent and the speciation of metal ions (Melo and Neto 363 

2013). Figure 5A shows that the adsorbed Cd contents on the MPs first increase, then 364 

decrease in the range of pH 5-9. The adsorption of Cd on MPs increases as the pH due 365 

to the enhancement of the anionic surface, indicating the significance of electrostatic 366 

interactions (Wang et al. 2015). A decrease in the adsorption at higher pH is attributed 367 

to the formation of precipitation competing with Cd iron for active sites of the MPs, 368 

which reduces metal retention (Kołodyńska et al. 2012, Vimala and Das 2009). The 369 

highest adsorbed Cd contents are found at pH 7.7, 7.4, 7.1, 6.0 and 6.0 for PA, PE, PP, 370 

PVC and PS, respectively (Figure 5A), indicating that pH value has different 371 

influence on different types of MPs for Cd adsorption. The pHPZC (the point of zero 372 

charge) is the pH at which the surface of the MP has a net zero charge. At pH > pHPZC, 373 

the MP surface has a net negative charge and cations can be adsorbed. Table S2 of the 374 
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SI shows that pHPZC values of the five MPs are 5.59-5.85, and less than the pH at 375 

which the highest adsorbed Cd contents are found. The result implies that adsorption 376 

of Cd on the MPs belongs to chemical adsorption. The negative charge on the MPs 377 

are attributed to negatively charged groups that are bonded chemically to the 378 

microsphere during polymerization (Dong 2005, Lu et al. 2018). In this study, pH 379 

values of the sewage sludge range from 6.88 to 7.38 (Table 1), indicating that 380 

adsorption potentials of the sludge-based MPs shows a high level for metals in terms 381 

of pH value. 382 

3.3.2 Effect of sludge components  383 

Sewage sludge are composed of inorganic particles and organic matter (Wei et al. 384 

2018). The percentage of sand in sludge inorganic matter reaches up to 78.9% in China 385 

(Zhao 2015), and thus SS was selected as a representative of sludge inorganic 386 

component (Duan and Dai 2016) in the study. Sludge organic matter including protein 387 

and humic substances might affect adsorption of the MPs to metals (Wei et al. 2016). 388 

Organic matter can readily adsorb metals, so it has a potential role in metal transport 389 

into the environment and metal sorption to bacterial cells (Hu et al. 2007, Joshi and 390 

Juwarkar 2009). Many OM functional groups, such as carboxyl, phosphoric, sulfhydryl, 391 

phenolic, and hydroxyl groups, all can complex with metals (Sheng et al. 2010). 392 

However, there is little information about the influence of sludge IOM and OM 393 

components on the adsorption of metal on MPs.  394 
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Content of Cd adsorbed on the MPs in SS+MP group is lower than that in the 395 

corresponding pure MP group except for PS (Figure 5B). These results imply that 396 

inorganic matter in sewage sludge affects metal adsorption of the MPs adversely. 397 

Figure 5C shows that Cd content adsorbed on the MPs decreases with the protein 398 

concentration, except for PS. Research reported that protein has a net positive charge at 399 

pH 7.5 (Matsui et al. 2015). Positively charged protein molecules are attracted to 400 

negatively charged surface of the MPs, and thus compete with Cd for adsorption sites 401 

on the MPs. As shown in Figure 5D, with the concentration of humic substances, the Cd 402 

contents adsorbed on PA, PE, and PP decrease, and on PVC and PS increase. It is 403 

well-known that humic substances as common natural organic matter are often 404 

negatively charged, and can adsorb cations, causing a decrease in available Cd content 405 

for sorption of the MPs. Therefore, the adsorption potentials of PA, PE and PP to Cd 406 

reduce as the content of humic substances increases. Researchers also reported that 407 

concentrations of adsorbed tetracycline on PS, PP, and PE decreased with an increase in 408 

humic substance concentrations (Xu and Liu 2018). On the other hand, humic 409 

substances can adhere to the MP surfaces, causing an increase in zeta potentials and 410 

negative charge on the MPs surfaces (Li et al. 2018b, Lu et al. 2018), and increasing 411 

electrostatic interactions between Cd and the MPs. Chen et al. (2018b) found that the 412 

interaction between humic substances and MPs results in formation of the co-polymer. 413 

The interaction increases negative surface charges on MPs and enhances their stability 414 
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(Alimi et al. 2018, Lu et al. 2018). Therefore, the adsorbed Cd contents on PVC and PS 415 

increase with humic substances concentration.  416 

PCA was used to classify the five MPs, i.e. PA, PE, PP, PVC and PS, according 417 

to their maximum Cd adsorption amount and changing characteristics of adsorbed Cd 418 

content under the influence of pH, and sludge IOM and OM components. As Figure 6 419 

shows, the five MPs are divided into three main categories, Category 1 (PA), 420 

Category 2 (PE and PP), and Category 3 (PVC and PS). The above results show that 421 

adsorption potentials of the three categories of MPs follow the decreasing order: 422 

Category 1> Category 2> Category 3. The presence of polar amide functional group 423 

(-CO-NH-) and hydrogen bonding on the PA surface might cause its high adsorption 424 

capacity to Cd (Li et al. 2018a). According to the glass transition temperatures (Tg), 425 

the plastics are divided into two categories, rubbery plastics (PE and PP) and glassy 426 

plastics (PVC and PS) (Alimi et al. 2018, Teuten et al. 2009). Rubbery plastics have a 427 

large amount of free volume between the molecules, while glassy polymers have a 428 

dense structure and closed internal nanoscale pores (Teuten et al. 2009). Therefore, 429 

the structure of glassy plastics leads to lower pollutant mobility and slower diffusivity 430 

rates than those observed in rubbery plastics, resulting in lower adsorption capacity 431 

(Pascall et al. 2005). These results complement and confirm that the MP type has a 432 

significant effect on the metal adsorption.  433 

3.4 Implications and limitations of this study 434 

Our results show that MPs can act as vectors for metals in sewage sludge and 435 
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potentially influence on metal fate and transport when sewage sludge is applied to 436 

land. Tons of the MPs enter the soil system annually during sludge land application 437 

(Li et al. 2018c, Nizzetto et al. 2016). Organisms take up the metal pollutants 438 

adsorbed on the MPs, resulting in the partial accumulation of metal pollutants and 439 

increasing their potentials risks. Adsorption capacity of the sludge-based MPs for such 440 

metal as Cd is one order of magnitude higher than that on virgin MPs, implying a 441 

considerable increase in MP adsorption capacity on the metal after the wastewater 442 

treatment process, and thus the sludge-based MPs might produce higher effect to the 443 

metal transport than the virgin MPs. The results are attributed to changes in 444 

physicochemical characteristics of the MPs during wastewater treatment processes. 445 

The MPs are oxidized and/or coated by organic matter, causing an increase in 446 

potential adsorption sites and the generation of O-containing group on their surfaces, 447 

and thus enhancing their adsorption to metal pollutants. In addition, biofilm formation 448 

on the MPs also possibly contributes to the changes. Wu et al. (2017) showed that the 449 

presence of plastic colonization could influence transport and transformation of the 450 

pollutants. In summary, it requires more attention to the potential risks resulted from 451 

metal accumulation on the MPs in sewage sludge.  452 

Limitations of this study are that the MPs were gained from the sewage sludge 453 

samples through hand picking, and limited amounts were available for experiments. 454 

Thus, adsorption properties of different types of the sludge-based MPs to metal 455 

pollutants is lack of investigation, and physicochemical changes in the MPs during 456 
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simulated wastewater treatment processes need to further investigate. Such study will 457 

allow us to obtain a profound understanding of the mechanism related to enhanced 458 

adsorption of the MPs to metal after the wastewater treatment process. In addition, it 459 

is significant to further explore the influence of wastewater treatment processes, both 460 

individually and collectively, on the MP adsorption to other pollutants such as other 461 

metals and organic pollutants.  462 

 463 

4. Conclusions  464 

MPs can accumulate the metals in sewage sludge, although the adsorption 465 

capacity might differ for different metal irons and plastics types. Adsorption potentials 466 

of the MPs to such metal as Cd increase by about ten times during entering into sewage 467 

sludge after wastewater treatment processes, compared with virgin MPs. They are 468 

resulted from physicochemical changes of the sludge-based MPs during the treatment 469 

processes, such as the emergence of rough and porous structures, and the presence of 470 

C-O and O-H groups on the MP surfaces. It needs further investigation to understand 471 

how wastewater treatment processes to affect MP physicochemical properties in 472 

controlled experiments. Analyses of factors affecting the MP adsorption indicate that 473 

sludge inorganic and organic components have an adverse effect on metal adsorption 474 

potentials on the MPs. However, the influence differs for different MP types, e.g. humic 475 

substances seem to enhance adsorption of the glassy MPs to Cd. In sum, ecological risk 476 
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of metal accumulation on the MPs needs to further investigate during sludge land 477 

application.  478 
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Table 1. Properties of sewage sludge samples derived from three wastewater treatment 689 
plants (WWTPs).  690 

Parameters 
Sludge samples 

S1 S2 S3 

pH 7.29 6.88 7.38 

TS (%) 15.42 ± 0.1 15.42 ± 0.1 16.60 ± 0.5 

VS/TS (%) 58.66 ± 0.2 64.15 ± 0.3 59.61 ± 0.2 

Elemental composition (%) 

C 32.13 ± 0.16 32.89 ± 0.63 33.84 ± 0.28 

H 5.53 ± 0.0265 5.90 ± 0.29 5.15 ± 0.14 

N  4.78 ± 0.025 4.45 ± 0.08 6.02 ± 0.08 

S  0.94 ± 0.007 1.14 ± 0.15 0.85 ± 0.02 

Abundance of MPs (particles kg-1 

dry sludge) 
13787 15080 37463 
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Table 2. Constants defining Cd adsorption on the virgin and sludge-based MPs 691 
according to the isotherm models. 692 

MPs Langmuir Freundlich Dubbin-Radushkevich 

PE 

kL=0.414 L µg-1 kF =4.53 µg1-1/n g-1 L1/n qDR=202.6 µg g-1 

qmax=234.5 µg g-1 n=3.7 R2=0.79 

R2=0.92 R2=0.89 p=0.006 

p=0.000 p=0.001  

PA 

kL=0.320 L µg-1 kF =5.28 µg1-1/n g-1 L1/n qDR=214.4 µg g-1 

qmax=339.6 µg g-1 n=2.58 R2=0.56 

R2=0.89 R2=0.83 p=0.006 

p=0.005 p=0.011  

PP 

kL=0.675 L µg-1 kF =4.71 µg1-1/n g-1 L1/n qDR=201.5 µg g-1 

qmax=199.2µg g-1 n=3.67 R2=0.84 

R2=0.91 R2=0.67 p=0.029 

p=0.003 p=0.047  

PS 

kL=0.516 L µg-1 kF =1.11 µg1-1/n g-1 L1/n qDR=103.7 µg g-1 

qmax=69.9 µg g-1 n=2.23 R2=0.83 

R2=0.81 R2=0.662 p=0.029 

p=0.037 p=0.094  

PVC 

kL=0.845 L µg-1 kF =0.813 µg1-1/n g-1 L1/n qDR=67.6 µg g-1 

qmax=222.2 µg g-1 n=1.24 R2=0.03 

R2=0.64 R2=0.94 p=0.784 

p=0.012 p=0.007  

Sludge-based 

MPs 

kL=0.547 L µg-1 kF =50.6 µg1-1/n g-1 L1/n qDR=1.67 mg g-1 

qmax=2.52 mg g-1 n=4.67 R2=0.70 

R2=0.98 R2=0.91 p=0.784 

p=0.000 p=0.000  
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Figure Captions 693 

Figure 1. The content of metals in sewage sludge and adsorbed on the sludge-based 694 

MPs (A-C) and virgin MPs (D) (mean value ± SD, n=3). 695 

Figure 2. Sorption isotherms of Cd on the virgin and sludge-based MPs. (mean value ± 696 

SD, n=3). 697 

Figure 3. SEM graphs of the virgin and sludge-based MPs (V, virgin MPs; S, 698 

sludge-based MPs). 699 

Figure 4. Synchronous (left) and asynchronous (right) 2D correlation maps generated 700 

from 900–1300 cm-1 (above) and 1350–1600 cm-1 (below) regions of FTIR 701 

spectra of the sludge-based MPs adsorbing increasing contents of Cd.  702 

Figure 5. The influence of pH value, silica sand (SS), protein, and humic substances on 703 

adsorption of Cd on the MPs (mean value ± SD, n=3). 704 

Figure 6. Principal component analysis (PCA) of different types of MPs according to 705 

their maximum Cd adsorption amount and changing characteristics of 706 

adsorbed Cd content under the influence of pH, and sludge IOM and OM 707 

components.708 
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Figure 1. 711 
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Figure 2.  713 
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 714 
Figure 3. 715 
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Figure 4. 717 
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Figure 6. 724 
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Highlights 

� Some metal pollutants such as Cd and Ni are accumulated on sludge-based MPs 

� The contents of metal iron adsorbed on sludge-based and virgin MPs were 

compared 

� An increase in adsorption potential of sludge-based MPs after wastewater 

treatment 

� The enhancement of MPs is resulted from changes in their physicochemical 

properties 

� Types of plastics, pH and sludge components affect the adsorption of MPs to Cd 
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