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Abstract 

This paper aims to develop a recovery planning approach in a three-tier manufacturing supply 

chain, which has a single supplier, manufacturer, and retailer under an imperfect production 

environment, in which we consider three types of sudden disturbances: demand fluctuation, and 

disruptions to production and raw material supply, which are not known in advance. Firstly, a 

mathematical model is developed for generating an ideal plan under imperfect production for a 

finite planning horizon while maximizing total profit, and then we re-formulate the model to 

generate the recovery plan after happening of each sudden disturbance. Considering the high 

commercial cost and computational intensity and complexity of this problem, we propose an 

efficient heuristic, to obtain a recovery plan, for each disturbance type, for a finite future period, 

after the occurrence of a disturbance. The heuristic solutions are compared with a standard 

solution technique for a considerable number of random test instances, which demonstrates the 

trustworthy performance of the developed heuristics. We also develop another heuristic for 

managing the combined effects of multiple sudden disturbances in a period. Finally, a 

simulation approach is proposed to investigate the effects of different types of disturbance 

events generated randomly. We present several numerical examples and random experiments 

to explicate the benefits of our developed approaches. Results reveal that in the event of sudden 

disturbances, the proposed mathematical and heuristic approaches are capable of generating 

recovery plans accurately and consistently. 
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1. Introduction 

Managing a supply chain, which is a network of different entities who are working together to 

deliver the right product to the right customer at the right time, has become a daunting task for 

the businesses across the globe (Das et al. 2006; Huo et al. 2014). Nowadays, success of the 

organizations depends on effective and efficient supply chain management as with the trend 

towards outsourcing firms more and more focus on their core competencies (Narasimhan and 

Talluri 2009). Efficient and effective management of a supply chain requires proper planning, 

implementation and control of the operations of the supply chain (Ho et al. 2011). Although 

firms are working hard to ensure a smooth supply chain, supply chains operations have become 

more complex due to globalization, digitalization, and upgraded infrastructure, resulting in 

higher supply chain disturbances (Blome and Schoenherr 2011; Chaudhuri et al. 2013; C. Tang 

2006). Both manufacturing and service firms, in their supply chain, facing supply chain 

disturbances (Blome and Schoenherr 2011), which have increased in the recent years 

(Christopher et al. 2011). For instance, a survey conducted in 2015 (Riglietti and Aguada 2018) 

in 426 organizations found that 74% of firms had experienced more than one supply chain 

disruption, with 6–20 disruptions per year for 15% of the companies. In general, manufacturing 

firms are facing more disturbances than service firms because every manufacturing firm needs 

to coordinate internal and external entities – such as suppliers, their own manufacturing plant, 

and retailers – to ensure smooth flow of products and proper services (Blome and Schoenherr 

2011). All of these internal and external entities can be a potential source of supply chain 

disturbances, such as supply disruption from the supplier’s end, production disruption in the 

manufacturing plant, and demand fluctuation from the retailer’s end. Hence, additional 

attention on supply chain disturbance management is especially pertinent for manufacturing 

firms as opposed to service firms (Blome and Schoenherr 2011). 

Supply chain disturbances bring many financial and non-financial losses for manufacturing 

organizations. For example, on March 17, 2000, a New Mexican company – Royal Phillips 

Electronics plant faced a lightning strike which caused a massive damage of millions of 

microchips. Ericsson, a Swedish multinational company which employed a single-sourcing 

strategy from the above-mentioned plant, lost more than U.S. $400 million in potential revenue, 

and its market share reduced to 9% from 12% (Chopra and Sodhi 2004; Fang et al. 2013). A 

recent survey (Riglietti and Aguada 2018) also revealed that firms suffer heavily from monetary 
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losses, which varied from €50,000 to €500 million due to these supply chain disruptions. The 

report also mentioned that supply chain disruptions reduce productivity for 58% of firms and 

reduce estimated revenue in 38% of companies. Moreover, companies suffering from supply 

chain disruption experienced a 10.28% abnormal decrease in shareholder value, and 33% – 40% 

lower stock return compared to industry benchmarks (Hendricks and Singhal 2003, 2005). 

Previous studies (Chowdhury et al. 2016; Hendricks and Singhal 2003; Kim et al. 2015) also 

found that supply chain disturbances have an association with other measures of financial 

performance such as a negative association with return on sales and return on assets, and a 

positive association with the cost of production and level of inventory. In addition to the 

financial losses, manufacturing firms suffer from different non-financial losses due to supply 

chain disturbances. For instance, supply chain disturbances harmed the reputation of 27% firms 

(Riglietti and Aguada 2018) and reduced employment in the firms (Thun and Hoenig 2011). 

Considering the significant negative impact of supply chain disturbances on the financial and 

non-financial measures of performance of manufacturing firms, it has become crucial to 

develop proper strategies for managing supply chain disturbances of manufacturing firms 

(Ambulkar et al. 2015; Craighead et al. 2007).  

The impact of supply chain disturbances can be minimized through proper planning and risk 

management strategies. Several previous studies over the past two decades have developed 

different disturbance mitigation and management strategies such as buffer stock (Mishra et al. 

2016) supplier development, ensuring contractual governance, multiple sourcing, supply chain 

collaboration, etc. for the manufacturing supply chain. However, the majority of supply chain 

disturbances occur suddenly with unique characteristics (Chopra and Meindl 2007; 

Wakolbinger and Cruz 2011), hence pre-determined mitigation strategies may not be 

appropriate to fully and timely recover from the sudden supply chain disturbance. Therefore, 

firms should have an effective recovery planning approach to reduce the impact of a sudden 

disruption (Tomlin 2006). An effective recovery planning model can help a manufacturing firm 

reduce the impact of the disruption which will, in turn, enhance the viability of the business.  

Previous studies have provided few supply chain recovery models to counter supply chain 

disturbances. However, there is a lack of research that evaluates operational and planning 

models rigorously under more complex conditions (Fang et al. 2013). The majority of existing 

studies that developed quantitative supply chain models only considered ideal supply chain 

settings, while very few previous studies provided recovery models dealing with disturbances, 

on a real-time basis (Paul et al. 2016a). Moreover, those who developed models for 
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manufacturing supply chains that could reactively manage disturbance events only considered 

a single disturbance (Ho et al. 2015). However, in reality, firms may suffer from multiple supply 

chain disturbances simultaneously, hence it is important to develop a heuristic that can 

approximate the recovery plan for multiple types of supply chain disturbances. But existing 

literature couldn’t capture the effect of multiple sudden supply chain disturbances, and such 

there is no quantitative model and solution approach for developing recovery plan considering 

the effect of multiple sudden disturbances in a three-tier supply chain system (Paul et al. 2016a). 

Inspired by this fact, in this paper we attempt to develop mathematical and heuristic solutions 

for generating recovery plans to manage multiple types of supply chain disturbances by 

considering separate and combined effects which will reduce the effect of disturbance on the 

operational activities of the firm. 

The main objective of this research is to develop a quantitative model for generating recovery 

plans for three types of sudden supply chain disturbances – supply disruption, production 

disruption, and demand fluctuation. Although existing commercial software might be used to 

solve the developed mathematical model, use of this software in practice will be very expensive 

(Hishamuddin et al. 2012). Besides, the computation can be very complex in the case of solving 

multiple types of supply chain disturbances simultaneously. Therefore, we develop heuristics 

which on the one hand are cost-effective and on the other not overly complex, to accurately 

estimate the optimal recovery plan for each of the three types of supply chain disturbances. 

Moreover, we develop another heuristic that can precisely consider the effect of multiple supply 

chain disturbances in a combined manner. Existing literature cannot help a supply chain and 

operational manager to formulate the right recovery plan for managing the effect of multiple 

types of sudden supply chain disturbances. Further, by helping in taking the right decisions at 

the right time, this paper has the potential to help a supply chain and operational manager to 

formulate the right strategy and reduce the effect of supply chain disturbance on the operational 

activities of the firm which will, in turn, increase the customer retention rate of the firms. 

The paper proceeds as follows. In Section 2 we review related literature, and the problem 

description is presented in Section 3. Mathematical modeling to generate a recovery plan is 

formulated in Section 4. The solution approaches and simulation model are provided in Sections 

5 and 6 respectively. Section 7 discusses the random experimentations and analyses of results. 

Finally, we provide conclusions and future research directions in Section 8. 
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2. Literature review 

Supply chain sudden disturbances are unwanted, unusual triggering events associated with the 

supply chain that materializes somewhere in the supply chain or its external environment, in 

which its outcomes significantly threaten the regular operations of a business (Wagner and 

Bode 2008). These sudden disturbances, which cannot be predicted, can be associated with 

anyone of three main streams – upstream, midstream, and downstream – of supply chain 

(Chowdhury et al. 2016; Handfield and McCormack 2007). Upstream disturbances – also 

known as supply disruptions – are unusual incidents linked with sourcing material from 

suppliers that disrupts the expected sourcing performance, such as quality of material, quantity 

of material, and delivery time of material (Teresa Wu et al. 2006; G. A. Zsidisin and Smith 

2005). Midstream disturbances – also termed production disruptions – are sudden events that 

disturb a firm’s internal production systems (Lockamy III and McCormack 2010). Downstream 

disturbances – also known as demand fluctuations – are the sudden incidents that cause 

fluctuations in customer demand, which result in imbalances between demand and supply 

(Nagurney et al. 2005). A few recent review papers (Fahimnia et al. 2015; Ivanov et al. 2017; 

Paul et al. 2016a; Snyder et al. 2016) have discussed the literature related to supply chain risk 

and disruption management. However, for the literature review related to this research, we focus 

on recent papers related to recovery planning for supply chain disturbance management.  

Supply chain disturbances can result from both major global events and less global events such 

as fire (such as the earlier Philips example), traffic jams, machine breakdowns, and 

inappropriate forecasting (Fang et al. 2013). Several previous studies (Chopra and Sodhi 2004; 

Christopher and Peck 2004; Ho et al. 2015; O. Tang and Nurmaya Musa 2011) identified the 

different types of supply chain disturbances that a practitioner must consider when planning 

management strategies, and the causes of these supply chain disturbances (Chopra and Sodhi 

2004), and differentiated between sudden disturbances (catastrophic events that have low 

probability but high impact) and operational risk (also known as recurrent risk) such as quality 

and quantity problems. Later, a few studies (Chen et al. 2013; Chowdhury et al. 2016; Sheffi 

and Rice 2005) also made a similar distinction. In this paper, to provide a meaningful planning 

and strategy to recover from sudden disturbances, we develop recovery models for a 

manufacturing supply chain that considers three types of sudden disturbances - demand 

fluctuation, production disruptions, and raw material supply disruptions. 

A reasonable number of research studies on supply chain disturbance management can be found 

in the literature. All these studies provide several meaningful suggestions and strategies for 



6 
 

managing disturbances in complex supply chain networks (Wieland and Wallenburg 2012). 

Tomlin (2006) categorized all these supply chain disturbance management approaches into 

three areas: mitigation, contingency, and passive acceptance. In mitigation strategies, firms take 

actions before the occurrence of the risk to either reduce the probability of occurrence or to 

reduce the impact of risk, such as through buffer stock or supplier development. Contingency 

plans are those in which firms take actions when a risk occurs, such as contingency procurement 

from a back-up supplier. However, rather than adopting any mitigation or contingency 

planning, firms accept the risk when the costs of dealing with a disturbance out-weigh the losses 

of accepting the impact of that disturbance. The majority of existing studies in the domain of 

supply chain disturbance management focus on developing mitigation strategies rather than 

formulating models or approaches for rapid recovery after the occurrence of disturbances (Ho 

et al. 2015). Tang (2006) proposed certain “robust” policies for mitigating disturbances in 

supply chain system which could enable a supply chain to: (i) efficiently manage inherent 

fluctuations regardless of the occurrence of a major disruption and, (ii) become more resilient 

in the face of a major disruption. Craighead et al. (2007) provided six propositions which clearly 

state that increasing knowledge regarding the factors of supply chain disturbances could 

potentially reduce the number of disturbances. Designing appropriate and complete contractual 

governance is suggested by Xiao et al. (2007) to properly coordinate the supply chain with 

demand disruptions in the setting of one manufacturer and two competing retailers. Recently, a 

risk management and mitigation model (Manuj and Mentzer 2008)  and an improved risk 

measurement and prioritization method (Bradley 2014) were proposed to find the insight 

characteristics of supply chain risks. 

Several studies in the area of supply chain disturbance management also developed 

mathematical models to ensure robust and efficient supply chains (Snyder et al. 2016). Wu et 

al. (2007) developed a network based model for determining the changes or disruptions 

propagation. Recently, Atoei et al. (2013) designed a reliable capacitated supply chain model 

by considering random disruptions in distribution centers (DCs). Some authors also evaluated 

– by using a mathematical model – the single or multiple sourcing strategies in the presence of 

supply chain disruptions, and there is a consensus that dual or multiple sourcing strategies 

outperform single-sourcing strategies (Burke et al. 2007; Fang et al. 2013; Sarkar et al. 2013; 

Silbermayr and Minner 2014; Yu et al. 2009). Some other supply chain disturbance 

management models can be found in other studies (Bandaly et al. 2016; Paul and Rahman 2018; 

Paul et al. 2015, 2019; Serel 2015; Xu et al. 2016). 
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Although previous studies extensively examined mitigation strategies for supply chain 

disturbance, there is a lack of research in the stream of supply chain disturbance management 

focused on recovery strategies. Wakolbinger & Cruz (2011) pointed out that it was difficult to 

predict supply chain disturbances in advance, hence taking the right mitigation strategies for 

those disturbances is more challenging. Therefore, many previous studies (Gupta et al. 2015; 

Tomlin 2006; G. a. Zsidisin et al. 2000) suggested developing and implementing  effective 

recovery plans to enable supply chains to quickly return to their original condition after the 

occurrence of a disturbance. Oke and Gopalakrishnan (2009) identified strategies to overcome 

supply chain vulnerability, and concluded that putting recovery plans in place was the key to 

mitigating supply chain disturbances. Few previous studies have addressed reactive strategies 

for supply chain disturbances. A model-based framework was suggested by Adhitya et al. 

(2007) for rescheduling operations in the occurrence of supply chain disturbances. Eisenstein 

(2005) addressed disturbances in electronic lot scheduling when the original schedule was fixed 

and focused on contingency policy after the occurrence of one or more shocks through a new 

class of policies called dynamic produce-up-to policies, that used idle time and re-established 

the target idle time during recovery. Xia et al. (2004) proposed a general production and 

inventory disruption management model in which they included a cost for deviations of the 

revised plan from the normal plan. Hishamuddin et al. (2012) extended the model proposed in 

(Xia et al. 2004), and developed a disruption recovery approach for an economic production 

quantity model, which obtained a real-time revised plan within a specified time window. 

Recently, the backorder and lost sales concept was further applied to develop a recovery model 

for managing sudden supply disturbance in a three-stage supply chain with multiple raw 

material suppliers and retailers (Paul et al. 2016a; Paul et al. 2014b). This concept was also 

applied to develop a disturbance management model for managing sudden disruptions in a 

single-stage imperfect (Paul et al. 2013), a two-stage imperfect (Paul et al. 2014c), a three-stage 

mixed (Paul et al. 2015) production-inventory system, a three-stage supply chain system (Paul 

et al. 2017), and for managing sudden demand fluctuations in a manufacturer-retailer system 

(Paul et al. 2014a). Besides, Yang et al. (2005) also addressed a recovery planning approach 

for production and stock control policies. Some other disturbance recovery models can be found 

in other studies (DuHadway et al. 2017; Hasan et al. 2015; Ivanov et al. 2014, 2016; Paul et al. 

2017). In the case of a sudden disturbance, recovery planning could work better than mitigation 

approaches, and there is limited research which develops recovery planning models for supply 

chain disturbances; in this study, we develop recovery models for managing sudden 

disturbances in a manufacturing supply chain. 
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A disturbance is a common event in a supply chain environment and is a concern because it can 

cause companies to suffer both financial and reputational losses. As a sudden disturbance event 

cannot be predicted, the whole plan of an organization can be distorted and cause discontinues 

the production and delivery and unfulfilled demand. Hence, if a system is disturbed suddenly 

for a certain duration of time, it is essential to revise its some future plan, until it returns to its 

normal plan (Hishamuddin et al. 2012). In case of sudden disturbance, a proper disturbance 

recovery plan can assist to minimize a company’s losses and uphold its reputation. However, 

in the literature there are very few studies that developed approaches for obtaining a recovery 

plan after a sudden disturbance (Paul et al. 2016a). Moreover, studies in the literature that 

provide recovery models for supply chain disruptions only consider a single disturbance (Paul 

et al. 2016a) in formulating plans, while in a real-life situation firms can suffer from multiple 

disturbances at the same time. Although some existing papers proposed some heuristics to solve 

models, very few of these studies developed a combined both heuristic and simulation approach 

to bring the developed approach closer to real-life processes. In this study, we attempt to fill up 

above identified research gaps and develop mathematical, heuristic and simulation  approaches 

which bring a disturbance management problem closer to the real-world, and perform a great 

deal of random experimentation to validate the heuristics and analyze the results.  

The contributions of this research are summarized as follows. 

i. Formulation of a mathematical model to generate recovery plan of either one or a 

combination of three sudden disturbances– supply disruption, production disruption, 

and demand fluctuation – in a supply chain system.  

ii. Development of new and efficient heuristic solutions to generate a recovery plan for 

these disturbances by considering both single and combined effects. 

iii. Development of a simulation approach, and conduct of random experiments. 

3. Problem description 

In this section, we describe the disturbance problem considered in this research.  

For a better understanding of the disturbance management problem, we provide the definitions 

of the different terms used in this study as follows. 

i. Process reliability: percentage of faultless products produced in the system (Cheng 

1989). 

ii. Demand fluctuation: any kind of variation (either positive or negative) in product 

demand in a period ( Paul et al. 2014c). 
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iii. Production disruption: any kind of interruption in the production system (Paul et al. 

2014b); for example, power cut, machine breakdown, labor strike, etc. 

iv. Supply disruption: any kind of stoppage to the raw material supply that may be caused 

by an unavailability, delay, or any other form of interruption (Paul et al. 2016b). 

v. Ideal plan: a plan for production, supply, and delivery developed under no disturbance 

condition. 

vi. Recovery plan: it is essential to revise the plan for a finite future period, after a sudden 

disturbance in the system, until the system coming back to its ideal plan (Paul et al. 

2016b). 

vii. Backorder: after the occurrence of a disturbance, a certain amount of demand that 

cannot be fulfilled on time but will be supplied at a later date (Paul et al. 2014b). 

viii. Lost sales: if, after the occurrence of a disturbance, customers will sometimes not wait 

for stock to be refilled, and demand is lost (Paul et al. 2014b).  

ix. Loss of demand: if the product demand is lessened suddenly, the system has to reduce 

the future production quantity to compensate for lessened demand (Paul et al. 2014c). 

We use the following notations in this study. 

𝑛 Number of planning periods in planning horizon 

𝐷𝑖 Demand of period 𝑖 

𝑃 Maximum production capacity of each period 

𝐵𝑖 Beginning inventory in period 𝑖 

𝐵𝑛+1 Beginning inventory which should be kept in period (𝑛 + 1) 

𝐸𝑖 Ending inventory in period 𝑖 

𝐴𝑃𝑖 Actual production in period 𝑖 

𝑆𝐶𝑖 Spare capacity in period 𝑖 

𝑅𝑖 Quantity received by retailer at period 𝑖 

𝑁 Number of units of raw material necessary for one unit final product 

𝐴 Set-up cost at the manufacturing plant 

𝑟 Process reliability of manufacturing plant 

𝑅𝑀𝑖 Raw material supply quantity for period 𝑖 

𝐶𝑝 Production cost per unit 

𝐶𝑑 Delivery cost per unit 

𝐶𝑟 Raw material cost per unit 

𝐻1 Raw material holding cost per unit per period 
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𝐻2 Ending inventory holding cost per unit 

𝐶𝐿 Cost per unit due to decrease of demand 

𝐶𝐼 Inspection cost as a percentage of the production cost 

𝐶𝑅 Rejection cost per unit 

𝑆 Selling price per unit 

𝐵 Backorder cost per unit per period 

𝐿 Lost sales cost per unit = revenue loss per unit + cost of reputation loss per unit 

𝑋𝑖 Production quantity in period 𝑖 in recovery plan 

𝑌𝑖 Delivery quantity in period 𝑖 in recovery plan 

𝑍𝑖 Raw material quantity in period 𝑖 in recovery plan 

𝑏𝑖 Beginning inventory in recovery plan 

𝑒𝑖 Ending inventory in recovery plan 

Demand fluctuation parameter 

𝛿 Demand fluctuation amount 

Production disruption parameters 

𝑡𝑠 Disruption start time as a fraction of duration of period 

𝑇𝑑𝑝 Disruption duration as a fraction of duration of period (≤ 1 - 𝑡𝑠)  

𝑞 Pre-disruption production quantity = 𝑡𝑠 ∗ 𝑃 

Supply disruption parameter 

𝑇𝑑𝑠 Disruption duration as a fraction of duration of period (≤ 1) 

3.1 Problem statement 

In this section, the different disturbance problems that occur in a real-life supply chain system 

are described and presented. These are shown in Figure 1. We consider that a sudden demand 

fluctuation can happen at the retailer end, a sudden production disruption at the manufacturing 

plant and a sudden supply disruption at the supplier end. After a sudden disturbance occurs in 

a system, the production, supply, and delivery plan has to be revised for a finite future period, 

so that the effect of the disturbance is minimized; in other words, total profit is maximized.  
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Figure 1: Disturbances in a manufacturing supply chain 

In this system, we first develop the ideal production, supply, and delivery plan for 𝑛 periods 

under an imperfect production system, which is updated after each period for the next 𝑛 periods 

on a rolling horizon basis. We use the term process reliability (𝑟) to express an imperfect 

production environment (Cheng 1989). The ideal plan is presented in Table 1, where the 

decision variables are 𝐴𝑃𝑖, 𝑅𝑖, 𝑅𝑀𝑖, 𝐵𝑖 and 𝐸𝑖, and the total profit is maximized.   

Table 1: Ideal plan for 𝑛 periods 

Variable 
Period 

1 2 3 ….. 𝑛 

Demand (𝐷𝑖) 𝐷1 𝐷2 𝐷3 ….. 𝐷𝑛 

Production 

capacity (𝑃) 
𝑟𝑃 𝑟𝑃 𝑟𝑃 ….. 𝑟𝑃 

Actual 

production 

(𝐴𝑃𝑖) 
𝐴𝑃1 𝐴𝑃2 𝐴𝑃3 ….. 𝐴𝑃𝑛 

Beginning 

inventory (𝐵𝑖) 
𝐵1 𝐴𝑃1 + 𝐵1 − 𝑅1 

∑ 𝐴𝑃𝑗

2

𝑗=1

− ∑ 𝑅𝑗

2

𝑗=1

+ 𝐵1 

 
∑ 𝐴𝑃𝑗

𝑛−1

𝑗=1

− ∑ 𝑅𝑗

𝑛−1

𝑗=1

+ 𝐵1 

Ending 

inventory (𝐸𝑖) 

𝐴𝑃1 + 𝐵1

− 𝑅1 

∑ 𝐴𝑃𝑗

2

𝑗=1

− ∑ 𝑅𝑗

2

𝑗=1

+ 𝐵1 

∑ 𝐴𝑃𝑗

3

𝑗=1

− ∑ 𝑅𝑗

3

𝑗=1

+ 𝐵1 

….. 
∑ 𝐴𝑃𝑗

𝑛

𝑗=1

− ∑ 𝑅𝑗

𝑛

𝑗=1

+ 𝐵1 

Received by 

retailer (𝑅𝑖) 

𝐵1 + 𝐴𝑃1

− 𝐸1 
𝐵2 + 𝐴𝑃2 − 𝐸2 𝐵3 + 𝐴𝑃3 − 𝐸3 ….. 𝐵𝑛 + 𝐴𝑃𝑛 − 𝐸𝑛 

Raw material 

quantity (𝑅𝑀𝑖) 
𝑅𝑀1 𝑅𝑀2 𝑅𝑀3 ….. 𝑅𝑀𝑛 

 

Finally, this paper develops a recovery plan – which is actually a reactive mitigation –after the 

occurrence of a sudden disturbance. In real-life supply chain environment, a sudden disturbance 

can occur at any time. After such an occurrence, the plan must be revised for a finite period in 

the future so that losses can be minimized and the system returns to its ideal plan as quickly as 

possible. After the occurrence of a disturbance, 𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 𝑏𝑖 and 𝑒𝑖 are changed to obtain the 
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recovery plan presented in Table 2, while the objective is still to maximize total profit. Here, 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 𝑏𝑖 and 𝑒𝑖 are decision variables in the recovery plan. 

Table 2: Recovery plan after a disturbance occurs 

Variable 
Period 

1 2 3 ….. 𝑛 

Production 

(𝑋𝑖) 
𝑋1 𝑋2 𝑋3 ….. 𝑋𝑛 

Received by 

retailer (𝑌𝑖) 
𝑌1 𝑌2 𝑌3 ….. 𝑌𝑛 

Beginning 

inventory 

(𝑏𝑖) 
𝑏1 𝑋1 + 𝑏1 − 𝑌1 

∑ 𝑋𝑗

2

𝑗=1

− ∑ 𝑌𝑗

2

𝑗=1

+ 𝑏1 

 
∑ 𝑋𝑗

𝑛−1

𝑗=1

− ∑ 𝑌𝑗

𝑛−1

𝑗=1

+ 𝑏1 

Ending 

Inventory 

(𝑒𝑖) 
𝑋1 + 𝑏1 − 𝑌1 

∑ 𝑋𝑗

2

𝑗=1

− ∑ 𝑌𝑗

2

𝑗=1

+ 𝑏1 

∑ 𝑋𝑗

3

𝑗=1

− ∑ 𝑌𝑗

3

𝑗=1

+ 𝑏1 

….. 
∑ 𝑋𝑗

𝑛

𝑗=1

− ∑ 𝑌𝑗

𝑛

𝑗=1

+ 𝑏1 

Raw 

material 

quantity 

(𝑍𝑖) 

𝑍1 𝑍2 𝑍3 ….. 𝑍𝑛 

 

3.2 Assumptions of the study 

In this paper, we make the following assumptions: 

i. The total production capacity is greater than its demand rate. 

ii. The system produces a single item. 

iii. The total cost of interest and depreciation 𝐹(𝐴, 𝑟)  is taken from the following 

function (Cheng 1989): 

𝐹(𝐴, 𝑟) = 𝑎𝐴−𝑏𝑟𝑐 

where a, b, and c are positive constants selected to offer the best fit of the cost 

function (Cheng 1989). 

iv. The recovery plan considers both backorder and lost sales to recover from a sudden 

disturbance. Supplier, manufacturer, and customers agree with these policies. 

4. Mathematical modeling 

A mathematical model is developed in this section for managing a single sudden disturbance 

caused by a demand fluctuation, production disruption, or supply disruption. At first, we present 

a model to generate a supply chain plan under ideal condition. Then, we re-formulate a 



13 
 

mathematical model to generate a recovery plan as a constrained mathematical programming 

problem. The objective is to maximize total profit, which is derived from the revenue – obtained 

from acceptable items, minus relevant costs. In the recovery plan, we consider the revised 

quantities of production, delivery, and supply in each period as decision variables. 

4.1 Modeling for ideal plan 

In the ideal plan, we calculate the costs for production, rejection, inspection (Paul, Azeem, 

Sarker & Essam 2014), depreciation (Cheng 1989), holding, delivery, and raw material 

purchases, as well as the revenue from acceptable items. Then, we develop a model as a 

constrained mathematical optimization problem in which the objective is to maximize total 

profit subject to constraints from capacity, delivery, inventory, and product demand. 

Calculations of different costs and revenue 

Total production cost =
𝐶𝑝

𝑟
∑ 𝐴𝑃𝑖

𝑛
𝑖=1         (1) 

Total rejection cost = 𝐶𝑅 (
1

𝑟
− 1) ∑ 𝐴𝑃𝑖

𝑛
𝑖=1        (2) 

Total inspection cost =
𝐶𝐼𝐶𝑝

𝑟
∑ 𝐴𝑃𝑖

𝑛
𝑖=1         (3) 

Cost of interest and depreciation = 𝑛𝑎𝐴−𝑏𝑟𝑐       (4) 

Raw material holding cost =
1

2
𝐻1 ∑ 𝑅𝑀𝑖

𝑛
𝑖=1 =

1

2𝑟
𝐻1𝑁 ∑ 𝐴𝑃𝑖

𝑛
𝑖=1     (5) 

Total raw material cost = ∑ 𝐶𝑟𝑅𝑀𝑖
𝑛
𝑖=1 =

𝑁𝐶𝑟

𝑟
∑ 𝐴𝑃𝑖

𝑛
𝑖=1      (6) 

Total delivery cost = ∑ 𝐶𝑑𝑅𝑖
𝑛
𝑖=1         (7) 

Total ending inventory holding cost = 𝐻2 ∑ 𝐸𝑖
𝑛
𝑖=1       (8) 

Total revenue = 𝑆 ∑ 𝐴𝑃𝑖
𝑛
𝑖=1          (9) 

Final mathematical model 

Total profit = total revenue – total costs, is the objective function and is obtained by using 

equations (1) – (9) and presented in equation (10). 

𝑇𝑃 = 𝑆 ∑ 𝐴𝑃𝑖

𝑛

𝑖=1

− [
𝐶𝑝

𝑟
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

+ 𝐶𝑅 (
1

𝑟
− 1) ∑ 𝐴𝑃𝑖

𝑛

𝑖=1

+
𝐶𝐼𝐶𝑝

𝑟
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

+ 𝑛𝑎𝐴−𝑏𝑟𝑐

+
1

2𝑟
𝐻1𝑁 ∑ 𝐴𝑃𝑖

𝑛

𝑖=1

+
𝑁𝐶𝑟

𝑟
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

+ ∑ 𝐶𝑑𝑅𝑖

𝑛

𝑖=1

+ 𝐻2 ∑ 𝐸𝑖

𝑛

𝑖=1

] 

            (10) 
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Here, 

𝑅𝑖 = 𝐵𝑖 + 𝐴𝑃𝑖 − 𝐸𝑖; ∀𝑖        

𝐵𝑖 = ∑ 𝐴𝑃𝑗
𝑖−1
𝑗=1 − ∑ 𝑅𝑗

𝑖−1
𝑗=1 + 𝐵1; ∀𝑖 ≠1 

𝐸𝑖 = ∑ 𝐴𝑃𝑗
𝑖
𝑗=1 − ∑ 𝑅𝑗

𝑖
𝑗=1 + 𝐵1; ∀𝑖 

𝑅𝑀𝑖 = 𝑁 ∗
𝐴𝑃𝑖

𝑟
 

subject to constraints presented in equations (11) – (17).  

𝐸𝑖 ≥ 0; ∀𝑖 [Ending inventory cannot be negative]      (11) 

𝐵𝑖 ≥ 0; ∀𝑖 [Beginning inventory cannot be negative]     (12) 

𝐸𝑛 = 𝐵𝑛+1 [Beginning inventory for (𝑛+1)th period]      (13) 

∑ 𝐴𝑃𝑖
𝑛
𝑖=1 = ∑ 𝐷𝑖

𝑛
𝑖=1 − 𝐵1 + 𝐵𝑛+1 [Total production must be equal to total demand] (14) 

𝐴𝑃𝑖 ≤ 𝑟𝑃 [Actual production must be less than maximum production capacity]  (15) 

𝑅𝑖 = 𝐷𝑖 [Delivery quantity must be equal to demand]     (16) 

𝐴𝑃𝑖, 𝑅𝑖 and 𝑅𝑀𝑖 ≥ 0 [Non-negativity constraint]      (17) 

 

4.2 Modeling for recovery plan 

In this section, a mathematical model is developed for generating a recovery plan after a sudden 

demand fluctuation, with plans for sudden production and supply disruptions presented in 

Appendix A and Appendix B respectively.   

 

4.2.1 Mathematical model for sudden demand fluctuation  

The mathematical model is formulated for generating the recovery plan after a demand 

fluctuation. The model considers the costs of production, rejection, inspection, depreciation, 

delivery, holding, and raw material purchases. For this, we categorize the fluctuation in two 

problems: (i) positive demand fluctuation (𝛿 >0), and (ii) negative demand fluctuation (𝛿 <0). 

For 𝛿 >0, we consider both backorder and lost sales costs and, for 𝛿 <0, the cost due to a 

decrease in demand, and determine revenue from the selling price.  

(a) For 𝜹 >0  

Total production cost =
𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1         (18) 

Total rejection cost = 𝐶𝑅 (
1

𝑟
− 1) ∑ 𝑋𝑖

𝑛
𝑖=1        (19) 

Total inspection cost =
𝐶𝐼𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1         (20) 

Cost of interest and depreciation = 𝑛𝑎𝐴−𝑏𝑟𝑐       (21) 
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Total raw material cost = ∑ 𝐶𝑟𝑍𝑖
𝑛
𝑖=1 =

𝑁𝐶𝑟

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1       (22) 

Raw material holding cost =
1

2𝑟
𝐻1𝑁 ∑ 𝑋𝑖

𝑛
𝑖=1        (23) 

Total delivery cost = ∑ 𝐶𝑑
𝑛
𝑖=1 𝑌𝑖        (24) 

Total ending inventory holding cost = 𝐻2 ∑ 𝑒𝑖
𝑛
𝑖=1       (25) 

Backorder cost = 𝐵 ∑ 𝑖(𝑋𝑖 − 𝐴𝑃𝑖
𝑛
𝑖=1 )        (26) 

Lost sales cost = 𝐿(∑ 𝐴𝑃𝑖
𝑛
𝑖=1 + 𝛿 − ∑ 𝑋𝑖

𝑛
𝑖=1 )       (27) 

Total revenue = 𝑆 ∑ 𝑋𝑖
𝑛
𝑖=1          (28) 

Final mathematical model for 𝜹 >0 

Total profit = total revenue – total costs, is the objective function and to be maximized, which 

is obtained using equations (18) – (28) and subject to constraints (29) – (36). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory]       (29) 

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖 [Constraint of beginning inventory]      (30) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 [Production quantity must be less than or equal to maximum capacity] (31) 

∑ 𝑋𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1 + 𝑏𝑛+1 − 𝑏1 + 𝛿 [Limitation of total production quantity]  (32) 

∑ 𝑋𝑖
𝑛
𝑖=1 ≥ ∑ 𝐴𝑃𝑖

𝑛
𝑖=1  [Limitation of total production]      (33) 

∑ 𝑌𝑖
𝑛
𝑖=1 ≥ ∑ 𝑅𝑖

𝑛
𝑖=1  [Limitation of total delivery]      (34) 

∑ 𝑌𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1 + 𝛿 [Limitation of total delivery]      (35) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0 and integer; ∀𝑖 [Non-negativity constraint]     (36) 

 

(b) For 𝜹 <0  

Total production cost =
𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1         (37) 

Total rejection cost = 𝐶𝑅 (
1

𝑟
− 1) ∑ 𝑋𝑖

𝑛
𝑖=1        (38) 

Total inspection cost =
𝐶𝐼𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1         (39) 

Cost of interest and depreciation = 𝑛𝑎𝐴−𝑏𝑟𝑐       (40) 

Total raw material cost = ∑ 𝐶𝑟𝑍𝑖
𝑛
𝑖=1 =

𝑁𝐶𝑟

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1       (41) 

Raw material holding cost =
1

2𝑟
𝐻1𝑁 ∑ 𝑋𝑖

𝑛
𝑖=1        (42) 

Total delivery cost = ∑ 𝐶𝑑
𝑛
𝑖=1 𝑌𝑖        (43) 

Total ending inventory holding cost = 𝐻2 ∑ 𝑒𝑖
𝑛
𝑖=1       (44) 

Cost due to decrease in demand = 𝐶𝐿(∑ 𝐴𝑃𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 )     (45) 

Total revenue = 𝑆 ∑ 𝑋𝑖
𝑛
𝑖=1          (46) 
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Final mathematical model for 𝜹 <0 

Total profit = total revenue – total costs, is the objective function and to be maximized, which 

is obtained using equations (37) – (46) and subject to constraints (47) – (52). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory]       (47) 

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖 [Constraint of beginning inventory]      (48) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 [Limitation of production quantity of each period]    (49) 

∑ 𝑋𝑖
𝑛
𝑖=1 = ∑ 𝐷𝑖

𝑛
𝑖=1 + 𝑏𝑛+1 − 𝑏1 − 𝛿 [Limitation of total production quantity]  (50) 

𝑌𝑖 = ∑ 𝑅𝑖
𝑛
𝑖=1 − 𝛿 [Limitation of total delivery quantity]     (51) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0 and integer; ∀𝑖 [Non-negativity constraint]     (52) 

 

5. Solution approaches 

In this section, we develop solution approaches for both ideal and recovery plans, and propose 

some heuristics to generate a recovery plan after a sudden disturbance occurs in the systems.  

 

5.1 Solution approach for ideal plan 

As the model developed for the ideal plan belongs to a constrained mathematical program, we 

solve it using the SIMPLEX method. The SIMPLEX method is a popular search procedure to 

solve constrained mathematical programing problems. It shifts one solution at a time through 

the set of basic feasible solutions until optimal solution is found.  

5.2 Proposed heuristic for managing disturbance 

We develop a heuristic for managing each disturbance type, i.e., a demand fluctuation, or 

production and supply disruptions, as well as another for handling three types of disturbances 

in a period. 

We propose a heuristic for managing a sudden demand fluctuation based on the approaches 

developed in the literature (Paul et al. 2018; Paul et al. 2014c). The steps in Heuristic 1 for a 

sudden demand fluctuation are as follows. 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input demand fluctuation amount (δ). 

Step 5: For 𝛿 > 0 

 5.1 For 0≤ 𝛿 ≤ 𝑆𝐶1 

  If 𝐵 ≤ 𝐿, then 
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   𝑋1 = 𝐴𝑃1 + 𝛿 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

5.2 For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝛿 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘
, then 

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝛿 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘
< 𝐵 ≤

𝐿

𝑘−1
, then 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

5.3 For 𝛿 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛
, then 

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑛 

  If 
𝐿

𝑛
< 𝐵 ≤

𝐿

𝑛−1
, then 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑛 − 1 

   𝑋𝑛 = 𝐴𝑃𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

Step 6: For 𝛿 < 0 

 𝑋1 = 𝐴𝑃1 − |𝛿| 
𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

Step 7: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
 ; 𝑖 =1, 2, 3…𝑛 

Step 8: Determine total profit and different costs.  

Step 9: Stop. 

In the proposed heuristic after a sudden demand fluctuation, the recovery plan is generated by 

negotiating between different costs. We first determine the ideal condition of supply chain plan 

by using Steps 1–3. Then after a sudden demand fluctuation in the system, the disturbance 

scenario is given input by using Step 4. For positive demand fluctuation (𝛿 > 0), the recovery 
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plan is determined by using Step 5. We determine the most favorable condition in the recovery 

plan by using Steps 5.1–5.3 to minimize total backorder and lost sales costs. For negative 

demand fluctuation (𝛿 <0), the recovery plan is determined by using Step 6. Then Step 7 

determines the raw material supply and final product delivery quantity. Total profit and 

different costs in the recovery plan are determined by using Step 8. Finally, Step 9 terminates 

the program. 

Based on the similar concepts (Paul et al. 2018; Paul et al. 2014c), we also re-develop two 

different heuristics to generate a recovery plan after a sudden production and raw material 

supply disruption, respectively. Heuristic 2 and Heuristic 3 for generating a recovery plan for a 

sudden production disruption and raw material supply disruption are presented in Appendix C 

and Appendix D respectively. The heuristic for generating plan considering the combined 

effects of multiple disturbances is presented in Appendix E. 

6. Simulation approach 

We develop a simulation approach to bring the supply chain disturbance problem nearer to a 

real-life process. We use six steps to develop the simulation approach as follows. 

Step 1: Generate a random number for disturbance type (1–4). 

Step 2: Generate random data for each disturbance type.  

2.1 if disturbance type = 1, generate a random number for amount of demand fluctuation 

(δ) using normal distribution with mean 500 and standard deviation 250.  

2.2 if disturbance type = 2, generate random number for disruption start time (𝑡𝑠) using 

Uniform distribution and disruption duration (𝑇𝑑𝑝) through Exponential distribution 

between 0 and 1 and 0.00001 and 1–𝑡𝑠 respectively.  

2.3 if disturbance type = 3, generate a random number for supply disruption duration 

(𝑇𝑑𝑠) using Poisson distribution between 0.00001 and 1.  

2.4 if disturbance type = 4, generate random number for disturbance scenario of each 

disturbance type for multiple disturbances in a period. 

Step 3:  

3.1 if disturbance type = 1, then run Heuristic 1. 

3.2 if disturbance type = 2, then run Heuristic 2. 

3.3 if disturbance type = 3, then run Heuristic 3. 

3.4 if disturbance type = 4, then run Heuristic 4. 

Step 4: Repeat steps 1–3 for 4000 times. 

Step 5: Record and analyze results. 
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Step 6: Stop. 

 

7. Analyses of results 

In this section, we analyze the results for both the ideal supply chain and recovery plans. 

7.1 Ideal plan 

The following data are considered for the ideal supply chain system. 

𝑛 = 12, 𝑃 =1200, 𝐵1 = 300, 𝐵𝑛+1 = 200, 𝑁 = 2, 𝐴 = 50, 𝐶𝑝 = 2, 𝐶𝑑 = 0.5, 𝐶𝑟 = 1.5,  

𝐻1 = 0.5, 𝐻2 = 0.5, 𝑆 = 20, 𝑟 = 0.98, 𝐶𝐼 = 0.02, 𝐶𝑅 = 4, 𝑎 = 1000, 𝑏 = 0.5, 𝑐 = 0.75, 

𝐷𝑖 = [1000 1200 1500 1100 1000 800 900 1200 1300 1200 1500 1000] 

We use the SIMPLEX method to solve the mathematical model developed in Section 4.1 to 

obtain the ideal plan for the next 12 periods, which is presented in Table 3. 

 

Table 3: Ideal plan 

Parameter 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

𝐷𝑖 1000 1200 1500 1100 1000 800 900 1200 1300 1200 1500 1000 

𝐴𝑃𝑖 1048 1176 1176 1100 1000 1044 1176 1176 1176 1176 1176 1176 

𝐵𝑖 300 348 324 0 0 0 244 520 496 372 348 24 

𝐸𝑖 348 324 0 0 0 244 520 496 372 348 24 200 

𝑅𝑖 1000 1200 1500 1100 1000 800 900 1200 1300 1200 1500 1000 

𝑅𝑀𝑖 2139 2400 2400 2245 2041 2131 2400 2400 2400 2400 2400 2400 

 

7.2 Recovery plan 

To generate the recovery plan, we additionally consider the following cost data. 

𝐵 = 3, 𝐿 = 15, and 𝐶𝐿 =10 

We generate random data using Uniform distribution for different disturbance parameters to 

compare the severity of each disturbance type. We also perform random experiment to analyse 

the results. For demand fluctuation, we generate random data using normal distribution. For 

production disruption, we generate random data for disruption duration using Uniform 

distribution and for supply disruption duration, we use Poisson distribution. However, any other 

distribution can be used for generating random data.  

 

7.2.1 Recovery plan for a sudden demand fluctuation 

In the event of a sudden demand fluctuation, the recovery plan is generated using its proposed 

heuristic. A sample result, for 𝛿 = 500, is presented in the recovery plan in Table 4. 
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Table 4: Recovery plan after demand fluctuation 

Parameter 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

𝑋𝑖 1176 1176 1176 1176 1176 1164 1176 1176 1176 1176 1176 1176 

𝑌𝑖 1128 1200 1500 1176 1176 920 900 1200 1300 1200 1500 1000 

𝑍𝑖 2400 2400 2400 2400 2400 2376 2400 2400 2400 2400 2400 2400 

Total profit = 184.84 thousand; total backorder cost = 6.096 thousand; and total lost sales cost = 0 

 

7.2.2 Recovery plan for a sudden production disruption 

In the event of a sudden production disruption, we generate the recovery plan using its proposed 

heuristic. A sample result, for 𝑡𝑠 =0.1 and 𝑇𝑑𝑝 =0.5, is presented in the recovery plan in Table 

5. 

Table 5: Recovery plan after production disruption 

Parameter 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

𝑋𝑖 588 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 

𝑌𝑖 540 1200 1500 1176 1176 932 900 1200 1300 1200 1500 1000 

𝑍𝑖 2139 1461 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 

Total profit = 177.09 thousand; total backorder cost = 4.776 thousand; and total lost sales  

cost = 1.14 thousand 

 

7.2.3 Recovery plan for a sudden supply disruption 

In the event of a sudden supply disruption, we use its proposed heuristic to generate the recovery 

plan. A sample result, for 𝑇𝑑𝑠 =0.6, is presented in the recovery plan in Table 6. 

Table 6: Recovery plan after supply disruption 

Parameter 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

𝑋𝑖 470 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 

𝑌𝑖 422 1200 1500 1176 1176 932 900 1200 1300 1200 1500 1000 

𝑍𝑖 2139 1221 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 

Total profit = 173.70 thousand; total backorder cost = 4.776 thousand; and total lost sales  

cost = 2.904 thousand 

 

7.3 Comparison of heuristic results  

To validate the heuristics developed for managing demand fluctuation and disruptions to 

production and supply, we generate 300 random test instances (100 for each disturbance type) 

by varying the backorder and lost sales cost data and disturbance parameters. Then we compare 
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the results obtained from both the heuristics and SIMPLEX method for 300 random test 

instances. To this aim, we determine the average percentage of deviation of solutions by using 

Equation (53),which is commonly used in the literature (Paul et al., 2014c; 2015, 2018). The 

test instances are generated from a Uniform random distribution by varying disturbance data. 

In this comparison experiment, the average percentage of deviation between the solutions 

obtained from the heuristics and SIMPLEX, calculated by using Equation (53), is almost 0.00%. 

It can be said that the heuristics are capable of producing accurate and consistent solutions.  

The average percentage of deviation  

=
1

𝑀
∑

|Total profit from heuristc−Total profit from SIMPLEX|

Total profit from SIMPLEX
× 100%    (53) 

Here, 𝑀 represents the number of random test problems.  

 

7.4 Severity of each disturbance type 

To compare the severity of each disturbance type, we generate 500 more test problems for each 

disturbance using a Uniform probability distribution and solve them using the proposed 

corresponding heuristic. We determine the means and standard deviations of total profit from 

the results, as presented in Table 7. We consider the following data range of disturbance 

parameters. 

(a) Demand fluctuation amount = [0, ∑ 𝑆𝐶𝑖∀𝑖 ] 

(b) Supply disruption duration = [0.0001, 1] 

(c) Production disruption duration = [0.0001, 1-𝑡𝑠] 

 

Table 7: Total profit for each disturbance type 

Disturbance type 
Total profit (thousands) 

Mean Standard deviation 

Demand fluctuation  185.19 0.3533 

Production disruption 178.08 5.3127 

Supply disruption  175.37 7.2898 

 

As can be seen, the mean total profit reduces significantly in the case of a supply disruption 

because the effect of this disturbance starts at the beginning of a period and may continue until 

the end of a period. Therefore, it can be said that its effect is more severe than those of the other 

two disturbances.  
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7.5 Experimentation using random data 

We generate 500 random test scenarios for each type of disturbance by varying the value of 

disturbance parameters and solve them using the appropriate heuristic. We analyze the total 

profit pattern for the disturbance over the 500 random scenarios, and changes in the costs and 

total profit with the amount of disturbance.  

 

7.5.1 Experimentation for demand fluctuation  

We generate 500 random data scenarios for demand fluctuations using a normal distribution 

with mean = 500 and standard deviation = 250, and present the total profit pattern in Figure 2. 

We determine that the mean and standard deviation of total profit as 190.70 and 1.23 thousand 

respectively. We also determine the minimum and maximum values of the total profit as 183.54 

and 191.60 thousand respectively.  

 

Figure 2: Total profit vs. random demand fluctuation 

 

Figure 3: Different costs vs. amount of demand fluctuation 
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Figure 3 presents the variations in different costs with the amount of demand fluctuation. We 

obeserve that the cost due to loss of demand exists only when the fluctuation amount is negative 

but there are no backorder or lost sales. However, when the fluctuation amount is positive, both 

backorder and lost sales are present in the recovery plan. The backorder cost increases with 

fluctuation amounts up to 797 when there are no lost sales because the recovery plan is capable 

of fulfilling the demand using only backorder. Then, lost sales cost is introduced into the 

recovery plan and the backorder cost becomes a fixed amount so that both backorder and lost 

sales are present. The variations in total profit with demand fluctuation amounts are presented 

in Figure 4. For a negative fluctuation, the total profit decreases with the fluctuation amount 

however, for a positive fluctuation, it is greater than that in the ideal plan when the fluctuation 

amount is up to 797, because the revenue earned is greater than the cost incurred due to the 

increase in demand. Then, the total profit decreases with the fluctuation amount, this is because 

the lost sales cost introduced into the recovery plan. 

 

Figure 4: Total profit vs. amount of demand fluctuation 

7.5.2 Experimentation for production disruption  

We generate 500 random test scenarios for a production disruption using a Uniform distribution 

within the range of (0, 1) for 𝑡𝑠 and an Exponential distribution within the range of (0.0001, 

1−𝑡𝑠) for 𝑇𝑑𝑝. The total profit pattern for these random production disruption occurrences is 

presented in Figure 5. We determine that the mean and standard deviation of total profit are 

187.35 and 2.76 thousand respectively. The minimum and maximum values of total profit are 

calculated as 173.10 and 189.20 thousand respectively.  

Figure 6 presents the changes in different costs with the duration of the production disruption. 

We observe that there are no backorder or lost sales costs when the disruption duration is less 
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than 0.17. Then, the backorder cost is introduced into the system and increases with disruption 

durations up to 0.67 because the recovery plan is capable of satisfying the production loss using 

only backorder. After a disruption duration of 0.67, the lost sales cost is included in the recovery 

plan, and the backorder cost becomes a fixed amount, so that both backorder and lost sales costs 

are present.  

 

Figure 5: Total profit vs. random production disruption 

 

The variations in total profit with the duration of a production disruption are presented in Figure 

7. The total profit does not change when the disruption duration is smaller than 0.17 because 

no backorder or lost sales costs are present and the recovery plan is capable of compensating 

for the production loss in its first period. Then, the total profit decreases slowly with disruption 

durations up to 0.67 because only backorder are present. Following a disruption duration of 

0.67, total profit decreases at a greater rate, this is because of the lost sales cost being 

incorporated in the recovery plan.  

  

Figure 6: Different costs vs. duration of production disruption 
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Figure 7: Total profit vs. duration of production disruption 

7.5.3 Experimentation for raw material supply disruption  

We generate 500 test problems randomly for a supply disruption duration using a Poisson 

distribution. We use the range of the duration as (0.0001, 1), and from the experiment, the total 

profit pattern is illustrated in Figure 8. We determine that the mean and standard deviation of 

total profit are 184.76 and 5.15 thousand respectively. We also calculate the minimum and 

maximum values of the total profit as 170.06 and 189.20 thousand respectively. Figures 9 and 

10 present the variations in different costs and total profit respectively for different supply 

disruption durations, which are similar to those in Figures 6 and 7. 

 

Figure 8: Total profit vs. random supply disruption  
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Figure 9: Different costs vs. duration of supply disruption 

 

Figure 10: Total profit vs. duration of supply disruption 

 

7.5.4 Experimentation for multiple disturbances  

We generate 500 random scenarios for multiple disturbances in a period and solve them using 

the proposed heuristic, which considers the combined effects of multiple disturbances. The 

results are presented in Figure 11, in which it can be observed that total profit varies 

significantly and that the mean total profit reduces greatly with mean and standard deviation of 

175.26 and 8.79 thousand respectively, and the minimum and maximum values as 154.11 and 

191.02 thousand respectively. We have observed that the total profit decreases significantly in 

presence of multiple types of disturbances in supply chain. 
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Figure 11: Total profit vs. random multiple disturbances 

7.6 Simulation results 

We run the simulation approach developed in Section 6 for 4000 random test problems, to make 

the supply chain disturbance problem close to a real-world process. The total profit pattern for 

this experiment is presented in Figure 12. We calculate the mean and standard deviation of total 

profit as 184.55 and 7.81 thousand respectively. We also determine the minimum and maximum 

values of the total profit as 152.27 and 191.60 thousand respectively. 

 

Figure 12: Total profit vs. occurrences of random disturbance from simulation run 

From the experimentation and simulation, we have observed that our approaches are capable to 

handle all types of disturbance problems in a three-tier coordinated supply chain setting. Results 

also revealed that the recovery costs (summation of backorder and lost sales cost) can be 

significantly reduced by implementing the developed approaches. Figures 3, 6 and 9 provided 

insight  about the condition of the presence of recovery cost and which recovery cost are more 

favorable and when. Figures 4, 7 and 10 provided the pattern of changes of total profit with 
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amount of demand fluctuation, duration of production and supply disruption respectively. The 

experimentation and simulation for a significant number of randomly generated test problems 

proved the capability of the developed approaches to handle both separate and combined effects 

of disturbances and the results are summarized in Figures 2, 5, 8, 11 and 12. In summary, our 

developed approaches contribute to generating recovery plan to manage multiple types of 

supply chain disturbances by considering separate and combined effects. 

 

8. Conclusions 

The objective of this study was to develop sudden disturbance recovery models in a 

manufacturing supply chain system under imperfect production environment, considering 

sudden demand fluctuations and disruptions to production and raw material supply. A 

mathematical model was developed first for each disturbance type for managing sudden 

disturbances on a real-time basis. Due to expensive commercial optimization software and the 

complexity and computational intensity of the optimal solution, four heuristics were developed 

to solve the model for all possible types of sudden disturbances. The heuristics were capable of 

generating a recovery plan for a finite future period after the occurrence of a disturbance. We 

validated the heuristics results by comparing the solutions from the SIMPLEX method, which 

demonstrated that the average deviation of the total profit was 0.00% for 300 random test 

instances. A random experimentation was conducted to analyze the results and insight 

properties of developed quantitative models and, finally, a simulation approach was developed 

to make the developed approaches applicable to a real-life process. We also found that the 

heuristics were capable of producing consistent, quality results for all types of disturbances. 

The test results reveal that our proposed heuristics performed very well and were capable of 

efficiently dealing with large scale disruption problems while producing high quality results. 

So it can be said that the proposed approaches offer a powerful decision making tool for 

determining the recovery plan after the occurrence of sudden disturbances. 

Compared with previous studies in the supply chain disturbance literature, this research is one 

of the first efforts to investigate recovery planning in the presence of both single and multiple 

types of sudden disturbances. However, there are several practical aspects that could be 

introduced into the developed approach to make the problem more comprehensive. It would be 

interesting extension to consider multiple entities (multiple suppliers, manufacturers and 

retailers) in each stage, and to analyze the consequence of different types of sudden disturbances 
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on different stages of supply chain. It would be also interesting to extend the developed 

approaches for multiple types of items. In addition, considering safety-stock level and different 

shipment policies (multiple lot-for-lot, equal-sized shipment policies, and geometric shipment 

policies) in the recovery plan, and analyzing the effect of different types of sudden disturbances 

on them would be another interesting future research direction.  

 

References 

Adhitya, A., Srinivasan, R., & Karimi, I. A. (2007). Amodel-based rescheduling framework 

formanaging abnormal supply chain events. Comput. Chem. Eng., 31, 496–518. 

Ambulkar, S., Blackhurst, J., & Grawe, S. (2015). Firm’s resilience to supply chain disruptions: 

Scale development and empirical examination. Journal of Operations Management, 33, 

111–122. 

Atoei, F. B., Teimory, E., & Amiri, A. B. (2013). Designing reliable supply chain network with 

disruption risk. International Journal of Industrial Engineering Computations, 4(1), 111–

126. 

Bandaly, D., Satir, A., & Shanker, L. (2016). Impact of lead time variability in supply chain 

risk management. International Journal of Production Economics, 180, 88–100. 

Blome, C., & Schoenherr, T. (2011). Supply chain risk management in financial crises-a 

multiple case-study approach. International Journal of Production Economics, 134(1), 

43–57. 

Bradley, J. R. (2014). An improved method for managing catastrophic supply chain disruptions. 

Business Horizons, 57(4), 483–495. 

Burke, G. J., Carrillo, J. E., & Vakharia, A. J. (2007). Single versus multiple supplier sourcing 

strategies. European Journal of Operational Research, 182(1), 95–112. 

Chaudhuri, A., Mohanty, B. K., & Singh, K. N. (2013). Supply chain risk assessment during 

new product development: a group decision making approach using numeric and linguistic 

data. International Journal of Production Research, 51(10), 2790–2804. 

doi:10.1080/00207543.2012.654922 

Chen, J., Sohal, A. S., & Prajogo, D. I. (2013). Supply chain operational risk mitigation: a 

collaborative approach. International Journal of Production Research, 51(7), 2186–2199. 

Cheng, T. C. E. (1989). An economic production quantity model with flexibility and reliability 

considerations. European Journal of Operational Research, 39(2), 174–179. 

Chopra, S., & Meindl, P. (2007). Supply chain management. Strategy, planning & operation. 

Springer. 

Chopra, S., & Sodhi, M. S. (2004). Managing Risk To Avoid Supply-Chain Breakdown. MIT 

Sloan Management Review, 46(1), 53–61. 

Chowdhury, P., Lau, K. H., & Pittayachawan, S. (2016). Supply risk mitigation of small and 

medium enterprises: a social capital approach. In Proc. of 21st International Symposium 

on Logistics (pp. 37–44). Centre for Concurrent Enterprise, Nottingham University. 

Christopher, M., Mena, C., Khan, O., & Yurt, O. (2011). Approaches to managing global 

sourcing risk. Supply Chain Management: An International Journal, 16(2), 67–81. 

doi:doi:10.1108/13598541111115338 

Christopher, M., & Peck, H. (2004). Building the resilient supply chain. The International 

Journal of Logistics Management, 15(2), 1–14. 

Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J., & Handfield, R. B. (2007). The 

Severity of Supply Chain Disruptions: Design Characteristics and Mitigation Capabilities. 



30 
 

Decision Sciences, 38(1), 131–156. 

Das, A., Narasimhan, R., & Talluri, S. (2006). Supplier integration—finding an optimal 

configuration. Journal of Operations Management, 24(5), 563–582. 

DuHadway, S., Carnovale, S., & Hazen, B. (2017). Understanding risk management for 

intentional supply chain disruptions: risk detection, risk mitigation, and risk recovery. 

Annals of Operations Research, (in press), 1–20. doi:10.1007/s10479-017-2452-0 

Eisenstein, D. D. (2005). Recovering Cyclic Schedules Using Dynamic Produce-Up-To 

Policies. Operations Research, 53(4), 675–688. 

Fahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing 

supply chain risks: a review. European Journal of Operational Research, 247(1), 1–15. 

Fang, J., Zhao, L., Fransoo, J. C., & Van Woensel, T. (2013). Sourcing strategies in supply risk 

management: An approximate dynamic programming approach. Computers & Operations 

Research, 40(5), 1371–1382. 

Gupta, V., He, B., & Sethi, S. P. (2015). Contingent sourcing under supply disruption and 

competition. International Journal of Production Research, 53(10), 3006–3027. 

doi:10.1080/00207543.2014.965351 

Handfield, R., & McCormack, K. P. (2007). Supply chain risk management: minimizing 

disruptions in global sourcing. Boca Raton, FL: Auberbach Publications. 

Hasan, M. M., Shohag, M. A. S., Azeem, A., & Paul, S. K. (2015). Multiple criteria supplier 

selection: A fuzzy approach. International Journal of Logistics Systems and Management, 

20(4), 429–446. doi:10.1504/IJLSM.2015.068488 

Hendricks, K. B., & Singhal, V. R. (2003). The effect of supply chain glitches on shareholder 

wealth. Journal of Operations Management, 21(5), 501–522. 

Hendricks, K. B., & Singhal, V. R. (2005). An empirical analysis of the effect of supply chain 

disruptions on long‐run stock price performance and equity risk of the firm. Production 

and Operations management, 14(1), 35–52. 

Hishamuddin, H., Sarker, R., & Essam, D. (2012). A disruption recovery model for a single 

stage production-inventory system. European Journal of Operational Research, 222(3), 

464–473. 

Ho, W., Dey, P. K., & Lockstrom, M. (2011). Strategic sourcing: a combined QFD and AHP 

approach in manufacturing. Supply Chain Management: An International Journal, 16(6), 

446–461. 

Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: a literature 

review. International Journal of Production Research, 53(16), 5031–5069. 

Huo, B., Qi, Y., Wang, Z., & Zhao, X. (2014). The impact of supply chain integration on firm 

performance: The moderating role of competitive strategy. Supply Chain Management: 

An International Journal, 19(4), 369–384. 

Ivanov, D., Dolgui, A., & Sokolov, B. (2017). Literature review on disruption recovery in the 

supply chain. International Journal of Production Research, 55(20), 6158–6174. 

Ivanov, D., Pavlov, A., Dolgui, A., Pavlov, D., & Sokolov, B. (2016). Disruption-driven supply 

chain (re)-planning and performance impact assessment with consideration of pro-active 

and recovery policies. Transportation Research Part E: Logistics and Transportation 

Review, 90, 7–24. 

Ivanov, D., Pavlov, A., & Sokolov, B. (2014). Optimal distribution (re)planning in a centralized 

multi-stage supply network under conditions of the ripple effect and structure dynamics. 

European Journal of Operational Research, 237(2), 758–770. 

Kim, Y., Chen, Y. S., & Linderman, K. (2015). Supply network disruption and resilience: a 

network structural perspective. Journal of Operations Management, 33, 43–59. 

Lockamy III, A., & McCormack, K. (2010). Analysing risks in supply networks to facilitate 

outsourcing decisions. International Journal of Production Research, 48(2), 593–611. 



31 
 

doi:10.1080/00207540903175152 

Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management. Journal of Business 

Logistics, 29(1), 133–155. 

Mishra, D., Sharma, R. R. K., Kumar, S., & Dubey, R. (2016). Bridging and buffering: 

Strategies for mitigating supply risk and improving supply chain performance. 

International Journal of Production Economics, 180, 183–197. 

doi:10.1016/J.IJPE.2016.08.005 

Nagurney, A., Cruz, J., Dong, J., & Zhang, D. (2005). Supply chain networks, electronic 

commerce, and supply side and demand side risk. European Journal of Operational 

Research, 164(1), 120–142. doi:10.1016/j.ejor.2003.11.007 

Narasimhan, R., & Talluri, S. (2009). Perspectives on risk management in supply chains. 

Journal of Operations Management, 27(2), 114–118. 

Oke, A., & Gopalakrishnan, M. (2009). Managing disruptions in supply chains: A case study 

of a retail supply chain. International Journal of Production Economics, 118(1), 168–174. 

Paul, S. K., Asian, S., Goh, M., & Torabi, S. A. (2019). Managing sudden transportation 

disruptions in supply chains under delivery delay and quantity loss. Annals of Operations 

Research, 273(1–2), 783–814. 

Paul, S. K., Azeem, A., Sarker, R., & Essam, D. (2014). Development of a production inventory 

model with uncertainty and reliability considerations. Optimization and Engineering, 

15(3), 697–720. 

Paul, S. K., Sarker, R., & Essam, D. (2013). A Disruption Recovery Model in a Production-

Inventory System with Demand Uncertainty and Process Reliability. Lecture Notes in 

Computer Science, 8104, 511–522. 

Paul, S. K., Sarker, R., & Essam, D. (2014a). Managing supply disruption in a three-tier supply 

chain with multiple suppliers and retailers. In IEEE International Conference on Industrial 

Engineering and Engineering Management (pp. 194–198). 

Paul, S. K., Sarker, R., & Essam, D. (2014b). Real time disruption management for a two-stage 

batch production-inventory system with reliability considerations. European Journal of 

Operational Research, 237(1), 113–128. 

Paul, S. K., Sarker, R., & Essam, D. (2014c). Managing real-time demand fluctuation under a 

supplier–retailer coordinated system. International Journal of Production Economics, 

158, 231–243. 

Paul, S. K., Sarker, R., & Essam, D. (2015). Managing disruption in an imperfect production-

inventory system. Computers & Industrial Engineering, 84, 101–112. 

Paul, S. K., Sarker, R., & Essam, D. (2015). A disruption recovery plan in a three-stage 

production-inventory system. Computers and Operations Research, 57, 60–72. 

Paul, S. K., Sarker, R., & Essam, D. (2016). Managing risk and disruption in production-

inventory and supply chain systems: a review. Journal of Industrial and Management 

Optimization, 12(3), 1009–1029. 

Paul, S. K., Sarker, R., & Essam, D. (2017). A Quantitative Model for Disruption Mitigation in 

a Supply Chain. European Journal of Operational Research, 257(3), 881–895. 

Paul, S. K., Sarker, R., & Essam, D. (2018). A reactive mitigation approach for managing 

supply disruption in a three-tier supply chain. Journal of Intelligent Manufacturing, 29(7), 

1581–1597. doi:10.1007/s10845-016-1200-7 

Paul, S. K., & Shams, R. (2018). A quantitative and simulation model for managing sudden 

supply delay with fuzzy demand and safety stock. International Journal of Production 

Research, 56(13), 4377–4395. 

Riglietti, G., & Aguada, L. (2018). Supply chain resilience report. The Business Continuity 

Institute. 

Sarkar, A., Mohapatra, P. K. J., Chaudhary, A., Agrawal, A., Mandal, A., & Padhi, S. S. (2013). 



32 
 

Single or Multiple Sourcing: A Method for Determining the Optimal Size of the Supply 

Base. Technology Operation Management, 3(1–2), 17–31. doi:10.1007/s13727-013-0013-

6 

Serel, D. A. (2015). Production and pricing policies in dual sourcing supply chains. 

Transportation Research Part E: Logistics and Transportation Review, 76, 1–12. 

Sheffi, Y., & Rice, J. B. J. (2005). A supply chain view of the resilient enterprise. MIT Sloan 

Management Review, 47(1), 41–48. 

Silbermayr, L., & Minner, S. (2014). A multiple sourcing inventory model under disruption 

risk. International Journal of Production Economics, 149, 37–46. 

Snyder, L. V, Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS 

models for supply chain disruptions: a review. IIE Transactions, 48(2), 89–109. 

Tang, C. (2006). Robust strategies for mitigating supply chain disruptions. International 

Journal of Logistics: Reserach and Applications, 9(1), 33–45. 

Tang, O., & Nurmaya Musa, S. (2011). Identifying risk issues and research advancements in 

supply chain risk management. International Journal of Production Economics, 133(1), 

25–34. doi:10.1016/j.ijpe.2010.06.013 

Thun, J.-H., & Hoenig, D. (2011). An empirical analysis of supply chain risk management in 

the German automotive industry. International Journal of Production Economics, 131(1), 

242–249. 

Tomlin, B. (2006). On the Value of Mitigation and Contingency Strategies for Managing 

Supply Chain Disruption Risks. Management Science, 52(5), 639–657. 

Wagner, S., & Bode, C. (2008). An empirical examination of supply chain performance along 

several demensions of risk. Journal of Business Logistics, 29(1), 307–325. 

Wakolbinger, T., & Cruz, J. M. (2011). Supply chain disruption risk management through 

strategic information acquisition and sharing and risk-sharing contracts. International 

Journal of Production Research, 49(13), 4063–4084. 

Wieland, A., & Wallenburg, C. M. (2012). Dealing with supply chain risks: Linking risk 

management practices and strategies to performance. International Journal of Physical 

Distribution & Logistics Management, 42(10), 887–905. 

Wu, T., Blackhurst, J., & Chidambaram, V. (2006). A model for inbound supply risk analysis. 

Computers in Industry, 57(4), 350–365. 

Wu, T., Blackhurst, J., & O’grady, P. (2007). Methodology for supply chain disruption analysis. 

International Journal of Production Research, 45(7), 1665–1682. 

Xia, Y., Yang, M. H., Golany, B., Gilbert, S. M., & Yu, G. (2004). Real-time disruption 

management in a two-stage production and inventory system. IIE Transactions, 36, 111–

125. 

Xiao, T., Qi, X., & Yu, G. (2007). Coordination of supply chain after demand disruptions when 

retailers compete. International Journal of Production Economics, 109(1–2), 162–179. 

Xu, J., Zhuang, J., & Liu, Z. (2016). Modeling and mitigating the effects of supply chain 

disruption in a defender–attacker game. Annals of Operations Research, 236(1), 255–270. 

Yang, J., Oi, X., & Yu, G. (2005). Disruption management in production planning. Naval 

Research Logistics, 52, 420–442. 

Yu, H., Zeng, A. Z., & Zhao, L. (2009). Single or dual sourcing: decision-making in the 

presence of supply chain disruption risks. Omega, 37(4), 788–800. 

Zsidisin, G. a., Panelli, A., & Upton, R. (2000). Purchasing organization involvement in risk 

assessments, contingency plans, and risk management: an exploratory study. Supply Chain 

Management: An International Journal, 5(4), 187–198. doi:10.1108/13598540010347307 

Zsidisin, G. A., & Smith, M. E. (2005). Managing supply risk with early supplier involvement: 

a case study and research propositions. Journal of Supply Chain Management, 41(4), 44–

57. 



33 
 

Appendices 

Appendix A. Modeling for sudden production disruption 

Appendix A formulates the mathematical model for generating the recovery plan after a sudden 

production disruption. The model considers the costs of production, delivery, holding, raw 

materials, backorder, and lost sales, and determines the revenue from the selling price. Finally, 

the model is formulated as a constrained mathematical programming problem in which the total 

profit to be maximized is subject to constraints from capacity, demand, delivery, and inventory.  

Total production cost =
𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1        (A1) 

Total rejection cost = 𝐶𝑅 (
1

𝑟
− 1) ∑ 𝑋𝑖

𝑛
𝑖=1       (A2) 

Total inspection cost =
𝐶𝐼𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1        (A3) 

Cost of interest and depreciation = 𝑛𝑎𝐴−𝑏𝑟𝑐      (A4) 

Total raw material cost = ∑ 𝐶𝑟𝑍𝑖
𝑛
𝑖=1 =

𝑁𝐶𝑟

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1      (A5) 

Raw material holding cost =
1

2𝑟
𝐻1𝑁 ∑ 𝑋𝑖

𝑛
𝑖=1       (A6) 

Total delivery cost = ∑ 𝐶𝑑
𝑛
𝑖=1 𝑌𝑖       (A7) 

Total ending inventory holding cost = 𝐻2 ∑ 𝑒𝑖
𝑛
𝑖=1      (A8) 

Backorder cost = 𝐵 ∑ (𝑖 − 1)(𝑋𝑖 − 𝐴𝑃𝑖
𝑛
𝑖=2 )      (A9) 

Lost sales cost = 𝐿(∑ 𝐴𝑃𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 )      (A10) 

Total revenue = 𝑆 ∑ 𝑋𝑖
𝑛
𝑖=1         (A11) 

Final mathematical model 

Total profit = total revenue – total costs, is the objective function and to be maximized, which 

is obtained using equations (A1) – (A11) and subject to constraints (A12) – (A20). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory]      (A12) 

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖 [Constraint of beginning inventory]     (A13) 

𝑋1 ≤ 𝑟(𝑃 − 𝑇𝑑𝑝 ∗ 𝑃) [Limitation of production quantity in first period]  (A14) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 ≠1 [Limitation of production quantity in each period]   (A15) 

𝑋𝑖 ≥ 𝐴𝑃𝑖; ∀𝑖 ≠1 [Constraint for production in recovery plan]   (A16) 

∑ 𝑋𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1 + 𝑏𝑛+1 − 𝑏1 [Limitation of total production quantity]  (A17) 

∑ 𝐴𝑃𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 ≥0 [Constraint of lost sales quantity]     (A18) 

∑ 𝑌𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1  [Limitation of total delivery]     (A19) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0 and integer; ∀𝑖 [Non-negativity constraint]    (A20) 
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Appendix B. Modeling for sudden supply disruption 

In this appendix, a constrained mathematical programing model is formulated for generating 

the recovery plan after a sudden supply disruption in which the total profit is maximized subject 

to the constraints from capacity, demand, delivery, and inventory. 

Total production cost =
𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1        (B1) 

Total rejection cost = 𝐶𝑅 (
1

𝑟
− 1) ∑ 𝑋𝑖

𝑛
𝑖=1       (B2) 

Total inspection cost =
𝐶𝐼𝐶𝑝

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1        (B3) 

Cost of interest and depreciation = 𝑛𝑎𝐴−𝑏𝑟𝑐      (B4) 

Total raw material cost = ∑ 𝐶𝑟𝑍𝑖
𝑛
𝑖=1 =

𝑁𝐶𝑟

𝑟
∑ 𝑋𝑖

𝑛
𝑖=1      (B5) 

Raw material holding cost =
1

2𝑟
𝐻1𝑁 ∑ 𝑋𝑖

𝑛
𝑖=1       (B6) 

Total delivery cost= ∑ 𝐶𝑑
𝑛
𝑖=1 𝑌𝑖       (B7) 

Total ending inventory holding cost = 𝐻2 ∑ 𝑒𝑖
𝑛
𝑖=1      (B8) 

Backorder cost = 𝐵 ∑ (𝑖 − 1)(𝑋𝑖 − 𝐴𝑃𝑖
𝑛
𝑖=2 )      (B9) 

Lost sales cost = 𝐿(∑ 𝐴𝑃𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 )      (B10) 

Total revenue = 𝑆 ∑ 𝑋𝑖
𝑛
𝑖=1         (B11) 

Final mathematical model 

Total profit = total revenue – total costs, is the objective function and to be maximized, which 

is obtained using equations (B1) – (B11) and subject to constraints (B12) – (B20). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory]      (B12)  

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖 [Constraint of beginning inventory]     (B13) 

𝑋1 ≤ 𝑟(𝑃 − 𝑇𝑑𝑠 ∗ 𝑃) [Limitation of production quantity in first period]  (B14) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 ≠1 [Limitation of production quantity in each period]   (B15) 

𝑋𝑖 ≥ 𝐴𝑃𝑖; ∀𝑖 ≠1[Constraint for production in recovery plan]   (B16)  

∑ 𝑋𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1 + 𝑏𝑛+1 − 𝑏1 [Limitation of total production quantity]  (B17) 

∑ 𝐴𝑃𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 ≥0 [Constraint of lost sales quantity]     (B18) 

∑ 𝑌𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1  [Limitation of total delivery]     (B19) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0 and integer; ∀𝑖 [Non-negativity constraint]    (B20) 
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Appendix C. Heuristic 2: Generating recovery plan for a sudden production disruption 

This appendix shows heuristic steps to generate recovery plan for a sudden production 

disruption. 

 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input production disruption start time (𝑡𝑠) and duration (𝑇𝑑𝑝) and determine loss of 

production = 𝑇𝑑𝑝 ∗ 𝑟𝑃. 

Step 5: If 0 ≤ 𝑇𝑑𝑝 ∗ 𝑟𝑃 ≤ 𝑆𝐶1, then 

  𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 1, 2, 3…𝑛 

Step 6: For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝑇𝑑𝑝 ∗ 𝑟𝑃 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘−1
, then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝑇𝑑𝑝 ∗ 𝑟𝑃 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘−1
< 𝐵 ≤

𝐿

𝑘−2
, then 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃 

 𝑋2 = 𝐴𝑃2 + 𝑆𝐶2 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, then 

 X1 = AP1 + SC1 − Td ∗ rP 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 

Step 7: For 𝑇𝑑 ∗ 𝑟𝑃 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛−1
, then  

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃 

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =2, 3…𝑛 

  If 
𝐿

𝑛−1
< 𝐵 ≤

𝐿

𝑛−2
, then                                     

                                    X1 = AP1 + SC1 − Tdp ∗ rP 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 − 1 

   𝑋𝑛 = 𝐴𝑃𝑛 
……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

              𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃 

 𝑋2 = 𝐴𝑃2 + 𝑆𝐶2 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃 
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   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 

Step 8: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

 𝑍1 = 𝑁 ∗
𝐴𝑃1

𝑟
 

 𝑍2 =
1

𝑟
[𝑁 ∗ 𝑋2 − 𝑁 ∗ (𝐴𝑃1 − 𝑋1)] 

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
; 𝑖 = 3, 4…𝑛 

Step 9: Determine total profit and different costs.  

Step 10: Stop. 

 

Appendix D. Heuristic 3: Generating recovery plan for a sudden supply disruption 

This appendix shows heuristic steps to generate recovery plan for a sudden supply disruption. 

 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input supply disruption duration (𝑇𝑑𝑠) and determine loss of production (𝐿𝑃). 

Step 5: If 0 ≤ 𝐿𝑃 ≤ 𝑆𝐶1, then 

  𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 1, 2, 3…𝑛 

Step 6: For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝐿𝑃 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘−1
, then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝐿𝑃 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘−1
< 𝐵 ≤

𝐿

𝑘−2
, then 

            𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

 𝑋2 = 𝐴𝑃2 + 𝑆𝐶2 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 

Step 7: For 𝐿𝑃 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛−1
, then  

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =2, 3…𝑛 

  If 
𝐿

𝑛−1
< 𝐵 ≤

𝐿

𝑛−2
, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 − 1 
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   𝑋𝑛 = 𝐴𝑃𝑛 
……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

 𝑋2 = 𝐴𝑃2 + 𝑆𝐶2 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 

Step 8: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

 𝑍1 = 𝑁 ∗
𝐴𝑃1

𝑟
 

 𝑍2 =
1

𝑟
[𝑁 ∗ 𝑋2 − 𝑁 ∗ (𝐴𝑃1 − 𝑋1)] 

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
; 𝑖 = 3, 4…𝑛 

Step 9: Determine total profit and different costs. 

Step 10: Stop. 
 

Appendix E. Heuristic for considering combined effect multiple disturbances 

A demand fluctuation occurs at the retailer end, a supply disruption at the supplier end, and a 

production disruption at the manufacturing plant. Multiple disturbances can happen together in 

a period, in which case their effects must be considered when formulating a recovery plan. We 

develop a heuristic to deal with multiple disturbances and use random data to develop multiple 

disturbance scenarios. The steps in Heuristic 4 for managing multiple disturbances in a period 

are presented below. 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input demand fluctuation, supply disruption and/or production disruption scenario.  

Step 5: Determine unfulfilled demand,𝐷𝑢 = 𝛿 + (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

Step 6: For 𝐷𝑢 > 0 

 6.1 For 0≤ 𝐷𝑢 ≤ 𝑆𝐶1 

  If 𝐵 ≤ 𝐿, then 

   𝑋1 = 𝐴𝑃1 + 𝐷𝑢 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

6.2 For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝐷𝑢 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘
, then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝐷𝑢 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  
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𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘
< 𝐵 ≤

𝐿

𝑘−1
, then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

   X1 = AP1 + SC1 − (Tds + Tdp) ∗ rP 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

6.3 For 𝐷𝑢 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛
, then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 

  If 
𝐿

𝑛
< 𝐵 ≤

𝐿

𝑛−1
, then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 − 1 

   𝑋𝑛 = 𝐴𝑃𝑛 
……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, then 

 𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, then 

   𝑋𝑖 = 𝐴𝑃𝑖; 𝑖 =1, 2, 3…𝑛 

Step 7: For 𝐷𝑢 < 0 

 𝑋1 = 𝐴𝑃1 − |𝐷𝑢| 
𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

Step 8: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
 ; 𝑖 =1, 2, 3…𝑛 

Step 9: Determine total profit and different costs. 

Step 10: Stop. 

 

 

 
 


