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Abstract

An energy hub is a multi-carrier energy system that is capable of coupling various energy networks. It increases the 
flexibility of energy management and creates opportunities to increase the efficiency and reliability of energy systems. 
When plug-in hybrid electric vehicles (PHEVs) are incorporated into the energy hub, batteries can act as an aggregated 
storage system, increasing the potential integration of variable renewable energy sources (RES) into power system 
networks. This paper presents a new model for the optimal operation of an energy hub that includes RES, PHEVs, 
fuel cell vehicles, a fuel cell, an electrolyzer, a hydrogen tank, a boiler, an inverter, a rectifier, and a heat storage 
system. A novel model is developed to estimate the uncertainty associated with the power consumption of PHEVs 
during trips using information gap decision theory (IGDT) under risk-averse and risk-seeking strategies. Simulation 
results demonstrate that the proposed method maximizes the objective function under the risk-neutral and risk-averse 
strategies, while minimizing the objective function under the risk-seeking strategy. Results from the modeling show 
that considering the uncertainty associated with the power consumption of PHEVs using IGDT enables the energy 
hub operator to make appropriate decisions when optimizing the operation of the energy hub against possible changes 
in power consumption of PHEVs.

Keywords: Energy hub; Optimal operation; Information gap decision theory (IGDT); Plug-in hybrid electric vehicle (PHEV); Fuel 
cell vehicle (FCV). 

Nomenclature

Acronyms 𝑃𝑟 rated power of wind turbines [kW]
CHP combined heat and power Variables
EL electrical loads 𝛼 a number between 0 and 1
EP electricity price 𝑉𝑉 average driving speed of the Vth 

PHEV [km/h]
FCVs fuel cell vehicles , 𝛿1 𝛿2 deviation factors under the risk-

averse and risk-seeking strategies
GAMS general algebraic modeling system , , 𝑃𝑟𝑑 𝑃𝑟𝑐 𝑃𝑟𝑤 deterministic, critical, and target 

profits [$]
GAs genetic algorithms 𝑉 wind speed [m/s]
GP gas price 𝐺𝑡 total solar radiation incident on the 

tilted panel [W/m2]
HL hydrogen loads 𝜋𝑒 electricity price [$/kWh]
IGDT information gap decision theory 𝜋𝑔 natural gas price [$/kWh]
MSOS modified symbiotic organisms 

search
𝑃𝑐𝑜𝑛𝑠

𝑉 power consumption of the Vth 
PHEV [kW]

PHEVs plug-in hybrid electric vehicles , 𝑃 𝑆
𝑔𝑟𝑖𝑑𝑒 𝑃 𝐵

𝑔𝑟𝑖𝑑𝑒 sold/bought power to/from electrical 
power grid [kW]

PSO particle swarm optimization 𝑃𝑔𝑟𝑖𝑑𝑔 purchased power from natural gas 
network [kW]

PV photovoltaic , 𝐿𝑒, 𝐿ℎ 𝐿𝐻2 electrical, thermal, and hydrogen 
load powers [kW]

RES renewable energy sources 𝐸𝐻2, 𝐸ℎ energy stored in the hydrogen tank 
and thermal storage system [kWh]
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SOC state of charge 𝑡𝑙ℎ, 𝑡𝑎𝑤, 𝑡𝑙𝑤, 𝑡𝑎ℎ time at which a PHEV leaves home, 
arrives at working place, leaves 
working place, and arrives at home 
[h]

SR solar radiation 𝑃 𝑐ℎ
𝑃𝐻𝐸𝑉, 𝑃 𝑑𝑐ℎ

𝑃𝐻𝐸𝑉 total charging/discharging power of 
PHEVs [kW]

TL thermal loads , 𝑃𝑐ℎ
ℎ 𝑃𝑑𝑐ℎ

ℎ charging/discharging power of heat 
storage system [kW]

WS wind speed 𝑃𝑃𝑉, 𝑃𝑊𝑇, 𝑃𝐵, 𝑃𝐸𝑋, 𝑃𝐻2 output power of photovoltaic 
generation system, wind turbines, 
boiler, heat exchanger, and 
electrolyzer [kW]

WT wind turbine 𝑃𝐸𝐿 power delivered from DC bus to 
electrolyzer [kW]

Parameters 𝑃𝐹𝐶 power delivered from hydrogen tank 
to fuel cell [kW]

𝑉 energy consumption of the Vth 
PHEV per kilometer [kWh/km]

𝑃 𝐴𝐶
𝑅𝑒𝑐, 𝑃 𝐷𝐶

𝑅𝑒𝑐 AC/DC power of rectifier [kW]

, , , , ℎ 𝐻2 𝑃𝑉 𝐵

, , , ,   
𝐸𝑋 𝐹𝐶 𝐸𝐿   

𝐼𝑛𝑣

𝑅𝑒𝑐

thermal storage system, hydrogen 
tank, photovoltaic generation 
system, boiler, heat exchanger, fuel 
cell, electrolyzer, inverter, and 
rectifier efficiencies [%]

, 𝑃 𝐴𝐶
𝐼𝑛𝑣 𝑃𝐷𝐶

𝐼𝑛𝑣 AC/DC power of inverter [kW]

𝐴𝑃𝑉 area of a single photovoltaic panel 
[m2]

, 𝑃 𝑒
𝐹𝐶 𝑃 ℎ

𝐹𝐶 electrical/thermal output power of 
fuel cell [kW]

,𝑁𝑃𝑉  𝑁𝑊𝑇 number of photovoltaic panels and 
wind turbines 

𝑃𝑐ℎ
𝑉 , 𝑃𝑑𝑐ℎ

𝑉 charging/discharging power of the 
Vth PHEV [kW]

, 𝑉𝑐𝑖𝑛 𝑉𝑐𝑜𝑓𝑓 cut-in and cut-off wind speeds [m/s] 𝐸𝑉 energy stored in the battery of the 
Vth PHEV [kWh]

𝑟 ℎ
𝐹𝐶 ratio of thermal to electrical output 

power of fuel cell
𝐸ℎ energy stored in the heat storage 

system [kWh]
𝑃 𝑚𝑎𝑥

𝑔𝑟𝑖𝑑𝑒, 𝑃 𝑚𝑎𝑥
𝑔𝑟𝑖𝑑𝑔

maximum capacity of the line/pipe 
connected between the energy hub 
and upstream power grid/natural gas 
network [kW]

𝐸𝐻2 energy stored in the hydrogen tank 
[kWh]

𝑃𝑐ℎ,𝑚𝑎𝑥
𝑉 , 𝑃𝑑𝑐ℎ,𝑚𝑎𝑥

𝑉 maximum charging/discharging 
power of the battery of the Vth 
PHEV [kW]

𝑃𝑐ℎ
ℎ , 𝑃𝑑𝑐ℎ

ℎ charging/discharging power of the 
heat storage system [kW]

𝐶𝑎𝑝𝑉 rated capacity of the Vth PHEV 
[kWh]

 𝑆𝑂𝐶𝑉 state of charge of the Vth PHEV’s 
battery [%]

𝑁 number of PHEVs Binary Variables

𝐸𝑚𝑎𝑥
𝑉 maximum allowable capacity of the 

battery of the Vth PHEV [kWh]
𝑋𝑉 binary variable; equal to 1 if PHEV 

is charging; equal to 0 if PHEV is 
not charging

, 𝐸𝑚𝑖𝑛
𝐻2 𝐸𝑚𝑎𝑥

𝐻2
minimum and maximum allowable 
capacities of the hydrogen tank 
[kWh]

𝑌𝑉 binary variable; equal to 1 if PHEV 
is discharging; equal to 0 if PHEV is 
not discharging

, 𝐸𝑚𝑖𝑛
ℎ 𝐸𝑚𝑎𝑥

ℎ minimum and maximum allowable 
capacities of the heat storage system 
[kWh]

𝑍𝑉 binary variable; equal to 1 if PHEV 
is plugged out; equal to 0 if PHEV 
is plugged in

𝑃𝑟𝑎𝑡𝑒𝑑
𝐸𝐿 , 𝑃𝑟𝑎𝑡𝑒𝑑

𝐹𝐶  maximum rated powers of the 
electrolyzer and fuel cell [kW]

Functions

𝑉𝑟 nominal wind speed [m/s] , 𝛼(𝑃𝑟𝑐) 𝛽(𝑃𝑟𝑤) Robustness and opportunity 
functions
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1. Introduction

1.1. Motivation

Today, increased levels of carbon dioxide in the atmosphere is one of the main environmental concerns faced by the 
planet. Fossil fuel consumption is a major contributor to global CO2 emissions and is accelerating [1]–[3]. In order to 
tackle these problems, several countries are driving innovation in clean energy technologies. The introduction of 
renewable energy sources (RES) and the advent of green vehicles such as plug-in hybrid electric vehicles (PHEVs) 
and fuel cell vehicles (FCVs) are two major technological trends with promising prospects for reducing CO2 emissions 
compared to business as usual [4], [5]. As the penetration of RES increases, the uncertainty associated with weather-
driven sources like solar and wind energy will have increasing impact on the reliability of distributed energy networks. 
In addition, increasing the number of PHEVs and FCVs imposes a large additional load on energy networks and can 
contribute to an increase in the peak load on the system. In order to deal with the high penetration of RES and green 
vehicles, energy systems must be cost-effectively integrated into existing energy networks [6]–[10]. 

Similar to PHEVs, FCVs are considered to be a promising solution for overcoming the depletion of fossil resources 
whilst also reducing carbon dioxide emissions [11]–[13]. However, previous research has found that when a large 
number of PHEVs and FCVs are connected to existing energy systems, technical problems arise that affect the entire 
network [14]–[17]. Therefore, taking into account the adaption of FCVs and their impact on the operation and 
management of electricity networks is important for the efficient integration of FCVs, PHEVs and RES into existing 
energy systems. 

One promising solution for the integration of high penetration RES and green vehicles is the concept of the energy 
hub. The energy hub concept requires that the whole energy system is investigated across multiple energy carriers, 
with independent and system wide assessments completed for the conversion, storage and dispatch of energy resources 
in order to increase the reliability and efficiency of the system [18], [19].

The uncertainty associated with different variables (e.g. energy demand, energy supply, system losses, weather, 
storage capacity, etc.) within the system is one of the big challenges that system operators need to deal with. Modeling 
the uncertainty of these systems, therefore helps system operators to understand and optimize the future operation of 
the system to ongoing changes [20], [21]. PHEVs are associated with several uncertain parameters (e.g. charging time, 
start/end time, initial state of charge of the battery) [22]. One of the most important uncertainties for assessing the 
impact of PHEVs on system operation, is the amount of power consumed during trips and the quantity of charge or 
discharge load required from/to the network when connected [23]. 

Information gap decision theory (IGDT) is used in this paper to handle the uncertainty associated with the amount of 
power consumed from PHEVs batteries during trips. The IGDT, which was first introduced by Ben-Haim [24], 
supports decision making in an uncertain environment. In contrast to probabilistic and possibilistic decision theories, 
it does not use a probability density function or a membership function. It is worth noting that the IGDT measures the 
deviation of errors and offers reasonable solutions when little information is available. Two strategies can be chosen 
by a decision maker while using the IGDT method for managing an uncertain variable: risk-averse (robust decision-
making) and risk-seeking (opportunistic decision-making). In the risk-averse strategy, the decision maker attempts to 
make robust decisions against the possible errors of the uncertain variable. On the other hand, in the risk-seeking 
strategy, the decision variables are set to take advantage of the existing uncertainties using the lack of information 
[24]–[26].

The optimal operation of energy hubs is necessary as this ensures the cost-effective supply of power while satisfying 
the preferences of the consumers. The optimal operation of the energy hub is a complicated issue since it needs to 
consider both components constraints and costs. Hence, this paper focuses on the optimal operation of an energy hub 
that includes RES, PHEVs, FCVs, a hydrogen subsystem (an electrolyzer, a hydrogen tank, and a fuel cell), a boiler, 
an inverter, a rectifier, and a heat storage system under the uncertainty associated with the power consumption of 
PHEVs during trips using IGDT.
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1.2. Literature review

There is a rich literature for the optimal operation of renewable and sustainable energy systems. When an energy 
system consists of just one energy carrier, optimal operation is less complicated as it does not consider the 
interdependency between different forms of energy. Various studies have shown how a single energy carrier system 
can be optimized using a variety of different computational techniques for realizing sustainable development 
objectives. An algorithm for the optimal scheduling of a grid-connected micro-grid is investigated by Fossati et al. 
[27]. The micro-grid includes a wind turbine (WT), a battery bank, a micro-turbine, a diesel generator, and a fuel cell, 
which has a bilateral power exchange with the upstream power grid. The authors have employed two genetic 
algorithms (GAs) to perform the economic optimization and scheduling of the micro-grid. One of them tunes the 
membership functions for a fuzzy expert system used for controlling the output power of the battery bank, while the 
other calculates the optimal day-ahead scheduling of the micro-grid. Based on the simulation results, they have 
concluded that their algorithm achieves satisfactory results in both the grid-connected and islanded modes. 
Optimization model predictive framework for the reliable energy management of a grid-connected micro-grid with 
wind power generation system and a battery bank is developed by Prodan and Zio [28]. Based on the simulation results 
and comparisons using numerical data for a test system, the authors conclude that their method can efficiently optimize 
the objective function and contribute to significant operational cost savings. A nonlinear predictive energy 
management strategy for a residential building with a rooftop photovoltaic (PV) system and a battery energy storage 
system is investigated by Sun et al. [29]. In this paper, the authors focus on the fundamental trade-off between battery 
aging and the economic performance of the energy management strategy. Based on the results, they claim their 
proposed control system achieves 96-98% of the optimal performance given perfect meteorological and load forecasts 
over a long-term horizon.

In comparison with a single carrier energy system, an energy hub has a more complex system since it needs to work 
with various energy carriers. A stochastic model for optimal scheduling of a smart energy hub is presented by 
Dolatabadi and Mohammadi-Ivatloo [18] that includes combined heat and power (CHP) units, auxiliary boilers, a WT, 
a battery bank, and a thermal storage system. The authors consider electricity and natural gas as the primary energy 
carriers in their system. Using Monte Carlo simulation method, they consider the uncertainties associated with the 
wind power generation and load demand. Vahid-Pakdel et al. [30] study the optimal operation of an energy hub in the 
presence of electricity and thermal energy markets. Using Monte Carlo simulation method, they address the 
uncertainties associated with the market price, energy demand and wind speed. The authors conclude that the 
simultaneous implementation of a thermal energy market and a demand response program can reduce the operational 
cost by up to 4.8%. 

Several researchers have addressed the optimal operation of renewable energy systems through the coordinated 
management and uptake of PHEVs. Hota et al. [31] discuss the main issues of PHEV integration into the smart power 
systems and propose solutions for how they can be overcome. The optimal operation of micro-grids in the presence 
of PHEVs is also investigated by Bahramara et al. [1], where a two-stage robust optimization model is developed. In 
the first stage, trading with the upstream grid is addressed while in the second stage, the optimal scheduling of micro-
grids’ resources is calculated. The authors satisfy the robustness of the model using two penalty factors that are 
included within the objective function. Similarly, an optimal energy management approach for home appliances 
commitment in the presence of PHEV and energy storage system is established by Sattarpour et al. [32]. Based on the 
numeric studies, the authors have deduced that the integration of energy storage systems and PHEVs into the proposed 
system reduces the energy payment cost of home owners and flattens the load profile. Kamankesh et al. [33] go further 
and develop a new stochastic framework based on the modified symbiotic organisms search (MSOS) optimization 
algorithm to study the energy management of micro-grids including RES, PHEVs, and storage devices considering 
the uncertainty associated with the PHEVs charging start time using Monte Carlo simulations. Based on the simulation 
results on two test systems, the authors have claimed that their proposed method is superior to a number of other 
famous methods in the area including the GA and particle swarm optimization (PSO). In another study, Wu et al. [34] 
devise an optimization framework to efficiently manage the operation of a grid-tied smart home nano-grid 
incorporating plug-in electric vehicles. By developing a convex programming control architecture for the home-to-
vehicle and vehicle-to-home modes, they have eliminated the need for buying electricity from the upstream grid during 
high electricity price time windows. Wu et al. [35] go further and propose a stochastic dynamic programming modeling 
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framework for the optimal energy management of a smart home integrating plug-in electric vehicles. The authors have 
specifically focused on the uncertainty associated with vehicle energy storage and considered the vehicle plug-in time, 
plug-out time, and charge required for mobility as uncertain parameters. Based on the simulation results, the authors 
conclude that variable mobility patterns considerably affect the optimal scheduling behavior and result in significant 
operational cost savings. Thomas et al. [36] have put forward a mixed-integer linear programming model to optimize 
the energy management of an on-grid micro-grid equipped with a number of distributed energy resources, while taking 
into account a stochastic electric vehicles’ driving schedule. The authors have considered the arrival times, detention 
times, and the initial state of energy levels of employed electric vehicles as uncertain variables and assigned them 
appropriate probability density functions in order to characterize their uncertainty. Their results confirm that adopting 
a stochastic approach in modeling the electric vehicles’ driving schedule can substantially reduce the daily operational 
cost of the system. Aliasghari et al. [37] have investigated the optimal operation problem of an RES-based micro-grid, 
while considering the charging pattern of plug-in electric vehicles as a stochastic variable. The authors have 
demonstrated the capability of plug-in electric vehicles’ charging management in reducing the daily system cost 
estimation by up to 40%. Moghaddas-Tafreshi et al. [38] have also put forward a probabilistic unit commitment model 
to optimally operate plug-in electric vehicles in a grid-tied micro-grid serving both electrical and thermal loads. The 
authors have presented a scenario-based approach to cope with the uncertainties associated with the availability of 
vehicles, load demand prediction, and wind speed forecast. Based on the numeric simulation results, the authors have 
affirmed the superiority of their proposed model over a deterministic one in terms of reflecting the real-world practice. 

In recent years there has been a growing interest in using IGDT to manage uncertain variables, while optimally 
operating the renewable and sustainable energy systems. The risk-based optimal operation of a PV-battery-fuel cell 
hybrid system whilst considering the uncertainty of the electrical load is analysed by Nojavan et al. [20]. The authors 
have investigated the effect of load uncertainty from positive and negative perspectives using robustness and 
opportunity functions of IGDT. According to their results, they demonstrate that under a risk-averse strategy, the 
energy hub operator pays a cost-penalty in order to purchase sufficient power from the upstream power network to 
increase the robustness of the system against the uncertainty of electrical load. On the other hand, by taking risk-
seeking strategy, the operator gains a cost-benefit. Similarly, the optimal performance of a grid-connected PV/fuel 
cell/ battery hybrid systems in the presence of a demand response program considering the electrical load uncertainty 
is evaluated by Nojavan et al. [21]. In this example, the authors use an IGDT to model the uncertainty associated with 
electrical load and shift a percentage of the load from peak to off-peak periods reducing the operational cost of the 
hybrid system by 2.97%. The authors also model the load uncertainty using robustness and opportunity functions of 
IGDT enabling the system operator to make appropriate decisions to optimize the system against possible changes in 
load. The risk-based operation of an apartment smart building that includes a CHP generator, a boiler, a battery bank, 
a thermal storage system, and smart appliances is discussed by Najafi-Ghalelou et al. [39]. The authors solve their 
model from both risk-averse and risk-seeking perspectives by applying both robustness and opportunity functions of 
IGDT so that it is capable of handling the uncertainty associated with upstream grid price. Based on the simulation 
results, the authors demonstrate that the operational cost of the simulated building increases by 26.18% under the risk-
averse strategy and by taking a risk-seeking strategy can increase its economic profit by 56.92%. Mehdizadeh et al. 
[40] simulate a short term generation schedule for a grid-connected micro-grid in a day-ahead market in the presence 
of a demand response program. The model considers the uncertainty associated with upstream grid price using IGDT. 
Based on the simulation results, the authors conclude that their proposed IGDT-based modeling reduces the 
operational cost of the micro-grid by 4.6%. Soroudi et al. [41] propose a novel method based on IGDT to evaluate a 
profitable operational strategy for electrical distribution systems with high wind penetration aiming at handling the 
wind power generation uncertainty, whilst minimizing the operational costs of the system. By examining their model 
on the IEEE 118-bus test system, the authors have demonstrated the efficacy of their method in dealing with the wind 
power generation volatility, while optimally operating an electrical power distribution grid. Najafi-Ghalelou et al. [42] 
present the risk-based scheduling of an smart home, which incorporates a solar thermal storage system considering 
the uncertainty associated with electricity price using the IGDT. Based on the simulation results, they have affirmed 
that their proposed method reduces the operational cost of a smart home by up to 13.67%. Javadi et al. [43] propose a 
robust optimization framework utilizing the IGDT for coping with the load uncertainty for energy hub management. 
Based on the numerical simulation results, the authors have demonstrated the positive impacts of their framework on 
operational costs reduction for energy hubs. Dolatabadi et al. [44] go further and propose a hybrid stochastic/IGDT 
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optimization method for the optimal scheduling of an energy hub aiming at minimizing its expected operational cost 
considering the uncertainties associated with wind power generation, electricity price, and energy demands. As the 
IGDT method is not capable of modeling more than one uncertain parameter at the same time, the authors only model 
the uncertainty associated with electricity price using the IGDT, while considering three sets of scenarios for modeling 
the uncertainties associated with wind power generation as well as electrical and thermal loads on the system. Based 
on the simulation results, they have proved the usefulness of their hybrid stochastic/IGDT model in tackling the most 
important uncertainties within their proposed energy hub.

The aforementioned papers together with many other research works not referred here have provided valuable 
contributions to the optimal operation of renewable and sustainable energy systems and in particular, energy hubs. 
The review of the literature identifies recent trends in modeling various uncertainties associated with energy hubs 
operation concentrating on the use of IGDT for uncertainty management. However, no one to the best of the authors’ 
knowledge has studied the potential benefits of considering the uncertainty associated with power consumption of 
PHEVs during trips, while optimally operating any forms of renewable and sustainable energy systems. This is 
important as it paves the way towards reflecting the real-world practice in a more accurate manner in the day-ahead 
optimal energy management phase of renewable and sustainable energy systems, when accompanied by the 
identification of other more significant risk factors. Therefore, the aim of this study is to broaden the current state of 
knowledge of applying the IGDT method for handling uncertainties associated with operational variables of energy 
hubs as well as proposing an energy hub structure integrating two different types of green vehicles, which contributes 
to the goals of sustainable development.

1.3. Contributions

This article contributes a novel method for the optimal operation of a grid-connected energy hub that includes RES, 
PHEVs, FCVs, a hydrogen subsystem, a boiler, an inverter, a rectifier, and a heat storage system. Specific novelties 
within this method include:

 Modeling the uncertainty associated with the power consumption of PHEVs during trips using the IGDT 
method under both risk-averse and risk-seeking strategies.

 Providing incentives to PHEV owners in the form of discounted electricity rates, motivated by [45]. This 
enables us to predict the behavior of PHEVs.

 Integration of the FCVs into the energy hub. As FCVs consume hydrogen, this is in line with the multi-carrier 
nature of the energy hubs. 

1.4. Outline of paper

The rest of this paper is organized as follows. Section 2 describes the proposed energy hub. In section 3, the uncertainty 
modeling of PHEVs using IGDT is presented. In section 4, the formulation of the problem is presented. Section 5 
presents the numerical simulation results. Finally, the conclusion of this study is presented in section 6.

2. System description

The proposed energy system in this paper includes wind and solar energy sources, PHEVs, FCVs, an inverter, a 
rectifier, a hydrogen subsystem, a boiler, and a heat storage system as part of an energy hub as shown in Fig. 1. The 
proposed energy hub has bilateral energy exchange with the upstream power grid. Also, it is connected to the gas 
network for supplying a portion of the heat demand through dedicated boilers. Inputs into the energy hub include 
electricity supplied by the RES and the upstream electricity grid, as well as natural gas supplied by the upstream gas 
network. Conditional outputs of the energy hub include (1) electricity production that must meet the electrical demands 
of the system; (2) surplus power that is sold to the upstream grid; (3) the production of hydrogen that is used to meet 
the hydrogen demands of the FCVs; and, (4) the production of thermal hot water to meet the heating demands of 
buildings. In this system, PHEVs are operated in both of the vehicle-to-grid and grid-to-vehicle modes and FCVs are 
supplied using a hydrogen storage tank. Also, the hydrogen in the hydrogen tank can be used to produce electricity 
and heat by the fuel cell. Due to variations in the price of natural gas during the operation of the energy hub, the heat 
that is produced by the boiler or recovered from the fuel cell can be stored in the hot water tank, which is considered 
as the heat storage system of the energy hub. Moreover, the heat load can be supplied by boiler, heat storage, and heat 
recovery of fuel cell through the use of a heat exchanger.  
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Fig. 1. Energy hub architecture.

3. Uncertainty model 

In this paper, it is assumed that PHEVs are used only for commuting from home to work and other small inner city 
trips. Outside main driving hours, the PHEVs are connected to the grid either at home or at work and the bilateral 
energy exchange with energy hub is possible. Thus, these vehicles will be connected to the DC bus of the energy hub 
in a distributed manner. In this paper, the system operator is assumed to be the PHEVs’ aggregator and a financial 
incentive is taken into account to attract the participation of vehicle owners in system operation. The incentive 
provided to PHEV owners is a 90% discount on their electricity purchases. In order to receive this discount, PHEV 
owners must announce their intention to buy and sell electricity on a day-ahead basis to the system operator and are 
required to plug-in their PHEVs as soon as they get home and leave plugged in while the car is parked. It is therefore 
assumed the system operator has full day-ahead information on the number of cars that will be connected to the 
network. The stored energy in each of the PHEVs’ batteries is modeled according to the following equation: 

                             (1)𝐸𝑉(𝑡) = 𝐸𝑉(𝑡 ‒ 1) + 𝑉𝑃𝑐ℎ
𝑉 (𝑡)∆𝑡 ‒

1

𝑉
𝑃𝑑𝑐ℎ

𝑉 (𝑡)∆𝑡 ‒ 𝑃𝑐𝑜𝑛𝑠
𝑉 (𝑡)∆𝑡,

where  is the energy consumption of the Vth PHEV per kilometer [kWh/km];  and  are the charging 𝑉 𝑃𝑐ℎ
𝑉 (𝑡) 𝑃𝑑𝑐ℎ

𝑉 (𝑡)
and discharging powers of the Vth PHEV at time step  [kW], respectively;  denotes the power consumption 𝑡 𝑃𝑐𝑜𝑛𝑠

𝑉 (𝑡)
of the Vth PHEV at time step  [kW], which depends on the energy consumption per kilometer and average speed of 𝑡
the vehicle at time step  that can be calculated according to Eq. (2); and  is the length of each time step that is taken 𝑡 ∆𝑡
to be 1 hour in this study. 
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𝑃𝑐𝑜𝑛𝑠
𝑉 (𝑡) = 𝑉𝑉𝑉(𝑡)𝑍𝑉(𝑡)∆𝑡,                                                                        (2)

where  denotes the average driving speed of the Vth PHEV at time step  [km/h] and  is a binary variable, 𝑉𝑉(𝑡) 𝑡 𝑍𝑉(𝑡)
which is equal to 1 if the PHEV is plugged out and equal to 0 if it is plugged in. It is worthwhile noting that from the 
perspective of PHEVs’ batteries model, the power consumption of each PHEV’s battery at time step  can also be 𝑡
expressed as follows:

𝑃𝑐𝑜𝑛𝑠
𝑉 (𝑡) =

𝐶𝑎𝑝𝑉 × (𝑆𝑂𝐶𝑉(𝑡 ‒ 1) + 𝑆𝑂𝐶𝑉(𝑡) ‒ 𝑆𝑂𝐶𝑉(0))
∆𝑡 ,                                      (3)

where  represents the rated capacity of the Vth PHEV’s battery [kWh],  denotes the state of charge (SOC) 𝐶𝑎𝑝𝑉 𝑆𝑂𝐶𝑉(𝑡)
of the Vth PHEV’s battery at time step  [%], and  is the initial SOC of the Vth PHEV’s battery, which is 𝑡 𝑆𝑂𝐶𝑉(0)
considered to be 90% in this study. The SOC can be defined as an indicator of the remaining energy content of a 
battery, which can be determined by dividing the remaining capacity of the battery at each time-step by its maximum 
energy storage capacity [46], [47].

Each PHEV has its own behavior and it is assumed that the owner of each PHEV informs the system operator about 
its intended future behavior ignoring uncertainty. When the PHEV is connected to the grid, the amount of stored 
energy in the battery is dispatchable. Also, when the PHEV is traveling and is not connected to the network, the power 
consumption of the PHEV is stochastic and therefore subject to a level of uncertainty, which is not considered in the 
announcements of PHEV owners to the system operator.

In this paper, it is assumed that the amount of predicted power consumption of each PHEV is available on a day-ahead 
basis and its uncertainty is modeled using the IGDT method. In the IGDT method, the range of error can be calculated 
according to the following equation [24]:

𝑃𝑐𝑜𝑛𝑠
𝑉 (1 ‒ 𝛼) ≤ 𝑃𝑐𝑜𝑛𝑠

𝑉 ≤ 𝑃𝑐𝑜𝑛𝑠
𝑉 (1 + 𝛼),                                                     (4)

where  is a number between 0 and 1. The designed stochastic model is expressed in both risk-averse and risk-seeking 𝛼
strategies. The risk-averse strategy considers the critical profit as input and provides the maximum acceptable error in 
predicting the power consumption for each PHEV as an output, by maximizing the magnitude of change of undesirable 
power consumption from the predicted values for each PHEV. This model can be defined by the following equation 
[24]:

𝛼(𝑃𝑟𝑐) = max
𝛼

 {𝛼:min (𝑃𝑟) ≥ 𝑃𝑟𝑐},                                                           (5)

where  is the robustness function, which indicates the maximum acceptable error in predicting the power 𝛼(𝑃𝑟𝑐)
consumption of each PHEV,  indicates the system profit to which IGDT method is applied, and  is the critical 𝑃𝑟 𝑃𝑟𝑐
profit, which can be defined by the following equation [24]:

𝑃𝑟𝑐 = (1 ‒ 𝛿1)𝑃𝑟𝑑,                                                                          (6)

where  is the risk-averse deviation factor between 0 and 1 that represents the amount of risk-aversion of the decision 𝛿1
and  denotes the deterministic profit. A large value for  means that a more risk-averse decision is taken and 𝑃𝑟𝑑 𝛿1 𝑃𝑟𝑐

→0.

The risk-seeking model considers the desired target profit as input and provides the minimum acceptable error in 
predicting the power consumption of each PHEV as output through minimizing the range of change of the desirable 
power consumption of the PHEV based on the predicted values. This model can be defined by the following equation 
[24]:

𝛽(𝑃𝑟𝑤) = min
𝛼

 {𝛼:max (𝑃𝑟) ≥ 𝑃𝑟𝑤},                                                           (7)

where  is the opportunity function, which indicates the minimum acceptable error in predicting the power 𝛽(𝑃𝑟𝑤)
consumption of each PHEV and  is the target profit, which can be expressed as Eq. (8). 𝑃𝑟𝑤
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𝑃𝑟𝑤 = (1 + 𝛿2)𝑃𝑟𝑑,                                                                        (8)

where  is the risk-seeking deviation factor between 0 and 1 that represents the amount of risk-seeking of the decision 𝛿2
that its larger value means that a more risk-seeking decision is taken.

4. Problem Formulation

The problem is formulated under three risk strategies, namely the risk-neutral, risk-averse, and risk-seeking strategies. 
Each strategy will be described in the following sub-sections.

4.1. Risk-neutral formulation

In this strategy, the objective function is to maximize the profit in a 24-hour period under several constrains. This 
function can be expressed according to the following equation:

𝑃𝑟𝑑

= max
 

(
24

∑
𝑡 = 1

50

∑
𝑉 = 1

(0.1𝜋𝑒(𝑡)𝑃𝑐𝑜𝑛𝑠
𝑉 (𝑡) + 𝜋𝑒(𝑡)𝑃 𝑆

𝑔𝑟𝑖𝑑𝑒(𝑡) + 𝜋𝑔(𝑡)𝐿ℎ(𝑡) + 𝜋𝑒(𝑡)𝐿𝑒(𝑡) + 𝜋𝑒(𝑡)𝐿𝐻2(𝑡) ‒ 𝜋𝑒

(𝑡)𝑃 𝐵
𝑔𝑟𝑖𝑑𝑒(𝑡) ‒ 𝜋𝑔(𝑡)𝑃𝑔𝑟𝑖𝑑𝑔(𝑡))).                                                                                                       (9)

The objective function contained in Eq. (9) consists of seven parts including the income from supplying the required 
charging demand of PHEVs ( ), income from selling the electricity to the upstream power grid (0.1𝜋𝑒(𝑡)𝑃𝑐𝑜𝑛𝑠

𝑉 (𝑡) 𝜋𝑒(𝑡)
), income from supplying the required energy of the heat load ( ), income from supplying the 𝑃 𝑆

𝑔𝑟𝑖𝑑𝑒(𝑡) 𝜋𝑔(𝑡)𝐿ℎ(𝑡)
required energy of the electrical load ( ), income from supplying the required hydrogen demands of the 𝜋𝑒(𝑡)𝐿𝑒(𝑡)
FCVs ( ), cost of purchasing electricity from the upstream power grid ( ), and cost of 𝜋𝑒(𝑡)𝐿𝐻2(𝑡) 𝜋𝑒(𝑡)𝑃 𝐵

𝑔𝑟𝑖𝑑𝑒(𝑡)
purchasing gas from the upstream gas network ( ).𝜋𝑔(𝑡)𝑃𝑔𝑟𝑖𝑑𝑔(𝑡)

The demand-supply balance equations that incorporate the terms governing conversion of energy carriers and 
operation of storage units can be formulated by Eqs. (10)-(12). The demand-supply balance for electrical power within 
the AC and DC buses can be described by Eqs. (10) and (11), respectively. The demand-supply balance for heat power 
is also described by Eq. (12). 

𝑃𝑔𝑟𝑖𝑑𝑒(𝑡) + 𝐿𝑒(𝑡) + 𝑃 𝐴𝐶
𝑅𝑒𝑐(𝑡) = 𝑃 𝐴𝐶

𝐼𝑛𝑣(𝑡),                                                          (10)

𝑃𝐷𝐶
𝐼𝑛𝑣(𝑡) + 𝑃𝐸𝐿(𝑡) + 𝑃 𝑐ℎ

𝑃𝐻𝐸𝑉(𝑡) = 𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃 𝑒
𝐹𝐶(𝑡) + 𝑃 𝑑𝑐ℎ

𝑃𝐻𝐸𝑉(𝑡) + 𝑃 𝐷𝐶
𝑅𝑒𝑐(𝑡),                    (11)

𝐿ℎ(𝑡) + 𝑃𝑐ℎ
ℎ (𝑡) = 𝐵𝑃𝑔𝑟𝑖𝑑𝑔(𝑡) +   

𝐸𝑋𝑃 ℎ
𝐹𝐶(𝑡) + 𝑃𝑑𝑐ℎ

ℎ (𝑡),                                           (12)

where  is the energy hub’s exchanged electrical power with the upstream power grid;  is the electrical load 𝑃𝑔𝑟𝑖𝑑𝑒 𝐿𝑒
power on the energy hub;  and  are the AC and DC powers of rectifier, respectively;  and  are the 𝑃 𝐴𝐶

𝑅𝑒𝑐 𝑃 𝐷𝐶
𝑅𝑒𝑐 𝑃 𝐴𝐶

𝐼𝑛𝑣 𝑃𝐷𝐶
𝐼𝑛𝑣

AC and DC powers of inverter, respectively;  is the power delivered from DC bus to the electrolyzer;  and  𝑃𝐸𝐿 𝑃 𝑐ℎ
𝑃𝐻𝐸𝑉

  are the total charging and discharging powers of PHEVs, respectively;  is the output power of wind 𝑃 𝑑𝑐ℎ
𝑃𝐻𝐸𝑉 𝑃𝑊𝑇

turbines;  is the output power of PV panels;  and  are the electrical and thermal output powers of the fuel 𝑃𝑃𝑉 𝑃 𝑒
𝐹𝐶 𝑃 ℎ

𝐹𝐶
cell, respectively;   is the thermal load power on the energy hub;  and  are the charging and discharging 𝐿ℎ 𝑃𝑐ℎ

ℎ 𝑃𝑑𝑐ℎ
ℎ

powers of heat storage system, respectively;  is the boiler efficiency;  is the purchased power from the natural 𝐵 𝑃𝑔𝑟𝑖𝑑𝑔

gas network; and  is the heat exchanger efficiency.  
𝐸𝑋

The amount of energy stored in the hydrogen tank storage and heat storage system at each time step  can be calculated 𝑡
by Eqs. (13) and (14), respectively.

𝐸𝐻2(𝑡) = 𝐸𝐻2(𝑡 ‒ 1) + 𝐻2𝑃𝐻2(𝑡)∆𝑡 ‒
1

𝐻2

(𝑃𝐹𝐶(𝑡) + 𝐿𝐻2(𝑡))∆𝑡,                           (13)
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𝐸ℎ(𝑡) = 𝐸ℎ(𝑡 ‒ 1) + ℎ𝑃𝑐ℎ
ℎ (𝑡)∆𝑡 ‒

1

ℎ
𝑃𝑑𝑐ℎ

ℎ (𝑡)∆𝑡,                                      (14)

where  is the hydrogen tank efficiency,  is the power delivered from the DC bus to the electrolyzer,  is the 𝐻2 𝑃𝐻2 𝑃𝐹𝐶
power delivered from the hydrogen tank to the fuel cell,  is the hydrogen load power on the energy hub, and  𝐿𝐻2 ℎ

denotes the efficiency of the thermal storage system.

The total charging and discharging powers of PHEVs at time step  can be expressed by Eqs. (15) and (16), 𝑡
respectively.

𝑃 𝑐ℎ
𝑃𝐻𝐸𝑉(𝑡) =

𝑁

∑
𝑉 = 1

𝑃𝑐ℎ
𝑉 (𝑡),                                                                  (15)

𝑃 𝑑𝑐ℎ
𝑃𝐻𝐸𝑉(𝑡) =

𝑁

∑
𝑉 = 1

𝑃𝑑𝑐ℎ
𝑉 (𝑡).                                                                  (16)

Considering the radiation intensity of the PV panels, the output power of PV panels at time step  can be calculated 𝑡
according to the following equation [48]:

𝑃𝑃𝑉(𝑡) = 𝑃𝑉𝑁𝑃𝑉𝐴𝑃𝑉𝐺𝑡(𝑡),                                                                      (17)

where  is the efficiency of PV panels,  is the number of panels,  is the area of a single panel [m2], and 𝑃𝑉 𝑁𝑃𝑉 𝐴𝑃𝑉 𝐺𝑡
 is the total solar radiation incident on the tilted panel at time step  [W/m2].(𝑡) 𝑡

The output power of the wind power generation system at time step  can be described in terms of wind speed by the 𝑡
following equation [49]:

𝑃𝑊𝑇(𝑡) = 𝑁𝑊𝑇 ×  {0                                  ; 𝑉(𝑡) < 𝑉𝑐𝑖𝑛, 𝑉(𝑡) > 𝑉𝑐𝑜𝑓𝑓

𝑃𝑟 (
𝑉(𝑡) ‒ 𝑉𝑐𝑖𝑛

𝑉𝑟 ‒ 𝑉𝑐𝑖𝑛
)

3

  ; 𝑉𝑐𝑖𝑛 ≤ 𝑉(𝑡) < 𝑉𝑟                                      (18)

𝑃𝑟                                ; 𝑉𝑟 ≤ 𝑉(𝑡) ≤ 𝑉𝑐𝑜𝑓𝑓

where ,  and  denote the cut-in, cut-off, and nominal wind speeds, respectively that are considered to be 𝑉𝑐𝑖𝑛 𝑉𝑐𝑜𝑓𝑓, 𝑉𝑟
2.5, 25, and 11 m/s, respectively;  is the wind speed at time step ;  is the number of wind turbines; and  is 𝑉(𝑡) 𝑡 𝑁𝑊𝑇 𝑃𝑟
the rated power of each wind turbine, which is considered to be 7.5 kW in this project.

Some of the constraints of the system for conversion, storage and exchange of electricity with the upstream power grid, 
and receiving natural gas from the upstream gas network are expressed by Eqs. (19)-(25). 

0 ≤ 𝑃𝑐ℎ
𝑉 (𝑡) ≤ 𝑃𝑐ℎ,𝑚𝑎𝑥

𝑉 𝑋𝑉(𝑡),                                                                (19)

0 ≤ 𝑃𝑑𝑐ℎ
𝑉 (𝑡) ≤ 𝑃𝑑𝑐ℎ,𝑚𝑎𝑥

𝑉 𝑌𝑉(𝑡),                                                               (20)

0 ≤ 𝐸𝑉(𝑡) ≤ 𝐸𝑚𝑎𝑥
𝑉 ,                                                                        (21)

𝐸𝑚𝑖𝑛
𝐻2 ≤ 𝐸𝐻2(𝑡) ≤ 𝐸𝑚𝑎𝑥

𝐻2 ,                                                                    (22)

𝐸𝑚𝑖𝑛
ℎ ≤ 𝐸ℎ(𝑡) ≤ 𝐸𝑚𝑎𝑥

ℎ ,                                                                   (23)

|𝑃𝑔𝑟𝑖𝑑𝑒(𝑡)| ≤ 𝑃 𝑚𝑎𝑥
𝑔𝑟𝑖𝑑𝑒 ,                                                                       (24)
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0 ≤ 𝑃𝑔𝑟𝑖𝑑𝑔(𝑡) ≤ 𝑃 𝑚𝑎𝑥
𝑔𝑟𝑖𝑑𝑔,                                                                     (25)

where  and  are the maximum charging and discharging powers of the battery of the Vth PHEV [kW], 𝑃𝑐ℎ,𝑚𝑎𝑥
𝑉 𝑃𝑑𝑐ℎ,𝑚𝑎𝑥

𝑉

respectively;  is the maximum allowable capacity of the battery of the Vth PHEV [kWh];  and  are the 𝐸𝑚𝑎𝑥
𝑉 𝐸𝑚𝑖𝑛

𝐻2 𝐸𝑚𝑎𝑥
𝐻2

minimum and maximum allowable capacities of the hydrogen tank [kWh], respectively;   and  are the 𝐸𝑚𝑖𝑛
ℎ 𝐸𝑚𝑎𝑥

ℎ

minimum and maximum allowable capacities of the heat storage system [kWh], respectively;  is the maximum 𝑃 𝑚𝑎𝑥
𝑔𝑟𝑖𝑑𝑒

capacity of the power line connected between the energy hub and upstream power grid [kW];  is the maximum 𝑃 𝑚𝑎𝑥
𝑔𝑟𝑖𝑑𝑔

capacity of the natural gas pipeline connected between the energy hub and upstream natural gas network [kW];  is a 𝑋𝑉
binary variable, which is equal to 1 if the PHEV is charging and equal to 0 if it is not charging; and  is a binary 𝑌𝑉
variable, which is equal to 1 if the PHEV is discharging and equal to 0 if it is not discharging.

In addition to the above constraints, the output power of the electrolyzer and the fuel cell are constrained to be between 
zero and their rated power at each time step . Furthermore, each PHEV at each time step  can only ever be charging 𝑡 𝑡
discharging or traveling according to Eq. (26).

𝑋𝑉(𝑡) ∩ 𝑌𝑉(𝑡) ∩ 𝑍𝑉(𝑡) ≤ 1.                                                          (26)

4.2. Robustness and opportunity objective functions 

The robustness and opportunity objective functions for considering the uncertainty associated with power 
consumption of PHEVs during trips under the risk-averse and risk-seeking strategies can be calculated according to 
the following equations:

𝛼

= max
𝛼

(
24

∑
𝑡 = 1

50

∑
𝑉 = 1

(0.1𝜋𝑒(𝑡)(1 + 𝛼)𝑃𝑐𝑜𝑛𝑠
𝑉 (𝑡) + 𝜋𝑒(𝑡)𝑃 𝑆

𝑔𝑟𝑖𝑑𝑒(𝑡) + 𝜋𝑔(𝑡)𝐿ℎ(𝑡) + 𝜋𝑒(𝑡)𝐿𝑒(𝑡) + 𝜋𝑒(𝑡)𝐿𝐻2(𝑡) ‒ 𝜋𝑒(𝑡)

𝑃 𝐵
𝑔𝑟𝑖𝑑𝑒(𝑡) ‒ 𝜋𝑔(𝑡)𝑃𝑔𝑟𝑖𝑑𝑔(𝑡)) ≥ (1 ‒ 𝛿1)𝑃𝑟𝑑),                                                                        (27)

𝛽

= min
𝛼

(
24

∑
𝑡 = 1

50

∑
𝑉 = 1

(0.1𝜋𝑒(𝑡)(1 ‒ 𝛼)𝑃𝑐𝑜𝑛𝑠
𝑉 (𝑡) + 𝜋𝑒(𝑡)𝑃 𝑆

𝑔𝑟𝑖𝑑𝑒(𝑡) + 𝜋𝑔(𝑡)𝐿ℎ(𝑡) + 𝜋𝑒(𝑡)𝐿𝑒(𝑡) + 𝜋𝑒(𝑡)𝐿𝐻2(𝑡) ‒ 𝜋𝑒(𝑡)

𝑃 𝐵
𝑔𝑟𝑖𝑑𝑒(𝑡) ‒ 𝜋𝑔(𝑡)𝑃𝑔𝑟𝑖𝑑𝑔(𝑡)) ≥ (1 + 𝛿2)𝑃𝑟𝑑).                                                                        (28)

4.3. Solution methodology 

The deterministic objective function is formulated as a mixed-integer programming problem that can be solved using 
general algebraic modeling system (GAMS) software. The procedure of simulation is summarized as follows:

i. The deterministic objective function in Eq. (9) is maximized subject to the aforementioned constraints. The 
results include the maximum profit of the system operation and the optimal power flow of the energy hub. 

ii. For various deviation values of profit, the robustness objective function in Eq. (27) is maximized subject to 
the aforementioned constraints. The results include the maximum deviation of the predicted power 
consumption of PHEVs and the optimal power flow of the energy hub. 

iii. For various deviation values of profit, the opportunity objective function in Eq. (28) is minimized subject to 
the aforementioned constraints. The results include the minimum deviation of the predicted power 
consumption of PHEVs and the optimal power flow of the energy hub.

5. Numerical simulation

A numerical simulation is used to illustrate the optimal operation of the proposed energy hub that will be presented in 
the following sub-sections.
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5.1. Input data

The system parameters are presented in Table 1 [50]–[53]. It is assumed that there are 50 PHEVs in the system. For 
reasons of space, we classified the driving patterns of the 50 PHEVs into three main groups utilizing the k-means 
clustering method [54], and then randomly selected a representative sample of each group for in-depth analyses. The 
behavior of these 3 PHEVs in terms of traveling time between home and workplace and average driving speed is 
shown in Table 2. Furthermore, the detailed driving patterns of the fleet of 50 PHEVs are given as supplementary 
material accompanying the paper (Additional file 1: Table S1). In addition, the types and technical specifications of 
the selected PHEV brands in this study (i.e. the leading brands in the North American market) are detailed in Table 3 
[55]. The table also reports the proportions of the considered PHEV types in the total fleet of 50 PHEVs. Also, the 
electrical loads (EL), thermal loads (TL), hydrogen loads (HL), solar radiation (SR), wind speed (WS), electricity 
price (EP), and natural gas price (GP) during 24 hours are shown in Table 4. 

Table 1. System parameters [50]–[53].

Parameter Value Parameter Value Parameter Value Parameter Value

𝑉
0.1 

kWh/km 𝑅𝑒𝑐 90% ℎ 90% 𝐻2 95%

𝑃𝑉 18% 𝐵 85%   
𝐸𝑋 90% 𝐹𝐶 50%

𝐸𝐿 90% 𝐼𝑛𝑣 90% 𝑁 50 𝑃 𝑚𝑎𝑥
𝑔𝑟𝑖𝑑𝑒 80 kW

𝑃𝑐ℎ,𝑚𝑎𝑥
𝑉

3.3, 6.6 
kW 𝑃𝑑𝑐ℎ,𝑚𝑎𝑥

𝑉
3.3, 6.6 

kW
𝐴𝑃𝑉 1 m2 𝑁𝑃𝑉 100

𝑁𝑊𝑇 10 𝑉𝑐𝑢𝑡 ‒ 𝑖𝑛 3 m/s 𝑉𝑐𝑢𝑡 ‒ 𝑜𝑓𝑓 25 m/s 𝑟 ℎ
𝐹𝐶 0.8

𝑃 𝑚𝑎𝑥
𝑔𝑟𝑖𝑑𝑔 50 kW 𝑃𝑟𝑎𝑡𝑒𝑑

𝐹𝐶 20 kW 𝐸𝑚𝑎𝑥
𝑉 10 kWh 𝐸𝑚𝑖𝑛

𝐻2 0 kWh

𝐸𝑚𝑎𝑥
𝐻2 200 kWh 𝐸𝑚𝑖𝑛

ℎ 0 kWh 𝐸𝑚𝑎𝑥
ℎ 200 kWh 𝑃𝑟𝑎𝑡𝑒𝑑

𝐸𝐿 30 kW

Table 2. Typical behavior of the three of the PHEVs.

PHEV number [h]𝒕𝒍𝒉  [h]𝒕𝒂𝒘  [h]𝒕𝒍𝒘 [h]𝒕𝒂𝒉  [km/h]𝑽𝑽

1 7 9 20 21 30
25 7 8 15 17 35
50 9 10 16 17 25

Table 3. Types of selected PHEVs and their technical characteristics [55].

PHEV brand Capacity of the 
battery [kWh]

Maximum on-board 
charging/discharging 

rate [kW]

Share in the 
fleet [%]

Chevrolet Volt 14 3.3 40
Toyota Prius Prime 9 3.3 26

Honda Accord Plug-in 7 6.6 18
Ford Fusion Energi 7 3.3 16
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Table 4. Daily input data of the simulation.

Hour EL [kW] TL [kW] HL [kW] SR [kW/m2] WS [m/s] EP [$/kWh] GP [$/kWh]

1 0 0 0 0 0 27 18
2 8.1 0 0 0 1 10 18
3 4.5 0 0 0 0 23 18
4 4.86 12.6 0 0 0 23 22
5 8.1 16.2 0 0 1 26 26
6 11.7 19.8 0 0.19 2 23 30
7 18.9 37.8 0 0.41 4 27 35
8 19.8 22.5 20 0.58 5 33 30
9 23.4 19.8 20 0.63 4 34 27
10 24.3 0 20 0.79 5 33 18
11 25.2 0 0 1.02 6 34 18
12 27.9 7.2 0 1.04 7 38 18
13 28.8 10.8 0 1.03 6 34 25
14 30.6 8.1 0 0.98 5 33 22
15 29.7 7.2 0 0.89 6 33 10
16 28.8 0 0 0.76 4 32 18
17 28.8 0 0 0.53 5 32 18
18 28.8 6.3 0 0.37 4 49 20
19 28.8 15.3 10 0.2 2 47 25
20 29.7 25.2 10 0.04 1 42 30
21 21.6 15.3 10 0 1 39 25
22 19.8 9.9 10 0 0 36 22
23 17.1 0 0 0 0 34 18
24 17.1 0 0 0 0 29 18

5.2. Simulation results and discussion under the risk-neutral strategy 

The proposed model under the risk-neutral strategy is simulated using the GAMS software. The optimal energy 
exchange between the system components on the AC and DC buses as well as thermal and hydrogen energy exchange 
under the deterministic strategy are shown in Fig. 2. 

 (a) 
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(b) 

(c)

(d)

Fig. 2. Energy exchange under the risk-neutral strategy: (a) AC bus; (b) DC bus; (c) Heat; and (d) Hydrogen.

As can be seen in Fig. 2, during the first 7 hours of the day (light load hours) where the renewable power generation 
is approximately zero, almost all the required electrical power is purchased from the grid and it is distributed between 
the electrical loads and the components that are connected to the DC bus. Since most of the PHEVs are expected to 
disconnect from the grid at the 7th hour, the distributed power to the DC bus during the first 7 hours is mostly allocated 
for charging the PHEVs. The power produced by RES during the 8th-12th hours are used for charging the PHEVs that 
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require energy for traveling. Since the prices are relatively high in this period, the surplus of power produced by the 
renewable sources and discharging the PHEVs after meeting the demands of electrical loads and PHEVs are sold to 
the grid. At the 14th hour, due to a relative reduction of the price, this trend has changed temporarily and the electrical 
loads are supplied by the grid and RES. At this hour, the power produced by discharging the PHEVs are used for 
charging the PHEVs that require energy for traveling. According to the disconnection of a majority of the PHEVs 
from the grid before the 18th hour, the shortage of power production during the 14th-17th hours is purchased from the 
grid. The reason for the shortage of power production at these hours is that the PHEVs should be charged for departure 
at their corresponding hours. Then, from the 18th hour onwards, due to the increased electricity prices and 
approximately zero renewable energy production, the energy is discharged from the PHEVs, first meeting internal 
electrical loads and then sold to the grid. 

As can be seen in Fig. 2, at the 1st, 2nd, 3rd, 10th, 11th, and 17th hours, the gas price is relatively low. At these hours, the 
boiler not only satisfies the heat load but also generates extra heat for storage and future use. In the remaining hours, 
where the gas price is relatively high, the heat load is supplied by an optimal combination of discharging the heat 
storage system and operation of the boiler. 

Due to the low electrical efficiency of the fuel cell and the variation of the electricity price at different hours, it can be 
seen from Fig. 2 that the fuel cell is not used to convert the hydrogen into electricity. Also, according to the low cost 
of natural gas storage and high efficiency of heat storage, the fuel cell is not used for heat generation purposes either.

As can be seen in Fig. 2, the energy stored in the hydrogen tank is equal to 50 kWh at the beginning of the operation 
and it is assumed that it should not be less than this amount at the end of the operation. Due to the presence of a 
hydrogen load, and the relatively low price of electricity in the early hours, and the amount of renewable generation, 
the electrolyzer is operated during the 3rd-10th hours occasionally to increase the hydrogen energy stored in the tank. 
Since the operation of the fuel cell in this system is not profitable, the electrolyzer is only operated to supply the FCVs. 

In this system, the charging and discharging of the PHEVs are managed so that optimal operation is realized. 
Accordingly, the operation of the PHEVs 1, 25 and 50 under this strategy are shown in Fig. 3. 

According to Table 2, PHEV 1 is initially connected to the system, leaves home at the 7th hour and arrives at the 
workplace at the 9th hour and reconnects to the system. Therefore, the operation of this PHEV before the 7th hour 
should be managed such that it would have the required energy for doing two hours of traveling. As shown in Fig. 3, 
this PHEV is charged during the 2nd-7th hours and its battery state of charge has increased. Due to a relative increase 
of electricity price at the 12th hour, this PHEV is charged at the 10th hour and discharged at the 12th hour. This PHEV 
leaves the workplace at the 20th hour and arrives at home at the 21st hour and reconnects to the system. Therefore, the 
operation of this PHEV before the 20th hour should be managed such that it would have the required energy for doing 
one hour of traveling. Also, due to a relative increase of the electricity price at the 18th hour, this PHEV is charged 
before the 18th hour and contributes to the system’s profit by discharging and selling power to the grid during the 18th-
20th hours. In the remaining hours, due to the continuous reduction of electricity prices, this PHEV has not been 
charged and discharged. This is because it would not be able to take advantage of lower prices by discharging and 
selling power to the grid due to the decreasing trend of the electricity prices. Another reason is that there is no 
constraint on the SOC of PHEV batteries at the end of the operational timeframe (i.e. 24 hours) in this study. 

According to Table 2, the PHEV 25 is initially connected to the system, leaves home at the 7th hour and arrives at the 
workplace at the 8th hour and reconnects to the system. Therefore, the operation of this PHEV before the 7th hour 
should be managed such that it would have the required energy for doing one hour of traveling. As shown in Fig. 3, 
this PHEV is charged at the 1st hour and during the 3rd-6th hours and its battery state of charge has increased. This 
PHEV is discharged at the 2nd hour to provide the energy for charging of other PHEVs. This PHEV leaves the 
workplace at the 15th hour, arrives at home at the 17th hour and reconnects to the system. Therefore, its operation 
before the 15th hour should be managed such that it would have the required energy for doing two hours of traveling. 
Also, due to a relative increase of electricity price at the 18th hour, this PHEV is charged before the 18th hour and 
increases the system’s profit by discharging and selling power to the grid during the 18th-19th hours. Furthermore, 
similar to the PHEV 1, this PHEV has not been charged and discharged in the remaining hours. 
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According to Table 2, the PHEV 50 is initially connected to the system, leaves home at the 9th hour and arrives at the 
workplace at the 10th hour and reconnects to the system. Therefore, the operation of this PHEV before the 9th hour 
should be managed such that it would have the required energy for doing one hour of traveling. As shown in Fig. 3, 
this PHEV is charged at the 1st, 3rd, 4th, 7th, and 8th hours and its battery state of charge increases. This PHEV is 
discharged at the 6th hour to provide the energy for charging of other PHEVs. This PHEV leaves the workplace at the 
16th hour, arrives at home at the 17th hour and reconnects to the system. Therefore, the operation of this PHEV before 
the 16th hour should be managed such that it would have the required energy for doing one hour of traveling. Also, 
due to a relative increase of electricity price at the 18th hour, this PHEV is charged before the 18th hour and increases 
the system’s profit by discharging and selling power to the grid during the 18th-21st hours. In the remaining hours, due 
to the decreasing trend of electricity prices and as there is no constraint on its SOC at the end of the operational 
timeframe, this PHEV has not been charged and discharged. It is worthwhile noting that the electricity prices are much 
cheaper in the early hours of the morning than the late night hours.

(a) 

(b) 
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(c) 

Fig. 3. Operating status of the considered PHEVs under the risk-neutral strategy: (a) PHEV 1; (b) PHEV 25; and (c) PHEV 50.

The profit of the system under this strategy is equal to $18,649.

5.3. Simulation results and discussion under the risk-averse strategy

In order to simulate the system under the risk-averse strategy for handling the uncertainty associated with the power 
consumption of PHEVs, the values of  are selected randomly and the robustness of the objective function is 𝛿1
optimized under the considered constraints using the GAMS software. The obtained results show the maximum 
deviation from the predicted power consumption of PHEVs achieves a minimum profit that is greater than the critical 
profit. 

The results of optimizing the robustness of the objective function for different values of  are shown in Fig. 4 (a). 𝛿1
This curve shows how much uncertainty in the predicted power consumption of PHEVs is tolerable in order to achieve 
a minimum profit of . Note that in this figure,  corresponds to the risk-neutral case where the critical (1 ‒ 𝛿1)𝑃𝑟𝑑 𝛿1 = 0
profit is equal to the deterministic profit. According to Fig. 4 (a), as  increases, the robustness parameter increases 𝛿1
as well, which means a higher range of error in predicting the power consumption of PHEVs can be tolerated at the 
cost of lower profit expectations. For example, for the case of 10 and 70 percent less profit than the profit gained under 
the risk-neutral strategy, then 9.1% and 66.7% of error in the predicted power consumption of PHEVs can be tolerated, 
respectively. The PHEVs consume more power under the risk-averse strategy which is due to the lower profit of the 
system. Also, it is worth noting that because of the limited capacity of the PHEVs batteries, the power consumption 
of the PHEVs can only increase to the charge capacity of the battery.

(a)
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(b)

Fig. 4. Objective functions of the proposed IGDT method: (a) Robustness; and (b) Opportunity.

Under the risk-averse strategy, when the deviation factor of profit ) is equal to 0.4, the critical profit will be equal (𝛿1
to $11,189 and the maximum deviation from the predicted amount of power consumption would be equal to 0.5. The 
optimal energy exchange between the system components on the AC and DC buses as well as thermal and hydrogen 
energy exchange under the risk-averse strategy are shown in Fig. 5. The operation of the PHEVs 1, 25 and 50 under 
this strategy are also shown in Fig. 6. 

(a) 

(b) 
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(c)

(d)

Fig. 5. Energy exchange under the risk-averse strategy: (a) AC bus; (b) DC bus; (c) Heat; and (d) Hydrogen.
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(a) 

(b) 

(c) 

Fig. 6. Operating status of the considered PHEVs under the risk-averse strategy: (a) PHEV 1; (b) PHEV 25; and (c) PHEV 50.

Under this strategy, as the power consumption of PHEVs increases, the purchased electricity from the power grid also 
increases and the profit decreases. For example, by setting the critical profit at $13,420 and solving the proposed 
robustness objective function using GAMS, the maximum deviation from the predicted amount of power consumption 
will be equal to 25.5 percent. If the power consumption increases, the profit will be less than the critical profit. Also, 
by increasing the power consumption of PHEVs, the total discharging power of PHEVs decreases and less power will 
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be sold to the upstream power grid. As can be seen in Fig. 6, by increasing the power consumption of the PHEV 1, a 
lower amount of its energy is discharged. This is also true for the PHEVs 25 and 50.

5.4. Simulation results and discussion under the risk-seeking strategy

In order to simulate the system under the risk-seeking strategy for handling the uncertainty associated with the power 
consumption of PHEVs, the values of  are selected randomly and the opportunity objective function is optimized 𝛿2
under the constraints considered using GAMS software. The obtained results show the minimum deviation from the 
predicted power consumption of PHEVs for achieving a maximum profit that is greater than the target profit. 

The results of optimizing the opportunity objective function for different values of  are shown in Fig. 4 (b). This 𝛿2
curve shows the minimum required uncertainty of the power consumption of PHEVs in order to have a certain 
maximum profit of . According to Fig. 4 (b), a higher target profit requires higher deviations of the power (1 + 𝛿2)𝑃𝑟𝑑
consumption of PHEVs from the forecasted values. For example, for the case of 10 and 70 percent more profit than 
the profit under the risk-neutral strategy, 13 and 95 percent of error in the predicted power consumption of PHEVs is 
required, respectively. 

Under the risk-seeking strategy, when the deviation factor of profit ) is equal to 0.4, the target profit would be (𝛿2
equal to $2,610 and the minimum deviation from the predicted amount of power consumption would be equal to 0.53. 
The optimal energy exchange between the system components on the AC and DC buses as well as thermal and 
hydrogen energy exchange under the risk-seeking strategy are shown in Fig. 7. Also, the operation of the PHEVs 1, 
25 and 50 under this strategy are shown in Fig. 8.

(a)

(b)
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(c)

(d)

Fig. 7. Energy exchange under the risk-seeking strategy: (a) AC bus; (b) DC bus; (c) Heat; and (d) Hydrogen.

(a) 
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(b) 

(c) 

Fig. 8. Operating status of the considered PHEVs under the risk-seeking strategy: (a) PHEV 1; (b) PHEV 25; and (c) PHEV 50.

Under this strategy, as the power consumption of PHEVs decreases, purchased electricity from the power grid 
decreases and profits increase. For example, by setting the target profit at $20,131 and solving the proposed 
opportunity objective function using GAMS, the minimum deviation from the predicted amount of power 
consumption would be equal to 26.1 percent and if the power consumption still decreases, the profit will be less than 
the target profit. Also, by decreasing the power consumption of PHEVs, the total discharging power of PHEVs 
increases and more power will be sold to the upstream power grid. As can be seen in Fig. 8, by decreasing the power 
consumption of the PHEV 1, a higher amount of its energy is discharged. This is also valid for the PHEVs 25 and 50. 

5.5. Sensitivity analyses 

In this sub-section, we report on two-way sensitivity analyses, carried out to assess the effects of changes in the number 
of employed PHEVs as well as the deviation factors under the risk-averse and risk-seeking strategies on the respective 
robustness and opportunity parameters. In this regard, we first varied the number of adopted PHEVs in the risk-
constrained optimal energy management from 5 to 50 in intervals of 5, whilst also varying the deviation factors from 
0 to 0.8 for the risk-averse strategy and to 0.7 for the risk-seeking strategy. In this manner, we created 90 and 80 
combinations of the number of integrated PHEVs and deviation factor respectively for the risk-averse and risk-seeking 
strategies. Finally, we applied the proposed risk-based model to each combination of the number of PHEVs and 
deviation factor. The undertaken sensitivity analyses are shown in Figs. 9 and 10. As can be seen in Fig. 9, increasing 
the number of integrated PHEVs into the system and/or the risk-averse deviation factor, increases the robustness 
parameter monotonically, but not linearly. In other words, the operator of a system with a greater number of employed 
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PHEVs has a better ability to make robust decisions against the forecasted overall behavior of the fleet of PHEVs. 
Also, we note from Fig. 10 that the robustness parameter for every number of adopted PHEVs has a saturation point, 
past which a further increase in the risk-averse deviation factor would not alter it anymore. On the other hand, it is 
apparent from Fig. 10 that increasing the number of adopted PHEVs and/or risk-seeking deviation factor, increases 
the opportunity factor monotonically, though not proportionally. Put differently, the system operator will get a better 
opportunity to take advantage of the uncertainty in the predicted driving patterns of the PHEVs if the number of 
utilized vehicles increases. In our view, the results of the uncertainty analyses emphasize the robustness and validity 
of our proposed risk-driven approach to accommodate the uncertainty associated with power consumption of PHEVs, 
while optimally operating the energy system that incorporates them. 

Fig. 9. Sensitivity of the robustness parameter to the risk-averse deviation factor and the number of PHEVs.

Fig. 10. Sensitivity of the opportunity parameter to the risk-seeking deviation factor and the number of PHEVs.
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6. Conclusion and future work

In this paper, risk-based optimal operation of an energy hub in the presence of uncertainty associated with the power 
consumption of PHEVs during trips is studied. The proposed energy hub has a bilateral power exchange with the 
upstream power grid and a unilateral power exchange with the upstream natural gas network and includes photovoltaic 
panels, wind turbines, PHEVs, FCVs, an inverter, a rectifier, a hydrogen subsystem, a boiler, and a heat storage system. 
The proposed model is solved using GAMS software under both risk-averse and risk-seeking strategies by applying 
the robustness and opportunity functions of IGDT, respectively. Based on solving the robustness function of IGDT 
for each deviation factor of profit under the risk-averse strategy, the tolerable amount of uncertainty for predicted 
power consumption is calculated to achieve a minimum amount of profit. On the other hand, based on solving the 
opportunity function of IGDT for each deviation of profit under the risk-seeking strategy, the minimum deviation 
from the predicted value of power consumption in order to achieve maximum profit is calculated. In fact, the results 
obtained from the robustness and opportunity functions help the energy hub operator to take appropriate decisions for 
coping with various levels of uncertainty associated with the power consumption of PHEVs during trips. In addition, 
the adaptive risk-constrained modeling framework developed in this paper is not principally targeted and limited to 
relatively small residential complexes. In fact, the proposed risk assessment model can be applied to other forms of 
renewable and sustainable energy systems – micro-grids, nano-grids, virtual power plants, load aggregators, and so 
forth – with lower or higher targeted populations. Future work will concentrate on developing a risk-based model for 
the optimal operation of energy hubs that considers the uncertainty associated with the power consumption of PHEVs 
together with the uncertainty associated with other variables of the system such as electrical and thermal loads, solar 
radiation, wind speed, and market prices. In this respect, research into solving this problem is already underway to 
develop a new improved version of the standard IGDT, which enables the simultaneous modeling of several uncertain 
parameters in order to tackle the uncertainty in simulation results more accurately, whilst also taking advantage of 
exact mathematical uncertainty modeling benefits of the original IGDT.
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Additional file 1

Table S1. Temporal behaviors (driving patterns) of the considered fleet 50 PHEVs.

PHEV number [h]𝑡𝑙ℎ  [h]𝑡𝑎𝑤  [h]𝑡𝑙𝑤 [h]𝑡𝑎ℎ  [km/h]𝑉𝑉

1 7 9 20 21 30
2 8 10 20 21 31
3 8 9 14 16 26
4 6 7 17 19 34
5 7 8 19 20 37
6 7 8 17 18 20
7 8 10 19 20 38
8 7 8 17 19 29
9 8 9 15 16 27
10 8 10 16 17 35
11 7 8 18 19 34
12 8 9 20 21 28
13 7 8 14 16 24
14 7 8 15 17 21
15 9 10 16 17 22
16 7 8 18 19 36
17 6 7 16 17 30
18 6 7 15 16 33
19 8 9 15 16 22
20 9 10 18 19 28
21 5 7 15 16 34
22 8 10 20 21 30
23 9 10 19 20 23
24 7 8 16 17 28
25 7 8 15 17 35
26 8 9 18 20 32
27 7 9 19 20 26
28 7 8 17 19 37
29 8 9 17 18 24
30 9 10 16 18 29
31 10 11 20 21 38
32 7 8 15 17 25
33 7 8 16 18 34
34 7 9 18 19 37
35 7 9 15 16 31
36 7 9 19 20 29
37 7 8 15 16 22
38 6 7 16 17 33
39 9 10 18 20 28
40 8 10 18 19 36
41 9 10 16 17 30
42 7 8 20 21 25
43 8 10 19 21 38
44 9 10 18 20 26
45 8 9 15 16 24
46 6 8 16 17 31
47 10 11 14 15 35
48 8 9 18 19 28
49 8 9 16 18 37
50 9 10 16 17 25


