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Abstract

Recent advances in nanofabrication and optical manipulation techniques are making it possible

to build arrays of quantum emitters with accurate control over the locations of their individual

elements. In analogy with classical antenna arrays, this poses new opportunities for tailoring quan-

tum interference effects by designing the geometry of the array. Here, we investigate the N th-order

directional correlation function of the photons emitted by an array of N initially-excited identical

quantum emitters, addressing the impact of the appearance of grating lobes. Our analysis reveals

that the absence of directivity in the first-order correlation function is contrasted by an enhanced

directivity in the N th-order one. This suggests that the emitted light consists of a superposition of

directionally entangled photon bunches. Moreover, the photon correlation landscape changes radi-

cally with the appearance of grating lobes. In fact, the photons no longer tend to be bunched along

the same direction; rather they are distributed in a set of correlated directions with equal prob-

ability. These results clarify basic aspects of light emission from ensembles of quantum emitters.

Furthermore, they may find applications in the design of nonclassical light sources.
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I. INTRODUCTION

Collective light emission effects arising from ensembles of quantum emitters are of great

relevance from both fundamental and technological points of view. From a theoretical stand-

point, collective effects give rise to new phenomena that enhance our understanding of basic

light-matter interaction processes. Some examples include superradiance [1, 2], subradiance

[3, 4], collective Lamb shift [5, 6], modification of temporal correlations [7, 8], strengthen-

ing of the coupling to an optical mode [9], and the interplay between strong coupling and

quenching [10]. From a more practical perspective, the emission properties of ensembles

of quantum emitters are relevant for the design of nonclassical light sources, which are of

general interest for quantum technologies [11–13].

Recently, there has been increasing attention to the fabrication of arrays of quantum

emitters with control over the positions of their individual elements. In particular, very

impressive advances have taken place in the field of optical manipulation of cold atoms.

Nowadays it is possible to deterministically build one-dimensional (1D) [14], two-dimensional

(2D) [15], and even three-dimensional (3D) [16, 17] arrays with quite arbitrary geometries

and control of each individual position of several tens of elements. Fixing the positions of

solid-state quantum emitters is more challenging. Nevertheless, there have been promising

demonstrations of 2D array geometries based on diamond nanopillars containing silicon

vacancy centers [18], the optical writing of quantum dots in hydrogenated quantum wells

[19], and atomically thin semiconductors (tungsten diselenide WSe2) stationed on top of

patterned surfaces [20] and even coupled with on-site plasmonic cavities [21]. It is likely that

future advances will provide even finer control over the position and emission properties of

arrays of quantum emitters.

Explorations of emission phenomena induced by the geometry of an array of quantum

emitters is facilitated by these fabrication advances. Motivated by the associated potential

for discovering exotic physic phenomena and realizing practical engineering applications, we

recently introduced the concept of quantum antenna arrays [22]. Instead of the standard

focus on the interactions between the individual emitters, we have taken inspiration from

classical antenna arrays and have put an emphasis on the interference phenomena arising

from superpositions of the fields radiated by ensembles of quantum emitters. Particular

interest was guided by the known fact that (classical) antenna arrays employ interference
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to enhance the directive properties of their individual elements by radiating their composite

fields into one or more desired directions [23–26]. In an analogous but essentially different

manner, the geometry of quantum antenna arrays can be designed to provide control over

the directional properties of the correlations between their measured photons. The original

analysis in [22] was restricted to first- and second-order directional correlation functions.

Here, we extend that work and evaluate the N th-order directional correlation for an array of

N initially excited quantum emitters. Previous works have studied the N th-order directional

correlation function [27]. However, our analysis focuses on the appearance of grating lobes,

and how their role impacts the characteristics of higher-order photon correlations. We note

that other recent works have also pursued antenna array concepts for analyzing the emission

from arrays of quantum emitters, either to shape the emission of a single photon [28, 29] or

to control two-photon correlations by either designing the initial state [30] or continuously

driving one element and controlling the interactions [31].

The remainder of the manuscript is organized as follows. First, we introduce the theo-

retical framework in Section II. We then use it in Section III to derive a tractable expression

for the evaluation of the N th-order directional correlation function. Next, we make use of

this expression in Section IV to reveal different aspects of directional photon bunching with

particular attention on the role of the grating lobes in the corresponding patterns. Exam-

ples are given to illustrate the main results. Finally, conclusions and future perspectives are

presented in Section V.

II. THEORETICAL FRAMEWORK

We start by considering a generic array of N emitters located at positions r1, . . . , rN

(see Fig. 1(a)). We assume that all emitters are identical and can be modelled as two-level

systems, {|e〉 , |g〉}, with angular transition frequency ω0 and dipole moment p = uz p. We

also assume that all of the emitters are initially excited, i.e., the initial state of the quantum

emitter’s subsystem can be written as follows:

|ψ〉 = |e1 · · · eN〉 =
N∏
n=1

σ̂†n |0〉 (1)

More complex initial states could be considered to further understand how one might

control photon correlations. However, this initial configuration is of particular interest from
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FIG. 1: (a) Sketch of the geometry. An ensemble of N quantum emitters are located at

positions r1, . . . , rN . They are modelled as two-level systems {|e〉 , |g〉}. All of these

emitters are initially excited |ψ〉 = |e1 · · · eN〉 and decay by emitting photons. The photon

emission occurs in correlated directions that depend on the geometry of the array. (b)

Conceptual sketch of directional photon bunching. Directivity is absent in most individual

decay processes, leading to the average number of photons having an isotropic emission

pattern (solid red line). On the other hand, collective decay processes exhibit bunching of

the photons along specific directions (dashed lines).

a practical standpoint. In particular, (1) is a factored state that does not require the emit-

ters to interact during their preparation process nor preserve the long-range entanglement

between them. Furthermore, the initial state (1) can be prepared by independently exciting

each emitter with an initialization pulse. The main practical obstacles of this configuration

are that all emitters must be identical and that the time uncertainty in the initialization of

the emitters must be much smaller than the emitter’s lifetime.

The quantum emitters will decay from this initial state via spontaneous emission. By ana-

lyzing the fields generated during this process, we gain access to different photon correlations

that predict the outcomes of relevant measurements. For example, the probability density

per (solid angle)L per (unit time)L of measuring L photons along the u1, . . . ,uL directions

at times t1, . . . , tL is proportional to following field correlation [32, 33]

pL (u1, t1; . . . ;uL, tL) ∝ r2L
〈
Ê−θ (u1, t1) · · · Ê−θ (uL, tL)Ê+

θ (uL, tL) · · · Ê+
θ (u1, t1)

〉
(2)
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where Ê+
θ (Ê−θ ) is the relevant positive (negative) frequency electric field operator [32, 33]. In

many experiments one is interested in the directional properties of the emissions irrespective

of the times at which detection of the photons occurs. In order to gain insight into their

directional correlations, we define the time-integrated field correlation:

gL (u1, . . . ,uL) =

ˆ ∞
0

dt1 · · ·
ˆ ∞
0

dtL pL (u1, t1; . . . ;uL, tL) (3)

Specifically, the gL time-integrated correlation functions are proportional to the average

number of L-photon coincidence measurements for any time delay [22, 34]. Thus, they

provide important information on whether or not the measurements of the emitted photons

in different directions are correlated.

Finally, we note that if the emitters are weakly coupled, their interactions during their

decay process can be neglected. The gL correlation functions can then be written as the

product of sin2θ functions, which takes into account the directionality of the individual dipole

emitters, and a generalized quantum array factor that represents the overall interference

pattern and takes into account the impact of the geometry of the array [22].

gL (u1, . . . ,uL) ∝

(
L∏
l=1

sin2θl

)
fL (u1, . . . ,uL) (4)

where we have introduced the generalized quantum array factor [22]

fL (u1, . . . ,uL) =
N∑

n1,...,nL=1

N∑
m1,...,mL=1

〈
σ̂†n1
· · · σ̂†nL

σ̂mL
· · · σ̂m1

〉 L∏
p=1

eik0up·rnpe−ik0up·rmp (5)

III. EVALUATION OF THE N th-ORDER DIRECTIONAL CORRELATION FUNC-

TION

Equations (4) and (5) provide a relatively simple theoretical framework for studying cor-

relations between the directions in which the photons are measured. In addition, the in-

troduction of the generalized array factor provides an immediate connection with classical

antenna theory [23–26]. This feature makes it possible to point out the most essential dif-

ferences between classical and quantum antenna arrays, as well as to establish fundamental

analogies. However, it becomes an increasingly complex task to examine the generalized

array factor as given by Equation (5) when the order L of the correlation increases. For this

reason previous analyses have been restricted to studying the 1st- and 2nd-order correlation

5



functions [22]. Here, we explicitly evaluate the N th-order correlation function. Since our

model assumes that the number of excitations is preserved, this is the highest-order non-

trivial correlation function, i.e., gL = 0 for L > N . We will demonstrate that it is possible

to derive a tractable expression for this extreme case.

To this end, let {|ζn〉} with n = 1, . . . , 2N be a basis for all possible states of the array

of N emitters. This basis can be arbitrary. Nevertheless, we define only for convenience the

first state of this basis as all emitter’s being in their ground state, i.e., |ζ1〉 = |g1, . . . gN〉.

One then finds the identity:

〈ζn|
N∏
p=1

σ̂mp |ψ〉 =

1 if |ζn〉 = |ζ1〉 and mi 6= mj ∀i, j

0 else
(6)

We then introduce the identity operator Î =
∑

n |ζn〉 〈ζn| between the composite operator

σ̂†nL
σ̂mL

in Equation (5) for L = N . This step allows us to rewrite the generalized quantum

array factor as:

fN (u1, . . . ,uN) =

∣∣∣∣∣
N∑

m1,...,mN=1

ξm1···mN

N∏
p=1

eik0up·rmp

∣∣∣∣∣
2

(7)

where we have defined ξm1···mN
= 1 for mi 6= mj ∀i, j and ξm1···mN

= 0 in the rest of the

cases. This definition of ξm1···mN
= 1 implies that the sum in Equation (7) runs over all

possible permutations of the rn position vectors in the associated product of exponentials:

eik0u1·r1eik0u2·r2 · · · eik0uN ·rN (8)

Therefore, fN (u1, . . . ,uN) is given by the magnitude squared of a sum over the N ! per-

mutations of the indices of Equation (8). For example, we would then have for N = 2

emitters:

fN=2 (u1,u2) =
∣∣eik0u1·r1eik0u2·r2 + eik0u1·r2eik0u2·r1

∣∣2 (9)

and for N = 3 emitters:

fN=3 (u1,u2,u3) =
∣∣eik0u1·r1eik0u2·r2eik0u3·r3 + eik0u1·r1eik0u2·r3eik0u3·r2

+eik0u1·r2eik0u2·r1eik0u3·r3 + eik0u1·r2eik0u2·r3eik0u3·r1

+eik0u1·r3eik0u2·r2eik0u3·r1 + eik0u1·r3eik0u2·r1eik0u3·r2
∣∣2 (10)
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Intuitively, these results can be understood in terms of the ”which-path” information

becomes available for any given state of the quantum emitter subsystem. After measuring a

N -photon coincidence event, the emitter’s subsystem must necessarily be in the ground state,

i.e., |e1 · · · eN〉 → |g1 · · · gN〉. Therefore, the state of the emitters contains no information

as to which emitter radiated the photon measured at a given detector. This means there is

no which-path information and, as a consequence, quantum interference can occur. In this

manner, each of the permutations in (5) can be understood as a different path that connects

the detection of a photon in each up direction to the emitter at the rmp location.

This analysis indicates that the N th-order correlation function for an array of N initially

excited emitters maximizes the quantum interference with respect to any lower-order corre-

lation functions. Indeed, the other extreme effect corresponds to the first-order correlation

function, studied in [22]. The first order array factor is given by

f1 (u1) =
∑
n,m

〈
σ̂†nσ̂m

〉
eik0u1·rne−ik0u1·rm (11)

with the initial state correlation functions:
〈
σ̂†nσ̂m

〉
= δnm given by Equation (1). This

outcome leads to an absence of interference, i.e., the geometry of the array induces no

directionality in the average number of photons measured as a function of direction giving

f1 (u1) = N2. Again, this effect can be intuitively understood in terms of the ”which-path”

information. The action of a single σ̂m operator projects the initial state |e1 · · · eN〉 onto

|e1 · · · em−1 gm em+1 · · · eN〉. Thus, it is then possible to identify the emitter from which the

photon originated. We further note that similar considerations of vanishing interference

can be applied to the design of an isotropic single-photon source with emitters which have

degenerate ground states [35].

Therefore, the directional correlations for an array of initially-excited emitters are charac-

terized by the absence of interference in the 1st-order correlation function, i.e., in the average

number of photons measured in a given direction, while there are directional effects in higher-

order correlation functions [22, 27]. In fact, the N th-order correlation function represents

the maximal interference effects, which will lead to the directive phenomena. Physically,

this feature implies that the photons are emitted as a superposition of photon bunches (see

Fig. 1(b)). Therefore, the measurement of a single array decay process will show that the

emitted photons will appear bunched along preferred directions (constructive interference),

while avoiding other forbidden directions (destructive interference). At the same time, if
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one averages the measurements over many array decay processes, it will be found that there

is an isotropic distribution of the number of photons measured per direction, following the

first-order correlation function.
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FIG. 2: (a) Sketch of the geometry. A linear array of N = 3 uniformly spaced quantum

emitters with position vectors rn = nd, n = 1, 2, 3 and d = 1.5λ0, λ0 being the wavelength

at their transition frequency, is oriented vertically along the Z-axis. (b) Sketch of three

measurement outcomes with the same probability. Top-left: Three photons measured

along the same direction θ1 = θ2 = θ3 = π/3. Top-right: Two photons measured along this

direction: θ2 = θ3 = π/3, and the remaining photon measured along the first grating lobe

direction θ1 = acos(cosπ
3
− 2π

k0d
' 0.55π). Bottom center: Two photons measured along the

direction, θ2 = θ3 = π/3, and the remaining photon measured along the second grating

lobe direction θ1 = acos(cosπ
3
− 4π

k0d
' 0.81π). For reference, the red line indicates the

N th-order array factor f3(θ1, θ2, θ3) as a function of θ1 and evaluated at θ2 = θ3 = π/3.

IV. DIRECTIONAL PHOTON BUNCHING

Equation (7) provides a convenient theoretical framework for studying N th-order correla-

tion effects and the characteristics of the expected photon bunches. We start by analyzing

a limiting case before introducing more general photon correlation examples. It allows for
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a simple formulation while at the same time providing some important insights into the

characteristics of directional photon bunching in the emissions from ensembles of quantum

emitters. Specifically, we consider a vertical linear array with emitters positioned along the

Z-axis, i.e, rn = uznd for n = 1, . . . N . Due to the rotational symmetry of this configu-

ration about the Z-axis, only variations in the θp elevation angles in the direction of the

unit vector up = uxcosφpsinθp + uysinφpsinθp + uzcosθp will impact the array factor. In

addition, we assume that N − 1 of the N evaluation directions are identical, i.e., θ1 = θ1

and θ2 = ... = θN = θ. Consequently, only the changes in the position of u1 index will

affect the product of exponentials given by Equation (8). Under these conditions the sum

in Equation (7) is composed of N different addends repeated (N − 1)! times. Thus, the

generalized quantum array factor reduces to

fN (u1,u2 = ... = uN) = [(N − 1)!]2

∣∣∣∣∣
N∑
n=1

einϕ1ei(
N(N+1)

2
−n)ϕ

∣∣∣∣∣
2

with ϕn = k0dcosθn. Note that the phase factor that is independent of n can be taken

outside the sum. This manipulation yields

fN (u1,u2 = ... = uN) = [(N − 1)!]2

∣∣∣∣∣
N∑
n=1

ein(ϕ1−ϕ)

∣∣∣∣∣
2

(12)

This interesting expression tells us that the array factor is proportional to the magnitude

squared of the classical array factor of a linear array of classical time-harmonic emitters

that are uniformly excited at the angular frequency ω0 [23–26]. Therefore, although direc-

tional photon bunching is a quantum effect, this simple expression allow us to translate by

mathematical analogy some results from basic classical antenna array theory to the study

of higher-order correlations in arrays of quantum emitters.

First, the classical array factor is maximized for ϕ1 = ϕ. This can be understood quantum

mechanically as directional photon bunching. In particular, if we know that N − 1 photons

have been measured at the angle θ, the most likely direction in which the remaining photon

will be measured must also be θ1 = θ. This means that all of the photons tend to be bunched

along the same direction.

Second, the directivity of a classical linear array increases along with the number of ele-

ments for a fixed separation distance. The analogous effect in terms of the photon correlation

functions is that an increase in the size of the array and the number of photons measured
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along a given direction narrows down the range of angles along which the remaining pho-

tons are likely to be measured. We re-emphasize that these directive effects occur in the

higher-order correlation functions even though there are none in the first-order correlation

function. In contrast with a classical antenna array, an increase in the size of an array of

initially-excited quantum emitters does not increase the directivity of the average number

of photons.

Finally, if the separation between the emitters is sufficiently large, classical antenna ar-

ray theory has established that grating lobes will appear in the radiation patterns. The

appearance of grating lobes means that the radiation is no longer concentrated into a single,

well-defined, direction; rather it is split into different ones. It is clear for photon correla-

tions that the evaluation of ϕ1 and ϕ1 +m2π in Equation (12) produces the same behaviors.

However, this effect can only be observed if the separation between the emitters d is large

enough so that ϕ1 + m2π = k0dcosθ1 + m2π lies within the so-called ”visible region”:

ϕ1 ∈ [−k0d, k0d]. Once this happens, the appearance of grating lobes dramatically affects

the photon bunching phenomena. Since there is no difference between the ϕ1 and ϕ1 +m2π

directions, any distribution of the photons between those two directions will occur with

the same probability. As schematically depicted in Fig. 2, it is equally likely to measure

1 photon in ϕ1 and N − 1 photons in ϕ1 + m2π, 2 photons in ϕ1 and N − 2 photons in

ϕ1 +m2π, ..., N − 1 photons in ϕ1 and 1 photon in ϕ1 +m2π. Therefore, once grating lobes

appear, the photons do not necessarily tend to appear together (to be bunched) around the

same direction. They are distributed along a discrete set of correlated directions, i.e., the

grating lobe directions. This conclusion emphasizes that photon bunching is ultimately an

interference effect and not the result of interactions between the photons.

In order to shed more light on this effect, Fig. 3 includes an extensive parametric analysis

of the generalized quantum array factor for a linear vertical array of N = 3 uniformly-spaced

elements. It is graphically presented as a function of the element separation distance, d, and

the evaluation directions, (θ1, θ2, θ3). As anticipated, very different behaviors are observed as

a function of the separation distance between the emitters. For a subwavelength separation,

d = 0.1λ0 (λ0 being the wavelength at the transition frequency), the quantum array factor

is always maximized at the points at which all three evaluation directions are identical, i.e.,

θ1 = θ2 = θ3. This means the photons tend to be bunched around the same direction for

this subwavelength array. The beamwidth around the maximal direction decreases as the
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FIG. 3: Quantum array factor (normalized to its maximum value) for different observation

angles and emitter separation distances for a vertical linear array of N = 3 quantum

emitters uniformly spaced along the Z-axis. The transition dipole moment of the emitters

is assumed for the convenience to be oriented along the Z-axis, p = uz p, in order to make

the quantum array factor depend only on the elevation angle θ. The normalized

(N = 3)-order quantum array factor, f3(θ1, θ2, θ3), is explicitly shown as a function of θ1

and θ2 for different values of θ3: first column, θ3 = 0.5π; second column, θ3 = 0.3π; and

third column, θ3 = 0.1π; and as a function of the emitter separation distance d: first row,

d = 0.1λ0; second row, d = 1.0λ0; and third row, d = 2.5λ0, λ0 being the wavelength at the

transition frequency of the quantum emitters.
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separation between the emitters increases.

Grating lobes begin to appear for sufficiently large separation distances between the

array elements, d > λ0/2. The array factor in these cases is not maximized only at the

points at which all of the evaluation directions are equal; there are multiple local maxima.

Moreover, it has the same magnitude in those directions. Consequently, modulo the factor

associated with the directivity of the individual emitters (element factor), this array factor

feature represents the fact that measurement outcomes will occur with the same probability

in those directions. In these grating lobe cases, quantum interference no longer leads to pure

directional photon bunching, but rather to the existence of correlated directions. Much like

in classical antenna theory, the number of observed grating lobes increases monotonically

along with the separation between the emitters. In fact, we note that for a separation of

d = 2.5λ0 one already observes 5 grating lobes when two evaluation directions are fixed (see

third row in Fig. 3).

Ultimately, the existence of too many grating lobes would hinder an experimental demon-

stration of these effects. Ideally, the evaluation of N -photon coincidence measurements re-

quires a large number of photon counters with good angular resolution or a minimum of N

photon counters and the ability to scan them over the entire direction space. A practical

experimental demonstration of directional photon bunching will have to be implemented

by dividing the direction space into a relatively small number of angular sectors. On the

other hand, since more than one grating lobe could lie within the same angular sector when

the separation distance between the emitters is large, the associated directional correlations

would be averaged out. Therefore, our parametric analyses suggest that separation distances

comparable to the wavelength would be optimal for an experimental demonstration of di-

rectional photon bunching and of the appearance of grating lobes with currently available

technologies.

V. CONCLUSIONS

Linear arrays of initially-excited quantum emitters were considered in this paper. The

main characteristic of these array systems was demonstrated to be its lack of directivity

effects in the first-order correlation function (average number of photons) while exhibiting

directivity in the N th-order correlation function. The results of our investigations demon-
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strated that this directivity can be designed by controlling the geometry of an array of

initially-excited quantum emitters. It was illustrated that the characteristics of the higher-

order photon correlations depends critically on the appearance of grating lobes. For small

separation distances, there are no grating lobes and all emitted photons will appear to

be bunched around a single direction. For larger distances, grating lobes appear and the

photons will be distributed along multiple correlated directions.

We believe that an experimental demonstration of this effect is within reach of current

cold atom technologies [14–16]. Furthermore, demonstrations based on solid-state emitters

might be enabled by recent advances in controlling the position of defects in bulk and 2D

semiconductors [18, 20, 21]. However, since indistinguishable photons are required for the

requisite interference effects to take place, a remaining practical challenge in those solid-

state systems remains. The properties of the emitters, e.g., their transition frequencies and

the magnitude and orientation of their transition dipole moments, must be nearly identi-

cal. Nevertheless, we expect that further developments associated with arrays of solid-state

quantum emitters might eventually facilitate practical implementations of the directional

photon bunching concept.
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