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Abstract: Considering dynamical disease spreading network consisting of moving 

individuals, a new double-layer network is constructed, one where the information 

dissemination process takes place and the other where the dynamics of disease spreading 

evolves. On the basis of Markov chains theory, a new model characterizing the coupled 

dynamics between information dissemination and disease spreading in populations of 

moving agents is established and corresponding state probability equations are 

formulated to describe the probability in each state of every node at each moment. Monte 

Carlo simulations are performed to characterize the interaction process between 

information and disease spreading and investigate factors that influence spreading 

dynamics. Simulation results show that the increasing of information transmission rate 

can reduce the scale of disease spreading in some degree. Shortening infection period and 

strengthening consciousness for self-protection by decreasing individual’s scope of 

activity both can effectively reduce the final refractory density for the disease but have 

less effect on the information dissemination. In addition, the increasing of vaccination 

rate or decreasing of long-range travel can also reduce the scale of disease spreading. 
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1 Introduction 

When disease spreads among humans, information about disease also spreads like 

infections within populations. Information dissemination can arouse the changes of human 

behavior in epidemic propagation while these behavioral changes in turn influence and 

even change disease dynamics. For example, individuals may decide to avoid infected 

individuals, or get vaccinated after hearing about the disease [Rizzo, Frasca and Porfiri 

(2014)]. Disease spreading and information dissemination have become two fundamental 

and interdependent dynamical processes on complex networks, which has led to a new 
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direction of research, that is, the research on dynamical interaction between the two types 

of spreading dynamics [Wang, Tang, Yang et al. (2014)]. 

To understand how information dissemination can change human behavior that is 

responsive to the presence of a disease, and further affect epidemic outbreaks, more and 

more researchers begin to investigate the influence of information dissemination on the 

disease spreading by incorporating human behavior into disease models [Wang, Tang, 

Yang et al. (2014); Bagnoli, Lio and Sguanci (2007); Fenichel, Castillo-Chavez, Ceddia 

et al. (2011); Chen, Jiang, Rabidoux et al. (2011); Zhang, Xie, Tang et al. (2014); Epstein, 

Parker, Cummings et al. (2008); Perra, Balcan, Gonçalves et al. (2011); Sahneh and 

Scoglio (2012); Ruan, Tang and Liu (2012); Liu, Xie, Chen et al. (2015); Funk, Gilad, 

Watkins et al. (2009); Granell, Gómez and Arenas (2013); Granell, Gómez and Arenas 

(2014)]. There are three main approaches to model the behavioral changes, namely, by 

modifying infectivity or contact rates [Bagnoli, Lio and Sguanci (2007); Fenichel, 

Castillo-Chavez, Ceddia et al. (2011); Chen, Jiang, Rabidoux et al. (2011); Zhang, Xie, 

Tang et al. (2014)], introducing additional classes or compartments in epidemiological 

models [Epstein, Parker, Cummings et al. (2008); Perra, Balcan, Gonçalves et al. (2011); 

Sahneh and Scoglio (2012); Ruan, Tang and Liu (2012); Liu, Xie, Chen et al. (2015)], 

and defining coupled models between disease spreading and information dissemination 

[Wang, Tang, Yang et al. (2014); Funk, Gilad, Watkins et al. (2009); Granell, Gómez and 

Arenas (2013); Granell, Gómez and Arenas (2014)]. In the first two approaches, 

researchers pay more attention on exploring and analyzing the influence of human 

behaviors on epidemic dynamics and neglect the influence of information dynamics. 

Moreover, the network model that supports spreading dynamics is characterized based on 

the structure of single layer complex network. In fact, the propagation mechanism and 

underlying network of information are different from that of disease. Information is often 

disseminated and exchanged through electronic communication networks, such as 

telephones [Jiang, Xie, Li et al. (2013)], instant messaging system (IMS), and the social 

networking service (SNS), but disease spreading usually takes place on a physical contact 

network [Starnini, Baronchelli and Pastor-Satorras (2013)]. Consequently, the third 

approach by defining coupled models between the two types of spreading dynamics has 

been given more attention in recent years. 

A pioneering step was taken by Funk et al. [Funk, Gilad, Watkins et al. (2009)], who 

linked information transmission model to an epidemiological susceptible-infected-

recovered (SIR) model to investigate how the spread of awareness influences disease 

spreading. Information dissemination makes people who aware of a disease in their 

proximity take measures to reduce their susceptibility, which leads to a lower size of the 

disease outbreak in a well-mixed population but does not affect the epidemic threshold. 

Considering the difference in the epidemic and information spreading processes, Granell 

et al. [Granell, Gómez and Arenas (2013)] proposed the use of microscopic Markov chain 

approach (MMCA) to understand the dynamical interaction in multiplex networks where 

the nodes represent the same entities in all layers. The multiplex corresponds to a double-

layer network, one where the unaware-aware-unaware (UAU) process takes place and the 

other where the dynamics of susceptible-infected-susceptible (SIS) evolves. The analysis 

of the interrelation between two processes on top of multiplex networks revealed the 

existence of a metacritical point at which the dissemination of awareness is able to 
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control the onset of the epidemics. Later, Granell et al. [Granell, Gómez and Arenas 

(2014)] proposed a full analysis of the critical properties in the more general scenario 

where infection does not imply immediate awareness, and where awareness 

dissemination does not imply total immunization. They further analyzed the influence of 

a massive broadcast of awareness (mass media) on the final outcome of the epidemic and 

found that the presence of the mass media makes the metacritical point vanish. Wang et 

al. [Wang, Tang, Yang et al. (2014)] investigated the asymmetrical interplay between the 

two intimately related dynamical processes with consideration of three aspects: the 

structures of complex layered networks, the asymmetrically interacting spreading 

dynamics, and the timing of the two types of spreading dynamics. When these three 

aspects are considered simultaneously, an epidemic outbreak on the physical layer can 

induce an outbreak on the communication layer, and information dissemination can 

effectively enhance the epidemic threshold. On that basis, Wang et al. [Wang, Liu, Cai et 

al. (2016)] further investigated the coevolution mechanisms and dynamics between 

information and disease spreading by utilizing real data and a proposed spreading model 

on multiplex network. The previous studies usually suppose that all aware individuals 

take the same level of precautions, ignoring individual heterogeneity. Kan et al. [Kan and 

Zhang (2017)] proved that though the introduction of the self-awareness can decrease the 

density of infection, which cannot increase the epidemic threshold no matter of the local or 

global information. Their finding is remarkably different to many previous results on 

single-layer network: local information based behavioral response can change the epidemic 

threshold. Pan et al. [Pan and Yan (2018)] investigated the coupled awareness-epidemic 

dynamics in multiplex networks considering individual heterogeneity. In Zang [Zang 

(2018)], a global awareness controlled spreading model (GACS) was proposed to explore 

the interplay between the coupled dynamical processes. To get a better understanding of the 

different roles of the spreading scope and effectiveness, Li et al. [Li, Liu, Peng et al. (2018)] 

proposed an epidemic model on multiplex networks with link overlapping. 

Although significant progress has been made in the study of complicated interplay 

between information dissemination and disease spreading, most of the studies presented 

so far refer to cases where the epidemic spreading takes place over a static network. The 

wiring structures of physical connections between individuals are fixed in time, or grown, 

once forever. The dynamics of epidemic spreading and the properties of final state are in 

fact heavily influenced by the network topology or connectivity patterns [Pastor-Satorras 

and Vespignani (2001);taba Gross, D’Lima and Blasius (2006); Frasca, Buscarino, Rizzo 

et al. (2006); Buscarino, Fortuna, Frasca et al. (2008); Li, Cao and Cao (2010); Buscarino, 

Fortuna, Frasca et al. (2014)]. A more reasonable setting is to consider the physical 

contact networks as dynamical systems, meaning that the wiring structures are allowed to 

change in time [Gross, D’Lima and Blasius (2006); Frasca, Buscarino, Rizzo et al. (2006); 

Buscarino, Fortuna, Frasca et al. (2008); Li, Cao and Cao (2010); Buscarino, Fortuna, 

Frasca et al. (2014)]. 

Here we focus on the interplay between information and disease spreading in multiplex 

networks of moving agents. The multiplex networks are composed of two layers of 

networks: one is static communication network where the information dissemination 

process takes place, and the other is dynamical disease spreading network consisting of a 

time-evolving wiring of interactions among a group of random walkers. This setting of 
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multilayer network conforms to the scenario, where the connections of communication 

layer are always fixed in a period of time but the physical connections of contact layer are 

changed in time and space. For example, people have a series of physical contacts due to 

daily activities on both short-range (commuting) and long-range (leisure or business trips) 

movements, while they can maintain stable social relationships at long durations. This 

stable number of relationships can be traced back to Dunbar’s Number in the 1990s. 

Dunbar’s theory contends that the human brain is only capable of managing relationships 

(staying in contact at least once per year and knowing how friends relate to others) with 

about 150 friends, which means that people seldom meet new friends and keep in touch 

with them in a short time. Therefore, the communication connections are assumed to be 

static in the information network and the physical connections are assumed to be time-

varying in the disease network. 

The remainder of this paper is arranged as follows. Section 2 describes the construction 

of the double-layer network, introduces the new model characterizing the coupled 

dynamics between information dissemination and disease spreading in populations of 

moving agents. In Section 3, the Monte Carlo simulations are performed to characterize 

the interaction process between information and disease spreading and investigate factors 

that influence spreading dynamics. The conclusions are given in Section 4. 

2 Model for information and disease spreading 

The multiplex network for information and disease spreading formed by two layers is 

depicted in Fig. 1. The top layer (denoted by A) is a representation of a static 

communication network, while the bottom one (denoted by B) is formed by the 

dynamical network of physical contacts. All nodes represent the same individuals in both 

layers, and each node of layer A is matched one-to-one with that of layer B. Each layer 

possesses a different topology, and the dynamical processes of disease and information 

spreading are typically asymmetrically coupled with each other.  

A

B

r

 

Figure 1: Multiplex network for information and disease spreading (each node of layer A 

is matched one-to-one with that of layer B) 

On top of the communication layer (layer A), we refer to Wang’s model of 

asymmetrically interacting spreading dynamics [Wang, Tang, Yang et al. (2014)] 

adopting classic susceptible-infected-recovered (SIR) model [Moreno, Pastor-Satorras 

and Vespignani (2002)] to describe the dissemination of information about the disease. 

Each node of layer A can be in one of the three states: susceptible state (SA), informed 
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state (IA), and recovered state (RA), where A represents layer A. Here, SA stands for the 

people who never heard or received any information about the disease (similar to 

ignorants), IA stands for the people who are aware of disease and are capable of 

transmitting the information to others in the same layer (similar to information spreaders), 

and RA stands for the people who have received the information but are not willing to 

pass it on to others (similar to stiflers). The process of node state transfer is shown in Fig. 

2 on the left. At each time step, information in layer A can come from two sources, the 

communication with informed neighbors of layer A or because the corresponding 

individual in layer B is already infected. If a neighbor is in the susceptible state, it will be 

informed with probability A  which can be called information-transmission rate. At the 

same time, each informed node can enter the recovering phase with probability A  which 

can be called information-recovery rate. Once an informed node makes a transition to the 

recovered state, it will remain in this state for all subsequent time. 

A

A

B

B

1

A

SA IA

IA RA

B

SB IB

IB RB

IA
SB

VB

 

Figure 2: The processes of node state transfer on layers A and B 

In the physical layer B, the spreading dynamics of (susceptible-infected-recovered-

vaccinated) SIRV model [Wang, Tang, Yang et al. (2014)] can be used to describe the 

disease spreading process. Each node of layer B can be in one of the four states: 

Susceptible state (SB), infected state (IB), recovered state (RB), and vaccinated state 

(VB), where B represents layer B. The process of node state transfer is shown in Fig. 2 on 

the right. The disease spreads from infected individuals to their neighbors with a 

probability B  which can be called disease-transmission rate, and infected individuals 

eventually recover with probability B  which can be called disease-recovery rate. If a 

node in layer B is in the susceptible state but its counterpart node in layer A is in the 

informed state, the node in layer B will be vaccinated with probability 1  which can be 

called vaccination rate. 

Since people in the realistic life are allowed to move, we employ dynamical network 

model [Frasca, Buscarino, Rizzo et al. (2006); Buscarino, Fortuna, Frasca et al. (2008); 

Buscarino, Fortuna, Frasca et al. (2014)] to describe the network topology of contact 

layer B. Precisely, the individuals constituting the nodes of the physical layer are here 

random walkers, which may additionally perform long-distance jumps and are only able 

to interact with individuals falling within a given interaction radius apart from them. The 

interaction radius r  (denoted in Fig. 1) is defined in layer B, where each individual 

interacts at a given time with only those individuals located within a neighborhood of 

radius r . Referring to the construction of dynamical network model [Frasca, Buscarino, 
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Rizzo et al. (2006); Buscarino, Fortuna, Frasca et al. (2008); Buscarino, Fortuna, Frasca 

et al. (2014)], we consider a system of N identical individuals independently moving in a 

two-dimensional plane of linear size L, with periodic boundary conditions. The 

individuals are represented as point particles, and their positions and velocities at time t  

are denoted as ( )i tr  and ( ) ( ( )cos ( ), ( )sin ( ))i i i i it v t t v t t v , 1,...,i N= . In our model, 

we further assume that the individuals move with a velocity modulus which is constant in 

time and equal for all the agents, i.e. ( ) , 1,...,iv t v i N=  =  and t . At the initial time 

0t =  the N particles were distributed at random. At each time step, the individuals are 

random walkers that update stochastically the direction angles ( )i t . The position and the 

orientation of each particle are updated according to Frasca et al. [Frasca, Buscarino, 

Rizzo et al. (2006); Buscarino, Fortuna, Frasca et al. (2008); Buscarino, Fortuna, Frasca 

et al. (2014)] 

( ) ( ) ( )

( ) ( )

i i i

i i

t t t t t

t t t t 

+  = + 

+  = + 

r r v
          (1) 

where ( )i t  are N independent identically distributed random variables chosen at each 

time with uniform probability in the interval [ , ] − . Additionally, to make the 

movements of individuals include the possibility that particles can move through the 

bidimensional space with time scales much shorter than those related to disease, as in the 

real scenario of individuals travelling by flights [Colizza, Barrat, Barthélemy et al. (2006)], 

we take into account that particle can make a long-distance jump with probability 

[0,1]jumpp  . The parameter jumpp  quantifies the probability for a particle to perform a long-

range jump into a completely random position, far from its previous position. In summary, at 

each time step, each particle moves following Eq. (1) (where ( ) ( cos ( ), sin ( ))i i it v t v t v ) 

with a probability 1 jumpp− , or performing a jump with probability 
jumpp . In the latter case 

Eq. (1) with ( ) ( cos ( ), sin ( ))i M i M it v t v t v , where 0.03Mv v = , are used. As can be seen 

from the above, 2N L = , r , v , and 
jumpp  are the main parameters to influence the 

contact network topology of layer B with moving individuals. 

Combined with the movement of individuals, the interaction processes between 

information dissemination and disease spreading can be summarized as follows. First, at 

time 0t = , a small number of nodes in layer B is randomly set as the seed of the infection, 

and the counterparts in layer A gain simultaneously the information that they are infected 

by disease. All other pairs of nodes, one from layer A and another from layer B, both are 

in the susceptible state. Then, at each time step, information dissemination obeys the SIR 

dynamical process in layer A, and the disease spreading follows the SIRV dynamical 

process in layer B. For a given individual in layer B, the probability of being infected 

increases with the number of infected individuals in the neighborhood of radius r . In 

layer B, we assume that the infection lasts 1 B =  simulation steps, so that all infected 

individuals become recovered   simulation steps after having transformed into infected 

state and, after that time  , they cannot catch the disease anymore. After that, the position 

and the orientation of each particle are updated according to Eq. (1). Finally, the 
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interaction spreading dynamics terminate, since all infected or informed nodes in both 

layers become recovered states that can no longer infect others. 

Next, we use microscopic Markov chain approach (MMCA) to establish the MMCA 

equations characterizing the coupled dynamics between information and disease spreading. 

Let A  denote the adjacency matrix representing the topological graph ( , )A A AG V E=  of 

layer A, i.e. 1ija =  if ( , ) Ai j E  and 0ija =  otherwise. At time k , each node i  can be in 

one of three possible states: SA, IA, and RA. The state of the node is indicated by a status 

vector ( )A

i ks , where a single 1 in the position corresponding to the present state, and 0 

everywhere else. ( ) [ ( ) ( ) ( )]A SA IA RA T

i i i ik s k s k s k=s , for all 1,...,i N .  

Let ( ) [ ( ) ( ) ( )]A SA IA RA T

i i i ik p k p k p k=p  be the probability mass function (PMF) of node i  at 

time k . For every node i  it states the probability of being in each of the possible states at 

time k . Moreover, let ( )B k  denote the interaction matrix of layer B at time t k= , as the 

connections of contact layer B change over time. ( ) 1ijb k =  if the thj  node is within the 

interaction radius of the thi  node at time t k= , and ( ) 0ijb k =  otherwise (Especially, it is 

assumed that ( ) 1iib k = , 1,...,i N = ). 

The evolution of SIR in layer A is described by the following equations: 

( +1) ( )[1 ( ) ( )]

( +1) ( )[ ( ) ( )] (1 ) ( )

( +1) ( ) ( )

( 1) MultiRealize[ (k+1) ]

SA SA A B

i i i i

IA SA A B IA

i i i i A i

RA RA IA

i i A i

A T A T

i i

p k s k f k g k

p k s k f k g k s k

p k s k s k

k





= − −

= + + −

= +

+ =s p

 (2) 

where MultiRealize[ ]  performs a random realization for the PMF given with (k+1)A

ip . 

In the model, ( )A

if k  is the probability that a susceptible individual i  receives the 

information from any combination of its informed neighbors at time t k= , and ( )B

ig k  is 

the probability that a susceptible individual i  catches the disease from any contact of its 

infected individuals in the neighborhood of radius r  at time t k= . ( )A

if k  and ( )B

ig k  are 

given by 

1

1

( ) 1 [1 ( )]

( ) 1 [1 ( ) ( )]

N
A IA

i A ij j

j

N
B IB

i B ij j

j

f k a s k

g k b k s k





=

=

= − −

= − −





   (3) 

Let 
1

( ) ( )
N

A SA

i

i

X k s k
=

= ,
1

( ) ( )
N

A IA

i

i

Y k s k
=

= , and 
1

( ) ( )
N

A RA

i

i

Z k s k
=

=  be the total number of 

nodes in statuses SA, IA, and RA at time t k= , respectively. Further, let 
1 [ ( )]A AN X=  , 

2 [ ( )]A AN Y=  , and 
3 [ ( )]A AN Z=   be the average number of nodes that eventually 

(when k → ) adopt statues SA, IA, and RA, respectively. 
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In the following, we rewrite the model given with Eqs. (2) and (3) as Eqs. (4) and (5) to 

facilitate the mathematical analysis. 

( +1) ( )[1 ( ) ( )]

( +1) ( )[ ( ) ( )] (1 ) ( )

( +1) ( ) ( )

SA SA A B

i i i i

IA SA A B IA

i i i i A i

RA RA IA

i i A i

p k p k f k g k

p k p k f k g k p k

p k p k p k





= − −

= + + −

= +

   (4) 

1

1

( ) 1 [1 ( )]

( ) 1 [1 ( ) ( )]

N
A IA

i A ij j

j

N
B IB

i B ij j

j

f k a p k

g k b k p k





=

=

= − −

= − −





   (5) 

Equivalently 
1

AN , 
2

AN , and 
3

AN  can be calculated using Eq. (4) as 
1

1

( )
N

A SA

i

i

N p
=

=  , 

2

1

( )
N

A IA

i

i

N p
=

=  , and 
3

1

( )
N

A RA

i

i

N p
=

=  . 

Similarly, The MMCA equations describing the evolution of SIRV dynamics in layer B 

are 

1

1

( +1) ( )[1 ( ) ( ) ( )]

( +1) ( ) ( ) (1 ) ( )

( +1) ( ) ( )

( +1) ( ) ( ) ( ) ( )

SB SB B SA A

i i i i i

IB SB B IB

i i i B i

RB RB IB

i i B i

VB VB SB SA A

i i i i i

p k p k g k p k f k

p k p k g k p k

p k p k p k

p k p k p k p k f k









= − −

= + −

= +

= +

   (6) 

In the above, SB

ip , IB

ip , RB

ip , and VB

ip  are the probability of node i  at time k  which are 

in the susceptible state, infected state, recovered state and vaccinated state, respectively. 

B  and 1  respectively denote the disease-recovery rate and vaccination rate in layer B. 

( )A

if k  and ( )B

ig k  are given by Eq. (5). 

3 Simulation results 

Modeling double-layer network needs to establish topology of each layer. The top layer A 

stands for the virtual communication network for delivering information among agents. 

We adopt BA scale-free network model to generate a network consisting of 1000 nodes 

( 1000N = ). The average degree of the generated network is 6 ( =6k  ). Relevant 

characteristic parameters of network topology are listed in Tab. 1. 
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Table 1: The characteristic parameters of double-layer network consisting of network A 

and network B 

Layer Network Model 
Network 

Size N  

Average  

Degree 
k   

Average Path 

Length d   

A BA network 1000 6 3.48 

B 
time-varying 

network 
1000 3.14 6.69 

Connections of nodes in network A are shown in Fig. 3(a). Considering individuals’ 

random walk, we adopt the construction methods of time-varying networks [Frasca, 

Buscarino, Rizzo et al. (2006); Buscarino, Fortuna, Frasca et al. (2008); Buscarino, 

Fortuna, Frasca et al. (2014)] to establish network B (layer B). To be one-to-one 

correspondence between nodes of network A and nodes of network B, we also set the size 

of network B 1000N = . The density of nodes in two-dimensional plane is 1 = . In 

network B, the interaction radius among nodes is 1r = , namely, the average degree is 
2 3.14k r  =  . Relevant characteristic parameters of network B can be seen in Tab. 1. 

The links in network B meeting periodic boundary conditions are shown in Fig. 3(b). 

Calculated by formula 
2N L = , the width of two-dimensional plane in network B is 

1000 31.62L N = =  , which is the length of horizontal axis in Fig. 3(b). Actually, 

to be one-to-one correspondence between nodes of network A and nodes of network B 

visually, we also set network A is a two-dimensional plane with the same 31.62L  . At 

the initial time 0t = , the coordinates of nodes in both A and B are set randomly by 

formula (1,1)L rand . 

 

Figure 3: Connections diagram of double-layer network at the initial time (a) 

Connections of nodes in network A, (b) Connections of nodes in network B 
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Next, on the basis of the proposed interaction spreading model, we analyze the factors 

that influence the interaction between information and disease considering the following 

two scenarios. 

3.1 First scenario 

Firstly, as the description of Eqs. (4) and (6), susceptible individuals of layer B will 

vaccinate with probability 1  and become vaccinated state VB immediately after 

receiving information about disease spreading. Initially, the proportion of infected nodes 

in layer B is set to 2%. At each time step, information dissemination obeys the SIR 

dynamical process in layer A, and the disease spreading follows the SIRV dynamical 

process in layer B.  

 

Figure 4: Evolution processes of information dissemination and disease spreading on 

double-layer network. (a) Information dissemination in layer A, (b) Disease spreading in 

layer B 

The evolution process of information dissemination in layer A is shown in Fig. 4(a) and 

that of disease spreading in layer B is shown in Fig. 4(b). Relevant parameters are set as 

follows 0.1A = , 0.5A = , 0.1B = , 15 = , 1 0.1 = , 1r = , 1 = , 0.03v = , 0jumpp = . 

Fig. 4(a) shows that the density of susceptible individuals ( ( )SA t ) in network A decreases 

with time until the propagation process reaches the steady state. The density of individuals 

under the informed state ( ( )IA t ) (information spreaders) increases firstly and then 

decreases to zero over time, which embodies so-called lifecycle of information 

propagation. The density of recovered individuals ( ( )RA t ) increases gradually until the 

propagation process reaches the steady state, where ( )RA t  tends to be a constant value 

called information dissemination range.  

In network B, the evolution process of disease spreading is shown in Fig. 4(b). The density 

of susceptible individuals ( ( )SB t ) decreases with time until the spreading process reaches 

the steady state. The density of infected individuals ( ( )IB t ) (disease spreaders) increases 

firstly and then decreases slowly to zero over time. The density of recovered individuals 

( ( )RB t ) initially keeps zero for a certain time, and then increases rapidly from zero to a 
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constant value over time. This constant value is called disease spreading scale. The density 

of individuals under vaccinated state ( ( )VB t ) is affected by the information dissemination 

in network A, which ( )VB t  no longer increases with extinction of individuals under the 

informed state ( ( )IA t ). In network B, the recovery time step of infected individuals is set 

as 15 = , which causes the transition in the evolution of recovered individuals ( ( )RB t ) 

from 1t =  to 16t = . When susceptible individuals turn to be infected ones, they will 

become recovered after   time steps ( 15 = ). In network B, the density of individuals 

under vaccinated state ( ( )VB t ) increases just in a short time, and then it keeps a constant 

value. This is because susceptible individual in network B become vaccinated state with 

the probability 1  only when the counterpart in network A is under the informed state. 

( )IA t  increases in a short time and decreases to zero quickly, which triggers a brief 

increase of the density of vaccinated individuals ( )VB t . 

Table 2: The characteristic parameters of double-layer network consisting of network A 

and network B 

Layer  Varying Parameter Other Parameters Figure 

Layer A 0.1,0.3,0.5A =  
1A = , 0.1B = , 15 = , 1 0.1 = , 1r = , 

1 = , 0jumpp = , 0.03v =  
Fig. 5 

Layer A 0.5,0.7,1A =  
0.1A = , 0.1B = , 15 = , 1 0.1 = , 1r = , 

1 = , 0jumpp = , 0.03v =  
Fig. 6 

Layer B 0.1,0.3,0.5B =  
1A = , 0.1A = , 15 = , 1 0.1 = , 1r = , 

1 = , 0jumpp = , 0.03v =  
Fig. 7 

Layer B 1 0.1,0.3,0.5 =  
1A = , 0.1A = , 0.1B = , 15 =  , 1r = , 

1 = , 0jumpp = , 0.03v =  
Fig. 8 

Layer B 1 0.1,0.3,0.5 =  
0.5A = , 0.1A = , 0.1B = , 15 =  , 1r = , 

1 = , 0jumpp = , 0.03v =  
Fig. 9 

Layer B 1 5,10,15B = =  
0.3A = , 0.1A = , 0.1B = , 1 0.1 =  ,

1r = , 1 = , 0jumpp = , 0.03v =  
Fig. 10 

Layer B 0.1,0.3,0.5jumpp =  
0.5A = , 0.1A = , 0.1B = , 15 = ,

1 0.1 =  , 1r = , 1 = , 1Mv =  
Fig. 11 

Next, we will analyze the factors that influence the information and disease spreading 

respectively. How relevant parameters influence the information and disease spreading is 

showed in simulation figures. Tab. 2 shows the correspondence between parameters and 
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relevant simulation figures, where 1 B = . Other parameters are set as shown in the third 

column of Tab. 2. The initial infection density in layer B is 2%. 

(1) How information-transmission rate A  influences information and disease spreading? 

Fig. 5 shows the evolution processes of information and disease spreading in double-layer 

network with different A . Figs. 5(a) and (b) show the density evolution curves of 

informed and recovered individuals in layer A respectively. In Fig. 5(a), we can see that 

the larger the A  is, the higher the peak value of the density of information spreaders is. 

According to the Fig. 5(b), it can be seen that the larger the A  is, the larger the 

information dissemination range is, which indicates that the information is widely 

transmitted. In addition, the peak value of the density of information spreaders and the 

dissemination range rise prominently as A  increases. According to the rule of interaction 

between information and disease spreading, if the number of information spreaders 

increases, correspondingly the number of vaccinated individuals in layer B will increase 

and disease spreading will be inhibited to some extent. However, in Fig. 5(c), the peak 

value of the density of disease spreaders does not decrease remarkably as A  increases. 

Besides, from Fig. 5(d), we can see that the disease spreading scale in layer B doesn’t 

decrease remarkably as well when A  increases from 0.3 to 0.5. 

Therefore, increasing information-transmission rate can enhance the peak value of the 

density of information spreaders and scale up the dissemination range of information in 

communication layer A. It can also reduce the scale of disease spreading. However, when 

the information-transmission rate is increased to a certain value, the effect of inhibiting 

disease spreading is particularly weak. 

 

Figure 5: The evolution processes of information and disease in double-layer network 

with different A . (a) The density of information spreaders in layer A, (b) The density of 

recovered individuals in layer A, (c) The density of disease spreaders in layer B, (d) the 

density of recovered individuals in layer B 
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(2) How the information-recovery rate A  influences information and disease spreading? 

Fig. 6 shows the evolution processes of information and disease spreading in double-layer 

network with different A . Figs. 6(a) and 6(b) show the density evolution curves of 

informed and recovered individuals in layer A respectively. From Fig. 6(a) we can see that 

the smaller the A  is, the higher the peak value of the density of information spreaders is. 

According to the Fig. 6(b), it can be seen that the smaller the A  is, the larger the 

information dissemination range is. When A  decreases from 1 to 0.5, the density peak 

value of information spreaders increases from 0.03 to 0.107 and the information 

dissemination scale increases from 0.5 to 0.648. In Fig. 6(c), the peak value of the density 

of disease spreaders decreases from 0.129 to 0.125, which is not obvious. In Fig. 6(d), two 

curves denoting =0.7A  and =1A  are adjacent. 

Therefore, decreasing information-recovery rate can enhance the peak value of the density 

of information spreaders and scale up the dissemination range of information in 

communication layer A, while the scale increment is small. Also, it can reduce the scale of 

disease spreading to a certain degree. 

 

Figure 6: The evolution processes of information and disease in double-layer network 

with different A . (a) The density of information spreaders in layer A. (b) The density of 

recovered individuals in layer A. (c) The density of disease spreaders in layer B. (d) The 

density of recovered individuals in layer B 

(3) How the disease-transmission rate B  influences information and disease spreading? 

Fig. 7 shows the evolution processes of information and disease spreading in double-layer 

network with different B . Figs. 7(a) and 7(b) show the density evolution curves of 

informed and recovered individuals in layer A respectively. We can see that when B  

increases from 0.1 to 0.5, the peak value of the density of information spreaders increases 

from 0.03 to 0.07 and the information dissemination scale increases from 0.5 to 0.71. As 
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can be seen from the Figs. 7(c) and 7(d), with the increase of B , the peak value and scale 

of disease spreading are increased obviously. Hence, increasing disease-transmission rate 

can not only increase the peak value and scale of disease spreading, but also increase the 

peak value and scale of information dissemination. 

 

Figure 7: The evolution processes of information and disease in double-layer network 

with different B . (a) The density of information spreaders in layer A. (b) The density of 

recovered individuals in layer A. (c) The density of disease spreaders in layer B. (d) The 

density of recovered individuals in layer B 

(4) How the vaccination rate 1  influences information and disease spreading? 

Fig. 8 shows the evolution processes of information and disease spreading in double-layer 

network with different 1 . Figs. 8(a) and 8(b) show the density evolution curves of 

informed and recovered individuals in layer A respectively. We can see that when 1  

increases from 0.1 to 0.5, the peak value of the density of information spreaders is almost 

constant and the information dissemination scale reduces from 0.5 to 0.447. As can be 

seen from the Figs. 8(c) and 8(d), with the increase of 1 , the peak value of disease 

spreading decreases from 0.129 to 0.119, and the scale of disease spreading decreases 

from 0.289 to 0.233.  

Besides, Fig. 9 shows the evolution processes of information and disease spreading in 

double-layer network with different 1  where =0.5A . According to the Fig. 8 and Fig. 9, 

it can be seen that the disease spreading scale decreases as 1  increases, which conforms 

with the actual situation that increasing vaccination rate can reduce the scale of disease 

spreading. In addition, when A  is set to 0.5 and 1 respectively, the influence on 

information and disease spreading is coincident with the above analysis (2). 
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Figure 8: The evolution processes of information and disease in double-layer network 

where 1  changes and =1A . (a) The density of information spreaders in layer A. (b) The 

density of recovered individuals in layer A. (c) The density of disease spreaders in layer 

B. (d) The density of recovered individuals in layer B 

 

Figure 9: The evolution processes of information and disease in double-layer network 

where 1  changes and =0.5A . (a) The density of information spreaders in layer A. (b) 

The density of recovered individuals in layer A. (c) The density of disease spreaders in 

layer B. (d) The density of recovered individuals in layer B 

(5) How the time step of keeping infected (infection period) 1 B =  influences 

information and disease spreading? 

Fig. 10 shows the evolution processes of information and disease spreading in double-

layer network with different  . Figs. 10(a) and 10(b) show the density evolution curves of 

informed and recovered individuals in layer A respectively. The different time steps 

account for the different infection periods. We can see that when the time step increases 
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from 5 to 15, the peak value of the density of information spreaders is almost constant, and 

the information dissemination scale increases from 0.775 to 0.839, which changes little. In 

Fig. 10(c), with the increase of  , the peak value of disease spreading increases from 

0.103 to 0.246 and the time to reach the peak value is increasing. Similarly, in Fig. 10(d), 

the scale of disease spreading increases from 0.243 to 0.352 and the time to reach the 

steady state also gets longer as   increases.  

Therefore, longer infection period leads to larger peak value and wider scale of disease 

spreading. Also, the time to reach the peak value and the steady state gets longer. However, 

the infection period has little influence on the information dissemination in 

communication layer A. 

 

Figure 10: The evolution processes of information and disease in double-layer network 

with different  . (a) The density of information spreaders in layer A. (b) The density of 

recovered individuals in layer A. (c) The density of disease spreaders in layer B. (d) The 

density of recovered individuals in layer B 

(6) How the probability of performing a long-range jump jumpp  influences information and 

disease spreading? 

Fig. 11 shows the evolution processes of information and disease spreading in double-layer 

network with different jumpp . Figs. 11(a) and 11(b) show the density evolution curves of 

informed and recovered individuals in layer A respectively. We can see that the density of 

information spreaders and the information dissemination scale both increase as jumpp  

increases. In Figs. 11(c) and 11(d), with the increase of jumpp , the peak value of disease 

spreading rises from 0.183 to 0.419 and the disease spreading scale rises from 0.635 to 0.863. 

Therefore, increasing the probability of performing a long-range jump will not only 

increase the peak value and scale of disease spreading, but also increase the information 

dissemination scale in communication layer A. Additionally, from Fig. 11(c) we can see 

that increasing the probability of performing a long-range jump can accelerate the 

extinction of disease spreaders, accelerating the spread of disease. In fact, it is because 
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the probability 
jumpp  influences the statistical properties of dynamical contact network 

topology consisting of moving individuals [Frasca, Buscarino, Rizzo et al. (2006)]. 

 

Figure 11: The evolution processes of information and disease in double-layer network 

with different 
jumpp . (a) The density of information spreaders in layer A. (b) The density 

of recovered individuals in layer A. (c) The density of disease spreaders in layer B. (d) 

The density of recovered individuals in layer B 

Fig. 12 and Fig. 13 respectively show the average path length ( )GL t  and average degree 

( )Gk t   of dynamical contact network topology (layer B) with different probability 
jumpp . 

( )G t  denotes the adjacent matrix of dynamical contact network and describes the 

contacts situation of individuals during the whole infection period ( 1,..., 1t T = − + ). At 

each time step, the adjacent matrix of network B is time-varying. Let ( )B t  denote the 

adjacent matrix of layer B at time t , and the element of adjacent matrix is denoted by 

( )ijb t . ( ) 1ijb t =  if the thj  node is within the interaction radius of the thi  node at time t , 

and ( ) 0ijb t =  otherwise (Especially, it is assumed that ( ) 1iib t = , 1,...,i N = ). For 

1,..., 1t T = − + , ( ) 1ijg t =  if at least for one k  (with = ,..., 1k t t + − ) it is verified that 

( ) 1ijb k = ; ( ) 0ijg t =  otherwise. As can be seen from the Fig. 12 and Fig. 13, with the 

increase of probability jumpp , the average path length ( )GL t  of dynamical contact network 

decreases, while the average degree ( )Gk t   increases. Namely, the number of contacts 

among individuals is increasing, which fully explains why increasing the probability of 

performing a long-range jump can increase the peak value and scale of disease spreading. 

Therefore, to avoid widespread of disease, people should reduce the frequency of long-

range travel when faced with epidemic spreading. 
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3.2 Second Scenario 

Secondly, we consider that susceptible individuals reduce the range of movement with the 

probability 2  to prevent disease when being informed of disease spreading. Namely, 

susceptible individuals in layer B reduce the interaction radius r  with the probability 2 , 

if the corresponding nodes in layer A are under the informed state (IA). 

 

Figure 12: The average path length ( )GL t  of dynamical contact network topology with 

different probability 
jumpp  

 

Figure 13: The average degree ( )Gk t   of dynamical contact network topology with 

different probability jumpp  

Fig. 14 shows the evolution processes of information and disease spreading in double-

layer network with different 2 . Other parameters are set as the interaction radius 0.5r = , 
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0.2A = , 0.3A = , 0.3B = , 15 = , 1 = , 0.03v = , 0jumpp = . Initially, the density of 

infected individuals in layer B is still 2%.  Fig. 14(a) and 14(b) show the density evolution 

curves of informed and recovered individuals in layer A respectively. We find that the 

peak value and scale of information dissemination almost keep unchanged when 2  

increases from 0.1 to 1. The increase of 2  accounts for strengthening consciousness for 

self-protection. From Figs. 14(c) and 14(d), we can see that the peak value of disease 

spreading decreases from 0.268 to 0.211 and the disease spreading scale decreases from 

0.509 to 0.237 when 2  increases from 0.1 to 1.  

 

Figure 14: The evolution processes of information and disease in double-layer network 

with different 2  . (a) The density of information spreaders in layer A. (b) The density of 

recovered individuals in layer A. (c) The density of disease spreaders in layer B. (d) The 

density of recovered individuals in layer B 

Therefore, strengthening individual prevention consciousness and reducing the scope of 

activity can effectively decrease the peak value and scale of disease spreading. Meanwhile, 

it has little influence on the information spreading in communication layer A. 

4 Conclusions 

This work is mainly focused on the dynamical interaction between information 

dissemination and disease spreading in populations of moving agents. We have 

constructed a new double-layer network model, one is static communication network 

where the information dissemination process takes place, and the other is dynamical 

disease spreading network consisting of a time-evolving wiring of interactions among a 

group of random walkers. A new spreading model characterizing the coupled dynamics 

between information and disease spreading in populations of moving agents is proposed 

and corresponding state probability equations are formulated to describe the probability 

in each state of every node at each moment. The Monte Carlo simulations are performed 
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to characterize the interaction process between information and disease spreading and 

investigate factors that influence spreading dynamics. Our results show that increasing 

information-transmission rate and decreasing information-recovery rate both can enhance 

the peak value of the density of information spreaders and scale up the information 

dissemination range in communication network, which can also reduce the scale of 

disease spreading to a certain degree. However, when the information-transmission rate is 

increased to a certain value, the effect of inhibiting disease spreading is particularly weak. 

Increasing vaccination rate and shortening infection period both can effectively reduce 

the scale of disease spreading. In addition, to avoid widespread of disease, people should 

reduce the frequency of long-range travel and enhance individual prevention 

consciousness by reducing the scope of activity when faced with epidemic spreading. 
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