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Robust Global Structure from Motion pipeline with
Parallax on manifold Bundle Adjustment and
Initialization

Liyang Liu, Teng Zhang, Brenton Leighton, Liang Zhao, Shoudong Huang and Gamini Dissanayake'

Abstract—In this paper we present a novel global Structure
from Motion (SfM) pipeline that is particularly effective in
dealing with low-parallax scenes and camera motion collinear
with the features that represent the environment structure. It is
therefore particularly suitable in Urban SLAM, in which frequent
road-facing motion poses many challenges to conventional SLAM
algorithms. Our pipeline includes a recently explored bundle
adjustment (BA) method that exploits a feature parameteriza-
tion using parallax angle between on-manifold observation rays
(PMBA). It is demonstrated that this BA stage has a consistently
stable optimization configuration for features with any parallax
and therefore low-parallax features can stay in reconstruction
without pre-filtering. To allow practical usage of PMBA, we
provide a compatible initialization stage in the SfM to initialize all
camera poses simultaneously, exhibiting friendliness to collinear
motion. This is achieved by simplifying PMBA into a hybrid
graph problem of high connectivity yet small node set size, solved
using a robust linear programming technique. Using simulations
and a series of publicly available real datasets including “KITTI”
and “Bundle Adjustment in the Large”, we demonstrate the
robustness of the position initialization stage in handling collinear
motion and outlier matches, superior convergence performance
of the BA stage in presence of low-parallax features, and
effectiveness of our pipleline to handle many sequential or out-
of-order urban scenes.

Index Terms—Mapping, SLAM

I. INTRODUCTION

RBAN scenes can expose many challenges to algorithms

in monocular Simultaneous Localisation and Mapping
(SLAM) [1]. Lack of sufficient information for localization on
urban roads, collinear vehicle motion, 3D reconstruction from
images of diverse proximity scenes, all of these situations can
cause SLAM algorithms to fail due to the existence of low
parallax angle features.

The low parallax features come in the form of far away
features or collinear features that lie along the direction of
motion. Such feature points represented in the Euclidean
XYZ form show highly non-Gaussian position uncertainty [2].
Being far or very far do not differ much in their image imprints
although they contain strong orientation information. Feature
positions thus triangulated become very unreliable. SLAM
algorithms involving diverse proximity scenes are prone to
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numerical instability. In BA, the backend for full state estima-
tion, the Gauss Newton process is applied requiring successive
linearization and solving of normal equations for state update.
Existence of low parallax features lead to singularity in the
equation’s information matrix [3]. The result is compromised
estimation accuracy and prolonged convergence time.

Many visual systems mitigate this issue by applying ad-
hoc data handling. In ORB-SLAM?2 [4] far points are either
discarded or receive a delayed triangulation. Other methods
such as [5] process low and high parallax features selectively
according to their stability at different stages of initialization.
The separation strategy is generally regarded sub-optimal [2].

(a) Converged poses in S-7 (b) Converged poses in S-9

Fig. 1. Compare BAs on “KITTI” datasets S-7 and S-9: existence of collinear
features (yellow dots) cause IDP (brown), XYZ (green) and PBA to be trapped
in high cost region and unable to close the loop after long iterations. PMBA
(blue) handles these features well and converges to a minimum very close to
ground truth (red) with a fast pace .

Fig. 2. Convergence sequence of proposed PGILP camera position initializa-
tion method, on KITTI dataset S5 (full of collinear motion and EG outliers):
random to close-to-optimal, PGILP (blue), ground truth (red).

Feature Parametrization. Exploiting a different line of
thinking, the low parallax issue can be fixed fundamentally
using feature parametrization. Rather than representing
features as XYZ points, Civera et al [2] proposed a
paramtrization using the inverse depth of features (IDP)
relative to their first observing cameras. IDP gives a single
Gaussian distribution to cover features of all depth range
and is effective in handing far features. However, collinear
features remain to be a source of singularity in observation
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Jacobians [3]. To provide a unified solution to nearby, far
and collinear features, Zhao et al [3] proposed the parallax
angle representation which defines a feature with three highly
observable angles (elevation, azimuth and parallax) without
involving the unobservable depth. The BA thus formulated
(PBA) contains sufficient information for state estimation
hence shows low chance of degeneracy. The PMBA stage in
our SfM, first introduced in [6] is a further extension of PBA
onto the manifold domain. Using a formulation faithfully
mimicing the image formation process, PMBA exhibits a
well-bounded information matrix hence state update is always
observable. See Fig. 1 for illustration of comparison of BA’s
convergence performance.

Position Initialization. Being highly non-convex, BA
requires good initial estimates for convergence to global
minimum [7]. The common approaches are categorized as
incremental and global. The incremental system, such as
Bundler [8] and ORB-SLAM [4], consists of adding camera
poses incremently to a pre-existing map and performing
intermediate BA’s at each insertion. Being slow and easily
stuck in picking the right starting map are the known
issues of incremental methods. The alternative strategy is
global initialization where all camera poses are initialised
simultaneously. Structure recovery is left to the BA stage.
A global SfM pipeline consisting of pose initialization then
a single BA invocation show higher efficiency and accuracy
[9]-[15]. This is what this paper addresses.

In global initialization, camera orientation estimation can
been robustly computed [16]. Position estimation can be
challenging due to its reliance on noisy and outlier-prone
pairwise Epipolar Geometry (EG) without scale information.

Related work in position initialization can be viewed along
two main perspectives. The first perspective is based on
solution stability and robustness. As a first attempt [9] [17], po-
sition estimation was solved as a linear least squares problem
by minimizing either cross product or orthogonal projection
between predicted relative translations and measured direc-
tions. The linear methods are intrinsically algebraic methods
without geometrical meaning [10], can exhibit extreme bias
and must be weighted iteratively [11] before use. Further,
they easily lead to the trivial but incorrect solution where the
camera locations cluster around a few points [15], and fail
easily for slightly noisy or larger data. The instability issue
was then tackled in [10] [11] with non-linear optimization
methods. [10] formulated position estimation as minimax op-
timization under the /..-norm based on well-conceived geomet-
rical metric. Wilson and Snavely [11] proposed a non-linear
cost function (WsNonLin) that minimizes chordal distance of
translation directions, and achieves convergence with the LM
solver. Other research efforts [13] [14] solved the clustering
issue by adding constraints to the linear formulation, retaining
efficiency by exploiting linear relations. Vulnerability to outlier
translation directions remains to be a big problem in non-linear
and constrained linear methods. [11] proposed a pre-filtering
heuristic known as 1DSfM to detect and discard outlier EG-
pairs, which may result in information loss. The robustness
issue is eventually resolved in [15] with its convex Least

Unsquared Deviation (LUD) method on translation lengths.
This convex problem requires a non-trivial solver by succes-
sive quadratic programming approximation with self-adjusted
weights. We concern for scalability and simplicity.

The second perspective of position estimation is the choice
of graphical representation of the underlying problem. This
relates to information embedded in the graph and affects its
ability to solve for collinear poses. The EG-pair formation
describes an epipolar graph G, = (V;,E;) with nodes V; =
{1,2,...,n} representing camera positi(;ns P; and edges (i,k) €
E, for translation directions p; = W. The node set
{P;} are to be solved. Epipolar graph p'roblem with collinear
poses present is known to show degeneracy due to lack of
sufficient constraint [12]. Even in absence of collinear motion,
the problem may still be ill-posed when the number of nodes
and edges fail to satisfy the minimum connectivity condition
known as parallel rigidity [15]. This imposes limitations for
methods such as LUD, WsNonLin (in pose-only form) and
linear least squares. The alternative graph domain is the triplet
graph and has been successfully explored in [14]. This graph
consists of many strongly connected camera-triplets where two
triplets share a common edge, scale can be recovered due to the
strong (camera-to-camera) connectivity. However, as observed
in [12], such a scheme may produce distorted reconstruction
when the strong image association does not exist. In an attempt
to fix collinearity, [11] suggested an extended WsNonLin
mode by including judiciously selected features into its graph
node set. Unfortunately this “increases problem size, with
diminishing returns” [11]. Further, WsNonLin requires abun-
dant image association [12] and is more suited for internet
images than sequential scenario. A hybrid pose graph form
was proposed in [12] where a set of judiciously selected
feature observations are included to the graph as indirect links
between pose nodes, yet does not require solving the feature
nodes. With boosted connectivity, the hybrid graph is able to
uncover scale in collinear motion.

We recently explored the hybrid graph idea in [6], where
positions are estimated with a constrained least square and
non-linear optimizer two-stage initializer (CLS-NonLin).
However, the linear stage involving cross-product showed
clustering effect and the overall estimator is highly sensitive
to outliers. We propose yet another hybrid graph based
position estimator, addressing all above issues: robustness,
simplicity and friendliness to collinear motion.

Contributions and Paper Structure. This paper builds
on previous work [6] and presents a complete global SfM
pipeline robust to low-parallax scenes. First, we give a
review of PMBA (in Section II) on how its formulation and
measurement model lead to complete stability in presence of
low parallax features with superior convergence properties. As
a new contribution in this topic, we propose (In Section III)
a PMBA compatible position estimation scheme using linear
programming (referred to as PGILP) with outlier robustness
and implementation easiness taken into consideration. We
achieve collinear motion friendliness by using all feature
observations to improve graph connectivity without explicitly
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solving for features, thus keeping a reasonable problem size.
We show that under noise-free condition the intialization
method can recover positions exactly. All this properties are
achieved without discarding information, specifically useful
to urban SLAM. Using KITTI dataset containing largely
street-view scenes, we demonstrate effectiveness of our SfM
pipeline at every processing stage (In Section IV).

Notations. Throughout this paper, we use the term
T; = (R;,P;) € SE(3) to represent the i’th camera pose.
IF denotes the set of indices for all features. T; denotes to the
set of indices for camera poses at which feature j is observed.

II. REVIEW OF PARALLAX BUNDLE ADJUSTMENT
ON MANIFOLD THEORY

To address BA instability in presence of low parallax fea-
tures, a fundamental solution of formulating the BA problem
by exploiting observations rays in the manifold domain has
been recognized in [6]. Here we present a brief summary of
the PMBA theory and its fast convergence capability.

A. Feature parameterization, measurement model and opti-
mization formulation

With a set of images indexed {1,..,M} and a set of feature
tracks {1,..,N} collected therein, a feature point (indexed j)
is observed from the camera set T;, a camera (indexed i)
observes the feature at pixel imprint u;;, the PMBA problem
estimates the all-on-manifold state vector:

o T ={(Ry,P;)}i—1.... u, the full set of camera poses

« F={F;€ M3} j=1,-- N, parallax feature parameters,

using measurements V = {v;;} of locally observed ray direc-
tions:

K u;
W’ an observation ray direction
o K, the camera calibration matrix

* Vji=

Fig. 3. Feature F; is anchored by cameras at P,,; and P,,; with parallax angle
0;. A third camera P; sees F; along direction of ray N;;. The plane formed
by F;, Pm/, Pa/. has a normal at n;;

A feature point is uniquely positioned by light rays from two
of its observing cameras and the parallax angle in-between.
The two positioning camera poses are referred to as the main
anchor Tm/ and the associate anchor Ta as shown in Fig. 3.
In the context of PMBA, the ray dlrectlon vector in the main
anchor’s frame n; € R3, and the parallax angle 0; between
the anchoring rays constitute the feature parameters F;. In

manifold form, to avoid singularity in angular representation,
Fj is over-parameterized as

Fj={[cos6j, sinb;, n; | M

With a small perturbations in parallax angle 60, € R!
and ray direction 5nj € R?, the on-manifold feature takes
following retraction operation:

cos(6;+86;) Fj=1[06;.6m;] € R,
FiB8F; = | sin(0;+586;) |, An €R™
Exp(Ap,0n;)n; [An, ;] € SO(3)

2
where the columns of matrix Ap; spans the left null-space of
n; (see [6]), Exp() is the exponential map for SO(3).

The PMBA parametrization describes the feature’s geo-
metrical relationship to its anchors, with this knowledge its
position in Euclidean space can be computed using sine rule:

sin(oj — 6))
sin(6))
where Ry, ;n; is the ray direction expressed in global frame,
o is the angle between R,,;n; and vector 1’?1’3]> Py, —Pyg;.

To estimate the direction of observed light ray, [6] uses the
concept of a length-scaled ray vector N;; that sees F; from

the 7’th camera position P;. N;; is a function of state vector
set ij = {ijaPajaPiaija]:j}:

N;.i(X;i) = sin(6;)(F; —P;)
—sin(a; — 6;)[[ Py, — Py, [ Ry m; + sin(6)) (P,

F;(Fj) = ||Pm, *Paj”ijanerj 3

—Py) @
The scale factor sin(6;) helps to avoid numerical instability in
ray length calculation as 6; — 0.

This gives rise to the following PMBA formulation:
min ¥ ) gy e ke )

jte’]I‘ ||le l)”
where R;v;; brings the ray direction to global frame.

As explained in [6], conventional BA’s directly use 2D
pixels as measurement. They do not differentiate frontal or
behind-camera scenario and exhibit “many local minima and
saddle points”. Further, pixel prediction is done via homoge-
neous normalization on local coodinates, causing discontinuity
in BA as the Z-ordinate cannot be zero. The PMBA’s mea-
surement model takes a 3D form that naturally addresses the
behind-camera cases and continuity issue. Thus PMBA has
the ability to correct many errorneous estimates.

B. Convergence properties of PMBA

[6] provided proof that the PMBA formulation comes with
a consistently invertible Hessian at every stage of optimization
thus such a system is locally observable. This is a direct
consequence of the on-manifold parallax parametrization and
its compatible ray-direction measurement model.

In conventional BA, existence of low-parallax features re-
sults in degeneracy in the Hessian, causing Gauss Newton
(GN) solvers to fail or slow convergence in the Levenberg
Macquardt (LM) method due to self-adjustable damping to
suppress singularity.
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PMBA’s high observability implies that fast optimization
method Dog-Leg (DL) can be used to solve the problem [6].
In DL, each state increment is a linear summation of GN
increment and Steepest Descent (SD), it is therefore faster
than GN or LM. Further, within an iteration’s fine-tuning
steps, the same inverted Hessian is used for all DL re-tries,
wheras LM requires inversion on its augment Hessian after
each damping adjustment.Hence in presence of low-parallax
features, PMBA exhibits superior convergence behaviour than
conventional BA’s.

III. PMBA COMPATIBLE GLOBAL INITIALIZATION

In this section, we derive a PMBA-compatible initialization
strategy for our SfM pipleline.

We show how parallax features can be reliably initialized,
and the PMBA problem can be easily converted into a convex
pose-graph problem which robustly estimates camera positions
by minimizing /;-norm of observation rays. We prove that in
noise-free condition camera positions can be recovered exactly
by this strategy. This pipeline of global initialization and final
BA are illustrated in Fig. 4.

Global Initialization BA

Initialize
rotations {R; } | |

- Y Y Y
orm B
Initialize Full PMBA for
EG-pairs, > . L L
MS.tree positions { P, } {R,P}{%}
Initialize + ‘IA

features { }; }

Fig. 4. Global SfM pipeline: initialization (purple) + BA (red).

A. Orientation and feature initialization

As shown in [16], camera orientations can be initialized
reliably. We start by forming a maximal set of two-view
matches from input data, which can be either sequential or
out-of-order, then compute the associated Epipolar Geometry.
Using match size as score we build a maximum spanning
(MS) tree of EG-pairs. From the connected edges we form
rotation priors and apply the rotation averaging method from
[16]. The result rotations are highly accurate and are robust
against outlier EG-pairs.

Initializing PMBA features boils down to selecting good
parallax angles and associated anchors. We list the detailed
procedure in Alg. 1. This algorithm is simple and only
requires knowledge of rotations, avoiding expensive/unreliable
triangulation method in conventional methods. Hence parallax
feature values are also highly accurate.

B. Position initialization

With rather accurate rotations and parallax features, the
remaining problem in PMBA becomes a position registra-
tion problem. Substituting rotations {R;} and features {F;}
into PMBA formulation (5) gives a non-linear optimization
problem for positions {P;}. We now turn this into a convex
problem by exploiting the fact that the afore-mentioned ray

Algorithm 1: Feature j initialization.
Input: {v;;}icr;, {Ri}ier;:
Output: mj, aj, Fj;
mj = ’]I‘j[l]_; 0j < Vi, 3
aj; — mj; 9]' — 0;

1 2; k="T;[l]
while sin éj < 0.45 do
0= atanZ(HR_mjﬁj X RijJ(H,ijﬁj . Rij’k) 5
if sin® > sin 6; then
éj — @;
L aj < k;
l—1+1;
L kTl

Fj+ (cos®j,sinb;,n;);

vector N;; can be expressed in a linear function of positions.
As illustrated in Fig. 3, the non-linear term |[P,,; — Py, || Ry;n;
in (4) is equivalent to rotating P,,;P,; about axis n;; towards
R;,;n; with angle (7 — o;). The linearized expression is:

Nj’i :sin(dj — éj)EXp(l_lzj(ﬂ— (jtj))(Pa/ —Pm/.)

.z ' ' (6)
+sin(6;) (P, — P),
Here, axis m;; is normal to the plane constituting vector
, P, —P,.
P, P4, and global ray R, nj, can be computed as H X
E E {lj mJ
(Rm Ly ) _
Now, expressing N;; in matrix form, we get
Nji=An; X
(1)
P, K )
Xji=|Pa; | An,; = |Ay,
P; 3)
l AN_/J
where the rows in matrix ANJ.J. are
Az%-%,- = —sin(a; — 68;)Exp(ng;(7 — a;)) +sin(6;)I3
2 .
Az(vj).,- = sin(a; — 6;)Exp(n;;(7 — ;) ®)

Ay = =sin(6))Is

Note that the ray scaling factor sin(6;) remains in the linear
relation and serves as a weight factor to enhance stability of
matrix Ay;, (more on this in Section III-C).

In previous work [6] we proposed the CLS-NonLin method
which minimizes the cross product between N;; and v, ; with a
linear constraint. This linear relation shows skewed errors and
is sensitive to outlier. To ensure balanced error distribution,

we introduce an extra ray scale variable A;; := ||F; —P;|| into
(7) to reconcile the variable ray length.
S 2
minimize lAn, Xji— A;Riv; |
{x;ih A7} ,-e%d' ’ ' ©

Solving (9) directly does not guarantee cheirality condition
as /ljj can be negative. Further, when lj,,- =0, we reach the
trivial solution P,,; = P,, = P;, clustering occurs regardless
of feature angles or rotations. A constraint of positive A;;
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is therefore necessary and should have a repulsion effect on
clustering cameras.

To enforce robustness to outlier EG pairs or incorrect
matches, we minimize the sum of /;-norm of every ray length
error in the final cost function. Putting all this requirements
into (7) and (9) we have

minimize Ay, [PT PTPIT — AR |
{Pi} A4} ie'ﬂ'j,j” . | A | siRivsal
subject to A;; > 1, jeF,ieT, (10)
P, = (0,0,0).

The last two conditions removes scale and translation am-
biguity of the solution. Now, for ease of solving, we introduce
the slack variable ¥;; € Ri to represent /; residual and
transform (10) into the following equivalent linear program:

_— T
oy Y

subject to:
Ay P PTPTIT — 2 RV <yl k=123,
Aii>1, jeF,ieTy,
P, = (0,0,0).

(1)

Fig. 5. R;vj; is the measured ray direction, A;; is the ray length, Y is
the /; residual. PGILP simplifies PMBA into a position estimation problem:
eryj_,-. This error function is geometrically meaningful compared to the
cross-product based CLS-NonLin error: (R;v;;) x Nj,,-.

Remark 1: The objective in (10), being an /;-norm of affine
functions, is therefore a convex function. The inequality con-
straints define a convex set S; C RIJEFET;} ‘, an intersection
of half spaces. The optimization problem (10) is therefore
convex, convergence to a global minimum is guaranteed from
any initial guess.

For each feature observed in more than two poses, every ex-
tra observation of the feature effectively adds a new edge to the
graph, significantly improving graph connectivity. With feature
observations far exceeding that of pose nodes, the graph can
be assumed parallel rigid in general (unique topology).

Remark 2: Since the trivial solution of A;; =0, j € F,i € T;
is not in the feasible set, in absence of scale ambiguity, at
least one of the constraints needs to be active at the optimum
solution, the optimal A;;’s must satisfy minA;; = 1.

Jii

Remark 3: The objective of (10) is based on feature obser-
vation rays. A feature point observed in the main, associate
and any third pose encodes the position ratio between the three

cameras. Collinear poses can therefore be solved from problem
(10) without degeneracy.

C. Theoretical analysis

We now give an analysis on the initialization scheme.

Proposition 1: Given the noiseless EG-pairs {p;} , camera
rotations {R;} and observation directions {v;;} of sufficient
size that render the associated hybrid graph parallel rigid, our
PGILP solver recovers the locations {P;} exactly in the sense
that any solution is congruent to {P;}.

Proof: From Alg. 1 noise-free {R;} and {py} pro-
duce noise-free feature parameters {JF;}, hence noise-free
{0}, {0y} and {m;;}. From (8), each Ay;; is also noise-
free. Since {P;} are the ground truth location of cam-
eras, from Eq. (7) we obtain noise-free ray length A;; =

AN, ,; [P,f,j PZI, P! ! l,i € T;. Now substitute noise-free
{P;}, {4;;} ., {Ri} and {v;;} into the objective function in
(10), we obtain a cost value of zero. We then scale 4, to A;;*
such that minA;;" = 1 to satisfy the first constraint, hence

S0

obtain the s]caled positions {P{}. {P{} is therefore an optimal
solution to PGILP as well as to the original PMBA problem.
Since the graph is parallel rigid, {P{} has to be congruent to
any other solution of PGILP. [ ]

The PGILP formulation shares similarity to the Least
Unsquared Deviation (LUD) convex model in [15]. LUD
minimizes the sum of pairwise translation error in /;-norm
(without squaring), which is in effect a form of /;-norm
error. In comparison our method minimizes the /j-norm of
observation ray errors. Both methods are convex and robust to
outliers as their /{-norm based formulation promotes sparsity
in residual errors. The difference, however comes in two-folds.
First LUD takes inputs solely from the epipolar graph, and
shows degeneracy with collinear poses and fails completely
for graphs that do not satisfy the parallel rigidity criteria. Our
graph uses more information: the edge set includes not only the
EG-pairs, but also all feature observations (low-occurrence and
low-parallax ones) indiscriminately. Since feature points are
not included in the graph node set, the problem scale remains
reasonable. This hybrid structure readily handles collinear
motion and satisfies the parallel rigidity condition. Secondly, in
terms of problem simplicity, LUD is a type of convex Second-
Order Cone Programming (SOCP) problem which is intricate
to solve. The iteratively reweighted least squares (IRLS) solver
used in [15] applies successive “smooth regularization of I,
norm penalty” to guide search towards low-error estimates,
this may result in poor conditioning and other convergence
issues. Further, LUD requires locations to be i.i.d. Gaussian,
a condition difficult to meet in urban SLAM due to diverse
camera and feature positions. The observation ray error in
our PGILP does not experience the uneven error distribution
situation, as the linear operator Ay;; in its objective is already
weighted by feature parallax sin(6;) that naturally equalizes
uncertainty on variable sized observation rays. Thus PGILP
can be easily implemented with any linear programming tool
and achieves better convergence.
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IV. EXPERIMENTS

In this section we evaluate every stage of the proposed StM
pipeline: initialization, PMBA; and give an overall evaluation
on the full system. All experiments except simulation are
implemented in C++ and tested on an 8-core Intel-i7 computer.

A. Evaluation on robust initialization performance

1) Simulation test on Global Initialization: A group of
selected Global Initialization (GI) methods are tested on their
robustness to noise and ability to handle collinear motion. The

B oo

(a) A standard hybrid (b) Position error
pose-graph comparison

Compare GI methods on collinear poses.

(c) A graph where poses 3-8
are collinear

(d) Position error
comparison

Fig. 6. Pose graph showing 10 pose nodes(red), feature nodes (green) and
edges. Pose 3-8 are collinear. Red edges are EG-pairs, they are the only source
of inputs in Epipolar graph based methods. The feature induced edges (green)
are abundant, they constitute constraints in our PGILP initialization method

test is set to contain 10 camera poses with a set of covisible
features and corresponding pairwise matches, as illustrated in
the hybrid graph of Fig. 6(c). The GI schemes covered in this
test include: PGILP, CLS-NonLin [6], LUD [15], WsNonLin
[11]. For robustness test, we collected GI’s result error rates
while progressively increasing noise in the EG-pair directions.
For the collinearity test, we kept the EG-pair size constant
while increasing number of collinear poses. The GI error rates
for both scenarios are plotted in Fig. 6 (b,d). The GI scheme’s
attributes as shown from test results match our prediction and
are summarized in Table I. Our proposed PGILP method has
the most positive attributes.

TABLE I
PROS AND CONS IN GLOBAL INITIALIZATION SCHEMES
GI method PGILP | CLS-NonLin | LUD | WsNonLin
(ours) [6] [15] [11]
Robust yes no yes no
Collinearity friendly | yes yes no no

2) Global Initialization experiments on benchmark datasets
(sequential): In this experiment, we compared various GI
methods (LUD [15], WsNonLin [11], CLS-NonLin, [6] and
PGILP) using selected sequences of benchmark data store
KITTI [18] and Malaga [19], all of which are collected from
vehicles moving along straight-line roads. Our test procedure
follows the flow shown in Fig. 4 — purple region. We per-
formed crude pairwise-matching to produce EG-pairs with
many outliers. This data source exposes many challenges for
tested GI algorithms. From the EG-pairs we built an MT-tree
and compute camera orientations according to [16]. The tree
root camera is chosen to be the reference frame for all systems
(including GT). For a fair position comparison, we scale every
method’s result by its median estimate to GT position ratio for
best GT alignment. The full accuracy test results are given in
Table II and selected trajectories are plotted in Fig. 7. These
results clearly show that PGILP is the most accurate position
estimator.

TABLE II
GLOBAL INITIALIZATION COMPARISON

LUD WsNonLin | CLS-NonLin| PGILP

Dataset | # pOSES | €men | €med | €men | €med | €men | €med | Cmen | €med

KITTI-SO | 2349 [0.06[0.04|3.40| 0.21 [19.2] 0.26 |0.05|0.03
KITTI-S5 | 1624 |0.16]0.17|0.82| 0.24 |1.07| 0.22 [0.14|0.14
KITTI-S7 | 1041 |0.38(0.12|17.0| 1.44 |13.4| 2.44 [0.18]0.10
KITTI-S9 | 1591 |0.60{0.03|8.99|0.72 |13.0| 1.23 [0.050.02
Malaga 171 |0.98(0.72|1.63| 1.29 [0.26| 0.19 [0.21|0.14

Campus2L| 1016 |0.09/0.06| 108 | 0.26 |0.54| 0.14 |0.03]0.02

emen denotes average distance between estimated camera position to ground
truth (GT), e,,.4 denotes median distance

B. Experiments on PMBA stage

To evaluate the BA stage of our propsed SfM pipeline, we
performed convergence test comparing PMBA against other
BAs including PBA, IDP and XYZ on all KITTI sequences
used previously in Section III. These data contain many low-
parallax features so present good case for BA evaluation.
We run the PGILP method with premature termination to
produce erroneous initial values for testing the BA stage,
and investigate the convergence performance of PMBA with
single thread running mode. We use DL optimization for
PMBA and the stable LM for conventional BA’s (DL not
considered here due to instability). The conventional BA’s
are programmed to use uv-based Chi2 error. PMBA, on the
other hand, requires ray direction error in the optimization
implementation. We solve this problem by intercepting the
current estimate at each iteartion step then compute and record
the corresponding uv errors. All BA’s thus are compared
on a common error metric. This scheme is not optimal for
PMBA, yet is the only convincing way to demonstrate PMBA’s
advantage over conventional methods. The collected results in
Table III. Selected convergence plots are shown in Fig. 8. In
terms of robustness, efficiency and accuracy, we found PMBA
the best performer in all tests. As illustrated in Fig. 1, the
PMBA results and GT are very close, suggesting convergence
to global minimum, yet conventional BAs give significant
error, a sign of converging to local minimum.
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TABLE III
COMPARISON OF CONVERGENCE PERFORMANCE FOR PMBA (DL), PBA
(LM), XYZ-BA (LM), IDP-BA (LM)

KITTI-SO Chi2 vs Iteration no

KITTI-S5 Chi2 vs Iteration no

——pmiBA
o PaA

1 ——iop

0 —#—xvz

1012

Cchi?

1010

3

Iter #

(a) KITTI-SO

KITTI-S7 Chi2 vs Iteration no

s

10

15

20 25 30 35
Iter #

(b) KITTI-S5

KITTI-S9 Chi2 vs Iteration no

a0

o s 0 15 20 25 30 35 40
Iter #

# Pose | # Equation
Dataset | Test-type | / # Feat | solving Final Chi2 | Time[sec]
/ # Obsv |/ # Iteration
KITTI | PMBA 2349 45/21 7.3E+5 133.2
-S0 PBA /275,751 | 223 /155 8.1E+6 799.3
IDP  |/1,015,187 | 201/ 151 9.3E+6 629.0
XYZ 201 / 190 8.8E+6 554.9
KITTI | PMBA 1624 31/19 5.8E+5 122.2
-S5 PBA /281,012 | 178 / 135 4.9E+8 673.2
IDP  |/1,024,677 | 201/ 166 1.5E+8 647.1
XYZ 201 / 148 4.7E+8 517.9
KITTI | PMBA 1045 61/52 2.8E+5 381.8
-S7 PBA /435,212 | 201/ 153 2.3E+8 1236.7
IDP  |/1,469,301 | 201 /173 7.5E+7 1133.1
XYZ 201 / 168 1.0E+7 1049.9
KITTI | PMBA 1591 75/54 3.2E+5 339.0
-S9 PBA /561,574 | 201/ 169 1.9E+8 1342.7
IDP | /1,648,120 | 201/ 151 5.0E+8 1156.8
XYZ 201 / 163 1.3E+8 1095.5

(¢) KITTI-S7

30 a0 50
Iter #

(d) KITTI-S9

C. Evaluation of SfM pipeplines on large-scale datasets

Finally, we evaluate performance of our complete SfM
pipeline and compare with an incremental SfM released in
OpenMVG [20]. Our pipeline consists of an initialization stage
and a single PMBA call, as illustrated in Fig. 4.

We choose selected datasets from the “Bundle Adjustment
in the Large” (BAL) database [21] for out-of-order tests and
KITTI sequences for sequential tests. These datasets are se-
lected for showing street scene (KITTI) and diverse proximity
scene, all are very challenging for conventional SfM. The GT
poses are provided by KITTI and BAL respectively.

We run reconstruction and collect timing information for all

qQuE

qQuE

LUD
WsNonLin
CLS-NonLin
EUTY FUTY
CQ
PGILP

KITTI-S5 KITTI-S7

Fig. 8. Convergence plots for PMBA, PBA, IDP and XYZ

datasets. Our pipeline has robustness built into its formulation,
whereas the incremental SfM uses a RANSAC-based outlier
detection. For this they give similar camera trajectory, we
therefore only compare the time consumption (Table IV) and
give a visual illustration in Fig. 9 of our reconstruction results
showing high density due to inclusion of low-parallax features.
These results show that our global SfM pipeline is as robust as
the incremental procedure with a much reduced computation
time.

KITTI-S9
Fig. 7. Compare results of different Global Initialization methods (LUD, WsNonLin, CLS-NonLin and PGILP, all in blue), versus ground truth (red).

Malaga Campus2L
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TABLE IV
COMPLETE PIPELINE COMPARISON: KITTI AND BAL
Ours Inctl [20]
Dataset Order | # pose | # BA | Time[min| | # BA | Time[min]
K -S0 SEQ | 2349 1 6.01 | 1300 184.5
T -S5 SEQ | 1624 1 324 | 682 64.7
T -S7 SEQ | 1045 1 58| 623 47.5
1 -S9 SEQ | 1591 1 79| 933 59.8
B | Venice-744 | OOF 744 1 16.6 71 66.3
A | Trafalgar-257 | OOF 257 1 1.11 25 2.56
L | Dubrovnik-356 | OOF 356 1 5.03 60 14.0
“Ours” refers to our proposed pipeline, “Incrtl” referes to the incremental

pipeline; “SEQ denotes sequential data”, “OOF” refers to out-of-order.

quE

B )

Fig. 9. Comparing our pipeline reconstruction results (blue) with reference
data (red) on KITTI and RAL datasets (clockwise): KITTI-SO, Venice-744,
Dubrovnik-356, KITTI-S5

V. CONCLUSION

We presented a novel global SfM pipeline that robustly form
reconstruction for urban environment that is challenging to
conventional methods. This pipeline exploits the recently ex-
plored bundle adjustment method using parallax angle between
observation rays to accommondate low-parallax feature while
achieving superior convergence performance. For realistic ap-
plication, we provide in the SfM a robust initialization method
that is compatible to the BA stage. We showed that camera
positions can be estimated as a hybrid pose-graph problem
that is friendly to collinear motion, robust to mismatched
image-pairs and simple in formulation. Experimental results
show that the proposed pipeline outperforms conventional
method at every stage of SfM in terms of friendliness to
collinear motion, tolerance to low-parallax features, accuracy,
robustness and convergence speed. The consistent test results
on benchmark datasets demonstrates that the proposed pipeline
is a complete working solution in addressing urban SLAM
issues, for sequential or out-of-order scenario. As future work,
we plan to transform the offline SfM pipeline into a real-
time visual SLAM system with a guaranteed zero-frame loss
initialization.
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