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ABSTRACT

Edge consensus computing is a framework to optimize a cost func-
tion when distributed nodes have distinct data sets available to them.
The primal-dual method of multipliers (PDMM) is an optimization
algorithm that forms a consensus among nodes by exchanging la-
tent variables rather than the data sets. PDMM often has a high rate
of convergence. However, when the nodes see statistically data sets
then the performance of PDMM degrades. To overcome this prob-
lem, we propose quadratic PDMM. In this method, the original cost
functions are replaced by their quadratic majorization based on the
L2 norm to ensure homogeneous convexity among nodes. We de-
scribe a method to set its parameters optimally for fast convergence.
Our experiments confirm that the proposed quadratic PDMM pro-
vides good performance even when the data sets are heterogeneous.

Index Terms— Edge consensus computing, convex optimiza-
tion, monotone operator splitting, primal-dual method of multipliers
(PDMM)

1. INTRODUCTION

Machine-learning based variable optimization is commonly used
in practical applications such as image classification and speech
recognition. In many cases, the optimization procedure uses sensor-
captured data that are made available to one or more centralized
(co-located) processing units. However, it is not always possible to
make the data sets available to centralized units when the scale of
the data set is very large or the processing units (network nodes) are
dispersed over wide areas. When data sets are collected in spatially
distributed nodes, it is natural to perform the optimization by ex-
changing latent variables among the nodes rather than the data sets
themselves. This approach can be considered an edge computing
procedure [1, 2], and, hence, we call this framework edge consensus
computing. The goal of this study is to construct a practical edge
consensus computing paradigm that (i) is robust to statistical hetero-
geneity in the data sets available to the nodes and (ii) facilitates low
transmission rates between the nodes.

Several algorithms address the edge consensus computing prob-
lem for the case that the cost function is convex, including the dis-
tributed alternating direction method of multipliers (ADMM) [3, 4,
5, 6, 7] and PDMM [8, 9, 10]. In distributed ADMM, the primal
variables, which are explicit in the cost function, are exchanged
among the nodes. The variables are updated so as to minimize the
convex cost while linearly updating its dual variables (e.g. [11, 12]),
which is used to control differences among nodes with respect to the
variables. However, the convergence rate is often relatively slow be-
cause it is based on Douglas-Rachford splitting [13, 14] as remarked
in [10]. In contrast, PDMM facilitates fast convergence because the
constraints on the dual variables are represented by convex form and

it is based on Peaceman-Rachford splitting [15, 14, 16] as remarked
in [10]. Although the effectiveness of PDMM was shown in experi-
ments, we found that it is a vulnerability to statistical heterogeneity
in the data observed by the nodes. This is commonly the case in
practical scenarios. The heterogeneity of the data results in the cost
functions within the nodes being significantly different from each
other.

The contribution of this paper is a new variant of PDMM that we
refer to as quadratic PDMM. To overcome the problem with hetero-
geneity in the data sets we replace the original cost with its quadratic
majorization using the L2 norm. The majorization minimization is
consistent with the original cost minimization. We provide meth-
ods to select parameters settings that lead to a fast convergence rate.
We show the effectiveness of the proposed method through several
numerical experiments with various levels of heterogeneity between
the observed data sets.

This paper is organized as follows: the conventional PDMM is
explained in Sec. 2. The quadratic PDMM to overcome a drawback
of conventional PDMM is proposed in Sec. 3. After conducting
experiments in Sec. 4, we conclude this paper in Sec. 5.

2. PROBLEM AND CONVENTIONAL SOLUTION

We now formulate the problem our algorithm solves and briefly re-
view an existing solution. We start with a problem definition and
then discuss the conventional PDMM based solution method.

2.1. Problem definition

Let us consider that data captured by sensors are collected in V dis-
tributed nodes. The edge structure is described by a graphical model
G(V, E) where V is the set of V nodes and E denotes the set of
undirected edges. In this paper, the cost functions Fi(pi) : RM →
R ∪ {∞} are limited to be convex, closed and proper (CCP) (e.g.
[11, 12]) and pi ∈ RM is the latent variables to be optimized in the
i-th node. The constrained optimization for pi that we address in
this paper is defined as

min
pi

∑
i∈V

Fi(pi) s.t. Ai|jpi+Aj|ipj=0 ∀(i, j)∈E , (1)

where the Ai|j ∈ RM×M are parameters that specify the edge con-
straints. If we aim to attain consensus for the variables pi across the
V nodes then the Ai|j are

Ai|j =

 I (i > j, j ∈ N (i))
−I (j > i, j ∈ N (i))
O (otherwise)

,

where I denotes an identity matrix and N (i) = {j ∈ V | (i, j)∈E}
is the set of neighbors of the i-th node.



The constraint optimization problem (1) is generally solved with
the method of Lagrange multipliers (e.g. [11, 12]). The Lagrangian
function is defined by

L =
∑
i∈V

Fi(pi) +
1

2

∑
j∈N (i)

xT
i|j
(
Ai|jpi +Aj|ipj

)
, (2)

where xi|j∈RM and T denote the dual variables associated with the
constraint along edge (i, j) and transposition, respectively. Under
some conditions the strong duality theorem (e.g. [11, 12]) holds

min
pi

max
xi|j

L = max
xi|j

min
pi

L ∀(i, j)∈E . (3)

Then the dual problem on the right side of (3) is generally solved
instead of the primal problem on the left side of (3).

Before continuing our argumentation, we first define some sym-
bols to simplify notation as

p =
[
pT
1, . . . ,p

T
V

]T
,

x =
[
xT
1|2, . . . ,x

T
1|V ,x

T
2|1, . . . ,x

T
2|V , . . . ,x

T
V |1, . . . ,x

T
V |V−1

]T
,

A =


A1|2, . . . ,A1|V , O

A2|1, . . . ,A2|V ,
. . .

O AV |1, . . . ,AV |V−1


T

.

We can now refine our definition of the dual problem. Let us first
rewrite the dual problem by taking the undirected edges into account:

max
xi|j

min
pi

∑
i∈V

Fi(pi) +
∑

j∈N (i)

xT
i|jAi|jpi

= max
x

min
p
F (p) + xTAp

= −min
x
F ?(−ATx), (4)

where F : RMV → R ∪{∞} denotes the sum over all local cost
function and where F ? is the convex conjugate (the Legendre trans-
formation) of F (e.g. [11, 12])

F ?(−ATx) = max
p

(
−xTAp− F (p)

)
. (5)

When F is CCP, F ? is also CCP and F ?? = F [11].
Next we consider the constraint on the dual variables. As noted

in previous works on PDMM [8, 9, 10] each edge has only one con-
straint in (1) and hence the dual variables must satisfy xi|j = xj|i,
(i, j)∈E . Then, the problem (4) can be written by

min
x
F ?(−ATx) + δ(I−P) (x) , (6)

where δ(I−P) is the indicator function defined by

δ(I−P) (x) =

{
0 (I −P)x = 0
+∞ (otherwise) , (7)

and P is the permutation matrix that exchanges dual variables be-
tween each node pair as xj|i↔xi|j , ∀(i, j)∈E .

2.2. Optimization using Peaceman-Rachford splitting

To solve the optimization problem in (6), monotone operator split-
ting (e.g. [17, 18]) was utilized in the conventional study [10]. The
cost function in (6) is difficult to solve in one step. The operator
splitting is a method to overcome this by decomposing it into easier
problems to iteratively/alternatively update variables.

Let us rewrite (6) in the following form:

0 ∈ T1(x) + T2(x), (8)

where T1 = −A∂F ?(−AT) and T2 = ∂δ(I−P) are maximally
monotone operators [19, 20, 21] and the inclusion ∈ facilitates the
multi-valued nature of the maximally monotone operator. Because
both F ? and δ(I−P) are CCP, the stationary point can be found when
the subdifferential with respect to x includes the zero vector as in (8).

Following [10], we use Peaceman-Rachford (P-R) splitting [15,
14, 16] to find a stationary point. Although we omit the derivation,
P-R splitting could be obtained by reforming (8). The result of the
P-R splitting is that variables are iteratively updated in an alternating
manner through Cayley operators (e.g. [17, 18]), which are denoted
by Cn=2Rn−I, (n∈{1, 2}), as

z ∈ C2C1(z), (9)

where z is a dual auxiliary variable of x which is calculated as x∈
R1(z),Rn=(I+σTn)

−1, (σ>0) is the resolvent operator [17, 18],
I is the identity operator, and −1 is the inverse operator (e.g. [17,
18]). Since P-R splitting can be decomposed as z∈C2C1(z)⇒ z∈
C2(y) where y ∈ C1(z) is a second dual auxiliary variable. Thus,
the algorithm can be written as

x ∈ R1(z) = (I+σT1)
−1z, (10)

y ∈ C1(z) = (2R1−I)z = 2x−z, (11)
z ∈ C2(y) = Py, (12)

(12) follows from the fact that P equals C2, which is proven in [10].

2.3. Conventional PDMM algorithm

As context for our work, we briefly explain the conventional PDMM
algorithm (10)-(12) . By reformulating (10) from 0 ∈ x − z +
σT1(x) to differential form, the x-update step is obtained as

0 ∈ ∂
(

1

2σ
‖x− z‖22+F ?(−ATx)

)
, (13)

where ‖·‖p denotes Lp norm and update procedures with respect to
both p and x may be included in (13). To solve (13) previous studies
[8, 9, 10], updated these variables were alternatively updated. This is
achieved by adding a penalty term to the p-update procedure derived
from (5) as

p(t+1) = argmin
p

(
F (p) + z(t)TAp+

1

2σ
‖Ap‖22

)
, (14)

where the last term in (14) is a penalty term to limit the feasible
region in p-update. By substituting p(t+1) into (13), dual variable is
updated by

x(t+1) = argmin
x

( 1

2σ
‖x− z(t)‖22 −xTAp(t+1)−F (p(t+1))

)
= z(t) + σAp(t+1). (15)

In the conventional PDMM algorithm (14), (15), (11), (12) are re-
formulated in a node parallelized computation that is summarized
in Algorithm 1, where Nodej←Nodei(·) indicates the data trans-
mission from node i to j. Note that further improvements to reduce
calculation cost are provided in [8, 9, 10].

It was confirmed that conventional PDMM algorithm generally
provides a high convergence rate [8, 9, 10]. However, when the data
sets available to the nodes are statistically heterogeneous, conven-
tional PDMM does not perform well without carefully choosing σ.
In this scenario the heterogeneity in the convex functions Fi (i∈V)
interferes the learning process. An empirical approach to overcom-
ing this issue is to make σ sufficiently small to ensure homogeneous
convexity of Fi. However, a more formal and effective approach to
solve the problem is desirable.



Algorithm 1 Conventional PDMM

1: Initialization of z(0)i|j ,p
(0)
i

2: for t ∈ {0, . . . , T − 1} do
3: . Latent variable update

for all i ∈ V do
p
(t+1)
i =argminpi

(
Fi(pi) +

∑
j∈N (i) z

(t)T
i|j Ai|jpi

+ 1
2γ
‖Ai|jpi +Aj|ip

(t)
j ‖

2
2

)
4: . Dual and its auxiliary variables update

for all i ∈ V, j ∈ N (i) do
x
(t+1)

i|j = z
(t)

i|j + σ
(
Ai|jp

(t+1)
i +Aj|ip

(t)
j

)
y
(t+1)

i|j = 2x
(t+1)

i|j − z
(t)

i|j

5: . Transmit variables
for all i ∈ V, j ∈ N (i) do

Nodej ← Nodei(p(t+1)
i ,y

(t+1)

i|j )

6: . Dual auxiliary variable update
for all i ∈ V, j ∈ N (i) do

z
(t+1)

i|j = y
(t+1)

j|i

7: end for

3. PROPOSED METHOD

We propose the quadratic PDMM method to overcome the vulner-
ability to the data set statistical heterogeneity. To ensure homoge-
neous convexity for each node cost, we replace the original cost with
their quadratic majorization function using L2 norm (cf. Sec. 3.1).
By predicting the convergence rate on the proposed algorithm, we
derive parameter settings way for fast convergence (cf. Sec. 3.2).

3.1. Quadratic PDMM algorithm derivation

To ensure properties such as strong convexity (SC) and Lips-
chitz smoothness (LS) [17, 22, 23, 24] independently of the statistic
properties of the data and the structure of F , we define a new cost
function G to work with:

G(p)=F (p(t))+
〈
∂F (p(t)),p−p(t)

〉
+

1

2η
‖p−p(t)‖22, (16)

where η ≥ 0, p(t) is the latent variables at the update time t and
G is then 1/η-SC and 1/η-LS. For the case that F is strictly CCP
(e.g. [11, 12]) and hence continuously-differentiable, the original
cost function is approximated from the second-order Taylor series
expansion about p by using δ → 0 as

F (p(t)+δ)=F (p(t))+
〈
∂F (p(t)), δ

〉
+
1

2

〈
HF (p

(t))δ, δ
〉
+o(‖δ‖22),

where the Hessian HF is positive definite and its maximum eigen-
value at any p is denoted by λmax. When η ≤ 1/λmax, G becomes
majorization function of F , i.e., G(p)≥F (p) (e.g. [11, 12]). Then,
majorization minimization is consistent with minimizing F . For the
case that F is not strictly CCP, making η sufficiently small in G is
consistent with minimizing F . The convex conjugate ofG is defined
by

G?(−ATx) = max
p

(
−xTAp−G(p)

)
, (17)

where G? is η-SC and η-LS [17, 22, 23, 24].
The problem in quadratic PDMM is defined by replacing F ? in

(6) with G? as
min
x
G?(−ATx) + δ(I−P) (x) . (18)

Algorithm 2 Quadratic PDMM

1: Initialization of z(0)i|j ,p
(0)
i

2: for t ∈ {0, . . . , T − 1} do
3: . Dual and its auxiliary variables update

for all i ∈ V, j ∈ N (i) do
x
(t+1)

i|j =
(
1
σ
I + ηAi|jA

T
i|j
)−1

·
[
Ai|j

(
p
(t)
i − η∂Fi(p

(t)
i )
)
+ 1

σ
z
(t)

i|j

]
y
(t+1)

i|j = 2x
(t+1)

i|j − z
(t)

i|j

4: . Latent variable update
for all i ∈ V do

p
(t+1)
i =p

(t)
i −η

(
∂Fi(p

(t)
i ) +

∑
j∈N (i) A

T
i|jx

(t+1)

i|j

)
5: . Transmit variables

for all i ∈ V, j ∈ N (i) do
Nodej ← Nodei(y(t+1)

i|j )

6: . Dual auxiliary variable update
for all i ∈ V, j ∈ N (i) do

z
(t+1)

i|j = y
(t+1)

j|i

7: end for

Although the quadratic PDMM algorithm basically follows P-R
splitting, the solver in (10) is changed to

0 ∈ ∂
(

1

2σ
‖x− z‖22 + G?(−ATx)

)
. (19)

From (17), it follows that the optimal point with respect to p is de-
pendent of x. Thus, p is represented as a function of x as

p(t+1)(x)= argmin
p

(
xTAp+G(p)

)
=p(t)−η

(
∂F (p(t))+ATx

)
.

(20)
Then, x is updated as

x(t+1)=argmin
x

(
1

2σ
‖x−z(t)‖22−xTAp(t+1)(x)−G(p(t+1)(x))

)
=

(
1

σ
I+ηAAT

)−1[
A
(
p(t)−η∂F (p(t))

)
+

1

σ
z(t)
]
.(21)

The quadratic PDMM algorithm that reforms (21), (20), (11), (12)
into node parallelized computation manner is summarized in Al-
gorithm 2. A side effect of the proposed method is that it ex-
changes only the dual auxiliary variable yi|j between connected
nodes. This halves the data transmission rate compared with con-
ventional PDMM.

3.2. Convergence rate prediction
We now discuss how to set the parameters σ to achieve high conver-
gence rate, assuming that η is properly set as discussed in Sec. 3.1,
From the basic property of the Cayley operator, its contractive rate
can be determined when G? is both SC and LS (e.g. [18]). Since
G? is η-SC and η-LS, it is represented for the input/output pairs on
y ∈ C1(z) as

‖y(t+1)−y(t)‖22 ≤
(
1− 4ση

(1 + ση)2

)
‖z(t)−z(t−1)‖22, (22)

Since the Cayley operator C2 is non-expansive, i.e., ‖ z(t+1)−
z(t) ‖22≤‖y(t+1)−y(t) ‖22 (e.g. [18]), the convergence rate on the
quadratic PDMM satisfies

‖z(t)−z∗‖22 ≤
(
1− 4ση

(1 + ση)2

)t
‖z(0)−z∗‖22, (23)
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Fig. 1. Combination of edge structure and training data sets

where z∗ denotes the stationary point of z. For fast convergence
even when data set available for each node are heterogeneous, good
choices are σ=1/η [18] while holding η ≤ 1/λmax.

4. EXPERIMENTS

4.1. Experimental setup

To confirm the effectiveness of the proposed method, numerical ex-
periments were conducted. We used the MNIST data set [25] com-
posed of handwritten images of B=10 digits (60,000 training and
10,000 evaluating images). The input vector vi,d, of dimension is
M = 785, is composed of 784 (= 28× 28) pixels and a bias, and
the output supervisor {si,1,d, . . . , si,B,d} is composed of 1 (ideal
respond) and the others are B−1 zeros. Ridge regression is used
as a cost function F because it is strictly CCP and we can set the
parameters η, σ according to our theory:

F (p)=
∑
i∈V

∑
b∈B

∑
l∈D(i)

1

2V BD(i)
‖si,b,d−pT

i,bvi,d‖22, (24)

where B∈{1, . . . , B} and D(i)∈{1, . . . , D(i)} denotes the index
set of data set included in node i. We prepared two kinds of graph
structures V ∈{3, 10} as shown in Fig. 1. They were designed such
that both long and short paths were present. The training data set
was divided into V nodes in two ways. In the homogeneous case,
the training data were divided randomly. In the heterogeneous case,
the training data set were divided to obtain a bias for each node.
Thus, for V =3 we selected{1, 2, 3} for node #1,{4, 5, 6} for node
#2 and{7, 8, 9, 0} for node #3. Similarly we assigning each digit
to on node when V =10. The number of data for each node D(i)
was not necessarily identical. In total, four kinds of edge/data set
combinations as shown in Fig. 1 were prepared.

Three algorithms were compared: distributed ADMM (D-
ADMM) [3], conventional PDMM (PDMM) described in Algo-
rithm 1, and the proposed quadratic PDMM (Q-PDMM) as shown
in Algorithm 2. Since the maximum eigenvalue of Hessian in all
situations was λmax=47.3, we set parameters as η=0.02(≤1/λmax)
and σ=50 (=1/η) in the quadratic PDMM. On the other hand, in
conventional PDMM, σ was adjusted to be converged in all situa-
tions and this strategy resulted in σ=50. The variables p and z were
initialized randomly in which follows GaussianN (0, 0.1). To inves-
tigate the robustness to asynchronous information exchange among
nodes, information exchange was performed randomly at a rate of
once per three iterations. Although this exchange frequency rate
slows the convergence compared with the synchronous information-
exchange case, the differences in the convergence curves due to
the edge structure did not change significantly. Thus, we show
experimental results only for the asynchronous case.
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Fig. 2. Convergence curves where variable exchange was exchanged asyn-
chronously/randomly among node at a rate of once per three iterations for
iteration times (upper row) and for processing time (lower row)

4.2. Experimental results

Figure 2 shows the averaged mean squared error (MSE) for itera-
tion time (upper row) and for processing time (lower row). In total,
T=5, 000 iterative updates were computed on GPU (NVIDIA Tesla
K40). The evaluation scores were calculated using (24), but test data
were utilized rather than training data. The differences with respect
to pi among the V nodes were quite small in all methods. The con-
vergence curves were changed dependent on the statistical properties
on the data sets and the graph structures with conventional methods.
On the other hand with the quadratic PDMM, its convergence curve
was changed dependent on the graph structure only. This would be
because the cost convexity among nodes is homogenized in the pro-
posed method. Its convergence rate was seemed to be the fastest be-
cause it reached stationary points in early iteration times. Even when
comparing processing time as a standard, common results were ob-
tained.

5. CONCLUSION

We proposed quadratic PDMM for enhancing the robustness to the
statistically heterogeneous data sets in edge consensus computing.
By replacing the original cost with its quadratic majorization using
L2 norm, homogeneous convexity on the nodes is ensured even when
the data sets available are heterogeneous among nodes. Our inves-
tigation of the convergence rate on the quadratic PDMM led to a
method to set the parameters to obtain fast convergence. Through
experiments, it was confirmed that the proposed method works well
even if heterogeneous data sets are provided to the nodes.

For future work, further investigations with various data sets and
testing with other edge structures are needed ascertain the effective-
ness of the proposed method under various conditions. In addition, it
is natural to study the use of the method to synchronize deep neural
networks in the context of large-scale stochastic optimization.
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