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Abstract: Securing cyber infrastructures has become critical because they are increasingly 

exposed to attackers while accommodating a huge number of IoT devices and supporting 

numerous sophisticated emerging applications. Security metrics are essential for assessing the 

security risks and making effective decisions concerning system security. Many security 

metrics rely on mathematical models, but are mainly based on empirical data, qualitative 

methods, or compliance checking, and this renders the outcome far from satisfactory. 

Computing the probability of an attack, or more precisely a threat that materialises into an 

attack, forms an essential basis for a quantitative security metric. This paper proposes a novel 

approach to compute the probability distribution of cloud security threats based on a Markov 

chain and Common Vulnerability Scoring System. Moreover, the paper introduces the method 

to estimate the probability of security attacks. The use of the new security threat model and its 

computation is demonstrated through their application to estimating the probabilities of 

cloud threats and types of attacks. 

Keywords: Security threats, quantitative security metrics, cloud threats, Markov Chain, 

Common Vulnerability Scoring System. 

Introduction 

As cyber infrastructures and their interconnection are increasingly exposed to attackers while 

accommodating a massive number of IOT devices and provisioning numerous sophisticated 

emerging applications (Ghayvat et al., 2015; D. Hoang, 2015), security incidences occur more 

often with severe financial damages and disruption to essential services. Securing cyber 

systems thus becomes more critical than ever. A simplistic approach to addressing this 

problem would be to prevent security breaches directly or fix them if they are unavoidable. The 

approach appears simple and straightforward; however, the achieved solutions are far from 
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satisfactory for several reasons. We have not developed effective predictive tools to anticipate 

what and where to launch preventive security actions. We may have developed a whole range 

of tools to deal with security breaches, but this constitutes only temporary and reactive 

solutions and we are still in the dark, not knowing what comes next! 

We suggest a realistic and concrete approach: the goal is to determine the probability of a 

security threat materialised into an attack (a security breach) on a system, the cost 

consequences (what it hurts), and the distribution of the costs over the system’s constituents or 

stakeholders (where it hurts) when the threat materialises. Knowing the probability that a 

threat materialised into an attack we are able to predict the chance that it will occur and take 

appropriate measures to reduce or prevent its occurrence. Knowing the consequences, we can 

make appropriate judgments whether the damages caused by the attack are significant enough 

to warrant a security response or it can be written off as one of the components of the 

operational costs. Knowing “where it hurts” allows us to use our security knowledge and tools 

to respond appropriately to the security attack. Clearly, the central issues are the probability of 

a threat materialised and the distribution of its consequences. In this paper, we only address 

the problem of determining the probability of a threat materialised into an attack. 

The above discussion implies the need for a set of relevant security metrics that allows us to 

deal with security issues proactively and to set appropriate security goals for our systems and 

determine the performance of any solution for protecting the systems (both preventing 

potential incidences and tackling incidences head on). To ascertain the security of a system, 

it is necessary to develop meaningful metrics to measure appropriately the system’s security 

level or status. Lord Kelvin stated that “when you can measure what you are speaking about, 

and express it in numbers, you know something about it; but when you cannot measure it, 

when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory 

kind” (Thomson, 1889). To measure the security of a cyber space, standards organizations 

and researchers have proposed many security metrics. The Center for Internet Security (CIS) 

published a number of security metrics in management, operation, and technique (CIS, 

2010). The National Institute of Standards and Technology (NIST) has developed security 

metrics in implementation, effectiveness, and impact (Aroms, 2012) Other metrics have been 

proposed for risk assessment and network security evaluation (Hu, Asghar, & Brownlee, 

2017; Huang, Zhou, Tian, Tu, & Peng, 2017). 

Recently, several security metrics related to the computation of probability of security 

threats have been developed. In (Patel & Zaveri, 2010), seven types of model-based metrics, 

which are created by integrating mathematical models and empirical measurements, are also 

used to calculate the probability of security threat. In (Almasizadeh & Azgomi, 2013), the 

study used a semi-Markov model to investigate the attack process to compute the transition 
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probability between security states. Mean Failure Cost is one of the sound approaches to 

quantitative security metrics, taking into account various security components like 

stakeholders, security requirements, and security threats (Aissa, Abercrombie, Sheldon, & 

Mili, 2012). The probability distribution of security threats is central to this metric, but the 

computation is based largely on empirical or qualitative data. Several other security metrics 

relate to successful attacks, but they are specific to a particular type of attack and hence 

difficult to generalise. 

With these considerations, we pose two questions: (1) how to model a security threat that 

involves three main security components: attackers, security vulnerabilities, and defenders? 

and (2) how to predict the probability that the threat materialises into an attack? 

Considering cloud systems, we address these challenges by proposing a security threat model 

based on Markov theory to calculate the probability distribution of security cloud threats. 

For this purpose, the Common Vulnerability Scoring System (CVSS) will be applied to 

compute the probability of an attack. For evaluating the proposed method, cloud security 

threats reported by the Cloud Security Alliance (CSA) will be investigated to calculate the 

probability of cloud threats materialising and the probability of various types of attack. These 

computation results will generate the quantitative metrics used to measure the security level 

of a cyber-system (Le & Hoang, 2017).  

Major contributions of this paper are as follows: 

1. It proposes a security threat model that takes known and major cloud security threats 

into account. For each security threat, security factors, like attackers, security 

vulnerabilities and defenders, are investigated to form attack paths for calculating the 

probability of security threat being materialised. 

2. It proposes a method for computing the probability distribution of security threats 

based on a Markov chain application. The Common Vulnerability Scoring System 

(CVSS) is investigated to obtain the data for the computation. 

3. It provides a method for determining the probability of materialised cloud threats 

and types of attack using relevant data for supporting security management.  

The remainder of the paper is organised as follows. Section 2 provides the background 

related to security metrics to compute the probability of security threats and Markov theory 

in security metrics. Section 3 analyses the relationship between security threats and 

vulnerabilities. Section 4 proposes the security threat model based on a Markov chain. 

Section 5 describes the computation method for computing the probability distribution of 

security threats. Section 6 analyses the application of the proposed method in computing 

attack probabilities. Section 7 concludes the paper with suggestions for future work. 
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Related work 

This section discusses related work concerning security metrics related to probability of 

security threats, and Markov theory in security metrics. 

Security metrics related to probability of security threats 

For computing security threat probability based on empirical approach, Aissa et al. (2012) 

introduced a security metric named Mean Failure Cost (MFC) that measures the security of 

an IT system through quantifying variables including stakeholders and the loss resulting 

from security threats. It includes several desirable features: it identifies stakeholders and 

provides the cost for each as a result of a security failure; it measures the financial loss per 

unit of investigation time ($/h). Despite these appropriate considerations, MFC has a major 

drawback in that the probability distribution of security threats is based on simple empirical 

data, while security threats are changeable, dynamic, and specific to different IT systems. 

Due to the stochastic nature of threats, modelling their probability distributions has become 

a necessity for any security measuring and predicting system. Relevant and sound 

classification of threats in terms of deployed vulnerabilities, attack motivation perspectives, 

and likelihood of successful attacks are essential to facilitate the identification of potential 

security threats and the development of security countermeasures. 

For computing security threat probability using a stochastic model, in (Almasizadeh & 

Azgomi, 2013), the authors used the attack path concept and time is used to calculate 

transition probabilities. The authors used probability distribution functions to define the 

transitions of the model for characterizing the temporal aspects of the attacker and the 

system behaviour. The stochastic model was recognised to be a semi-Markov chain that was 

analytically solved to calculate the desirable quantitative security metrics, such as mean time 

to security failure and steady-state security.  

For Probability-Based Security Metrics related to security threat, probability-based security 

metrics usually express the likelihood of an adversary compromising the system or the 

probability that the system is secure (Ramos, Lazar, Holanda Filho, & Rodrigues, 2017). 

(Jha, Sheyner, & Wing, 2002) proposed the reliability metric, which represents the 

probability of an adversary not succeeding in an attack. This metric was obtained from a 

continuous time Markov chain generated from assigning transition probabilities to the edges 

of an attack graph. Formally, the reliability of the network is the probability that, in a 

sufficiently long execution time, the Markov chain will not be in a security failure state. In 

case not all transition probabilities are available, due to, for example, lack of data about 

attacks, the authors proposed a Decision Markov Process approach to compute the reliability 
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metric. (Li, Parker, & Xu, 2011) used a renewal stochastic process to estimate the likelihood 

that an adversary exploits a randomly selected system vulnerability.  

Markov theory in security metrics 

For a Markov process, the conditional probability distribution of future states of the process 

(conditional on both past and present states) depends only on the present state, not on the 

sequence of events that preceded it. Based on this property, several studies have deployed 

Markov models for security metrics. (Bar, Shapira, Rokach, & Unger, 2016) used a Discrete 

Markov Chain Model to predict next honeypot attacks. In (Patcha & Park, 2007), to detect 

anomaly attacks in an intrusion detection system (IDS), the authors used a Hidden Markov 

Chain to model this system. (Madan, Goševa-Popstojanova, Vaidyanathan, & Trivedi, 2004) 

used a Semi Markov Model (SMM) to quantify the security state for an intrusion tolerant 

system. In this work, Discrete Time Markov Chain (DTMC) steady-state probability was 

applied to compute the mean time to security failure (MTTSF). Anderson et al. (2011) 

proposed a malware detection algorithm based on the analysis of graphs that represent 

Markov chains from dynamically collected instruction traces of the target executable. 

(Almasizadeh & Azgomi, 2013) used an attack path concept and time was used to calculate 

transition probabilities. In terms of security metrics, most research used Markov models in 

predicting security attacks or malware propagations. To our best knowledge, few studies 

consider applying Markov chains and for computing the probability distribution of security 

threats. 

The relationship between cloud security threats and 
vulnerabilities 

In this section, we explore the relationship between security threats and vulnerabilities to 

identify potential attacks.  

A security threat is considered as a potential attack leading to a misuse of information or 

resources, and vulnerability is defined as some flaws in a cyber space (system) that can be 

exploited by hackers. As a result, a security threat is a potential attack that may or may not 

eventuate, but with a potential to cause damage. First, we clarify the cloud security threats 

based on the Cloud Security Alliance (CSA) report (ALLIANCE, 2016; D. B. Hoang & 

Farahmandian, 2017). The report released twelve critical security threats specifically related to 

the shared, on-demand nature of cloud computing with the highest impact on enterprise 

business. 

1. Data Breaches (DB).  These are security incidents in which confidential or protected 

information is released, stolen or used without permission by an attacker. 
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2. Weak Identity, Credential and Access Management (IAM). Attacks may occur 

because of inadequate identity access management systems, failure to use multifactor 

authentication, weak password use, and a lack of continuous automated rotation of 

cryptographic keys, passwords, and certificates. 

3. Insecure APIs (Application Programming Interfaces). The security of fundamental 

APIs is a vital key role in availability of cloud services. From authentication and 

access control to encryption and activity monitoring, these interfaces must be 

designed to protect against both accidental and malicious attempts to circumvent 

policy.  

4. System Vulnerabilities (SV). These are exploitable bugs in programs that attackers 

can use to infiltrate a computer system for stealing data, taking control of the system 

or disrupting service operations. Vulnerabilities within the components of the 

operating system – kernel, system libraries and application tools – put the security of 

all services and data at significant risk. 

5. Account Hijacking (AH). It is a traditional threat with attack methods such as 

phishing, fraud, and exploitation of software vulnerabilities. 

6. Malicious Insiders (MI). It is defined as a malicious insider threat created by people 

in organizations who have privileged access to the system and intentionally misuse 

that access in a manner that negatively affects the confidentiality, integrity, or 

availability of the organization’s information system. 

7. Advanced Persistent Threats (APTs). These are parasitical-form cyber-attacks that 

infiltrate systems to establish a foothold in the computing infrastructure of target 

companies from which they smuggle data and intellectual property. 

8. Data Loss (DL): for reasons like the deletion by the cloud service provider or a 

physical catastrophe (including earthquake or a fire) leading to the permanent loss of 

customer data. Providers or cloud consumers have to take adequate measures to back 

up data, following best practice in business continuity and disaster recovery – as well 

as daily data backup and possibly off-site storage. 

9. Insufficient Due Diligence (IDD). An organization that rushes to adopt cloud 

technologies and chooses cloud service providers (CSPs) without performing due 

diligence exposes itself to a myriad of commercial, financial, technical, legal and 

compliance risks. 

10. Abuse and Nefarious Use of Cloud Services (ANU). Poorly secured cloud service 

deployments, free cloud service trials, and fraudulent account sign-ups via payment 
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instrument fraud expose cloud computing models such as IaaS, PaaS, and SaaS to 

malicious attacks. 

11. Denial of Service (DOS). DOS attacks are meant to prevent users of a service from 

being able to access their data or their applications by forcing the targeted cloud 

service to consume inordinate amounts of finite system resources so that the service 

cannot respond to legitimate users.  

12. Shared Technology Vulnerabilities (STV). Cloud service providers deliver their 

services by sharing infrastructure, platforms or applications. The infrastructure 

supporting cloud services deployment may not have been designed to offer strong 

isolation properties for a multi-tenant architecture (IaaS), re-deployable platforms 

(PaaS) or multi-customer applications (SaaS). This can lead to shared technology 

vulnerabilities that can potentially be exploited in all delivery models. 

A security threat usually exploits one or more vulnerabilities in components of a system to 

compromise it. The relationship between security vulnerabilities and these recognised 

threats is thus essential for threat modelling. Hashizume et al. (Hashizume, Rosado, 

Fernández-Medina, & Fernandez, 2013) identified seven major security vulnerabilities in 

cloud computing: 

1. Insecure interfaces and APIs (V1). Cloud providers offer services that can be accessed 

through APIs (SOAP, REST, or HTTP with XML/JSON). The security of the cloud 

depends upon the security of these interfaces. Vulnerabilities are weak credentials, 

insufficient authorization checks, and insufficient input-data validation. 

Furthermore, cloud APIs are still immature, which means that they are frequently 

changed and updated. A fixed bug can introduce another security hole in the 

application. 

2. Unlimited allocation of resources (V2). Inaccurate modelling of resource usage can 

lead to overbooking or over-provisioning. 

3. Data-related vulnerabilities (V3). This is one of the biggest cloud challenges involving 

data issues. Data can be co-located with the data of unknown owners (competitors, or 

intruders) with a weak separation. Data may be located in different jurisdictions 

which have different laws. Incomplete data deletion – data cannot be completely 

removed. Data backup is done by untrusted third-party providers. Information about 

the location of the data usually is unavailable or not disclosed to users. Data is often 

stored, processed, and transferred in clear plain text. 

4. Vulnerabilities in Virtual Machines (V4). Beside data-related issues, vulnerability in 

Virtual Machines is a big challenge in cloud security. It includes several aspects: 

possible covert channels in the colocation of VMs; unrestricted allocation and de-

http://doi.org/10.18080/jtde.v7n1.181


Journal of Telecommunications and the Digital Economy 
 

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 7 Number 1 March 2019 
Copyright © 2019 http://doi.org/10.18080/jtde.v7n1.181  44 

allocation of resources with VMs; uncontrolled migration – VMs can be migrated 

from one server to another server due to fault tolerance, load balance, or hardware 

maintenance; uncontrolled snapshots – VMs can be copied in order to provide 

flexibility, which may lead to data leakage. Uncontrolled rollback could lead to reset 

vulnerabilities – VMs can be backed up to a previous state for restoration, but 

patches applied after the previous state disappear. VMs have IP addresses that are 

visible to anyone within the cloud – attackers can map where the target VM is located 

within the cloud. 

5. Vulnerabilities in Virtual Machine Images (V5). Uncontrolled placement of VM 

images in public repositories. VM images are not able to be patched since they are 

dormant artefacts. 

6. Vulnerabilities in Hypervisors (V6). These vulnerabilities stem from the complexity of 

the hypervisor code. 

7. Vulnerabilities in Virtual Networks (V7). The vulnerabilities are associated with the 

sharing of virtual bridges by several virtual machines. 

Table 1: Relationship between security threats and vulnerabilities 

 Threat Description Vulnerabilities Incidents 

1 DB Data Breaches V1, V3, V4, V5, V7 

An attacker can use several attack techniques involved, like SQL, command 

injection, and cross-site scripting. Virtualization vulnerabilities can be exploited 

to extract data. 

2 IAM 

Weak Identity, 

Credential and 

Access 

Management 

V1, V3 
An attacker can leverage the failure to use multifactor authentication, or weak 

password uses. 

3 API 
Insecure interfaces 

and APIs 
V1 

An attacker can take advantage of weaknesses in using APIs like SOAP, HTTP 

protocol. Bugs in APIs can be also exploited.  

4 SV 
System 

Vulnerabilities  
V4, V5, V6, V7 

An attacker can attack via vulnerabilities in Virtual Machine images, in 

Hypervisors, and in Virtual Networks. 

5 AH Account Hijacking V1 To get system access, attackers can use the victim’s account  

6 MI Malicious Insiders V5, V7 An attacker can generate a VM image embracing malware, then propagate it. 

7 APT 
Advanced 

Persistent Threats 
V1, V4, V5, V6, V7 

An attacker can use several kinds of vulnerabilities from specific virtual cloud or 

APIs to infect bugs permanently in the target system for mainly scavenging 

data. 

8 DL Data Loss V3, V4, V7 

An attacker can use data-driven attack techniques to gain confidential 

information from other VMs co-located in the same server; or use the risk of 

data backup, storing process to scavenge data.  

9 IDD 
Insufficient Due 

Diligence 
V4, V6 

An attacker can leverage weaknesses in complying with rules in using cloud 

system like configuration of VMs, data and technology shares. 

10 ANU 

Abuse and 

Nefarious Use of 

Cloud Services 

V4 
An attacker can attack, through use and share of servers, data of customers by 

using an anonymous account. 

11 DOS Denial of Service V1, V2 
An attacker can request more IT resources, so authorised users cannot get 

access to the cloud services. 

12 STV 
Shared Technology 

Vulnerabilities 
V4, V6 

An attacker can sniff and spoof virtual networks or exploit the flexible 

configuration of Virtual Machines or hypervisors. 
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We identify and tabulate the connection between security threats and vulnerabilities in Table 

1. It is seen that a security threat may have several security vulnerabilities and one 

vulnerability may be exploited by several security threats. For example, in terms of threat 

Data Breaches (DB), five vulnerabilities are involved in this security threat: Insecure 

interfaces and APIs (V1), Data-related vulnerabilities (V3), Vulnerability in Virtual Machines 

(V4), Vulnerabilities in Virtual Machine Image (V5), and Vulnerabilities in Virtual Networks 

(V7). Ristenpart et al. (Ristenpart, Tromer, Shacham, & Savage, 2009) indicated that 

confidential information can be extracted from VMs co-located in the same server. An 

attacker may use several attacks to collect data by exploiting vulnerabilities in brute-forcing, 

measuring cache usage, and load-based co-residence detection data processing techniques in 

cloud systems. Therefore, data leakage depends not only on data-related vulnerabilities but 

also on virtualization vulnerabilities.  

Table 1 indicates that the data-related vulnerability (V3) is involved in three security threats. 

First, it may cause the threat Data Breaches (DB), when an attacker uses several techniques 

like SQL injection or cross-site scripting to attack the cloud system. Second, it may lead to 

the threat Weak Identity, Credential and Access Management (IAM), where an attacker may 

leverage the data that is often stored, processed, and transferred in clear plain text to gain 

access to the cloud system. Third, it may cause the threat Data Loss (DL), when an attacker 

exploits several related vulnerabilities like different located data, incomplete data deletion, 

and data backup. 

Markov model for successful attacks 

We introduce a Markov process to describe a cloud attack model and use the CVSS to 

determine the transition matrix of the proposed Markov model. 

A security threat is a stochastic process. We model it as a Markov chain. The probability of 

transition from one state to others is based on the vulnerabilities present in the current state. 

An attacker exploits various vulnerabilities to arrive at a security threat state and eventually 

reaches the final failure state. At this stage, we mainly focus on a first level of abstraction 

with visible and quantifiable states and construct 3 states, namely the secure state (S), the 

threat state (T), and the failure state (F). Figure 1 depicts the proposed Markov model for 

modelling security threats and attacks with state transition probabilities, where α denotes 

the transient probability from state S to state T, β denotes the transient probability from T 

back to S, γ denotes the probability to change the state from T to F, δ denotes the transient 

probability from F state back to T state, ɛ denotes the possibility from F state back to S state. 

The model takes all elements of an attack mode into account, including attack, defense and 

recovery factors of the system. We do not present the direct transition probability from state 
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S to state F for several reasons. First, we are investigating the impact of security threats on 

system failure and how an attacker takes advantage of security threats. An attacker tries to 

exploit vulnerabilities to change from secure state to threat state. Second, the system 

collapses (goes directly from S to F) mainly in the case of natural disasters or similar 

catastrophes. This model is simple and practical for our consideration. Even with this 3-state 

model, it is difficult to derive a set of data for its complete description. We refine the model 

in several steps of our investigation. 

Figure 2 shows the attack model with the defense elements absorbed into the failure state. It 

means there is no transient probability from F to T or from F to S. When the process reaches 

F, it stays there with probability 1. This means the recovery process is not taken into account. 

 
Figure 1. Diagram of attack model with defence and recovery 

 
Figure 2. Diagram of attack model with defence and without recovery 

 
Figure 3. Diagram of attack model without defence and recovery 

Figure 3 shows the attack model with the defense efforts absorbed both at the threat state 

and the failure state. We focus on this kind of abstraction of this model. The aim is to 

compute the successful chance of attacks by an attacker deploying vulnerabilities of a threat. 

We do not take into account the recovery element of the system at this stage of investigation, 

as it can be incorporated at a later stage. Furthermore, recovery efforts largely depend on the 

manager of the system and relevant data is not often disclosed. The probability from S to T 

also means the overall probability that includes the defense element that the system tries to 

change state from T back to S. 

We are interested in finding the transition probability from state S to state F in the attack 

sequence. The Chapman–Kolmogorov equation (Ross, 2014) is available to find the transient 
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probability between two states after a number of jump-steps. The transition probability can 

be calculated by matrix multiplication. Therefore, to derive the transition probability 

between two states in a number of steps, the Chapman–Kolmogorov equation can be used as 

follows: 

 m n m n
ij ik kjP P P+ =  (1) 

where P is the probability matrix of transitions in the state space. Pij
m+n is the transition 

probability from state i to state j after (m + n) steps via any state k. 

Distribution of security threat probabilities 

To compute the distribution of security threat probabilities based on a Markov chain, 3 

phases can be presented as follows: modelling security threats as a Markov chain; building a 

transition probability matrix; computing the transition probability from state S to state F via 

each threat T. 

 
Figure 4. Security threat model with attack process 

Phase 1: modelling security threats as a Markov chain. Figure 4 shows an attack model that 

expands the general model in Figure 3 with twelve attack paths. This is modelled as a 

Markov chain with fourteen states, including a security state, a failure state, and twelve 

threat states. The security state is defined as a state of the system that has no failure or 

security threats. The failure state is a state when the system fails to meet its minimum 

requirements. The threat state is considered as a middle state that an attacker could exploit a 

specific set of vulnerabilities. Attack path can be defined as a possible way that an attacker 

starts from security threat to reach failure state through threat states. In this model, we 

assume that the probability of an attack path is the overall probability that includes the 

defense element. This is a simplification, as it is possible that the system can move from one 

threat state to other determined threat states to reach the failure state.  
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Phase 2: building transition probability matrix. The probability of each attack path is 

considered as the probability of changing state security to failure caused by each security 

threat. An attacker leverages security vulnerability of each security threat (the attack path) to 

attack to reach the failure state of the cloud system. From the attack model (see Figure 4) we 

arrive at a transition probability Pij matrix with fourteen states including security, failure, 

and twelve threat states. 
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In this matrix, α is the sum of probability of all attack paths from S state to T states; and γF is 

the sum of the probability of all threat states to the failure state. Once the system is in the 

security state, it will remain in this state with probability (1-α) and, once the system is in the 

failure state, the probability of remaining in this state is 1 (the absorbing state). The 

probabilities of attack paths representing from S to T states are α1, α2, α3 etc. The 

probabilities of attack paths representing from threat states to the failure state are γ1F, γ2F, 

γ3F etc. There are also transition probabilities from one state to other states. However, for 

demonstration purposes, it is assumed that there is one path from one threat state to another 

threat state. These probabilities are presented as γ1, γ2, γ3 etcetera. 

Phase 3: computing the transition probability from state S to state F via threats Ti. According 

to attack paths theory, each attack-path represents the path that the attacker will take 

advantage of to reach the failure state (F) from a threat state (T) by exploiting the set of 

vulnerabilities (vij) of each security threat. For example, we assume that attack path 1 

represents the path where the attacker exploits vulnerability of threat 1 (Data Breaches-DB). 

Thus, there is a distribution of probability of attack paths when attackers may choose one 

path to attack in the space of attack paths. To quantify this distribution, we use the concept of 

weight of each path. CVSS (NVD, 2018) can be used to weigh each path from S to T, from T to 

F, or between threats to calculate transition probabilities. The weight associated with the 

transition from S to Ti is determined by computing the ratio between vulnerability scores from 

S to Ti and all vulnerability scores from S to all threats. By using (2) below, the transition 

probabilities (αi) from S to Ti can be calculated. Similarly, the transition probabilities (γiF) 

from Ti to F can be computed using (3). To compute the transient probability S to F via Ti, 

(P(SF)i), (1) can be used to compute the value in any number of jump-steps. However, at this 

stage, for the purpose of demonstrating the threat model based on the Markov chain, we 
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compute P(SF)i in two jump-steps using (4). In this case, the probability between threats may 

not be considered.  
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In these equations, i is the index of an attack path, vij is the vulnerability score of 

vulnerability j associated path i, kϵP is the set of attack paths. 

Table 2. Vulnerability scores 

Vulnerability Acronym Exploitability score 

CVE-2017-14925 V1 8 

CVE-2014-4064 V2 2 

CVE-2015-5255 V3 3 

CVE-2015-4165 V4 5 

CVE-2016-0264 V5 7 

CVE-2015-1914 V6 5 

CVE-2017-6710 V7 7 

To calculate the probability distribution of security threats, we need to determine elements 

of the Markov transition matrix based on the vulnerabilities associated with a threat. From 

the security state S, the total probability that the system moves to one of the threat states is 

assumed to be α (α = 0.0318 (Jouini & Rabai, 2015)). We can determine the transition 

probability that the system moves from S to Ti as the ratio of the sum of vulnerability scores 

of threats associated with Ti over the total CVSS scores of all threats.  

Table 2 shows the CVSS scores (NVD, 2018) associated with relevant vulnerabilities 

considered in this paper. According to CVSS, this number is a score out of ten. For example, 

V1 scores eight out of ten because the severity of this vulnerability is very high once it is 

related to cloud data breach vulnerabilities. In addition, to go to state T1 from S, an attacker 

needs to exploit the certain set of vulnerabilities associated with the security threat state T1. 

In this case, vulnerabilities one, three, four, five, and seven will be exploited (see Table 1). 

Therefore, the number of vulnerability scores for the attack path one is 

W1=V1+V3+V4+V5+V7=30 and the total number of all vulnerability score from S to any Ti is 
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W=177. We can estimate the transition probability from S to T1 (α1 = 30 177⁄ ∗ α = 0.00539). 

Similarly, other transition probabilities from S to Ti will be computed by using (2). We 

assume that the transition probability from state Ti to F is highly likely with probability γiF =

0.95 for any attack paths (see Figure 4). By computing αi and γiF, the transition probability 

matrix P is obtained. Then by using (1) and (4), we have the probabilistic distribution of 

twelve security threats expressed in Table 3.  

Table 3 Probability distribution of twelve security threats 

 Threats Formula Probability (× 10−3) 

1 DB α1 ∗ 𝛾1𝐹 5.1203 

2 IAM α2 ∗ 𝛾2𝐹 1.8774 

3 API α3 ∗ 𝛾3𝐹 1.3654 

4 SV α4 ∗ 𝛾4𝐹 4.0962 

5 AH α5 ∗ 𝛾5𝐹 1.3654 

6 MI α6 ∗ 𝛾6𝐹 2.3894 

7 APT α7 ∗ 𝛾7𝐹 5.4616 

8 DL α8 ∗ 𝛾8𝐹 2.5601 

9 IDD α9 ∗ 𝛾9𝐹 1.7067 

10 ANU α10 ∗ 𝛾10𝐹 0.8533 

11 DOS α11 ∗ 𝛾11𝐹 1.7067 

12 STV α12 ∗ 𝛾12𝐹 1.7067 

As seen in Table 3, threat Advanced Persistent Threat (APT) has the highest probability 

(0.55%). The second highest probability is threat Data Breach with 0.51%. Threat Abuse and 

Nefarious Use of Cloud Services (ANU) has lowest probability with 0.08%. From the 

distribution of security threat probability, the highest chance for attacking the cyber system 

relates to threat Data Breaches (DB). In terms of security management, security experts needs 

to give a decision to protect data or to protect against advanced persistent attacks  

Estimation of security attack probability 

In this section, to compute the security attack probability, the relationship between attack 

types and security threats will be investigated. Then, we introduce the probabilistic method 

to determine the security attack probability distribution. 

Relationship between attack types and security threats 

A security attack is an information security threat that involves an attempt to obtain, alter, 

destroy, remove, implant or reveal information without authorised access or permission. In 

other words, a security attack is an attempt to gain unauthorised access to information 
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resources or services, or to cause harm or damage to cyber systems. It is clear that an attack 

type relates to security threats. An attack type can use one or several security threats and one 

threat can involve several attack types. We investigate the relationship between attack types 

and security threats (Table 4). In (Singh & Shrivastava, 2012), there are five major types of 

security attack in cloud computing. It is impossible that an attacker can exploit all 

vulnerabilities in the vulnerability space. Apparently, an attacker or a group of attackers just 

can exploit several determined security vulnerabilities. These vulnerabilities often are 

grouped into categories. These categories can be identified by different security threats. Each 

of these groups of attacks will have specific features that can be recognised and differentiated 

from other groups. Each group of attacks will fit several security threats. Five different 

groups of attack and their connection with security threats will be investigated as follows. 

1. DOS attacks (A1) 

Attackers will take advantage of the availability feature of a cloud system; they aim to overload 

a target server with service requests in such a way that it is unable to respond to any new 

request and hence resources are made unavailable to its users. This can be illustrated in several 

scenarios: (1) Overloading a target with a large amount of junk data, like UDP floods, ICMP 

floods etc.; (2) Using blank spaces in various protocols to overload target resources, like SYN 

floods, fragment packet attack, ping of death; (3) Initiating numerous HTTP requests so that 

they cannot be handled by the server in an HTTP DDOS attack or XML DDOS attack. It is clear 

that this attack type is related to the threat DOS (T11) and threat MI (T6), when attackers take 

advantage of a malicious insider to build the botnet for DDOS attacks. 

2. Cloud malware injection attack (A2) 

Attackers may try to inject a malicious service or even a virtual machine into a cloud system 

in order to hijack a user’s service for their own purposes. These may include data 

modification, full functionality changes/reversals or blockings. Cloud malware injection 

attack groups tend to exploit security vulnerabilities that relate to security threats such as 

data breach, insecure interfaces and APIs, system vulnerabilities, malicious insider, and 

advanced persistent attack. This type of attack corresponds to 5 threats: DB (T1), API (T3), 

MI (T6), APT (T7) and DL (T8), when attackers use malicious insiders or advanced 

persistent threats to inject malware to take control of a cloud system, especially in database 

management. 

3. Side-channel attacks (A3) 

An attacker could attempt to compromise a cloud by placing a malicious virtual machine in 

close proximity to a target cloud server and then launching a side-channel attack. Side-

channel attacks have emerged as an active type of security attack targeting system 
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implementation of cryptographic algorithms. This type of attack has a close relationship with 

several threats such as: (1) AUN (Abuse and Nefarious Use of Cloud Services – T10) when an 

attacker attacks through using and sharing the servers so that the attacker can implement its 

malicious virtual machine to perform a side-channel attack; and (2) STV (Shared Technology 

Vulnerabilities – T12). 

4. Authentication attacks (A4) 

Authentication is a weak point in cloud computing services and is frequently targeted by an 

attacker. Today, most of the services still use simple username and password type of 

knowledge-based authentication. Some authentication attacks are: (1) Brute Force Attacks, 

where exhaustive combinations of a password are applied to break the password security. 

This brute force attack is generally applied to crack encrypted passwords when they are 

saved in a form of encrypted text. (2) Dictionary Attack: unlike the brute force attack, rather 

than searching all possibilities, the dictionary attack tries to match a password with most 

occurring words or words of daily life usage and hence it is more effective in terms of speed. 

(3) Shoulder Surfing: it is an alternative name for “spying” in which an attacker spies on a 

user’s movements to gain his/her password. Here, the attacker observes the way a user 

enters the password, i.e. what keys of the keyboard the user has pressed. (4) Other related 

attacks such as Replay Attacks, Phishing Attacks, and Key Loggers. The authentication attack 

group is related to password attacks; hence, it is pertinent to security threats including: (1) 

IAM (Identity and Access Management – T2), when an attacker can take advantage from the 

failure to use multifactor authentication or strong passwords; (2) AH (Account Hijacking) by 

using a victim’s account to get access to the target’s resources; (3) ANU (Abuse and 

Nefarious Use of Cloud Services – T10), when an attacker attacks through using and sharing 

the servers to gain access to customers’ data through an anonymous account. Therefore, A4 

has a relationship with T2, T5, and T10. 

5. Man-In-The-Middle Cryptographic attacks (A5) 

A man-in-the-middle attack is one in which an attacker intercepts messages in the public key 

exchange process and then retransmits them, substituting his/her own public key for the 

requested one, so that the two original parties still appear to be communicating with each 

other. Through this process, the two original parties appear to communicate normally 

without being aware of the intruder. The message sender does not recognise that the receiver 

is an unknown attacker trying to access or modify the message before retransmitting it to the 

receiver. Thus, the attacker controls the entire communication. MIM attacks include: (1) 

Address Resolution Protocol Communication (ARP) – in the normal ARP communication, 

the host PC will send a packet which has the source and destination IP addresses and will 
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broadcast the packet to all the devices connected to the network; (2) ARP Cache Poisoning, 

in which the attacker sniffs the network by controlling the network switch to monitor the 

network traffic and spoofs the ARP packets between the host and the destination PCs and 

then performs a MIM attack; and (3) others including DNS Spoofing or Session Hijacking. 

This attack group (A5) is related to several threats: (1) IAM (Weak identity, Credential and 

Access Management – T2), when attackers leverage the weakness in using multifactor 

authentication or fake information leading to loss of credentials; (2) AH (Account Hijacking 

– T5) by sniffing the connection to catch the cookies of victims between their PC and the web 

server, then using the cookies to bypass the system. So A5 has connection with T2 and T5. 

Table 4. Relationship between security attack types and security threats 

 Type Description Threats Incident 

1 A1 Denial of Service T6, T11 
Making overloaded requests to the 
system to stop availability of servers 

2 A2 
Malware Cloud 
Injection 

T1, T3, T6, 
T7, T8 

Injecting malicious virtual machine or 
service to get the victim’s access to the 
cloud system 

3 A3 Side-Channel attack T10, T12 Using and sharing the servers 

4 A4 
Authentication 
attack 

T2, T5, 
T10 

Using weak passwords, sharing 
technology 

5 A5 Man-in-the-middle T2, T5 
Using weakness of multifactor 
authentication and the cookies of users 

Computing the attack type probabilities 

Probability computation of an attack type is based on the probability of the set of security 

threats. It is can be presented mathematically as 𝑃𝑟(𝐴𝑖) = 𝑃𝑟(𝑇1 𝑎𝑛𝑑 𝑇2 𝑜𝑟 𝑇3 … ). However, 

in this paper, we assume that each attack path presents a security threat. There are no 

relations between these security threats: each threat is independent from other threats. 

Therefore, the probability of an attack type is the union of the probability of the attack-

related security threats. It is formulated as follows: 
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This probability of the union of any number of sets can be expressed as the following steps: 

(1) Add the probabilities of the individual threats; (2) Subtract the probabilities of the 

intersections of every pair of events; (3) Add the probabilities of the intersection of every set 

of three events; (4) Subtract the probabilities of the intersection of every set of four events; 

(5) Continue this process until the last probability is the probability of the intersection of the 

total number of sets that we started with (Taylor, 2019). The probability of an attack type is 

computed by using (6). For example, to compute the probability of attack DOS (A1), we have 

𝑃𝑟(𝐴1) = Pr(𝑇6 𝑜𝑟 𝑇11) = Pr(𝑇6) + Pr(𝑇11) − Pr(𝑇6 𝑎𝑛𝑑 𝑇11) = Pr(𝑇6) + Pr(𝑇11) − Pr(𝑇6) ∗

http://doi.org/10.18080/jtde.v7n1.181


Journal of Telecommunications and the Digital Economy 
 

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 7 Number 1 March 2019 
Copyright © 2019 http://doi.org/10.18080/jtde.v7n1.181  54 

Pr(𝑇11|𝑇6). Because 𝑇6 and 𝑇11 are independent, Pr(𝑇11|𝑇6) = Pr(𝑇11), and therefore 𝑃𝑟(𝐴1) =

Pr(𝑇6) + Pr(𝑇11) − Pr(𝑇6) ∗ Pr(𝑇11) ≈ 0.0041. Similarly, applying the above algorithm by 

using (6), we will have the probability distribution of five attack types seen in Table 5.  

As seen in Table 5, attack type Malware Cloud Injection (A2) has the highest probability at 

1.67%. The second highest probability is attack type Denial of Service (A1) at 0.41%. The 

lowest probability is attack type Side-Channel Attack (A3) with 0.2%. The distribution of 

attack probability provides several implications. For an attack countermeasure plan, security 

practitioners need to care about methods to prevent malware cloud injection attacks, 

because the chance of this type of attack is highest. For a security manager to make a 

decision on security investment, it may depend on not only the probability of an attack but 

also the consequences of this successful attack, because, in several scenarios, the probability 

of an attack is very small, but the impact is very high in terms of money. As a result, the 

average security cost, which is the product of the probability of an attack and the 

consequence of this attack, is quite high. In this case, the manager can prioritise security 

actions against the kind of attack that makes more damage – for example, if the consequence 

of denial of service attacks (A1) is ten times higher than that of malware cloud injection (A2), 

at $1,000,000 and $100,000, respectively. In this case, using the figures from Table 5, the 

security cost for A1 is $1,000,000 x 0.00409=$4,092, while the security cost for A2 is 

$100,000 x 0.016=$1,667. Therefore, the security cost for A1 is nearly two-and-a-half times 

higher than the security cost for A2. 

Table 5: Probability distribution of five attack type 

 Attack Description Probability (× 10−3) 

1 A1 Denial of Service 4.092 

2 A2 Malware Cloud Injection 16.679 

3 A3 Side-Channel attack 2.559 

4 A4 Authentication attack 4.091 

5 A5 Man-in-the-middle 3.240 

Conclusion 

This paper has proposed a novel security threat model to compute security threat probability 

as a metric to measure the security of a cyber-system. For this purpose, we applied a Markov 

chain model with three states to identify the attack paths through various security threats. 

Twelve security threats reported by the Cloud Security Alliance and seven security 

vulnerabilities scored by the Common Vulnerability Scoring System were investigated to 

quantify the parameters of the proposed security threat model and to compute the 
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probability distribution of security threats. The probability distribution for cloud attack types 

also was calculated based on the security threat model. Several scenarios for using the 

probability distribution of security threats and attacks in cloud security management were 

explained. One of the limitations in the model is that the relationships between security 

threats have not been taken into account. Several directions are being considered for our 

future work: one would be to extend the proposed model to include the interrelationship 

among cloud security threats; another direction is to explore a new model for estimating the 

distribution of the consequences over the system’s constituents or stakeholders once the 

probability of the materialised threat has been estimated. This will open up research into the 

area of quantitative cyber security risks. 
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