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ABSTRACT
Learning programming is a road that is paved with mistakes. Ini-
tially, novices are bound to write code with syntactic mistakes, but
after a while semantic mistakes take a larger role in the novice
programmers’ lives.

Researchers who wish to understand that road are increasingly
using data recorded from students’ programming processes. Such
data can be used to draw inferences on the typical errors, and on
how students approach fixing them. At the same time, if the lens
that is used to analyze such data is used only from one angle, the
view is likely to be narrow.

In this work, we replicate a previous multi-institutional study
by Brown et al. [5]. That study used a large scale programming
process data repository to analyze mistakes that novices make while
learning programming. In our single institution replication of that
study, we use data collected from approximately 800 students. We
investigate the frequency, time required to fix, and the development
of mistakes through the semester. We contrast our findings from
our single institution with the multi-institutional study, and show
that whilst the data collection tools and the research methodology
are the same, the results can differ solely due to how the course is
conducted.
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1 INTRODUCTION
The emergence of tools that gather data from students’ program-
ming process has led to a stream of research that analyzes such
data with the hope of gaining insight into how students learn to
program [12]. State of the art studies focus on the analysis of large
repositories. One such study used the Blackbox data set [6] that
gathers data from large numbers of individuals, world-wide. Whilst
such data can provide insight on problems that students face when
learning programming on a global level, the data may also obscure
characteristics that vary across the institutions that contribute to
the global data repositories.

There is a need to balance studies using global data with studies
from individual institutions, so that the impact of factors that vary
between institutions can be assessed. Such factors include the level
of prior education, expected course outcomes, course level, and
more. Some institutions may have students’ working on tens of
weekly assignments and expect that students invest tens of hours of
work on learning programming each week, whilst other institutions
may only seek to provide a glance at what programming could be
like, and have students work on only an assignment or two per
week – if at all. A systematic study of such institution-specific char-
acteristics, through studies that replicate previous research, may
lead to accumulated understanding of the factors that contribute to
students’ struggles and learning outcomes.

In this work, we replicate the global study [5] by Brown et al. in a
single institutional context and study whether the results from a sin-
gle institution differ from the results drawn from many institutions
around the world.

As the programming environment and the methodology used to
extract errors are the same as in the original study, our study seeks
to determine whether the way a course is conducted at a specific
institution matters. Our goal is to both emphasize the need for
replication studies – as recently emphasized by Ihantola et al. [11]
and Ahadi et al. [1] – and to call for a stream of research that seeks
to determine factors that contribute to institutional differences.

Our main research question in this article is: How different are the
syntactic and semantic errors observed at a single institution to those
that have been observed in analysis of combined student populations
from around the world? With this question, we determine to what
extent results from generic data sets, such as the Blackbox project
or MOOCs, generalize to single institutions. This topic has been
previously explored in the context of student modeling, where
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Yudelson et al. [22] observed that single courses may offer better
generalizability than larger datasets.

This article is organized as follows. Next, in Section 2, we re-
view the recent work on syntax errors in learning programming,
and point out the recent emphasis on replication studies. This is
followed by a description of the research method in Section 3. The
results of the study are presented and discussed in Section 4, which
is followed conclusions.

2 BACKGROUND
2.1 Syntax Errors and Programming
Denny et al. [10] conducted a study on students who are working
on Java programs in an online programming environment. In their
study, most of the submissions to the online system included code
with syntax errors, leading to the conclusion that learning the syn-
tax in Java is not straightforward. In a subsequent study, Denny et
al. [9] studied how frequent specific syntax errors are, and observed
that errors have varying difficulty levels.

This line of work was later continued by Vihavainen et al. [18],
who studied the frequency of syntax errors as novices work on pro-
gramming assignments in an IDE. Contrary to the results of Denny
et al. [9, 10], they observed that when novices were programming
in an IDE that highlighted the syntax errors and provided feedback
on how to fix them, over 90% of the submissions were syntactically
correct. They suggested that some of the previous results that are
related to syntax errors are a product of the working environment:
if students receive feedback on the syntactic correctness of their
code only during submission, submissions will be used to assess
the syntactic correctness of code.

In addition to the programming environment used, the program-
ming language itself may also influence the problems that students
face. Stefik and Siebert [16] conducted reading surveys to study
the perceived intuitiveness of the syntax of various programming
languages. They found that languages that are closer to the English
language may be more intuitive to novices than those languages
that follow a more traditional syntax. As the study was conducted
on an English speaking population, it is a good question whether
this result would hold if the participants did not have English as
their primary or secondary language. The understandability of the
programming language has raised interest in other contexts as
well. For example, Miller [14] studied student challenges in a more
complex environment that included the teaching of object oriented
programming, and identified referencing as a source of multiple
errors. Altadmri and Brown [2] analyzed the frequency, time-to-fix,
and spread of errors among users and showed how these factors
inter-relate over the duration of the first year of programming.

2.2 Syntax Errors and Success
Syntax errors that students face as they are programming have been
used to create metrics of student’s coding success. In 2006, Jadud
introduced an algorithm called Error Quotient (EQ), which analyses
successive states in student’s programming process and provides
a metric on how well the student has been able to fix any encoun-
tered syntax errors [13]. The EQ algorithm was later extended by
Watson et al. to include information on the amount of time that
the student takes to fix an error; the Watwin algorithm [20]. Other

methods for assessing students’ success based on their errors in
the programming process have been proposed more recently, for
example the Normalized Programming State Model [7], and the
Repeated Error Density [4].

In a recent study, Petersen et al. [15] studied the applicability of
the EQ algorithm in different contexts. They varied the program-
ming language and the programming environment, and observed
that the performance of the EQ algorithm was not as high outside
the original EQ context. They concluded that there is a need for
further studies, and highlighted the need for replication studies.

A few studies exist where the syntax error messages have been
modified to improve their understandability. BothWatson et al. [21]
and Becker [3] have suggested that improved syntax errors mes-
sages could improve students’ performance, but Denny [8] noted
that enhanced syntax error messages do not always work. Here, as
before, it is likely that differences in these research results are due
to differences in institutional contexts.

2.3 Importance of the context and replication
Whilst the previous studies have mostly been conducted in a single
institution context, a few studies highlighted the importance of the
teaching context, including the language, tools, and practices [15,
16, 18].

In light of the relatively high failure rates in introductory pro-
gramming courses [19], it is meaningful to point out that how the
course is taught is important. If the students struggle with syntax,
the teachers may take steps to remedy the issue; a survey by Vi-
havainen et al. [17] pointed out that a simple teaching intervention
in an introductory programming class improved the overall pass
rate, on average, by one third.

At the same time, most of the results analyzed in the survey were
positive, and it is possible that educators have not published results
from non-functioning teaching interventions. Such an observation
would be in line with the results of a recent study on attitudes
towards replication, where one of the observations was that novel
results are more valuable than confirming old studies [1]. In general,
whilst we cannot go so far as to say that there is a replication crisis
in computing education research, there is a need for replicating
previous studies to increase the reliability and validity of the results.
This statement is in line with other recent works such as a recent
ITiCSE working group [12], who stated that [one of the Grand
Challenges to improve the field of Computing Education Research] is
to systematically analyze and verify previous studies using data from
multiple contexts to tease out factors that contribute to previously
observed outcomes.

3 METHOD
3.1 Data and Context
The data for this study comes from two semesters of an introductory
programming course organized at the University of Technology,
Sydney (UTS). The data contains programming process recordings
from 800 students, who generated in total ≈1.5 million distinct
events from ≈13,000 programming sessions. The language taught
is Java, and covers common programming concepts including vari-
ables, basic I/O, methods, conditionals, loops, arrays, elementary
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search algorithms and objects. Students complete practical program-
ming assessments in two hour weekly laboratory sessions. The first
hour of each laboratory session is dedicated to assessment followed
by the second hour which has the form of a normal tutorial. During
the first hour of the laboratory, students work under exam condi-
tion on a series of mastery tests. A total number of 22 compulsory
mastery tests need to be successfully passed by students over 12
weeks.

Students work at their own pace. Successful completion of each
assessment item by a student unlocks the next assessment item.
There are no limitations on the number of attempts/sessions to
complete the exercises. During the first hour of the laboratory,
students student access to the internet is almost entirely prevented,
along with access to their own file space. The only website which
is accessible is the website from which students download the
prepared skeleton code for the assessment item that they are about
to attempt. The skeleton code of each assessment item provides
students with enough abstracted detail about the exercise’s code, its
output and the required manipulations to complete the code. This
website is used for automatic assessment of students’ work in the
course and is always accessible for students so they can practice
the lab tests as much as they like prior to taking the test under
exam conditions. Thus when a student attempts a lab test it is likely
that the student had already seen the test prior to the session. The
VMware running on the PCs in the laboratory is designed so that no
two students seating next to each other can work simultaneously
on the same test.

When a student downloads the skeleton code for an exercise,
BlueJ is automatically opened and the downloaded project is loaded.
Encrypted information about the student as well as the name of the
lab test are assigned to the experiment identifier and participant
identifier variables of BlueJ. Those two identifier variables are re-
quired by Blackbox [6] when each Java code snapshot is uploaded to
Blackbox. While attempting a test, students may at any time upload
their source code back to the website from where they downloaded
the test. There is no limitation in the number of submissions to
the assessment website, and no grading penalty for multiple sub-
missions. Each submission is graded using a small number of test
cases.

The majority of the students participating in this replication
study are studying full time, speak English, are 18-19 years old, and
approximately 80% of them are male. About half of the students
have no previous exposure to any programming languages, whilst
approximately 15% of the students claimed to have had at least
some prior experience with Java.

3.2 Student Mistakes
Brown et al.’s study [5] reviewed a total number of 18 mistakes.
These mistakes are summarized in Table 1.

As in the original study, in this replication each source file is
tracked over time: At each compilation, the source file is checked
for the above mentioned eighteen errors. If any mistake is present,
then the source file at the next compilation is checked to see if the
mistake is no longer present. If the mistake is no longer found, it is
counted as one instance of the mistake. Further occurrences in the
same source file are regarded as further instances.

Table 1: Student Mistakes

Shorthand Explanation

Syntax errors:
A Confusing = with ==
C Mismatched parentheses
D Confusing & with &&
E Spurious semi-colon after if, for, while
F Wrong separator in for
G Wrong brackets in if
H Using reserved keywords
J Forgetting parentheses when calling methods
K Spurious semi-colon after method header
L Less-than / greater-than operators wrong
P Including types in actual method arguments

Type errors:

I Calling method with wrong types
Q Type mismatch when assigning method result

Other semantic errors:

B Using == to compare strings
M Invoking instance method as static
N Discarding method return
O Missing return statement
R Missing methods when implementing interface

According to the original study, the authors calculated the time
in seconds between the first appearance of the mistake and the
possible fix, with a ceiling of 1000 seconds (just over 15 minutes).
Any mistake that takes longer than 1000 seconds to fix is considered
to have never been fixed.

3.3 Contextual Differences
Some things about the participating novice programmers are better
known in this replication than in the original study [5]. For example,
the students in the replication study are known to be from an
introductory programming class. More importantly, the students
in our study are working under exam conditions, where receiving
help from other students or consulting other resources is forbidden.
The start and finish times of lab test sessions are well defined, so
we can extract and study student activity that is known to have
occurred under exam conditions. Also, in this study, we know with
certainty when the course started and when it ended, whilst in the
original study, no certain information on course start and end times
(if such existed) was available.

4 RESULTS AND DISCUSSION
4.1 Mistake review
The relative frequency of mistakes in the replication and in the
original study are presented in Table 2. The top five mistakes are
the same in both studies, but the exact ordering is different. The
most frequent mistake in both studies is mistake C (mismatched
parentheses) which is a syntactic mistake. The second and third
most common mistakes in both studies are semantic mistake O
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(missing return statement) and type mistake I (calling method with
wrong types), although the order of these two mistakes is different
in the two studies . The fourth and fifth most common mistakes are
the same in both studies (Discarding method return and Confusing
= with ==), although once again the order of these two mistakes is
different in the two studies .

The rankings ofmistakes in the two studies are often quite similar
until our sample size for each mistake reaches 33. As the frequency
of each mistakes drops in the data collected for our replication,
it is to be expected that there would be some large differences
in the rankings in the two studies, due to low sample size in our
replication.

There exists a set of mistakes that are extremely rare in our
data, such as mistake B (using == to compare strings). That specific
difference can be explained simply: very few of our lab tests in the
replication required students to compare strings.

Table 2: Comparison of the relative frequency of different
mistakes between the two studies. The second and third
columns show respectively the rank of the frequency (i.e.
"R1" is the highest) at our institution ("Us") and in the orig-
inal study ("Orig"). The fourth column shows the distance
between the rankings. The final column shows the actual
frequency of that error in the replication.

Mistake Us Orig. Dist. Freq. Type

C R1 R1 0 715 Syntax
O R2 R3 1 659 Semantic
I R3 R2 1 393 Type
N R4 R5 1 341 Semantic
A R5 R4 1 262 Syntax
E R6 R10 4 138 Syntax
K R7 R11 4 96 Syntax
M R8 R7 1 56 Semantic
P R9 R9 0 55 Syntax
L R10 R15 5 33 Syntax
F R11 R16 5 21 Syntax
Q R12 R14 2 19 Type
J R13 R13 0 18 Syntax
D R14 R12 2 12 Syntax
G R15 R18 3 3 Syntax
B R16 R6 10 1 Semantic
R R17 R8 9 1 Semantic
H R18 R17 1 1 Syntax

When analyzing the relationship between the frequency of a
mistake and the number of distinct novices who make that mistake
(see Fig. 1), a simple relationship can be observed: the mistakes that
appear more often are also made by more students.

Of the 18mistakes reviewed in Figure 2, mistakes B, E and K show
above average repeated mistakes in our replication compared to
Brown et al.. In the case of mistake B (using == to compare strings),
and as mentioned before, very few of our lab tests in the replication
required students to compare strings, so the high relative repetition
in our UTS replication data may be an artifact of small sample size.

Figure 1: Plot of overall frequency of mistakes and the num-
ber of novices whomade amistake in the replication (Log10
transformed).

Amongmistakes with below average repeats compared to Brown
et al., the majority show considerable reduction. Mistake R shows
the largest reduction but the reason is simple: the students at our
institute are not taught to use interfaces in their introductory pro-
gramming course. Most mistakes (D, F, G, J, L, P, Q, R) are only
made once by students in our institute which shows partial overlap
with the data presented in the Brown et al. study.

Figure 2: A comparison between the two studies of the aver-
age number of times that each user repeated a mistake.

Table 3 shows the median time needed to correct mistakes in
both the original study and in our replication. Our students spent
the most time (almost 40 seconds) fixing the type error Q (i.e. type
mismatch when assigning method result). An incorrect semicolon
after a condition (E) is the second mistake which required a long
time for our students to fix (35 seconds). However, our students
spent far less time fixing those two mistakes Q and E than students
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spent fixing many other types of mistakes in the original study. In
general, there is a significant reduction (p < 0.01, t-test) on the
average time spent on fixing errors in our data compared to the
data of the original study. One potential explanation for this time
difference is that the data collected from our institute was collected
during a time constrained exam, where students working at their
own pace may have only attempted a specific lab test when they
had prepared for that test and were confident they would pass that
test.

Table 3: Median time (in seconds) needed to fix the given
mistakes for our institution (column "Us") and the original
study (column "Orig"), and the frequency of the mistakes in
our dataset.

Mistake Us Orig. Freq.

Syntax errors

C 12 17 715
A 13 111 262
E 35 401 138
K 11 51 96
P 17 24 55
L 10 12 33
F 13 36 21
J 12 34 18
D 15.5 >1000 12
G 10 26 3
H 10 22 1

Type errors

I 24 58 393
Q 39.9 115 19

Other semantic errors
O 15 37 659
N 17 >1000 341
M 11 48 56
B 25 >1000 1
R 19.5 104 1

4.2 Mistake Frequencies Over Course
Brown et al. investigated the development of mistakes over time.
In their study, they focused on data collected in a year, starting in
September and running to August the following year: an approx-
imation to the academic year in the northern hemisphere. In our
replication study, we had the advantage of knowing exactly when
our teaching periods began and ended.

Figure 4 represents the frequency of three different categories
of mistakes over the weeks of the semester at our institute. The
beginning of the semester shows a very high peak on the frequency
of the syntactic error, which decreases rapidly. The frequency of
different types of mistakes for the second half of our semester is
consistent with what is presented in the original study. In contrast
to the original study, however, students at our institute struggle
with semantic mistakes more in the first half of the semester.

Figure 3: Plot of the overall frequency of mistakes and
the median time taken to fix those mistakes (Log10 trans-
formed).

Figure 4: Frequency of mistakes categories over semester in
the replication.Week one is not present in the x axis as there
are no laboratories running in week one.

In the original study, syntax errors took the least (median) time
to fix, semantic mistakes took the most time, with type mistakes
typically taking time between syntax and semantic errors. However,
in our replication (Figure 5) the type category represents the most
time-consuming class of error, across most of the semester. During
the early part of the semester, syntactic errors typically take most
time to fix. During the second half of the semester, semantic and
syntactic mistakes take an approximately equal (median) time to
fix. The time to fix of all three types of errors increases toward the
end of the semester; especially for type errors. That late increase
in all three error types probably reflects the increasing length and
sophistication of the lab tests.

Figure 6 reviews the frequency of different errors during the
semester. Errors O and C are for most of the semester a near equally
common pair, much more common than the other errors. Errors
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Figure 5: Median time needed to fix different types of errors
during different weeks of the semester, in the replication.

I and N also form a near equally common pair for most of the
semester. Errors A E, K, M are relatively infrequent.

Figure 6: The frequency of different errors during the semes-
ter, in the replication. Some errors are not shown because a
very small proportion of students made those mistakes.

4.3 Limitations of the work
As explained before, the results in our replication study are mainly
generated by the same tool used in the original study. However,
sometimes information not included in Brown et al. [5] made it
difficult to generate the results the same way as it was done in the
original study. For example, we were not sure how to normalize
the frequency values the same way as the original study as we did
not know which compilation events to include as the means of
normalization.

We have only analyzed the data generated by our students when
they did the lab tests under exam conditions. We did not capture
and analyze the programming that the students did to prepare for
taking the lab tests. Similarly, the authors of the original study
acknowledged that they could not know if they had captured all
the programming activity of their participants.

5 CONCLUSIONS
This study utilizes data collected via the Blackbox project from
around 800 novice Java programming students at a known educa-
tional institution. We have provided results about the distribution
of mistakes among those novices and the time required to fix the
mistakes. We have compared our results to those of Brown et al. To
our knowledge, this study is the first context-specific replication of
the original context-free study by Brown et al. [5]. The IDE used
to write the Java code, the infrastructure used to collect the data,
the tools used to generate the results, and the research method
are identical between the original study and the replicated study.
However, some of the results from the context studied here differ
from the original report.

In general, our results show that the syntactic errors are harder
to fix compared to semantic mistakes, when students are working
under our institution-specific conditions. In contrast, Brown et al.
reported that semantic mistakes were harder. We believe the main
reason behind this difference is that the data analyzed by Brown
et al. comes from unknown contexts where the expertise level, the
environment, the course level and many other factors are likely to
be different from our institutional context.

Effectively our results indicate that (1) while the results generated
via data collected world-wide from largely unknown particpants
sets an important reference point, those results do not necessarily
reflect what applies to students at a specific institution, (2) the
results in the original study are not solely the product of the tools
used, and (3) there a large number of open questions to answer if
we wish to understand the institutional factors that contribute to
differences between our results and the results of the study that we
replicated.

We encourage others to collect and report upon similar data from
their institutional contexts. With enough replications, the factors
affecting the performance of novices will become more clear.
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