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Adaptive Fuzzy Observer based Hierarchical Sliding Mode Control for 

Uncertain 2D Overhead Cranes 

This paper proposes a new approach to robustly control a 2D under-actuated 

overhead crane system, where a payload is effectively transported to a destination 

in real time with small sway angles, given its inherent uncertainties such as actuator 

nonlinearities and external disturbances. The control law is proposed to be 

developed by the use of the robust hierarchical sliding mode control (HSMC) 

structure in which a second-level sliding surface is formulated by two first-level 

sliding surfaces drawn on both actuated and under-actuated outputs of the crane. 

The unknown and uncertain parameters of the proposed control scheme are then 

adaptively estimated by the fuzzy observer, where the adaptation mechanism is 

derived from the Lyapunov theory. More importantly, stability of the proposed 

strategy is theoretically proved. Effectiveness of the proposed adaptive fuzzy 

observer based HSMC (AFHSMC) approach was extensively validated by 

implementing the algorithm in both synthetic simulations and real-life 

experiments, where the results obtained by our method are highly promising. 

Keywords: 2D overhead crane, hierarchical sliding mode control, fuzzy observer, 

under-actuated systems, Lyapunov function 

 

1. Introduction 

An overhead crane, also called a bridge crane, is more and more popular in many 

manufactures or industries due to its universal ability to transport a heavy object or 

hazardous material from one place to another place. It is also widely utilized in harbour 

ports to load and unload cargo from ships [1,2]. The model of the overhead crane is 

classified into a class of under-actuated mechanical systems, where a number of control 

inputs is less than a number of actuators. For instance, in a 2D overhead crane, both the 

position of the trolley and the swing angle of an object is dependent on the control force. 

Due to oscillations of the payload during operations, the bridge crane may severely cause 



unsafety on operators, loads or surrounding items [3]. Furthermore, the oscillation of the 

payload is nonlinear and highly coupled with motion of the trolley, which make the 

overhead crane cumbersome to control. As a result, expectations in controlling the 2D 

overhead crane are to effectively drive the trolley on a desired path while minimizing the 

swing angle of the payload. 

Many approaches to efficiently control an overhead crane have been proposed in 

the past decades, from the open-loop to closed-loop control techniques. While the open-

loop control method [4] is straightforward to implement on a crane but very sensitive to 

external disturbances, the closed-loop approaches, by employing sensor measurements 

and system state estimations, are more efficient to control crane actuators due to their less 

sensitivity to the external disturbances as well as system uncertainties [5]. For instance, 

Yu et al. [6] proposed a nonlinear two closed loop controller to fast transport an object to 

a desired destination while minimizing its oscillations. Another nonlinear control law 

based on partial feedback linearization was developed for a 2D crane system [7]. 

Furthermore, in the works [8,9], Le et al. extended the nonlinear partial feedback 

linearization controllers for a 3D overhead crane system by considering nonlinear 

feedback of actuated and un-actuated states in a superposition fashion. Due to strong 

adaptability to complexity and nonlinearity of a crane, a fuzzy model was used to present 

an overhead crane, which leads to a fuzzy logic controller in the works [10,11].    

To maintain robustness of a crane system under its actuator nonlinearities and 

parameter uncertainties, sliding mode control (SMC) has attracted much attention from 

researchers and practitioners [12-14]. However, how to formulate the sling surfaces so as 

to guarantee stability of actuators and un-actuators in a crane is really challenging. For 

instance, the work [15] first developed an intermediate variable based upon state errors 

and then formed as second-level sliding surface. Among approaches of defining a sliding 



surface for a SMC scheme, the hierarchical SMC (HSMC) law has been widely employed 

in a class of under-actuated systems [16,17,27,28,33]. Wang et al. [16] proposed the 

HSMC strategy for a class of second-order under-actuated systems, where a first-level 

sliding surface is defined for each subsystem. A second-level sliding surface is then 

formulated as a linear combination of the first-level sliding surfaces. Similarly, the 

authors of the work [17] developed another hierarchical structure of sliding surfaces in 

designing a control law for a single-input-multiple-output under-actuated system. The 

first-layer sliding surface based on the first subsystem is computed, which is then 

incorporated into the sliding surface of a second subsystem to formulate a second-layer 

sliding surface. The chain is subsequently produced until the last subsystem. 

It is noted that in the SMC laws all the system parameters are assumed to be 

known and certain. Though, in fact, those parameters can be deterministically estimated, 

they are highly uncertain due to the system nonlinearities and external disturbances. That 

is, it is impractical to certainly determine the system parameters Therefore, the more 

accurately the system parameters are computed, the more efficiently the control scheme 

works. Some adaptive control strategies have been developed to consider the system 

parameter uncertainties. For instance, in the works [18,19], a nonlinear coupling control 

law for a crane system is discussed, where its parameters are adaptively updated. 

Likewise, Le et al. [20] proposed a model reference adaptation mechanism, derived from 

Lyapunov theory, to approximate system parameters in a crane system. Moreover, a fuzzy 

disturbance observer was introduced by Kim [21] for designing a controller in nonlinear 

systems. By employing the fuzzy observer [21], Park et al. [22,23] discussed a method to 

represent crane system uncertainties as well as actuator nonlinearities. In the previous 

work [30], we considered a SMC law for an offshore container crane, where system 

parameters are adaptively learned by a radial basis function network. Moreover, in the 



work [32], Wang et al. employed a finite-time disturbance observer to identify unknown 

disturbances in complex marine environments. The proposed observer is utilized in 

conjunction with the nonsingular fast terminal sliding mode manifold to form a new 

finite-time control law for effectively tracking trajectories of a surface vehicle. Some 

other SMC strategies were designed for non-linear systems in which unknown parameters 

are adaptively estimated by a neural network [24,29], a fuzzy-neural network [25] and a 

fuzzy wavelet neural network [26].  

In this work, an adaptive HSMC strategy employing the fuzzy observer is 

investigated to address the control problem in a 2D overhead crane system. There are two 

hierarchical layers in the proposed SMC law. Two first-level sliding surfaces are 

formulated from two subsystems, including actuated and under-actuated outputs of the 

2D overhead crane. Then the sliding surface in the second layer is simply formed by 

linearly combining two first-level sliding surfaces. Moreover, to deal with challenges in 

computing the system parameters due to system uncertainties such as parameter 

variations and nonlinearities or external disturbances, it is proposed to utilize the fuzzy 

observer to approximately but adaptively estimate the dynamics of the crane. The 

adaptive fuzzy observer based HSMC (AFHSMC) algorithm was extensively validated 

in both synthetic simulations and real-life experiments. The results obtained by the 

proposed approach are highly promising. More importantly, based on the Lyapunov 

theory, stability of the 2D overhead crane system is theoretically proven. 

The remaining of the paper is arranged as follows. The dynamic model of a 2D 

overhead crane is described in Section 2 while the conventional HSMC scheme is 

introduce in Section 3. Section 4 discusses the proposed AFHSMC law, where stability 

of the system is theoretically analyzed. Validations of the proposed method in both the 

simulations and experiments are delineated in Section 5 before conclusions are drawn in 



Section 6. 

 

2. Dynamic Model of 2D Overhead Crane 

Let’s consider an overhead crane on a 2D xy  plane as demonstrated in Fig. 1. The system 

comprises a trolley moving on a rail, a payload that is considered as a point mass and a 

hoisting cable. It is assumed that the static friction and elasticity are trivial while stiffness 

and mass of the hoisting cable are neglected. Moreover, both the trolley and payload are 

considered as material particles.  

We denote x ,   and F  are variables presenting for the trolley position, the swing 

angle of the payload with respect to the vertical line and the trolley driving force, 

respectively. On the other hands, M , m  and l  are also defined as constant parameters 

delineating the total mass of the trolley, the mass of the payload and the hoisting cable 

length. Furthermore, in this work, it is assume that the overhead crane operates in indoor 

environments, hence the effects of disturbances caused by wind are not examined. Then, 

the mathematical dynamic model of the 2D overhead crane [5] can be specified by 
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where g  is the gravitational acceleration. It is noted that in the state space, if we let u F  
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Figure 1. Dynamic model of a 2D overhead crane 

It can be clearly seen that there is one input as the driving force while there are 

two outputs as the motion of the trolley and the swing angle of the payload. Therefore, 

the primary difficulty in controlling an under-actuated overhead crane is how to manage 

the coupled nature of the outputs from a single input. 

3. Hierarchical Sliding Mode Control 

In order to overcome issues in controlling an overhead crane system, many control 

strategies have been proposed, including feedback linearization [6,8], fuzzy control 

[10,11], and adaptive control [18,21,22]. Nonetheless, the control designers have 

remarkably paid more attention on the SMC approach due to its well-known robustness 

under uncertain conditions. Among the SMC schemes, a hierarchical SMC (HSMC) has 

been considered as an appropriate approach for controlling a class of under-actuated 

systems [17]. In this sections, we discuss the HSMC strategy for a 2D overhead crane, 

which will be then utilized to adapt to its adaptive paradigm in the next section. 



To ascertain the stability of the sliding surfaces, based on the Lyapunov theory, 

let’s define the vectors of the errors as follows, 
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where dx  and d  are the desired trolley position and swing angle of the payload. It is 

assumed that dx  and dx  exist and are bounded, then derivatives of the errors derived 

from (2) can be specified by, 
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Now, we define two first-level sliding surfaces for the corresponding actuated output x  

and under-actuated output   as follows, 
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where 1c  and 2c  are positive constants. The second-level sliding surface for the whole 

system is then aggregated by 

1 2 ,s s s    (6) 

where   and   are positive parameters. Note that if an appropriate HSMC scheme is 

given, the second-level sliding surface can ultimately converge to zero. As pointed out by 

Qian et al. [13], such SMC scheme should comprise two laws. The first is the switch 

control law that is utilized to drive the system states towards a particular sliding surface, 

while the second is the equivalent control law that is employed to keep those states on the 

sliding surface. In other words, the HSMC scheme can be presented by 

.eq swu u u    

To design that SMC law, let’s compute the derivative of the second-level sliding surface 

from (5) and (6) as follows, 
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If we consider the Lyapunov function candidate as 
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In order to guarantee the stability of the second-level sliding surface, we define 

1 2 1 2 2 4 1 2

1 2 w 1 2

( ) 0,

( ) sgn( ) 0,

eq d

s

g g u c e c e f f x

g g u k s k s

      

 

      


   
 (9) 

where 1k  and 2k  are positive. Therefore, the HSMC scheme is given by 
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where 1,f  1,g  2f  and 2g  rely on the system parameters, comprising ,  ,  ,  ,M m l   as 

presented in (3). If substituting (10) into (9), we obtain 

  2

1 2 1 2sgn(s) 0,V ss s k s k k s k s          

which guarantees that the sliding mode is reachable in finite time. 

4. Fuzzy observer based adaptive hierarchical sliding mode control 

It can be clearly seen that the deterministic HSMC scheme introduced in Section 3 can 

be effectively employed provided that the system parameters are certain. Nevertheless, in 

practice, an overhead crane operates under system uncertainties such as parameter 

variations and nonlinearities or external disturbances; that is, the dynamic models 

presented in the previous sections do not fully delineate the characteristics of the crane 

system. In other words, it is impractical to accurately determine the system parameters. 

To deal with these challenges, it is proposed to utilize the fuzzy observer to approximately 

estimate those dynamic models. In this section, we first introduce the fuzzy observer, 



which is then incorporated into the HSMC law to design an adaptive controller for a 2D 

overhead crane. 

4.1. Fuzzy observer 

Let’s consider approximation of a fuzzy system as introduced by Park et al. [22]. A fuzzy 

system comprises three fundamental elements including fuzzifier, fuzzy inference engine 

and defuzzifier. The fuzzy inference engine employs the fuzzy IF-THEN rules to compute 

fuzzy sets in the input space to fuzzy sets in the output space. Moreover, while the 

fuzzifier is considered to map a real-valued point to fuzzy set, the defuzzifier maps a 

fuzzy set as an output of the fuzzy inference engine to a crisp point. For instance, in this 

work, we propose to employ the fuzzy IF-THEN rules, whose ith law is specified by 
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If the fuzzy system utilizes product inference engine, singleton fuzzifier and 

center average defuzzifier, its output can be presented in the following form. 
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which is the fuzzy basic function. And 
1 2ˆ ( , ,..., )T ry y y   is a vector of the adjustable 

parameters. 



In a nonlinear system, if there exist an adjusted ˆT  so that a nonlinearity ( )f x  

approximates to ( )y x , then f y  is minimal. In equivalent words, in that case, the 

nonlinearity ( )f x  can be approximately estimated by an output of a fuzzy system. 

In the overhead system, the four dynamic models (3) as presented in the previous 

section are nonlinear, unknown and uncertain, which is not trivial to practically 

determine. Thus, we propose to estimate them by the use of the fuzzy systems. In other 

words, a fuzzy observer (FO) to approximate 1( ),f X  1( ),g X  2 ( )f X  and 2 ( )g X  is 

defined as follows, 
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where i  is the ideal adjustable parameter, and (X)i i   is the approximation error with 

constant 0i  , 1,2,3,4i  .  

4.2. FO based adaptive HSMC scheme 

 

Let 1
ˆ ,  2

ˆ ,  3̂  and 4̂  denote estimations of 1,  2 ,  3   and 4 , respectively. Then the 

outputs of the fuzzy observer are approximations of the dynamics 1,f  1,g  2f  and 2g  and 

computed as follows, 
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We now introduce how to employ the fuzzy system approximations 1
ˆ ,f  1

ˆ ,g  2f̂  

and 2ĝ  in designing the adaptive HSMC law. 



Let’s consider the Lyapunov function candidate 
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i i i     is the error between ideal and estimated adjustable parameters. i  is 

positive constant. 

If we differentiate the Lyapunov function candidate in (15), it yields, 

4
1 ,T

i i i

i

V ss      (16) 

In a more specific form, (16) can be presented as follows, 

    

 

      

  

1 2 1 1 1 2 4 2 2

4
1

1 2 1 2 4 2 1 1 2

1 1 3 3 2 2

4
1

4 4

     

ˆ ˆ ˆ ˆ  ( )

     

     

d

T

i i i

i

d

T T T

T T

i i i

i

V s c e f g u x c e f g u

s c e f c e f x g g u

s u

s u

 

 

     

           

     





      

 

      

     

   





 (17) 

Moreover, given the estimations 
1
ˆ ,f  1

ˆ ,g  
2f̂  and 2ĝ  obtained by the FO, the 

control signal of the HSMC scheme in (10) can be approximately computed by 
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From (16) to (18), the derivative of the Lyapunov function candidate can be rewritten as 

follows, 
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If the approximations of the adjustable parameters, including 1
ˆ ,  2

ˆ ,  3̂  and 4̂ , are 

adaptively selected, where their derivatives are formulated by 
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then (19) can be simplified as follows, 
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It can be clearly seen that given the stability conditions based upon the Lyapunov 

function, the adaptation mechanism in (20) allows the fuzzy system to adaptively estimate 

dynamics of the overhead crane as presented in (14), which ultimately leads to the 

adaptive control law in (18). 

4.3. Stability analysis 

The effectiveness of the proposed FO based adaptive HSMC (AFHSMC) scheme for 

a 2D overhead crane can be mathematically demonstrated by stability of the closed loop 

control system in the following theorem. 

Theorem 1: Given the adaptation mechanism (20), the FO-AHSMC law (18) can 

asymptotically stabilize the second-level sliding surface s  defined in (5) if 2 0.Nk    

Proof: Let’s take integrals of both sides of (21), it yields, 
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or 
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In other words, 
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Therefore, we have  

s L , i.e. 
0

sup
t

s s




   . (25) 

Moreover, from (21) it shows that 
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which results in 

1 2 .Ns k s k       

Hence, 

s L , i.e. 
0

sup .
t

s s
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

    (27) 

(23) can now be rewritten by 
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It is apparent that 2

1
0

0k s dt

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and  2

0
0Nk s dt



  . From (28) it shows 
0
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0
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Since s L , s L , and 2s L , according to Barbalat’s lemma [31] we have lim 0
t

s




. Therefore the second-level sliding surface s  is asymptotically stable.         □ 

5. Simulation and experimental results 

In order to demonstrate efficiency of the proposed AFHSMC approach as compared with 

that of the conventional HSMC, we conducted the experiments both on a synthetic 

simulation environment and in a laboratory. It is noted that due to impracticality of 

determining the uncertain parameters of the dynamics of the overhead crane, we did not 



implement the HSMC law in the realistic system. Nevertheless, in the synthetic 

simulation, the deterministic HSMC scheme was expected to best perform since the 

system parameters were accurately obtained. 

 
Figure 2. A real-time overhead crane system 

In the first experiment, we conducted a simulation of a realistic overhead crane 

system as pictorially demonstrated in Fig. 2. To this end, the physical parameters of the 

laboratory overhead crane are summarized as follows, 

225 ,  8 ,  1.2 ,  9.81 /M kg m kg l m g m s      

Furthermore, in the experiments, some positive constant parameters of the control laws 

were given by 

1 1 1 23,  0.01,  2,  1.4,  k 0.1,  2.c c k         

 

Table 1. Parameters of the membership functions 

i  1

( )iA
   

2

( )iA
   

  [rad]    [rad/s]  

1 -5 / 4  -5 / 4  

2 0.3 / 6  0.3 / 6  

3 0.3 /12  0.3 /12  

4 0.3 0 0.3 0 

5 0.3 /12  0.3 /12  

6 0.3 / 6  0.3 / 6  

7 5 / 4  5 / 4  

 
Regarding the fuzzy observer, in this work, we consider only two input variables 

including the swing angle of the payload   and its velocity  . Moreover, in the 



construction of the fuzzy system, we propose to utilize two membership functions, 

comprising Gaussian function 

1
( ) ,

1 exp( ( ))
i
j

jA
j

x
x


 


  

  

for  1,7i   and sigmoid function 

2 2( ) exp( 0.5( ) / )i
j

j jA
x x       

for  2,...,6 .i   And the parameters  ,   of the membership functions are specified in 

Table 1. It is noticed that we have only two input variables  ,jx   ,  1,2 .j   

For the adaptation mechanism, i  ( 1,...,4i  ) was set to 0.01, and the initial values of 

the estimated adjustable parameters of the fuzzy observer were all set to 0.1, ˆ (0) 0.1.i   

5.1. Simulations 

We now investigate the simulation results including the position of the trolley, the swing 

angle of the payload and the control force as pictorially illustrated in Figures 3 – 5. It was 

expected that the trolley horizontally travelled 0.6 m from the initial location. It can be 

clearly seen in Fig. 3 that given the known and certain system parameters, the HSMC law 

drove the trolley to reach the destination after about 2.5 s without overshoot. 

Comparatively, the proposed AFHSMC scheme, which, though, had to adaptively 

estimate the system parameters by the use of the fuzzy observer, drove the trolley to reach 

the destination after around 3 s. Although the proposed approach caused the overshoot in 

the output, it is apparently trivial. The results shown in Fig. 3 illustrate that both the 

deterministic HSMC and proposed AFHSMC methods well tracked the desired position 

of the trolley. 

In terms of the swing angle of the payload as demonstrated in Fig. 4, both the 

HSMC and AFHSMC algorithms, at first 4 s, swung the object, though the maximum 



swing angle is about 0.08 rad. More importantly, as expected, due to requirement of time 

consumed in estimating the system parameters, the swing angle output as a result of the 

AFHSMC technique is a little bit lag as compared with that of the HSMC method. 

Nevertheless, ultimately, both approaches eliminated the swing angle of the payload after 

approximate 4 s, when the trolley reached the destination. 

 

 
Figure 3. Position of the trolley in the simulation 

 

 
Figure 4. Swing angle of the payload in the simulation 

 



 
Figure 5. Control force in the simulation 

 
In corresponding to the position of the trolley and the swing angle of the object, 

the control forces required in both the control laws are highly comparable as can be seen 

in Fig. 5. It is emphasized that given no prior information of the overhead crane system 

parameters, the proposed AFHSMC approach is capable of adaptively estimating those 

parameters, which eventually leads to the actuated and unactuated outputs highly 

compared with those obtained by the HSMC scheme in ideal scenarios. That is, the 

AFHSMC law is highly practical as demonstrated in the following section by the 

laboratory experiments. 

5.2. Real experiments 

To experimentally evaluate effectiveness of the proposed method, we implemented the 

algorithm in a real-time overhead crane system in a laboratory as illustrated in Fig. 2. In 

this example system, the trolley was driven by a three-phase asynchronous motor, where 

the motor was powered by the OMRON inverter 3G3JX. The position of the trolley was 

measured by the encoder E40S6-1024-3-T-24. Furthermore, the swing angle of the 

payload and its angular velocity were gathered by the sensor MPU6050. Regarding the 



central control unit, we implemented the proposed approach on the STM32F4 

microcontroller. 

Under the control of the AFHSMC law, the position of the trolley, the swing angle 

of the payload and the control force were recorded over time and are now plotted in 

Figures 6, 7 and 8, respectively. It is noted that the real-life overhead crane system 

operated under realistic nonlinearity of the actuators, external disturbances and system 

parameter uncertainty. Nonetheless, the results obtained by the proposed algorithm are 

appealing. It can be clearly seen that the trolley gradually reached the destination after 

about 5 s without overshoot as demonstrated in Fig. 6. In the first second, the controller 

made the object to swing up to 0.15 rad. However, the swing angle of the payload quickly 

declined to 0.05 rad and almost disappeared after about 5 s as can be seen in Fig. 7. In 

contrast to the simulation, the control force in Fig. 8 gradually reduced from beginning 

and reached to zero at about 5 s when the trolley stopped. 

Though we set the system parameters in the simulation similarly to those in the 

real-time system, the realistic trolley needed about 5 s to reach the destination while the 

synthetic one needed about 3 s. That can be understood by the ability of the 

microcontroller in the laboratory experiments as compared with that to the desktop.  

 

 
Figure 6. Position of the trolley in the realistic experiment 

 



 
Figure 7. Swing angle of the payload in the realistic experiment 

 

 
Figure 8. Control force in the realistic experiment 

   

6. Conclusions 

The paper has proposed to employ the HSMC and fuzzy observer to be deployed in a new 

but efficient technique to adaptively control an under-actuated overhead crane. The 

HSMC law enables the system to robustly transport a payload to a destination despite its 

unknown external disturbances and nonlinearities. More importantly, under influence of 

the system uncertainties, the parameters of the control law are adaptively estimated, 

which is derived from the Lyapunov theory. The adaptive mechanism, which theoretically 

proves the stability of the proposed control scheme, guarantees the crane to be able to 

effectively work under uncertain conditions. Implementations of the proposed algorithm 

in both the synthetic simulations and real-life experiments has verified effectiveness of 

the AFHSMC approach. 
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