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Abstract The paper introduces an adaptive strategy

to effectively control a nonlinear dual arm robot under

external disturbances and uncertainties. By the use of

the backstepping sliding mode control (BSSMC) method,

the proposed algorithm first allows the manipulators to

be able to robustly track the desired trajectories. Fur-

thermore, due to the nonlinear, uncertain and unmod-

elled dynamics of the dual arm robot, it is proposed

to employ the radial basis function network (RBFN) to

adaptively estimate the robot’s dynamic model. Though

the estimation of the dynamics is approximate, the adap-

tation law is derived from the Lyapunov theory, which

provides the controller with ability to guarantee stabil-

ity of the whole system in spite of its nonlinearities,

parameter uncertainties and external load variations.

The effectiveness of the proposed RBFN-BSSMC ap-
proach is demonstrated by implementation in a simula-

tion environment with realistic parameters, where the

obtained results are highly promising.
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1 Introduction

Robots have been increasingly moving into humans based

environments to replace or assist human workers. More

specifically, anthropomorphic or dual arm robots (DAR)

have more and more played a vital role in many in-

dustrial, health care or household environments (Do

et al. (2012); Zheng et al. (1989); Smith et al. (2012);

Dauchez et al. (1991); Tanie (2003)). For instance, dual

arm manipulators (DAM) have been effectively employed

in a diversity of tasks including assembling a car, grasp-

ing and transporting an object or nursing the elderly

(Liu et al. (2015)). In those scenarios, the DAR have

been expected to behave like a human, which is they

should be able to manipulate an object similarly to

what a person does (Smith et al. (2012)). As compared

to a single arm robot, some works (Lee (1989); Meier

and Graf (1991)) have shown that the DAR have sig-

nificant advantages such as more flexible movements,

higher precision and greater competence for handling

large objects. Nevertheless, since the kinematic and dy-

namic models of the DAM are much more complicated

than those of a single arm robot, it has more challenges

to effectively and efficiently control the DAR.

In order to track the robot manipulators along de-

sired trajectories, a robust controller is highly expected

to synchronously coordinate the robot arms. A number

of the control strategies have been proposed to guaran-

tee the accuracy and stability of the manipulator op-

erations. For instance, the traditional methods such as

nonlinear feedback control (Yun and Kumar (1991)) or

hybrid force/position control relied on the kinematics

and statics (Yamano et al. (2004); Hayati (1986)) have

been proposed to simultaneously control both the arms.

In the works (Schneider and Cannon (1992); Caccav-

ale et al. (2008); Lee et al. (2014)), the authors have
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proposed to utilize the impedance control by consid-

ering the dynamic interaction between the robot and

its surrounding environment while guaranteeing the de-

sired movements. Nonetheless, these traditional control

techniques are not really practical when they require

to accurately model all the nonlinear dynamics of the

DAR system, where its unknown parameters are highly

uncertain and not easily estimated. It is noted that un-

certainties of the DAM system can practically lead to

degradation of its control performance. Furthermore, a

number of unexpected disturbances and obstacles in the

working environments can cause the DAR system to be

unstable.

To address the aforesaid issues of accurately mod-

elling all the nonlinear dynamics and estimating the

unknown and uncertain parameters, some modern con-

trol approaches based on fuzzy logic or artificial neural

network have been proposed in the past decades. For in-

stance, by the use of the adaptive learning and function

approximations, Lee and Choi (Lee and Choi (2004))

introduced a radial basis function network (RBFN) for

approximating the nonlinear dynamics of a SCARA-

type robot manipulator. Similarly, Wang et al. (Wang

et al. (2009)) has employed the approximation of a

neural network to deal with the nonlinearities and un-

certainties of a single robot manipulator, where errors

caused by the neural network approximation can be

estimated by a proposed control robust term. In addi-

tion, the authors in (Liu et al. (2015)) have designed an

adaptive control system for a humanoid robot by using

the RBFN to develop a scheme to adaptively estimate

unknown and uncertain dynamics of the robot. Based

on a multi-input multi-output fuzzy logic unit, Jiang et

al. (Jiang et al. (2015)) have proposed an algorithm to

adaptively estimate the dynamics of the DAM, given

its nonsysmmetric deadzone nonlinearity.

More importantly, robustness of the control perfor-

mance is also highly prioritized in consideration of de-

signing a controller for a highly uncertain and nonlinear

DAR system. In literature of the modern control the-

ory, sliding mode control (SMC) demonstrates a diverse

ability to robustly control any system. Since the pioneer

paper (Utkin (1977)), the variable structure SMC has

enjoyed widespread use and attention in many applica-

tions (Hashimoto et al. (1987); Herman (2005); Yannier

et al. (2005); Yagiz et al. (2010)). For the DAR system,

Yagiz et al. (Yagiz et al. (2010)) has developed a non-

chatting sliding mode controller for handling an object,

which has been proved to be more efficient than PID

controller. Moreover, the authors in (Tang et al. (2006);

Wang et al. (2009)) have proposed a terminal SMC

approach for a single arm robot, which enhances the

contradiction between control efforts in the transient

state and tracking errors in the steady state. More im-

portantly, by the use recursive feature of the standard

backstepping method, Zhou et al. (Zhou et al. (2007))

have proposed a control scheme for robustly tracking

outputs of an uncertain MIMO nonlinear system, where

its tracking errors are proved to be bounded. Similarly,

Chen et al. (Chen et al. (2013)) have proposed a back-

stepping sliding mode controller to enhance the global

ultimate asymptotic stability and invariability to un-

certainties in a nonholonomic wheeled mobile manipu-

lator.

In this paper, we propose an adaptive control strat-

egy based on the backstepping sliding mode control

(BSSMC) method and the RBFN to effectively and ef-

ficiently control the DAR. The proposed approach pro-

vides the DAM system not only adaptive estimation of

its nonlinear dynamics but also robustness to its uncer-

tainties. In other words, the BSSMC enables the manip-

ulators to be capable of efficiently tracking the desired

trajectories given large variation of the system infor-

mation such as the undetermined volume and mass of

the payload and significantly reducing chattering influ-

ences. The RBFN allows the proposed controller to be

able to adaptively learn the nonlinear and uncertain

dynamics of the DAR system. More importantly, the

adaptation mechanism is designed based on Lyapunov

method, which mathematically guarantees the stability

of the control system.

The rest of the paper is arranged as follows. We first

introduce a model of the DAR system in Section 2. We

then present how to construct a RBFN-BSSMC con-

troller for the DAM based on the BSSMC and RBFN

in Section 3. Section 4 discusses validation of the pro-

posed approach in a simulation environment before con-

clusions are drawn in Section 5.

2 Dual arm robot model

Lets consider a dual two degree of free (DoF) arm robot

that cooperatively manipulates an object with mass of

m as pictorically shown in Fig. 1. It is assumed that

both the manipulators rigidly attach to the load so that

there is no slip between the grasping points and the

grasped load. Let mi, Ii, li denote the mass, mass mo-

ment of inertia and length of the corresponding link in

the model, respectively. We also define d1 and d2 as the

length of the object and distance between the two arms

at the robot’s base. The distance from the mass centre

of a link to a joint is denoted as ki while the joint an-

gle between a link and the base or its preceding link is

denoted as qi.

Operationally, in this work we consider that the

robot manipulators make motions on the horizontal xy
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Fig. 1: Dual arm robot modelling

Fig. 2: Operational motions of dual arm robot

plane. In other words, the robot arms first move to-

wards the object. After the manipulators are firmly at-

tached to the load, the robot then picks the object up

and transports it to a new position by adjusting the

motions to robustly follow the given trajectory, demon-

strated in Fig. 2. We let xm and ym denote the mass

center of the payload on the xy plane, the trajectory of

the object can be specified by

xm =
d2
2

+ l1 cos q1 + l2 cos(q1 + q2)− d1
2

(1)

= −d2
2

+ l3 cos q3 + l4 cos(q3 + q4) +
d1
2
,

ym = l1 sin q1 + l2 sin(q1 + q2) (2)

= l3 sin q3 + l4 sin(q3 + q4).

In order to transport the object to a new position,

the robot manipulators apply forces F1 and F2 to the

payload as illustrated in Fig. 3. On the other hands,

to rigidly hold the load up, friction forces Fs1 and Fs2

Fig. 3: Physical model of the robot arms

are needed. Let Fsiy and Fsiz denote the components

of the friction forces in y and z directions, respectively.

To prevent the load from rotating around y and z axes,

it is supposed that Fs1y = Fs2y and Fs1z = Fs2z. Then

the dynamic equations of the object are as follows,

mẍm = F2 − F1, (3)

mÿm = 2Fs1y = 2Fs2y, (4)

mg = 2Fs1z = 2Fs2z, (5)

where g = 9.8m/s2. And the relationship between the

applied forces and the friction forces is presented by

Fs1y
2 + (

mg

2
)
2
< (µF1)

2
, (6)

Fs2y
2 + (

mg

2
)
2
< (µF2)

2
, (7)

where µ is the friction coefficient in dry condition.

If ẍm(t) ≥ 0, both the applied forces F1 and F2 can

be computed by

F1 =
1

µ

√(
mÿm

2

)2

+
(mg

2

)2
, (8)

F2 =
1

µ

√(
mÿm

2

)2

+
(mg

2

)2
+mẍm. (9)

Nonetheless, if ẍm(t) < 0, those forces can be obtained

by

F1 =
1

µ

√(
mÿm

2

)2

+
(mg

2

)2
−mẍm, (10)

F2 =
1

µ

√(
mÿm

2

)2

+
(mg

2

)2
. (11)
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By the use of Lagrange multipliers, the dynamic

model of the dual arm robot manipulating the payload

can be summarized as follows,

M(q)q̈ + C(q, q̇)q̇ +G(q) =u+ JT (q)F (q, q̇, q̈) (12)

− Td − β,

where u is a 4 × 1 control torque input vector, Td is

a 4× 1 vector presenting the noise effects on the robot

arms and β denotes the viscous friction forces on all the

joints, which are specified as follows,

q =
[
q1 q2 q3 q4

]T
,

u =
[
u1 u2 u3 u4

]T
,

F =
[
F1 Fs1y F2 Fs2y

]T
,

Td =
[
Td1 Td2 Td3 Td4

]T
,

G(q) =
[
0 0 0 0

]T
,

β =
[
b1q̇1 b2q̇2 b3q̇3 b4q̇4

]T
.

M(q) is a 4× 4 matrix of the mass moment of inertia,

whose components are specified by

m11 = A1 +A2 + 2A3 cos q2,

m12 = m21 = A2 +A3 cos q2,

m22 = A2,

m13 = m14 = m23 = m24 = 0,

m33 = A4 +A5 + 2A6 cos q4,

m34 = m43 = A5 +A6 cos q4,

m44 = A5,

m31 = m32 = m41 = m42 = 0

with

A1 = m1k
2
1 +m2l

2
1 + I1,

A2 = m2k
2
2 + I2,

A3 = m2l1k2,

A4 = m3k
2
3 +m4l

2
3 + I3,

A5 = m4k4
2 + I4,

A6 = m4l3k4.

C(q, q̇) is a 4 × 1 Coriolis-centripetal vector, whose el-

ements are computed by

c11 = −A3 sin q2(q̇22 + q̇1q̇2) + b1q̇1,

c21 = A3q̇
2
1 sin q2 + b2q̇2,

c31 = −A6 sin q4(q̇24 + q̇3q̇4) + b3q̇3,

c41 = A6q̇
2
3 sin q4 + b2q̇4.

Furthermore, J is a 4 × 4 Jacobian matrix with the

elements obtained by

J11 = −L1 sin q1 − L2 sin(q1 + q2),

J12 = −L1 cos q1 − L2 cos(q1 + q2),

J13 = J14 = 0,

J21 = −L2 sin(q1 + q2),

J22 = −L2 cos(q1 + q2),

J23 = J24 = 0,

J31 = J32 = 0,

J33 = L3 sin q3 + L4 sin(q3 + q4),

J34 = −L3 cos q3 − L4 cos(q3 + q4),

J41 = J42 = 0,

J43 = L4 sin(q3 + q4),

J44 = −L4 cos(q3 + q4).

3 Controller design

In order to design a control system to effectively con-

trol the dual arm robots, we first introduce a controller

based on the backstepping sliding mode control method.

Nevertheless, many parameters of the designed con-

troller are uncertain and practically unknown, we then

present a neural network based technique that allows

the system to adaptively estimate those uncertain and

unknown dynamics.

Without loss of generality, the dynamic model of the

dual arm robot (12) can be rewritten as follows,

ẋ1 = x2, (13)

ẋ2 = M−1(q).u+M−1(q).K(q, q̇, q̈), (14)

where x1 = (q1, q2, q3, q4)
T

and

K(q, q̇, q̈) = JT (q)F (q, q̇, q̈)− C(q, q̇)q̇ −G(q)− β − Td.
(15)

It is noted that while M(q) is assumed to be deter-

ministic, K(q, q̇, q̈) is the complex nonlinear dynamics

of the system that cannot be fully analytically mod-

elled in reality. The nonlinear dynamics in the dual arm

robot comprise a sudden change in load mass, viscous

and static friction coefficients, dynamic damping and

external disturbances, which are embedded in the dy-

namic parameters such as J(q), F (q, q̇, q̈) and C(q, q̇).

Therefore, in this work, K(q, q̇, q̈) will be approximately

estimated via an adaptive mechanism using a network

of the radial basis functions.
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3.1 Backstepping sliding mode control for dual arm

robot

The ultimate objective in controlling the dual arm robot

is to track the motion of its end-effectors on the given

trajectories. In other words, in designing a backstepping

sliding mode controller (BSSMC), if z1 = x1 − x1ref is

defined as a tracking error, where x1ref = qref is the

reference vector, then

Step 1: Let

α = −c1z1 + ẋ1ref (16)

define the virtual control with a positive c1 so that

lim
t→∞

z1(t) = 0.

If z2 = x2 − α, and differentiating z1 with respect to

time, it yields

ż1 = ẋ1 − ẋ1ref = z2 + α− ẋ1ref = z2 − c1z1. (17)

Hence, the first Lyapunov function candidate can be

defined by

V1 =
1

2
z1
T z1. (18)

Then, the derivative of V1 is computed as follows,

V̇1 = z1
T ż1 = −z1T c1z1 + z1

T z2. (19)

Step 2: To design a sliding mode controller, a slid-

ing surface can be presented by

s = λz1 +M z2, (20)

where λ = diag(λ1, λ2, λ3, λ4) is a matrix of positive

gains that characterize for the convergence rate of s

and z. If one differentiates s with respect to time, it is

given

ṡ = λż1 +Mż2 = λż1 +M(ẋ2 − α̇)

= λż1 +M(M−1K +M−1u− α̇)

= λż1 +K + u−Mα̇.

(21)

Moreover, the second Lyapunov function candidate can

be obtained by

V2 = V1 +
1

2
sT s, (22)

and its derivative can be specified by

V̇2 = V̇1 + sT ṡ

= −z1T c1z1 + z1
T z2 + sT (λż1 +K + u−Mα̇).

(23)

V̇2 can be rearranged by adding the function of sign(s)

as follows,

V̇2 =− z1T c1z1 − sT c2sign(s)

+ sT
(
sz1

T z2
sT s

+ c2sign(s) + λż1 +K + u−Mα̇

)
,

(24)

where c2 is a positive number. If the control input is

chosen by

u = −
(
sz1

T z2
sT s

+ c2sign(s) + λż1 +K −Mα̇

)
, (25)

then

V̇2 = −z1T c1z1 − sT c2sign(s) < 0. (26)

As a result, the outputs of the system proximally ap-

proach to the desired references.

It is noticed that when the sliding surface s → 0,

u → −∞. Therefore, in practice, the control input for

the BSSMC controller is proposed to be given by

u = −
(
sz1

T z2
sT s+ σ

+ c2sign(s) + λż1 +K −Mα̇

)
, (27)

where σ is a very small positive number.

3.2 Adaptive neural backstepping sliding mode

controller and system stability

As discussed in the previous section, the complex non-

linear dynamic K in (27) is not fully analytically mod-

elled in practice. In other words, computing the control

signal u in (27) is analytically impractical. Therefore, in

this work, we propose to employ the radial basis func-

tion network to approximately estimate the undeter-

mined dynamic parameters including J(q), F (q, q̇, q̈),

C(q, q̇).

Let f(Z) : Ra → Rb denote the radial basis function

network,

f (Z) = WTH (Z) , (28)

where W = [W1,W2, ...,Wl]
T ∈ Rb×l is the ideal weight

matrix, and l is the number of neurons in a hidden layer.

H (Z) = [h1 (Z) , h2 (Z) , ..., hl (Z)]
T

, where hi (Z) is an

activation function. The widely used activation func-

tion, which is also employed in this work, is Gaussian,

hi (Z) = exp

[
−(Z − µi)T (Z − µi)

2η2i

]
, (29)

and

0 < hi (Z) ≤ 1, (30)
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where µi = [µi1, µi2, ..., µia]
T

is the center vector of

the receptive field, and ηi is the width of the Gaussian

function. Z ∈ Ra is a matrix of the neural inputs. In

this design, we define

Z = [x1
T , ẋT1 , ẍ

T
1 ] T ∈ ΩZ ⊂ R12, (31)

where x1 and x2 are given in (13) and (14). If Ŵ denotes

estimation of the weight matrix, the output of the radial

basis function f (Z) is approximated by

f̂ (Z) = Ŵ TH (Z) . (32)

As a consequence, the approximation of the control sig-

nal in (27) can be computed by

u = −
(
sz1

T z2
sT s+ σ

+ c2sign(s) + λż1 + f̂(Z)−Mα̇

)
.

(33)

It is noted that from now onward we define the con-

trol approach with a control input presented in (33) as

the radial basis function network based backstepping

sliding mode control (RBFN-BSSMC).

Now let’s consider an adaptive approach based on

the Lyapunov stability to effectively estimate Ŵ . Con-

trollably, the Lyapunov candidate is formulated by

V2 = V1 +
1

2
sT s+

1

2

4∑
i=1

W̃ T
i Γ
−1W̃i, (34)

where Γ = diag(Γ1, Γ2, ..., Γ4) is a positive definite di-

agonal matrix of the adaptation gains. W̃ = Ŵ−W is

error between the estimated weights Ŵ and the ideal

weights W . Then, derivative of V2 can be computed by

V̇2 = V̇1 + sT ṡ+

4∑
i=1

W̃T
i Γ
−1 ˙̃W i

= −c1z1T z1 + z1
T z2

+ sT (λż1 +K + u−Mα̇) +

4∑
i=1

W̃T
i Γ
−1 ˙̃W i

(35)

Substituting the control law in (33) into (35) leads to

V̇2 =− z1T c1z1 − sT c2sign(s)

+

4∑
i=1

W̃T
i

[
Γ−1 ˙̃W i − sTH (z)− δŴ

]
,

(36)

where δ is a positive number. If the adaptation mecha-

nism is chosen by

˙̃W =
˙̂
W = Γ [H(Z)sT + δŴ ], (37)

then the derivative of V2 can be rewritten as

V̇2 = −z1T c1z1 − sT c2sign(s) < 0. (38)

In other words, the system stability holds if the esti-

mated weights Ŵ are adaptively computed by (37).

Fig. 4: Input parameters: (a) load mass variation and

(b) external disturbance.

4 Simulation discussion

To demonstrate effectiveness of the proposed approach,

we conducted experiments in simulation environment.

To simulate the dual arm robot protocol, the manip-

ulators are first to track the reference trajectories to

approach the payload. The reference trajectories in the

first 2 seconds are given by

xa1(t) = xf1 + (xi1 − xf1)e−10t
2

, (39)

ya1(t) = yf1 + (yi1 − yf1)e−10t
2

, (40)

xa2(t) = xf2 + (xi2 − xf2)e−10t
2

, (41)

ya2(t) = yf2 + (yi2 − yf2)e−10t
2

, (42)

where xa1, ya1, xa2, ya2 are the trajectories of the ma-

nipulators. (xi1, yi1, xi2, yi2) and (xf1, yf1, xf2, yf2) are

the initial and final positions of the end-effectors, re-

spectively. After rigidly grasping the object, the robot

transports the payload along the half of a circle so that

it can avoid collision with an obstacle. The center of

the object is expected to travel on a curve as follows,

xmr(t) = x0 + rm cos(ψt), (43)

ymr(t) = y0 + rmsin(ψt), (44)
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where (x0, y0) is the position of the obstacle, which is

also the center of the circle on which the object moves.

rm is the radius of the circle, while ψ is a polar angle

that varies from −π to 0. Note that the joint angles

between the link and the base or its preceding link at

the beginning t = 0 were known, q1(0) = π
6 , q2(0) =

π
2 , q3(0) = π and q4(0) = −2π

3 .

In the simulation experiments, the dynamic models

of the dual arm robot were given. Moreover, the param-

eters of the controllers including BSSMC and RBFN-

BSSMC were known. Those information were adapted

from (Hacioglu et al. (2011)) and are summarized in

Table 1. It is noted that the weight matrix W of the

radial basis function network were initialized by zeros,

which supposes that there is no prior knowledge of the

robot dynamics.

Furthermore, to illustrate robustness and adapta-

tion of the proposed controller, it was assumed that

the load mass is suddenly changed at fourth second as

shown in Fig. 4a. Moreover, an unexpected disturbance

as illustrated in Fig. 4b, which exerts the input forces,

was taken into consideration.

Table 1: Parameters of the dual arm robot system

Dynamic model parameters
m1 = m2 = m3 = m4 = 1.5 (kg);
I1 = I2 = I3 = I4 = 0.18 (kgm2);
l1 = l2 = l3 = l4 = 1.2 (m);

k1 = k2 = k3 = k4 = 0.48 (m);
b1 = b2 = b3 = b4 = 110 (Nm/s);

d1 = 0.25 (m); d2 = 1.2 (m); µ = 0.35;
Reference trajectory parameters

(xi1, yi1, xi2, yi2) = (0.76, 0.6, −0.76, 0.6);
(xf1, yf1, xf2, yf2) = (−0.275, 1.4, −0.525, 1.4);

(x0, y0) = (0, 1.4); rm = 0.4;
q1(0) =

π
6
; q2(0) =

π
2
; q3(0) = π; q4(0) =

−2π
3

;
q̇1(0) = q̇2(0) = q̇3(0) = q̇4(0) = 0

BSSMC parameters
λ = diag (20, 20, 20, 20); σ = 10−10;

c1 = diag (220, 220, 220, 220);
c2 = diag (1200, 1200, 1200, 1200)

RBFN-BSSMC parameters
λ = diag (20, 20, 20, 20); σ = 10−10;

c1 = diag (220, 220, 220, 220);
c2 = diag (1200, 1200, 1200, 1200);

Ŵ (0) = 0; Γ = diag (30, 30, 30, 30)

(a) (b)

(c) (d)

Fig. 5: Joint angles of the link and the base or its preceding link: (a) first link, (b) second link, (c) third link and

(d) fourth link.
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(a) (b)

(c) (d)

Fig. 6: Motion trajectories of the end-effectors: (a) Expected trajectories, (b) trajectories obtained by the SMC,

(c) trajectories obtained by the BSSMC and (d) trajectories obtained by the RBFN-BSSMC.

Fig. 7: Interaction forces: (a) F1 (b) F2.

To examine the effectiveness of the proposed tech-

nique, we first investigate motions of the four links of

the dual arm robot. Practically, the best way to de-

lineate the motions of the links on xy − plane is to

present the joint angles between the link and the base

or its preceding link when the manipulators move as

shown in Fig. 5. It can be clearly seen that for the

purposes of comparisons, in this experimental example

we implemented three algorithms including the classi-

cal sliding mode control (SMC) (Wu (2012); Le et al.

(2017, 2019)), the BSSMC as discussed in Section 3.1

and the proposed method RBFN-BSSMC introduced

in Section 3.2. The results obtained by the three imple-

mented approaches are expected to reach the references,

which are early obtained from equations (39-44), all the

time. It is noticed that both the SMC and BSSMC re-

quire parameters of the model dynamics to be known,

which are hardly to be acquired in reality. On the other

hand, those parameters are also uncertain due to distur-

bances in the system. Nevertheless, the RBFN-BSSMC

approach is able to effectively estimate those dynamics

through a neural network. From Fig. 5, it can be seen
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that after about 0.2 s all the joint angles of the dual

arm robot obtained by the three different approaches

accurately reach to the references. Nonetheless, in the

first 0.2 s time, while both the methods of the SMC

and BSSMC quickly settle down with the references,

the proposed RBFN-BSSMC method takes a little bit

longer to do so. That is understandable where the SMC

and BSSMC methods were provided the model dynamic

parameters while the RBFN-BSSMC technique needs

time to adaptively estimate those.

Furthermore, for the motion trajectories of the two

end-effectors as demonstrated in Fig. 6, it shows that

the proposed approach is effectively practical. With the

aim of transporting an object along a half of a circle to

avoid collision with an obstacle, the movements of both

the left and right arms of the robot under control of the

SMC in Fig. 6b, the BSSMC in Fig. 6c and the RBFN-

BSSMC in Fig. 6d are expected to track the ideal trajec-

tories as illustrated in Fig. 6a. It can be clearly seen that

given known parameters of the model dynamics, both

the SMC and BSSMC methods controlled the arms to

move quite smoothly before approaching the payload.

The proposed approach RBFN-BSSMC had to estimate

the dynamic parameters, which made the motions of the

arms of the robot before grasping the object less smooth

as the expectation. However, more importantly once

the arms firmly held the payload, the transportation of

the object obtained by the RBFN-BSSMC controller is

highly comparable to not only those obtained by the

SMC and BSSMC methods but also the expectation.

That is, the proposed approach guarantees an ability

of the dual arm robot to adaptively learn its dynamics

while safely transport the payload to a destination.

To further demonstrate the robustness and adapta-

tion of the proposed controller, the interaction forces

were summarized and are plotted in Fig. 7. It can be

clearly seen that the forces on the arms of the robot

present quite homogeneously, where the forces started

rising when the load was handled at 2 s. More impor-

tantly, at 4 s when the load mass was suddenly varied,

the forces were adaptively increased straight away to

guarantee the load to be held without dropping and

delivered to the destination.

5 Conclusions

The paper has discussed a novel but efficient scheme to

design an adaptive controller based on the BSSMC and

RBFN for the DAR or DAM. The proposed approach

enables the DAR system to be able to adaptively esti-

mate its nonlinear, uncertain and unmodelled dynam-

ics. Moreover, by the use of the BSSMC, the RBFN-

BSSMC controller guarantees robustness of the control

performance in the DAR system given the external dis-

turbances and its uncertainties. More particularly, the

adaptation law is derived from the Lyapunov theorem,

which provides the stability of the control system to

be held. The proposed algorithm has been validated

in a simulation environment with realistic parameters,

which demonstrates the promising results.
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