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Highlights:

® A more efficient and effective isogeometric topology optimization (ITO) me’... ¥ for the systematic
design of auxetic metamaterials is developed.

® The IGA-based TO offers many positive features for the optimization ¢ au* cu. metamaterials, which
might be firstly studied in the current work.

® A series of new and interesting 3D auxetic metamaterials are p~..enteu .1 the current work.
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20 Abstract

23 In this paper, an effective and efficient topology optim.. =uon method, termed as Isogeometric Topology
25 Optimization (ITO), is proposed for systematic desi¢ « .7 “~th 2D and 3D auxetic metamaterials based on
27 jsogeometric analysis (IGA). Firstly, a density d *ribuw."n function (DDF) with the desired smoothness

29 and continuity, to represent the topological chanaes o, structures, is constructed using the Shepard function

g; and non-uniform rational B-splines (NURBS) basis = 'nctions. Secondly, an energy-based homogenization
gi method (EBHM) to evaluate material e.ective oroperties is numerically implemented by IGA, with the
35

36 imposing of the periodic boundary forulau. ~ r 1 material microstructure. Thirdly, a topology optimization
38 formulation for 2D and 3D auxeti. mr @am: .erials is developed based on the DDF, where the objective
40 function is defined as a combin ..*an of the homogenized elastic tensor and the IGA is applied to solve the
42 structural responses. A relax~ . ~otimality criteria (OC) method is used to update the design variables, due
to the non-monotonic prope. ~* .f the problem. Finally, several numerical examples are used to demonstrate
47 the effectiveness and e”vicie icy nf the proposed method. A series of auxetic microstructures with different
49 deformation mechar’-ms (e._ the re-entrant and chiral) can be obtained. The auxetic behavior of material
51 microstructures are numeri ally validated using ANSYS, and the optimized designs are prototyped using

53 the Selective ' .aser S™ntering (SLS) technique.

57 Keywords. Ar £etic metamaterials; Topology optimization; Isogeometric analysis; Homogenization.
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1 Introduction

Auxetic metamaterials are rationally artificial materials [1] with the Negative Poisson’; Ra.. > (NPR), which
exhibit the counterintuitive dilatational behavior, expanding laterally if stretched .nd 1 ontracting laterally
when compressed. Since they were firstly found in foam structures [2], auxetic ™etan. *erials have gained
a wide range of applications in engineering, due to their enhanced shear res’ .t :» inuentation resistance,
fracture toughness and etc [3]. It is known that the effective properties of aux." ~s are mainly dependent on
the architecture of the microstructure that are periodically distributed n the by 'k material, rather than the
constituent properties of the base material. Hence, many works h-... trieu w achieve artificial materials
with NPRs by adjusting the geometric configuration of material . ..crost uctures, such as the re-entrant
structures [4,5], chiral auxetics [6,7], and rotating-type structures [8].." comprehensive review for different

types of auxetics can refer to [9,10].

In recent years, topology optimization has made remarka..'2 progress in architecting materials with new
properties [11,12]. Topology optimization is a numer.-all’ i.cative procedure to optimize the distribution
of materials in a given design domain, subject 1. . <pe. fied objective function and constraint(s) [13].
Several topology optimization methods have b -.. 2~ 'oped, such as the homogenization method [14], the
solid isotropic material with penalization (SIMP) mewnod [15,16], the evolutionary structural optimization
(ESO) method [17] and the level set i~ .thod (L 5M) [18-20] and so on. Topology optimization methods
has been combined with the homogr .iization . iethod [21] to optimize the architecture of microstructures

[22—-24] with tailored effective prrpe. " =s, 2 .d even more advanced topological designs [25-27].

There have been several works for tr.c "ptimization of material microstructures with the auxetic behavior,
e.g. [28-35]. In [24,30,341 the ionlinear properties were also considered in the optimization of material
microstructures with the prooran.. 1able Poisson’s ratios, and a subsequent shape optimization was applied
to achieve any given Po.. an’s ratio in 3D auxetic microstructures [34]. Zong et al [35] developed a two-
step design proces , for mi rostructures with the desired Poisson’s ratios, where the material optimization
method was fire*" " usc. v generate a preliminary solution and then the boundary evolvement optimization
was applied tc refine 1 1e quality of the structural surfaces for the manufacturing. The parametric level set
method w > w..~ *<ad to optimize auxetic microstructures [29]. The polygonal finite elements were used in
the topology c ~timization of auxetic structures using compliant mechanisms [36]. Topology optimization
has been applied to implement 3D auxetic microstructures, but it still keeps challenging when the iterative

efficiency comes into the picture. For instance, in [28], a highly dense finite element mesh (100°) to ensure
2
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the numerical precision was employed in the optimization of 3D material microstructures with the auxetic
behavior, but with a large number of iterations (overall 3000), which might limit the fu -her applications of
most conventional topology optimization methods in finding novel material microstr:~tures. An alternative
strategy, that the geometric symmetries are pre-imposed on material microstructu: .~ i . discussed to reduce
the design freedoms to a great extent [34,35]. However, the reduced design space miy, ™t lower the possibility
to search for the novel auxetic microstructures. Hence, a more effective anc =ffic.ent wopology optimization

method for designing 3D auxetic metamaterials is still in demand.

In topology optimization problems, the finite element method (FEM® [3.] “~_. been employed dominantly
to perform the numerical analysis. The FEM is also one factor to ir. ™' .1ce 1 1e effectiveness of the topology
optimization for the design of auxetic microstructures, particularly *he 3D scenario. This is because: (1)
The finite element mesh is just an approximation of the ori~inar .~ar . of the design domain, which lowers
the numerical accuracy; (2) The lower-order (C0) contin'** - =*'._ .esponses between the neighboring finite
elements, even if the higher-order finite elements are 'tilizea, [3) The lower efficiency to achieve a finite
element mesh with the high quality. Recently, the isoge ~ netric analysis (IGA) [38,39] has attracted much
interests, due to its favorable features in numerical ai.lys:3, such as the consistency between the computer-
aided design (CAD) model and the computer-aideu ~ngineering (CAE) model, and the high-order continuity

between different elements [40].

Recently, IGA has been applied to th : topoiw. ™ optimization problems, such as the earlier work [41] that
used the trimmed spline surface. La.~r an i’ ogeometric topology optimization approach was proposed in
[42], where the Optimality Critr... ‘OC) algorithm was used to evolve the design variables. In [43], a phase
field model was also combir .u ith the IGA for topology optimization of continuum structures, where the
exact representation of the gy~ aetry in IGA was suitable for the phase field model. Qian [44] constructed
the B-spline space wit'. the (ntrinsic filter for the topology optimization. After that, a parametric level set
method [45] with IC.~ was sw. Jdied, where the level set function was interpolated by NURBS basis functions
[46], rather than tt > comp ctly supported radial basis functions. The LSM combined with IGA was also
discussed in t' e topoi "gy optimization considering stress problems [47] and flexoelectric materials [48]. A
global stress con =~ .1t was also studied in an IGA-based SIMP framework [49]. In [50], R-functions and
an collocati. 1 scheme was employed to develop the IGA-based Moving Morphable Components method
[51]. Moreover, the multi-resolution topology optimization problem was discussed in an IGA-based SIMP

framework [52], and the similar topology optimization formulation was used to optimize the multi-material

3
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structures [53]. As we can see, most of the existed works using IGA are only performed for the macro-scale
topology optimization problems. Although the IGA-based shape optimization has alre ‘dy been studied in
the applications of the smoothed petal auxetic structures [54], how to develop a~ 'GA-based topology
optimization framework for the design of 2D and 3D auxetic metamaterials is s.."' @ challenging topic in

the research field of structural optimization.

The current work is motivated to develop a more effective and efficient isoge . ctric topology optimization
(ITO) method for the optimization of auxetic metamaterials, particule Iy 3D naterial microstructures. In
the proposed ITO method, a DDF with the sufficient smoothness ~nd cc ~*~.dity is firstly constructed to
represent the evolving of the structural topology, where the Shep. *d .unct on is employed to enhance the
overall smoothness of the nodal densities at the control points ana .. » NURBS basis functions control the
continuity of the DDF. Later, an IGA-based EBHM is ~ume. ~al’y implemented to evaluate material
effective properties, with the imposing of the periodic =~ ~2.., Jormulation on material microstructure.
Finally, an ITO formulation for both 2D and 3D aux~tic metai .aterials is developed using the DDF, and a
combination of the homogenized elastic tensor is expresed as the objective function. Hence, the current
topology optimization formulation aims to optimize ‘he v2nsities of the DDF with desired smoothness and
continuity to guarantee 2D and 3D material mic. >structures with expected auxetic behavior, rather than

finding spatial arrangements of finite eler .cii.. as done in many previous works.
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2 NURBS-based IGA

In IGA [38,39], a unified mathematical form is developed using the same NURBS b ... functions for the

CAD and CAE models to keep the consistency of them.
2.1 NURBS

An example of a square modelled by NURBS is shown in Fig. 1. The NUR',S t 2-is functions are linearly
combined with a series of control points plotted with the red color to construct .. ~ geometrical model shown

in Fig. 1 (b), and the mathematical form of the NURBS surface S(&,7 ' is give 1 as:

m

SEm =) > RIAEDP, ®

i=1 j=1
where n and m are the numbers of control points in two nara, ~etri directions, and ¢ and n denote the
corresponding parametric directions. p and q are the pnhmami- orders. The detailed information for the
square is listed below Fig. 1. P;; correspond to the (i,j),, 2ntrol point. It should be noted that control
points are not necessarily on the structural design domai.> R are the bivariate NURBS basis functions, and
which are constructed by the B-spline basis functior.~. a.’

Nip M q(mw;;
1=, %je1 Nip (M () wyy

R m) = 2

where w;; is the positive weight fc the (i,,,., control point P;;. N;,and M;, are the univariate B-
spline basis functions in two parameu. * dir .ctions, respectively. The B-spline basis function is defined by

the Cox-de-Boor formula [55] ana .~ recursive formulain & direction with a non-decreasing knot vector

E= {51: EZ! Tty €n+p+1} is efin d as:

A ¢ S ) RS- 31 _
( (") w0 otherwis+el' p=0 3)
imua-&wf%iwﬂa+55§§gimﬂmaa,p21

It is noted the the fra tions with the form 0/0 in Eq. (3) are defined as zero. Similarly, the basis functions

M:

o inthe n awn__.on are also defined by Eq. (3) with the knot vector. The NURBS basis functions of

the square ii. t vo parametric directions are respectively displayed in Fig. 1 (d) and (e). The bivariate basis
functions are also plotted in Fig. 1 (f). we can easily see that the NURBS basis functions are featured with
several important properties: (1) Nonnegativity: N;,,(£) = 0; (2) Local support: the support of each basis

5
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function N;,, is contained in the interval [fi, §i+p+1]; (3) Partition of unity: for an arbitrary knot span
&, &i01], VE € [&,¢i44], ;:i—p N;,,(§) = 1; (4) Continuity: The continuity betwee , : ot spans is equal

to CP~* where k is the multiplicity of the knots [38,39].

As we can see, the CAD model with a series of control points shown in Fig. 1 () anu *he CAE model with
an array of discretized elements displayed in Fig. 1 (c) are consistent. The fin-. n.*eqraicd form is illustrated
in Fig. 1 (g). We should note that the current work just provides a simple ili..* ation of the square. Even if
the curved structures are considered, the corresponding CAD and CAE models “an be still kept in a unified
form, and the IGA mesh is consistent with the structural domain. P:" virw.. .« the important properties of
NURBS basis functions, NURBS can be featured with the strong . >~ vex I Jll property, differentiability,

local modification and variation diminishing property [38,39].

(g) Integration

(d) ‘Parametric dlrec on .E

.‘\'\ X v /_7\.\ /-

o 0.1 0 o o o 07 08

(e) Paramet (c dlrem,\ n

Fig. 1. NURBS-bas' d 16, for a square: £ = {0,0,0,0.1429,---,0.8517,1,1,1}, H =
{0,0 ,,u."429,---,0.8517,1,1,1}; n=m=9; p=q = 2.

2.2 Numerical discretizatio,. 2 the IGA

The NURBS basis fun dor, are ‘irstly applied to parametrize the structural domain, and then construct the
space for structural .csponses. As far as the latter, the key principle is that the continuous solution space is
approximately defi. ad by ‘. linear combination of all NURBS basis functions with the nodal responses on
control points The m. thematical formula of the space keeps the same as the geometrical model in Eq. (1),

while control cou ™ _.ents correspond to the structural responses on control points, expressed as:

m

X@Em) = ) ) RPIE X @

i=1j=1
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where x is the field of structural responses in design domain, and x; ; is the structural response on the

control point (i, ) -
Considering the linearly elastic structures in IGA, the system stiffness matrix is obt-.... 1 by assembling the

element stiffness matrix which is calculated by the Gauss quadrature method [38,0." given as:

3
K, = Z Z{BT(fi» n;)DB(&, )T (&onp) |2 (&omy 1wir i} (5)

i=1 j=1

where B is the strain-displacement matrix calculated by the partial de. ‘vatives of NURBS basis functions
with respect to parametric coordinates. In the iso-parametric formu atior. - *o mappings have to be defined:
(1) X:Q, — O, denotes the parametric space mapping into the “hysic! ~ pace; (2) Y:Q, — O, maps the
bi-unit parent element into the parametric element, as showr. *n Fig. 2 J; and J, are the Jacobi matrices
of two mappings, respectively. All Gauss quadrature points in .>2 IGA mesh and 3 x 3 Gauss quadrature
points in an IGA element are shown in Fig. 2. (Ei, 77j) is tr. narametric coordinate of the Gauss quadrature

point, and w; and w; are the corresponding quadratu 2 v eignts.

Gau~ o drature points e | B

“ona ' oints oo £
-1

-1 !
Bi-unit parent element

Y 1
J iy . e
9, -
IGA element
7,
Lé 61 £i+1
Physical spar o . 7A mesh Parametric space

Fi 4. 2. IGA mesh with Gauss quadrature points

In a conclusion, NURF 5 bz .is functions are firstly applied to parametrize the structural domain, and then
discretize it into a se*~s 01 . = 1 elements, as well as serving as the basis functions to construct the solution
space. Hence, the | 'URBS | asis functions unify geometry construction, spatial discretization and numerical

analysis into ¢ single framework.
3 IGA-basea 2 AM

The principle f the homogenization is that the macroscopic effective properties of the bulk material are
determined by using the information from the microstructure [21]. There are two basic requirements to be

maintained in the homogenization: (1) the scales of the material microstructure are much smaller than that
7



OCo~NOOUR~WNE

of the bulk material, and (2) material microstructure needs to be periodically distributed in the bulk material.
An example of the bulk material with only a kind of material microstructure is shown - Fig. 3, where the

microstructure is described in the coordinate system y.

zoom in

(a) The bulk material ‘b) Mat rial microstructure
Fig. 3. The bulk material composed of a k. >d o1 .erial microstructure

Considering the linear elasticity, the displacement field w” at the bulk material can be characterized by the

asymptotic expansion theory, expressed as:

u(x) = uo(x,y) + euy ¥, +efu(xy) + - (6)
where € is the aspect ratio between the scales 0. *he nucrostructure and the bulk material, which is far less
than 1. For numerical simplicity, only the # * order variation term with respect to the parameter expansion

€ is considered. The effective elastic ten. ~r of t & bulk material Di’}kl can be computed as:

1 ij [ KL
ngl = WL(L:(U) — & q(u”)) qurs (67(‘)5( ) - STS(ukl)) d'Q‘ (7)

where |Q] is the area (2D) or  olu. *= (3D) of the microstructure, and Dy,q, is the locally varying elastic

0(ij)

property. &,q

is the linea .y i1 lependent unit test strain field, containing three components in 2D and six
in 3D. g, (u” ) denoter the u..'nown strain field in the microstructure, which is solved by the following

linear elasticity equilib. . eqr ation with y-periodic boundary conditions (PBCs):
fqu(ui )Dpgrse s(6u)dQ = f eggij)qurserS@u”) dQ, Véu € Hyer (O, R?) (8)
Q Q

where du is ae virtu 2l displacement in the microstructure belonging to the admissible displacement space

Hper with y-per.. ¥ _ity, and d denotes the dimension of material microstructure.

The homoge. "zation is numerically performed by discretizing and solving Eq. (8) using the finite element
method (FEM), namely numerical homogenization [56], and the utmost importance is the imposing of the

PBCs on the microstructure. As an alternative method, the EBHM with a simplified periodic boundary

8
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formulation [22,32,57] is developed. Here, the numerical analysis of material microstructure is performed
by IGA, with the imposing of the periodic boundary formulation in the EBHM. In IG  the displacement
field in material microstructure is approximately expressed by a combination of the M" '/RBS basis functions

with the displacements at control points:

u= ZZRf}q(f,n)ui,j %)

n
=1 j=1

where u;; denote the displacements of the (i, /)¢, control point. As ve can s e, NURBS basis functions
are linearly combined with nodal displacements to approximate the .spla~ement field in the microstructure.
In the application of the EBHM to evaluate material effective propeiues, '.e displacement field in material

microstructure needs to satisfy the PBCs, and a general form is expres ‘ed as:
u; —uy = e(ug)Ak (10)

where k denote the normal direction of the structur~! hounda.y. uj indicate the displacements of points
at the structural boundary with the normal directicn k, . .d the normal direction is in the positive direction
of the coordinate axis. uj; correspond to the displa. =mcats of points at the opposite structural boundary.
Ak is the scale of the material microstructure alo. = the direction of k. The expressions of the boundary

constraint equations in PBCs in detail car (cic ~to [32] for 2D and [57] for 3D.
4 1sogeometric topology optim’zatic /¢ TO)

As already pointed out in Section 2, " bhv .ical coordinates of control points act as control coefficients of
Eq. (1) in parametrizing of the .tru.*ural geometry. If each control point is assigned to a nodal density, the
NURBS response will corre’ poi 1to a field of density in the structural domain, namely density distribution
function (DDF). The toprlogy . ntimization formulation to achieve auxetic metamaterials can be developed
using the DDF, where ‘3A s ap'.iied to solve structural responses in material microstructure. It is important
to notice that NUR S bacis 1unctions bridge the geometrical model, numerical analysis model, DDF and
topology optimizati.n forr ,ulation.

4.1 Density ¢ stribut. Hn function (DDF)

Before de~lopiny uie DDF, the definition of nodal densities assigned to control points needs to satisfy two
basic conditi ~ s [58-61]: (1) non-negativity; and (2) the strict bounds ranging from 0 to 1. Meanwhile, the
Shepard function is firstly used to improve the overall smoothness of nodal densities, so as to make sure
the smoothness of the DDF. The corresponding mathematical model is given as:

9
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N M
G(pej) = Z Z ACHEY (11)

i=1j=1
where G(p;;) is the smoothed nodal density assigned to the (i, ), control poir*, .~d p;; is the initial
nodal density. V" and M are the numbers of nodal densities located at the local su,. > .rt area of the current
nodal density in two parametric directions respectively, as shown in the sub ar~~ boui..'~d by the blue circle
in Fig. 4. Hence, the key idea of the current smoothing scheme for nodal de. ~iti* 5 is that each nodal density
is equal to the mean value of all nodal densities in the local area of th : curret nodal density. zp(pi‘]-) is
the Shepard function [62] of the (i,);, nodal density, given as:

W(Pi,j)
i, Z;\L W(pi.j)

Y(pij) = (12)

where w is the weight function of the nodal density of the (* i);, control point, and the weight function
can be constructed by many functions, such as the invei_~ distance weighting function, exponential cubic
spline, quartic spline functions and radial basis func. "nis .~ "%s) [60,61]. The compactly supported RBFs
(CSRBFs) with the C* continuity [63] are employ. .. in th.* work due to the compactly supported, the high-
order continuity and the nonnegativity over th~ '~~al «. main, by:

w(r) =1 —-1r)8(357r% + 18r + 3) (13)
where r = d/d,,, and d is the Euclic.~n dista ce between the current nodal density and the other nodal
density in the support domain. d,,, ‘s thr radius of this domain shown in Fig. 4. It can be obtained that the
smoothed nodal densities can sti’'. man..~ir the necessary conditions for a physically meaningful material
density [58-61]. It is importan. to nou..~a that the Shepard function to smooth the nodal densities is not just

a processing procedure, an” it w Il be also considered in the next topology optimization formulation.

Assuming that the DDF in t+ e structural domain is denoted by X, the DDF is constructed by the NURBS

basis functions with a line..~ or mbination of the smoothed nodal densities, expressed as:

m

X@Em =) Y RIAEDS (o) (14)

n
i=1 j=1
It can be seen tha. ~_,. (14) for the DDF has the same mathematical formula for NURBS in Eq. (1). The key
difference is *t ¢ physical meaning of control coefficients. The initial NURBS-based geometrical model for
the domain has been converted into a representation of the DDF. Eq. (14) is the global form, which can be
expanded as a local form depended on the local area of (§,71) € [&;,&41] X [r]j, 7]j+1]1 that

10



OCo~NOOUR~WNE

XEm= ) > REMG(oes) (15)

e=i-p f=j—-q
By virtue of the properties of NURBS described in Section 2.1, the current develor :d . DF is also featured
with the non-negativity and strict-bounds. Hence, the DDF can guarantee the strict p.._<ical meaning of the
material density for structural domain in the next optimization formulation. T'.c .-on-in.2rpolant of NURBS
has no influence on the DDF, originating from that control points are not nec. " rily located at the structural
domain. Moreover, the variation diminishing property of NURBS can ' 1ake s e the non-oscillatory of the
DDF, even if the higher-order NURBS basis functions are used [38,301 h..>~~, the DDF with several merits

can be beneficial to the latter topology optimization.

\\

Fig. 4. Nodal der. -...2 2 :gned to control points

4.2 ITO formulation for auxetic metamaterials

The Poisson’s ratio of materials is equal 0 the as). 2ct ratio of the transverse contraction strain to longitudinal
extension strain in the direction of str :tching 1. .ce. Considering the material elastic tensor, Poisson’s ratios
in two directions of 2D materials ran .. defaed by vy, = Dy122/Dq111 and vy; = Dyq122/Dyg45. InOrder
to generate materials with the "JF. " nroperty, several different objective functions are developed, such as
the minimization of the wei ynte ! square difference between the expected elastic tensor and the evaluated
elastic tensor [28-30,35] the 1. ‘nimization of the difference between the predicted NPR and its target [33],

minimizing the combi. atic 1 of *.1e elastic tensor [25,32] and so on [34].
Here, the objective runctic 1 of the optimization of auxetic metamaterials is expressed by a combination of
the homogenized ela_**~ *_.nsor. It is known that the occurrence of the auxetic behavior is highly related to

the rotating e. fect of r echanisms in material microstructures [22,25]. As defined in Eq. (16), minimizing

—d

the term 77 _ - QD{{jj can guarantee the generation of the mechanism-type layouts, which is beneficial
to facilitate . ‘crostructures with the auxetic behavior. Meanwhile, the term Zgj=1,i¢j D{{ﬁ can prevent

mechanism-type topologies when its value is smaller than 0. In the defined optimization formulation, the

11
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optimizer tends to maximize the second term Y& D, and minimize the first term ZU 1HtJDH

,j=1,i=j ~iijj iijj

simultaneously, so that the objective function can be gradually minimized and mate’..'s can be featured
with the auxetic behavior in all directions.

Find: p {[Pi j]zD [pi J, klsn}

~

Min: J(u, X) = z Dll]](ulx) - Z Dll]](' X)

1,j=1,1#j 1,j=11=] . (16)
(
!G(JC) = lmfx(p)vo dQ—V, <0
S

t:
a(u, su) = I(5u), Véu € Hper (Q,R?)
lO <pmin<p<1(0{=12,nj=12,- .wk:-:12,1

\

where p denotes the nodal densities assigned to control points, work ng as the design variables. J is the
objective function. S is aweighting parameter to denote the . moortance of the corresponding terms. d is
the spatial dimension of materials. G is the volume consu ~int, in which V, is the maximum value and v,
is the volume fraction of the solid. X is the DDF i~ v Z%). u is the unknown displacement field in
material microstructure, which have to satisfy the - 2Cs y*ven in Eq. (10). du is the virtual displacement
field belonging to the admissible displacemer” ~race 9., with y-periodicity, which is calculated by the
linearly elastic equilibrium equation. a and [ are . bilinear energy and linear load functions, as:
atu,6u) - [ e(u,(X(0))'Doedw) do

Jo (17)
U(‘S“; — 'r g0 ()C(p))yDos(Su) dQ

a

It should be noted that the elas’.c .. <or is assumed to be an exponential function with respect to the DDF,

and vy isthe penalization p’ ram tter. D is the constitutive elastic tensor of the basic material.
4.3 Design Sensitivity 7 1alvsis

In Eq. (16), the ITO form. 'atir n for auxetics are developed using the DDF, and which is expressed by the
linear combinatior of the 1 odal densities and NURBS basis functions. Moreover, the nodal densities are
design variablr .. i{ence, we firstly derive the first-order derivative of the objective function with respect to

the DDF befoi ~ obtair .ng the sensitivity analysis with respect to the design variables, as:

d d
a] _ Z aDu}] —,8 z aDll]] (18)
ax | Ls ax L 0X
L,]=1,l=f=] l,j=1,l.=]

12
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As we can see, the core of the derivative of the objective function with respect to the DDF is located at the

computation of the derivative of the homogenized elastic tensor D{L’H The derivations .. - the derivative of

the homogenized stiffness tensor in detail can refer to [22,25,29], and the final forr. .. qiven by:

api..

GJHC” |Q|f 0(”) ~ g (uﬁ)) (x(P)) qurS( oD — epeur \d“ (19)

As pointed out in Section 4.1, the DDF is constructed by a linear combination . the NURBS basis functions
with the smoothed nodal densities, and the smoothed nodal densities a e obtair.  d by the Shepard function
to process nodal densities. The first-order derivatives of the DDF v .u\ resoect to the nodal densities can be

derived by:

90X (&,m) _ 0 (& 9G(piy)
ap; j 9G(pi;) 0P,

=Rl 7Y (i) (20)

where Rf}q (¢,1) is the NURBS basis function at the con.utational point (&,7). ¢(pi_j) is the value of
the Shepard function at the control point (i, ). It is\ Mpc . to note that the above computational point
(&,n) is different from the control point (i, ;). In -, (1b,, the computational points are Gauss quadrature
points. According to the chain rule, the final f. .. 2€ * > derivative of the homogenized elastic tensor with

respect to the initial nodal densities can be computed by:

a;‘c” T ] eps = g (1)) A(X N Dlgrs (1 = es(w) ) RIS €001 ) A0 (21)

Hence, the first-order derivative ¢ * the _hier dve function J with respect to design variables can be derived

based on Eq. (21). Similarly, t' ¢ ae. “/atives of the volume constraint can be expressed by:

1
Pk f RPA(E (s o 40 (22)

'4oi,j
According to Egs. (15,, /2.) ar 4 (22), the first-order derivatives of the objective and constraint functions
are strongly depen .ent or. the NURBS basis functions at Gauss quadrature points and Shepard function at
control points. In the ~ntiv ization, the NURBS basis functions and Shepard function keep unchanged, and
they can be pr '-stored. Hence, the sensitivity analysis can reduce the computational cost in the optimization.
Meanwhi!~ it is nouced that the above derivations are developed for 2D materials, which can be directly

extended to "1 scenario.

13
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5 A relaxed OC method

It is known that the OC method [64] has been widely employed in structural optimi-..*an problems [13]
where a large number of design variables but only with a single resource constraint. ... "cover, the objective
and constraint functions need to satisfy certain monotonicity properties. However, u.~ jositive and negative
sensitivities of the objective function with respect to the design variables can ~~neai .~ the optimization of
auxetic metamaterials considering the above formulation. In previous woi. s [72], the damping factor has
been eliminated, leading to a result that the volume fraction is inactive .1 the cntimization process. Here, a
relaxed OC method [65] is applied to update the design variables, and 1.~ corr sponding update scheme is

expressed as:

max {(pl(l]?) - m) pmm} lf (n(&))g (1?) < mas {(p(?) - m) pmm} )
max ! —:.v\ < (1@ £ p@)
o max{(6] =y pmin} < (1) o
P =4 (1) 6, if :mm izp(;;: ) 1}’ Vi (@)
minf(p + )}, el ) 1)< (090

where m and ¢ are the move limit and the dampit. .. ~toi, respectively. The Lagrange multiplier A® at
the 9" iteration step can be updated by a bi-s. ~uui...- j algorithm [13]. The updating factor Hﬁ?) for the

(i, )en design variable at the 9" iteration step can be defined as:

1 / aJ < 9G ))
(19) (e
I; Ve———/max | A, ——= 24)
9 . @\ P 9 / 9 (
=10 \ 00 2

where A4 is a small positive cor :tant to a.oid the fraction with a form of 0/0. The updating factor 17(‘9)

can be positive in the optimiz=tion, by uhoosing an appropriate value of the shift parameter 1@, namely:

u® >m ac{)—(, /max A ——= oG (i= nj=12,-,m) (25)
300! "\ o

A systematic flowre iart of “he ITO formulation for auxetic metamaterials is shown in Fig. 5, and the detailed
steps are listed as fo, e
Step 01: Input in tial parameters: structural sizes, NURBS basis functions; knot vector and so on;
Step *?: Construct geometrical model (CAD) of the structure by NURBS;
Step 05. Zonstruct numerical analysis model (CAE) of the structure, namely IGA mesh;
Step 04: Construct the initial DDF by NURBS basis functions and Shepard function;

Step 05: Impose PBCs on the microstructure and apply IGA to solve the displacement field;
14
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Step 06: IGA-based EBHM to evaluate the homogenized elastic tensor;

Step 07: Calculate the objective function and volume fraction;

Step 08: Calculate the derivatives of the objective and constraint functions;
Step 09: Update the design variables and DDF by the relaxed OC method;
Step 10: Check convergence; if not, go back to Step 05; if yes, go to Sten 11,
Step 11: End and Output auxetic metamaterials.

( Input initial parameters )

¥

Perform A/p -1efinement and build the IGA

Construct geometrical model by NURBS o h
1

¥

— Con. “ruct the initial DDF

Impose the PBCs and [GA to solve the
displacement field

]

IGA-based Homogenization to evaluate D —— Calcui. "~ the objective and volume functions

Update design variables and DDF by the Ca. late sensitivities of the objective and
relaxed OC R constraint functions
[ _

No >
¢ nocrgen

‘I’/

Yes

End a.. ! output auxetics

Fig. 5. The flowchart of *-~ I'TO formulation for auxetic metamaterials
6. Numerical Examples

In this section, several numerical e: "mr.es 2 ¢ provided to demonstrate the effectiveness and efficiency of
the ITO method for auxetic met materials. 2D auxetic microstructures are firstly studied to show the basic
features of the developed ITC ~ethod. secondly, the ITO method is applied to discuss the optimization of
3D material microstructure. *i’.1the auxetic behavior to demonstrate its superior effectiveness. Finally, the
auxetic behavior of the (opr.ogirally-optimized 3D material microstructures are validated in the software
ANSYS and the 3D ~*'xetiv . .amaterials are also prototyped by using the 3D printing technique. Only the
linearly elastic me erials a e considered, and 2D microstructures will be discretized by the plane stress
elements. In &  exarnles, the Young’s moduli E, and the Poisson’s ratio v, for the basis material are
defined as 1 an.' 0 3 espectively. In the numerical analysis, 3X3 (2D) or 3X3X 3 (3D) Gauss quadrature
points are ¢~0¢< .n m an IGA element. For numerical simplicity, the dimensions of material microstructures
in all directions are set to be 1. The penalty parameter in Section 4.2 is set as 3. The constant parameter

in all numerical examples is set to be 0.03, expect the specific definition. The terminal criterion is that the

15
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L., norm of the difference of the nodal densities between two consecutive iterations is less than 1% or the

maximum 100 iteration steps are reached.
6.1 2D auxetic metamaterials

Considering 2D materials, the structural design domain is a square with 1X1, shov. * in Fig. 1 (a). Here,
NURBS surface is applied to parametrize the design domain, where the quar’.«.”c NU.BS basis functions
are chosen and the knot vectors are set as: = = H = {0,0,0,0.01,---,0.99,,," .}. The corresponding IGA
mesh for the design domain has 100x100 elements, and 101x101 (10°.02) cc. trol points are contained in
the NURBS surface. The maximum material consumption V; is defineu -~ ~y%. As already described in
Section 4, the developed ITO method aims to optimize the densit.»< "1 the DDF to represent the evolving
of the structural topology, until auxetic microstructures can be achic ‘ed. As given in Eq. (14), the DDF is
constructed by the NURBS, which can be viewed as a densi*/ res,. ~n<* surface in spatial for nodal densities.
The initial design of material microstructure is displaye™ ‘= 7. ., including the nodal densities at control
points in Fig. 6 (a), the densities at Gauss quadrature nnints 11, ~ig. 6 (b) and the density response surface
of the DDF in Fig. 6 (c). It should be noted that the hei "t direction denotes the density value in Fig. 6. It
can be easily found that the initial design of materia. miv.ostructure is homogenously occupied with some

holes to avoid the uniformly distributed sensitivi.,” field, owing to the imposing of the periodic boundary

conditions on material microstructure.

(b) Densities at Gauss quadrature points

0 0

(c) Density response surface
Fig. 6. The initial design of material microstructure

As shown in Fiy. 7, the optimized designs of material microstructure are provided, including the optimized

densities at Gauss quadrature points in Fig. 7 (a) and the optimized density response surface of the DDF in

16
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Fig. 7 (b). It can be easily found that the optimized densities at Gauss quadrature points and the optimized
density response are both featured with the sufficient smoothness and continuity. The r »in cause is that the
Shepard function and NURBS basis functions are considered in the construction of *he DDF. The former
can guarantee the smoothness of the DDF by improving the overall smoothness ¢. 7o .al densities, and the
latter ensure its continuity. In order to show the details of the optimization of the L._==. we provide a series
of intermediate density response surfaces of the DDF during the process. A s shc wn i Fig. 6 (c) and Fig. 8
(a), the initial density response surface has a break from 0 to 1. During *.c optimi.ation, the smoothness is
gradually improved with the consideration of the Shepard function in the ~anstri _tion of the DDF, explicitly
represented by the transition part of the surface from 0 to 1. Ad itior .uy the optimized densities of the

DDF in material microstructure are distributed nearly 0 and 1, ov. nq to L€ penalty parameter, and the key

principle of the penalty mechanism in topology optimization . ~n refer to [16].

(a) Ite” stion (b) Iteration 5

“‘fl:;;“‘

. T.cration 14 (d) Tteration 17

| M w

A,

06

(e) Iteration 21 (f) Iteration 38
Fig. 8. Intermediate density response surfaces of the DDF
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As shown in Fig. 8, the evolving of the DDF represent the topological changes during the optimization. In
order to obtain an appropriate configuration of material microstructure using the DDF 2 heuristic scheme
is introduced to define the structure topology. The mathematical model is defined *~ Eq. (2b), where X,
is a constant, expressed as:

0<X(¢n) <X, void
X(En) =X, boundary (26)
X, <XE¢En<1 solid

As we can see, the structural boundaries of material microstructure are expres.~d by the iso-contour of the
DDF. The DDF with the densities higher than X, describes solids i» the .~ _.ural design domain, and the
densities lower than X, is used to present voids. We can easily 1.~ .nat 1 1e current scheme to define the
structural topology using the DDF is analogous to the implicit bow..'ary representation model in the LSM
[18-20]. However, it is important to notice that the propos~d 11 & m~ hod for auxetic metamaterials is not
developed in a framework of the Hamilton-Jacobi partia' ~*““27Z....al equation to track the advancing of the
structural boundary. Eq. (26) can be just viewed as ~ nost-prccessing mechanism to define the topology
using the DDF, and the core of the developed ITC mett, { for auxetic metamaterials is the optimization of

the DDF to represent the topological changes.

In the work, the constant X, is set to be 0.5. Acc. *ding to Fig. 7, we can see that the 0.5 is a relatively
suitable value to define the topology, duf 0 a |."enomenon that most densities are distributed nearly 0 or 1
([0,0.2] and [0.8, 1]). The correspon-'ing 1. *mr .ical results of material microstructure are listed in Table
1, including the 2D view of densitie. 2t .ause quadrature points but with only higher than 0.5, the optimized
topology, the homogenized elas .~ tensor D¥, the corresponding negative Poisson’s ratio v = —0.61 and
the volume fraction of the or’.. ~ized topology V; = 29.88%. The volume fraction of the final topology is
mostly close to the prescribe. ** slume fraction 30%, which shows the appropriateness of the threshold value
0.5 to define the topol .gy ' sing the DDF. The topologically-optimized design of material microstructure
with the negative Pr ..on rawu ., -0.61 also shows the effectiveness of the current ITO method on seeking for
2D auxetic metam. terials. As given in Fig. 9, two rotating mechanisms related to the generation of the
auxetic behav or in n, terial microstructures are given, which demonstrates the rationality of the definition
of the objective \..._aon with the consideration of the term Zgj=1,i=j D{{jj.
Additionally, ¢can be easily found that the optimized topology is featured with the smooth boundaries and
clear interfaces between solids and voids owing to the DDF with the sufficient smoothness and continuity,

which can be beneficial to lower the difficulties for the latter manufacturing. Although the ITO method for
18



auxetic metamaterials is developed on the basis of the conception of material densities, the key intention of
the ITO formulation is to seek for the optimal DDF with the auxetic characteristic. Fir !ly, the convergent
curves of the objective function and volume fraction of the DDF are shown in Fig. 1" vith the intermediate
topologies of 2D auxetic microstructure. It can be easily found that the iterative i..>to".es are very smooth,

and the optimization can quickly arrive at the prescribed convergent condition withu. ?8 steps, which shows

OCo~NOOUR~WNE

the perfect stability of the proposed ITO method on the optimization of 20 auxs dcs.

Table 1. The optimized 2D auxetic metam’ .ciial

2D view of densities Topology D* v Ve
0.088 —0.054 0
—0.054 0.288 0 —0.61 29.88%
0 C 0.0027

N

Rotating mecha,. m 1 Rotating mechanism 2

Fig. 9. Rotating mr charisms «n the optimized 2D auxetic metamaterial

ay ' 2 T T T T
0024 ¢ 9 . : : : —=a— The objective function | ;-
\ tz PP PP —e— The volume fraction
i [ A X X/
r 4
’\ x n z 0.4
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L
l’.'.'.‘."'.’.‘.‘.’.\'n.;:'. 0000 0000000000000 000 0.3
.....‘I~.
.I-._._...‘.
02 l»l~l4l-l-...‘._._.l.
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Iterations

Fig. 10. Iterative curves of 2D auxetic metamaterial

6.2 Discussiu s of the weight parameter

In this section, we study the effect of the weight parameter £ in the objective function on the optimization

of auxetic metamaterials. The weight parameter S will be discussed with 15 cases, namely 0.03 (Section
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6.1), 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.0001, 0.0005, 0.02. The related design
parameters are consistent with Section 6.1, like the NURBS details, the maximum m- erial consumption,

the initial design and etc.

As shown in Fig. 11, the corresponding numerical results of the former twelve casc> rom 0.03 to 0.30 are
firstly provided. It can be found that the values of the Poisson’s ratio in twelv~ ~ases . *= increased with the
increasing of the weight parameter. The corresponding auxetic microstr. ~tur:s in the twelve cases are
shown in Fig. 12. The auxetic behavior is becoming smaller and small- r with the increasing of the weight
parameter. When the weight parameter is equal to 0.3, the optimized mauv. “ial r ,crostructure is not featured
with the negative Poisson’s ratio. Meanwhile, the first case wit th- we ght parameter 0.03 can obtain
auxetic microstructure with the minimum negative Poisson’s ratio ™ 614 In the similar iterative steps when

compared to other cases.

02—+ T T T ———T—1—7 60
—mB— The . ~isson'sratio m
—& — . . ons
0.0 FeesesecansmsnsasasasasasasasasasasanasRus . ---------------- s
= — _9—e
» 0.2 g b
§ -30 O
) L ©
S yd ko)
a /l =
N
= ./ 15
—m—
a—N
-
L /-
064 g—"
0

T _|— T T T T T T T T T T T
0.03 0.04 0.~ 0.06 0.07 0.08 0.09 0.10 0.15 0.20 0.25 0.30
Weight parameter
“-ig. ~.L. Numerical results of the former twelve cases

Sedsheasadsads

Case | Case 2 Case 3 Case 4 Case 5 Case 6
x
Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

Fig. 12. Auxetic microstructures in twelve cases
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Three numerical cases with the weight parameter equal to 0.02, 0.005 and 0.0001, respectively, are provided
in Table 2. If the weight parameter is decreased, the optimizer intends to minimize th = ~egative Poisson’s
ratio in one direction. As listed in the third row of Table 2, namely g = 0.0005, . v, is smaller than
the v;,, and the auxetic microstructure is the orthotropic. However, if the weighut 2 imeter is very small,
equal to 0.0001, the final auxetic metamaterial is the anisotropic. The auxetic hehav..* of the design results
from the chiral deformation mechanism. The above phenomenon mainly ¢ »ms ron a fact that the weight

- DHE.in tF - ubjective function. Additionally,

parameter controls the influence degree of the term ZU 11=7 Dty

as shown in the last column of Table 2, we can confirm that an increasii " numkr 2r of iterations are required
to arrive at the convergent criterion in the optimization, with the de :reas"..y 7f the weight parameter. Hence,
as far as finding auxetic microstructures with the identical nega.' " Pc™ ,on’s ratios in two directions, the
weight parameter 0.03 is a relatively appropriate value for *~a ITO nethod. It should be noted that the
discussion for the weight parameter is just suitable for the curi.~t ITO method.

Table 2. Numerical results ~f three cases.

Topology Homogenizea ‘lao. - +ansor DA v Iterations
o 0762  -U.73% 0 _
0. 0°0 0.702 0 {”12 = 0498 117
U 0.0008 V21 = —0.541
0.220/ —0.053 0 o
0.0005 [ 0.053 0.0392 0 {”12 - 0'4§2 101
i 0 00011 V21 = —1.352
0.084 —0.057 0.013 L
0.0001 [ 0.057  0.085 —0.013] {z“ _ _8'23? 157
0.013 —0.013 0.0028 21 '

6.3 3D auxetic me .amatevials

In this section, the ¢, timi~ _tion of 3D auxetic metamaterials is studied to present the superior effectiveness
of the develoj ed ITO nethod. As far as 3D material microstructure, the design domain is a cubic with 1 X
1X1, as shown 1 rig. 13 (a). The structural design domain is parameterized by the NURBS solid, where
the quadratic "WURBS basis functions are used and the knot vectors in three parametric directions are set as
E=H =2 =1{0,000.417,--,0.9583,1,1,1}. The NURBS solid and the IGA mesh for the design domain
are displayed in Fig. 13 (b) and (c), respectively. The IGA mesh has 24x24x24 elements, and 26x26x26
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control points are included in the NURBS solid. The total number of design variables is equal to 26 x26x
26. An IGA element contains 3x3x3 Gauss quadrature points, and the total number r < Gauss quadrature
points is equal to 72x72x72. In this section, four different initial designs of 3D mate+ial micrustructure are
defined and four causes will be studied. For 3D material microstructure, it is diffic. 't t, plot the 4D density

response surface. We only display the correponding iso-contours of four initial maw.*al microstructures, as

given in Fig. 14, where X, is still set to be 0.5.

R

(a) A cubic (b) NURBS (¢) IGA mesh
Fig. 13. 3D material «uiusuucture

(a) initial design 1 (b) initiar " ~sign 2 (c) initial design 3 (d) initial design 4
Fig. 14. Four .nitial ac..gns for 3D material microstructure

The initial design 1 shown in Fig. 14 . is ¢’ nsidered in Case 1, where the maximum material consumption
is set to be 30%. As clearly dis'.lay *1 in Fig. 15 (a), the optimized topology of 3D material microstructure
with the auxetic behavior is ",rov ded. In order to observe the interior configuration of the optimized design,
the middle cross-section7 ! viev. ~f the 3D auxetic microstructure is presented in Fig. 15 (b). Meanwhile, a
3D auxetic metamater. ! v ,th 2 <3 X3 repetitive microstructures is shown in Fig. 15 (c). It can be easily
seen that the optim zed 3C auxetic microstructure is characterized with the smooth boundaries and distinct
interfaces between 1.~ en'" 4s and voids, originating from the constructed DDF with the desired smoothness
and continuit. . Meanv hile, it can be easily observed that the 3D material microstructure shown in Fig. 15
(a) can ey" ‘it the counterintuitive dilatational behavior, when a load is imposed on one direction of this
structure. As . sted in Table 3, the homogenized elastic tensor of the 3D material microstructure in Fig. 15
(a) is given and the corresponding Poisson’s ratio is equal to -0.047. Hence, the auxetic behavior of the 3D

microstructure 1 can be confirmed from not only the qualitative analysis, but also quantitative calculation.
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Lo

(a) Topology

(a) Topology

(a) Topolog

"

(a) Topology

(b) Half topology
Fig. 15. 3D auxetic microstructure N¢. 1

Al

(b) F ftope ‘ogy
Fig. 16. 3D auxetic mi_-ostructure No. 2

(b) Half topology
Fig. 17. 3D auxetic microstructure No. 3

(b) Half topology
Fig. 18. 3D auxetic microstructure No. 4
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Similarly, Case 2 is performed with the maximum volume fraction 30%, starting from the initial design 2,
shown in Fig. 14 (b). The initial design 3, illustrated in Fig. 14 (c), is considered in  ase 3 also with the
maximum material consumption 30%, and Case 4 optimizes the 3D microstructure <*~rting from the initial
design 4 displayed in Fig. 14 (d), but with the maximum volume fraction 24%. T..~ fi al optimized results
in Cases 2, 3 and 4 are displayed in Fig. 16, 17 and 18, respectively, also including .. ~ optimized topology,
the cross-sectional view of the topology to illustrate the interior informatior -n de ail a.id 3 X 3X 3 repetitive
distributed auxetic microstructures. The homogenized elastic tensors of ~ o auxetic microstructures 2, 3 and
4 are listed in Table 3, where the corresponding Poisson’s ratio are alsc ~ompi'.ed, namely -0.082, -0.12, -
0.11. Thereby, the capability of the ITO method to seek for 3D au <etic ..ic 'amaterials can be presented.

Table 3. The homogenized elastic tensors of four 2N au...dc microstructures
3D auxetic microstructure 1 3L auxetic microstructure 2

0.045 —0.0021 —0.0021 0 0 0 0.r788 nr 65 —0.0065 0 0 0
[—0.0021 0.045 —0.0122 0 0 0 ] [—O.OUL' 0.0788 —0.0065 0 0 0 ]
—0.0021 —0.0021  0.045 0 0 0 |—000As  9.0065 0.0788 0 0 0

0 0 0 00031 0 0 | | 0 0 0 0.0052 0 0 |
0 0 0 0 0.0031 0 | | v 0 0 0 0.0052 0 |
0 0 0 0 0 0.0031 0 0 0 0 0 0.0052
v =—0.047 v =—0.082
3D auxetic microstructure 3 3D auxetic microstructure 4
0.0789 —0.0094 —0.0094 0 0 0] , 10331 —0.0038 —0.0038 0 0 0
|—0.0094 0.0789 —0.0094 0 0 no |—0.0038 0.0331 —0.0038 0 0 0 |
—0.0094 —0.0094 0.0789 0 0 v ! —0.0038 —0.0038 0.0331 0 0 0
0 0 0 0.006 0 0 0 0 0 0.0024 0 0
l 0 0 0 0 0006 0 J [ 0 0 0 0 0.0024 0 '
0 0 0 0 0 . "% 0 0 0 0 0 0.0024
v=-0.12 v=-0.11

As shown Fig. 19, the 2D views of *.1e tnpoluyically-optimized 3D auxetic microstructures are provided,
which are analogous to the report2d .- au® etic microstructures in previous works [29,32]. However, it is
not straight to extend the optin.zau. » for 2D auxetic metamaterials to 3D scenario. The convergent curves
of the objective function, th- vor ime fraction of the DDF and the topological change between two adjacent
iterations in Cases 1 and 2 are .*<olayed in Fig. 20. It can be easily found that the iterative histories in two
cases are very smooth . ~d ,uick.y arrive at the prescribed convergent criterion, only 34 steps in Case 1 and
51 steps in Case 2 1he in‘ermediate topologies of the 3D auxetic microstructures in Case 1 and 2 are also
displayed in Fig. 21 ~nd 27, respectively. Hence, the effectiveness and efficiency of the ITO method on the
optimization f 3D aL <etic metamaterials can be demonstrated. Meanwhile, the pre-defined geometrical
symmetrie- are now considered in the optimization to allow more freedoms to seek for the novel 3D auxetic
microstructu. - s. As shown in Fig. 15-18, a series of interesting 3D auxetic microstructures can be achieved
in the current work. However, the negative Poisson’s ratios of the optimized 3D auxetic microstructures

are larger than the reported designs [28,34,35]. The negative Poisson’s ratio of the auxetic microstructure

24



OCo~NOOUR~WNE

strongly depends on the objective function. In Eq. (16), the objective function is expressed by a combination
of the homogenized elastic tensor, which can only provide a reasonable search directi 0 for the optimizer
to find auxetic metamaterials. It is difficult to arrive at the expected negative Poiss~’s ratio. It should be
noted that this phenomenon has a negligible influence on the latter applications ¢. *he {TO method, owing
to the fact that the proposed ITO method can achieve topological design of auxetic i, ~tamaterials in a more
effective and efficient manner. Based on the skeleton of the current topolr tica’ y opdmized designs (Fig.
15-18), the auxetic metamaterials with any given negative Poisson’s rat’s can he wchieved by further using

shape optimization, similar to [34].

(a) Case 1 (b) Case 2 \¢) Case 3 (d) Case 4
Fig. 19. The 2D-views f~* fou auxetic microstructures
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(a) Convergent cur~- of case 1 (b) Convergent curves of case 2

Fi 4. 20. Convergent histories of Cases 1 and 2

According to the discus .ion abou the weight parameter in Section 6.2, two different cases with § = 0.02
and 0.0001 for 3D auxetiv et imaterials are discussed, respectively. The optimized 3D auxetic designs in
two cases are disp ayed in “ig. 23, including the optimized topologies and the cross-sectional views of the
topologies. It c.a1 0e easily seen that the 3D auxetic microstructure 5 in Fig. 23 (a) is similar to the reported
microstructure ‘n [357 The 3D auxetic microstructure No. 6 with the anisotropic is a new finding with the
chiral defc 'mar ¢,. mechanism to form the auxetic behavior. The homogenized elastic tensors of two 3D
auxetic micros. "uctures are listed in Table 4, and the minimum Poisson’s ratios of two cases are equal to -

0.257 and -0.188, respectively.
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<

(d) Tteration 15 (e) Tteration 20 (f) Iteration 34
Fig. 21. Intermediate res.*s 01 2.e 1

(d) Ttera. »n .6 (e) Tteration 24 (f) Iteration 51
~ig. 22. Intermediate results of Case 2

oL T

(a) Topolugy (b) Half topology (¢) Topology (d) Half topology
Fig. 23. 3D auxetic microstructures No. 5 and 6
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Table 4. Homogenized elastic tensors of 3D auxetic microstructures No. 5 and 6.
3D auxetic microstructure 5 3D auxetic microstructv 2 6

0.0483 —0.0124 -—0.0049 0 0 0 0.0457 —0.0028 —0.008 0.0037 0.0009 0.0067
—-0.0124 0.0633 —0.0122 0 0 0 —-0.0028 0.0426 —0.0062 —0.00.2 —vuv.”1%62 -—0.0004
—0.0049 -0.0122 0.0505 0 0 0 —0.008 —0.0062 0.053 —-0.0772  0.0045 —0.0053
0 0 0 0.0047 0 0 0.0031 —0.0032 -—0.0003 0 404 —0.0002 —0.0002
0 0 0 0 0.0048 0 0.0009 —0.0062 0.0045 - 000" 0.0038 0.0004
0 0 0 0 0 0.0047 l 0.0067 —0.0004 -0.0053 —0.u. 2 0.0004 0.0038 J
Unmin = —0.257 Umin = —U.. 8

6.4 Simulating validation based on ANSYS

In this section, the numerical verification of the above optimized auxetic .nicrostructures is performed using
ANSYS, and the auxetic microstructure No. 1 is considered. The “STL " file 0 the auxetic microstructure
No. 1, as shown in Fig. 24 (a), is firstly exported from Matlab anc ther «m, orted into ANSYS. The “STL”
file needs to be slightly modified in the SpaceClaim of ANSYS a. ' converted into the solid geometry with
lcmxlcmxlcm, given in Fig. 24 (b). The volume fraction o1 .= “ST .” file for 3D auxetic microstructure
1 is equal to 29.65% (nearly 30%) and the volume fraction 29.,.2" of the modified solid geometry is also
mostly identical to 30%. In order to test the negative Poisson . -atio with a much higher accuracy, an auxetic
metamaterial with 5x5x5 auxetic microstructures No. * i, considered in the latter simulation, as shown in

Fig. 25 (a), and the corresponding mesh is also sho.m - Fig. 25 (b) with 19763500 finite elements.

(a) 'STL” file (b) Solid geometry
Tig. 24. 3D auxetic microstructure No. 1

(a) Auxetic mtamaterial (h) Finite element mesh
Fig. 25. Auxetic metamaterial and its finite element mesh
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In Fig. 26, three boundary conditions are imposed on the auxetic metamaterial. Condition 1, shown in Fig.
26 (a), fixes the Z-direction displacements of the surface A with the normal direction ~ -. In the Condition
2, two points at the middle of the surface A are fixed to avoid the rotation of the auxe*:~ metamaterial, given
in Fig. 26 (b). As shown in Fig. 26 (c), a displacement with 1 mm in Z direction i. "ar 10genously imposed
on the surface C with the normal direction Z+ in Condition 3. It should be noted tr..* the surfaces A and C
are opposite along Z direction. The deformations of the top and bottom surf: :es ', X u.rection of the auxetic
metamaterial are displayed in Fig. 27. In order to obtain a more accurate . awue, the difference of the average
displacements on the top and bottom surfaces is viewed as the deforma. an dec ee of auxetic metamaterial
1 in the X direction. The displacement mean on the top surface is ¢ qua! .o « 0239 mm, and the mean on the
bottom surface is -0.0227 mm. Hence, the deformation of auxe..~ me....iaterial in X direction is equal to
Ax = 0.0466mm. The negative Poisson’s ratio is defined by . = — A ¢/Az = —0.0466. We also consider
different displacements imposed on the Surface C, ranging fru.» 0.1mm to 1mm, and the corresponding
negative Poisson’s ratios in different cases are all equal to -v."466, shown in Fig. 28. The simulated values

are mostly identical to the result calculated by the hon.~g’ nization in Table 3.

Finally, all the 3D printing prototypes for the topolc e, 'ly-optimized 3D auxetic microstructures No. 1 to

6 are fabricated using the SLS technique, shown " Fiy. 29, respectively.

[Condition 1 Condition 2 Condition 3
Time: 1.5 Time: 1.5 il
Conditior

ition 3
Compo  5:0.0.0.mm Components: Free.free.1. mm g

J

(¢) Condition 3
Fig. 26 3ou idary conditions imposed on the auxetic metamaterial

(a) Condition 1

(h) Condition 2

X- Direction
Type: Directional Deformation(X Axis)
Unit: mm

2 || Global Coordinate System
Time: 1

X+ Direction
Type: Directional Deformation(X Axis)
Unit: mm

Global Coordinate System
Time: 1

0.075122 Max
0.063452
0.051782
0.040113
0.028443
0.016773
0.0051036
-0.0065661
-0.018236
-0.029905 Min

0.032783 Max
0.021173
0.0095628
-0.0020473
-0.013657
-0.025267
-0.036878
-0.048488
-0.060098
-0.071708 Min

(a) Displacements of the top surface

(b) Displacements of the bottom surface

Fig. 27. Displacement responses of auxetic metamaterial
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0.00 - T T T T
-\. —n— Auxetic metamaterial

-0.01

UNPR1— — 0.0466
-0.02

-0.03 4

-0.04 +

Average displacement in X direction /mm

T T T T T J
0.0 0.2 0.4 0.6 L W

Imposed normal displacement in Z+ ¢ rectic ., m
Fig. 28. Mechanical responses of auxetic ...ctam .terial

(d) Auxetic microstrur ‘ure  (e) Auxetic microstructure 5 (f) Auxetic microstructure 6
Fig. 29. 7 Y printing samples for six auxetic microstructures.

7 Conclusions

In this paper, we present an ei. <tive and efficient ITO method for the optimization of 2D and 3D auxetic
metamaterials, where  suf icie’ dy smooth and continuous DDF is constructed to represent the structural
topology and IGA s applied 10 solve the displacement responses in microstructures. The homogenization
to predict the macro. ~apic _ffective properties is numerical implemented by the IGA, with the consideration
of the periodi : bouna. vy conditions. A relaxed form of the OC method is applied to derive the advancing
of the structural wputogy.

In numericar ~ <amples, 2D and 3D auxetic microstructures are studied to demonstrate the effectiveness and
efficiency of the ITO method. As we can see, the key characteristic of the current method is to optimize the
DDF for material microstructures with the auxetic behavior, rather than the spatial arrangements of element
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densities. The optimized topologies of auxetics have the smooth boundaries and distinct interfaces, which
is beneficial to the latter manufacturing. Additionally, the ITO method is featured with * -a higher efficiency
for the optimization of 3D auxetic microstructures, only 37 steps for the auxetic m?~vostructure No.1 and
52 iterations for the auxetic microstructure No.2. A series of new and interestiny, ~ur etic microstructures
can be achieved. The proposed ITO method is general, and in the future, it can be . ‘tended to other more

advanced topological design problems, like the nonlinear and multifunctio’ al i~ sterial microstructures.
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