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Highlights: 

⚫ A more efficient and effective isogeometric topology optimization (ITO) method for the systematic 

design of auxetic metamaterials is developed. 

⚫ The IGA-based TO offers many positive features for the optimization of auxetic metamaterials, which 

might be firstly studied in the current work. 

⚫ A series of new and interesting 3D auxetic metamaterials are presented in the current work. 

Highlights (for review)
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Abstract 

In this paper, an effective and efficient topology optimization method, termed as Isogeometric Topology 

Optimization (ITO), is proposed for systematic design of both 2D and 3D auxetic metamaterials based on 

isogeometric analysis (IGA). Firstly, a density distribution function (DDF) with the desired smoothness 

and continuity, to represent the topological changes of structures, is constructed using the Shepard function 

and non-uniform rational B-splines (NURBS) basis functions. Secondly, an energy-based homogenization 

method (EBHM) to evaluate material effective properties is numerically implemented by IGA, with the 

imposing of the periodic boundary formulation on material microstructure. Thirdly, a topology optimization 

formulation for 2D and 3D auxetic metamaterials is developed based on the DDF, where the objective 

function is defined as a combination of the homogenized elastic tensor and the IGA is applied to solve the 

structural responses. A relaxed optimality criteria (OC) method is used to update the design variables, due 

to the non-monotonic property of the problem. Finally, several numerical examples are used to demonstrate 

the effectiveness and efficiency of the proposed method. A series of auxetic microstructures with different 

deformation mechanisms (e.g. the re-entrant and chiral) can be obtained. The auxetic behavior of material 

microstructures are numerically validated using ANSYS, and the optimized designs are prototyped using 

the Selective Laser Sintering (SLS) technique. 

 

Keywords: Auxetic metamaterials; Topology optimization; Isogeometric analysis; Homogenization.
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1 Introduction 

Auxetic metamaterials are rationally artificial materials [1] with the Negative Poisson’s Ratio (NPR), which 

exhibit the counterintuitive dilatational behavior, expanding laterally if stretched and contracting laterally 

when compressed. Since they were firstly found in foam structures [2], auxetic metamaterials have gained 

a wide range of applications in engineering, due to their enhanced shear resistance, indentation resistance, 

fracture toughness and etc [3]. It is known that the effective properties of auxetics are mainly dependent on 

the architecture of the microstructure that are periodically distributed in the bulk material, rather than the 

constituent properties of the base material. Hence, many works have tried to achieve artificial materials 

with NPRs by adjusting the geometric configuration of material microstructures, such as the re-entrant 

structures [4,5], chiral auxetics [6,7], and rotating-type structures [8]. A comprehensive review for different 

types of auxetics can refer to [9,10]. 

In recent years, topology optimization has made remarkable progress in architecting materials with new 

properties [11,12]. Topology optimization is a numerically iterative procedure to optimize the distribution 

of materials in a given design domain, subject to a specified objective function and constraint(s) [13]. 

Several topology optimization methods have been developed, such as the homogenization method [14], the 

solid isotropic material with penalization (SIMP) method [15,16], the evolutionary structural optimization 

(ESO) method [17] and the level set method (LSM) [18–20] and so on. Topology optimization methods 

has been combined with the homogenization method [21] to optimize the architecture of microstructures 

[22–24] with tailored effective properties, and even more advanced topological designs [25–27]. 

There have been several works for the optimization of material microstructures with the auxetic behavior, 

e.g. [28–35]. In [24,30,34], the nonlinear properties were also considered in the optimization of material 

microstructures with the programmable Poisson’s ratios, and a subsequent shape optimization was applied 

to achieve any given Poisson’s ratio in 3D auxetic microstructures [34]. Zong et al [35] developed a two-

step design process for microstructures with the desired Poisson’s ratios, where the material optimization 

method was firstly used to generate a preliminary solution and then the boundary evolvement optimization 

was applied to refine the quality of the structural surfaces for the manufacturing. The parametric level set 

method was also used to optimize auxetic microstructures [29]. The polygonal finite elements were used in 

the topology optimization of auxetic structures using compliant mechanisms [36]. Topology optimization 

has been applied to implement 3D auxetic microstructures, but it still keeps challenging when the iterative 

efficiency comes into the picture. For instance, in [28], a highly dense finite element mesh (1003) to ensure 
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the numerical precision was employed in the optimization of 3D material microstructures with the auxetic 

behavior, but with a large number of iterations (overall 3000), which might limit the further applications of 

most conventional topology optimization methods in finding novel material microstructures. An alternative 

strategy, that the geometric symmetries are pre-imposed on material microstructures, is discussed to reduce 

the design freedoms to a great extent [34,35]. However, the reduced design space might lower the possibility 

to search for the novel auxetic microstructures. Hence, a more effective and efficient topology optimization 

method for designing 3D auxetic metamaterials is still in demand. 

In topology optimization problems, the finite element method (FEM) [37] has been employed dominantly 

to perform the numerical analysis. The FEM is also one factor to influence the effectiveness of the topology 

optimization for the design of auxetic microstructures, particularly the 3D scenario. This is because: (1) 

The finite element mesh is just an approximation of the original shape of the design domain, which lowers 

the numerical accuracy; (2) The lower-order (C0) continuity of the responses between the neighboring finite 

elements, even if the higher-order finite elements are utilized; (3) The lower efficiency to achieve a finite 

element mesh with the high quality. Recently, the isogeometric analysis (IGA) [38,39] has attracted much 

interests, due to its favorable features in numerical analysis, such as the consistency between the computer-

aided design (CAD) model and the computer-aided engineering (CAE) model, and the high-order continuity 

between different elements [40]. 

Recently, IGA has been applied to the topology optimization problems, such as the earlier work [41] that 

used the trimmed spline surface. Later, an isogeometric topology optimization approach was proposed in 

[42], where the Optimality Criteria (OC) algorithm was used to evolve the design variables. In [43], a phase 

field model was also combined with the IGA for topology optimization of continuum structures, where the 

exact representation of the geometry in IGA was suitable for the phase field model. Qian [44] constructed 

the B-spline space with the intrinsic filter for the topology optimization. After that, a parametric level set 

method [45] with IGA was studied, where the level set function was interpolated by NURBS basis functions 

[46], rather than the compactly supported radial basis functions. The LSM combined with IGA was also 

discussed in the topology optimization considering stress problems [47] and flexoelectric materials [48]. A 

global stress constraint was also studied in an IGA-based SIMP framework [49]. In [50], R-functions and 

an collocation scheme was employed to develop the IGA-based Moving Morphable Components method 

[51]. Moreover, the multi-resolution topology optimization problem was discussed in an IGA-based SIMP 

framework [52], and the similar topology optimization formulation was used to optimize the multi-material 
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structures [53]. As we can see, most of the existed works using IGA are only performed for the macro-scale 

topology optimization problems. Although the IGA-based shape optimization has already been studied in 

the applications of the smoothed petal auxetic structures [54], how to develop an IGA-based topology 

optimization framework for the design of 2D and 3D auxetic metamaterials is still a challenging topic in 

the research field of structural optimization. 

The current work is motivated to develop a more effective and efficient isogeometric topology optimization 

(ITO) method for the optimization of auxetic metamaterials, particularly 3D material microstructures. In 

the proposed ITO method, a DDF with the sufficient smoothness and continuity is firstly constructed to 

represent the evolving of the structural topology, where the Shepard function is employed to enhance the 

overall smoothness of the nodal densities at the control points and the NURBS basis functions control the 

continuity of the DDF. Later, an IGA-based EBHM is numerically implemented to evaluate material 

effective properties, with the imposing of the periodic boundary formulation on material microstructure. 

Finally, an ITO formulation for both 2D and 3D auxetic metamaterials is developed using the DDF, and a 

combination of the homogenized elastic tensor is expressed as the objective function. Hence, the current 

topology optimization formulation aims to optimize the densities of the DDF with desired smoothness and 

continuity to guarantee 2D and 3D material microstructures with expected auxetic behavior, rather than 

finding spatial arrangements of finite elements, as done in many previous works. 
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2 NURBS-based IGA 

In IGA [38,39], a unified mathematical form is developed using the same NURBS basis functions for the 

CAD and CAE models to keep the consistency of them. 

2.1 NURBS 

An example of a square modelled by NURBS is shown in Fig. 1. The NURBS basis functions are linearly 

combined with a series of control points plotted with the red color to construct the geometrical model shown 

in Fig. 1 (b), and the mathematical form of the NURBS surface 𝐒(𝜉, 𝜂) is given as: 

𝐒(𝜉, 𝜂) =∑∑𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐏𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (1) 

where 𝑛 and 𝑚 are the numbers of control points in two parametric directions, and 𝜉 and 𝜂 denote the 

corresponding parametric directions. 𝑝 and 𝑞 are the polynomial orders. The detailed information for the 

square is listed below Fig. 1. 𝐏𝑖,𝑗 correspond to the (𝑖, 𝑗)𝑡ℎ control point. It should be noted that control 

points are not necessarily on the structural design domain. 𝑅 are the bivariate NURBS basis functions, and 

which are constructed by the B-spline basis functions, as: 

𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝜔𝑖𝑗
∑ ∑ 𝑁�̂�,𝑝(𝜉)𝑀�̂�,𝑞(𝜂)𝜔�̂��̂�

𝑚
�̂�=1

𝑛
�̂�=1

 (2) 

where 𝜔𝑖𝑗 is the positive weight for the (𝑖, 𝑗)𝑡ℎ control point 𝐏𝑖,𝑗. 𝑁𝑖,𝑝 and 𝑀𝑗,𝑞 are the univariate B-

spline basis functions in two parametric directions, respectively. The B-spline basis function is defined by 

the Cox-de-Boor formula [55], and the recursive formula in 𝜉 direction with a non-decreasing knot vector 

Ξ = {𝜉1, 𝜉2, ⋯ , 𝜉𝑛+𝑝+1} is defined as: 

{
 

 𝑁𝑖,0(𝜉) = {
1 𝑖𝑓 𝜉𝑖 ≤ 𝜉𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                                         𝑝 = 0

𝑁𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖,𝑝−1(𝜉) +
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉), 𝑝 ≥ 1

 (3) 

It is noted that the fractions with the form 0/0 in Eq. (3) are defined as zero. Similarly, the basis functions 

𝑀𝑗,𝑞 in the 𝜂 direction are also defined by Eq. (3) with the knot vector. The NURBS basis functions of 

the square in two parametric directions are respectively displayed in Fig. 1 (d) and (e). The bivariate basis 

functions are also plotted in Fig. 1 (f). we can easily see that the NURBS basis functions are featured with 

several important properties: (1) Nonnegativity: 𝑁𝑖,𝑝(𝜉) ≥ 0; (2) Local support: the support of each basis 
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function 𝑁𝑖,𝑝 is contained in the interval [𝜉𝑖, 𝜉𝑖+𝑝+1]; (3) Partition of unity: for an arbitrary knot span 

[𝜉𝑖 , 𝜉𝑖+1], ∀𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1], ∑ 𝑁𝑗,𝑝(𝜉)
𝑖
𝑗=𝑖−𝑝 = 1; (4) Continuity: The continuity between knot spans is equal 

to 𝐶𝑝−𝑘 where 𝑘 is the multiplicity of the knots [38,39]. 

As we can see, the CAD model with a series of control points shown in Fig. 1 (b) and the CAE model with 

an array of discretized elements displayed in Fig. 1 (c) are consistent. The final integrated form is illustrated 

in Fig. 1 (g). We should note that the current work just provides a simple illustration of the square. Even if 

the curved structures are considered, the corresponding CAD and CAE models can be still kept in a unified 

form, and the IGA mesh is consistent with the structural domain. By virtue of the important properties of 

NURBS basis functions, NURBS can be featured with the strong convex hull property, differentiability, 

local modification and variation diminishing property [38,39]. 

 

Fig. 1. NURBS-based IGA for a square: Ξ = {0,0,0,0.1429,⋯ ,0.8517,1,1,1}, ℋ =

{0,0,0,0.1429,⋯ ,0.8517,1,1,1}; 𝑛 = 𝑚 = 9; 𝑝 = 𝑞 = 2. 

2.2 Numerical discretization in the IGA 

The NURBS basis functions are firstly applied to parametrize the structural domain, and then construct the 

space for structural responses. As far as the latter, the key principle is that the continuous solution space is 

approximately defined by a linear combination of all NURBS basis functions with the nodal responses on 

control points. The mathematical formula of the space keeps the same as the geometrical model in Eq. (1), 

while control coefficients correspond to the structural responses on control points, expressed as: 

𝐱(𝜉, 𝜂) =∑∑𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐱𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (4) 
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where 𝐱 is the field of structural responses in design domain, and 𝐱𝑖,𝑗 is the structural response on the 

control point (𝑖, 𝑗)𝑡ℎ. 

Considering the linearly elastic structures in IGA, the system stiffness matrix is obtained by assembling the 

element stiffness matrix which is calculated by the Gauss quadrature method [38,39], given as: 

𝐊𝑒 =∑∑{𝐁𝑇(𝜉𝑖, 𝜂𝑗)𝐃𝐁(𝜉𝑖, 𝜂𝑗)|𝑱1(𝜉𝑖, 𝜂𝑗)||𝑱2(𝜉𝑖, 𝜂𝑗)|𝜔𝑖𝜔𝑗}

3

𝑗=1

3

𝑖=1

 (5) 

where 𝐁 is the strain-displacement matrix calculated by the partial derivatives of NURBS basis functions 

with respect to parametric coordinates. In the iso-parametric formulation, two mappings have to be defined: 

(1) 𝐗: Ω̂𝑒 → Ω𝑒 denotes the parametric space mapping into the physical space; (2) 𝐘: Ω̃𝑒  → Ω̂𝑒 maps the 

bi-unit parent element into the parametric element, as shown in Fig. 2. 𝑱1 and 𝑱2 are the Jacobi matrices 

of two mappings, respectively. All Gauss quadrature points in the IGA mesh and 3 × 3 Gauss quadrature 

points in an IGA element are shown in Fig. 2. (𝜉𝑖, 𝜂𝑗) is the parametric coordinate of the Gauss quadrature 

point, and 𝜔𝑖 𝑎𝑛𝑑 𝜔𝑗 are the corresponding quadrature weights. 

 
Fig. 2. IGA mesh with Gauss quadrature points 

In a conclusion, NURBS basis functions are firstly applied to parametrize the structural domain, and then 

discretize it into a series of IGA elements, as well as serving as the basis functions to construct the solution 

space. Hence, the NURBS basis functions unify geometry construction, spatial discretization and numerical 

analysis into a single framework. 

3 IGA-based EBHM 

The principle of the homogenization is that the macroscopic effective properties of the bulk material are 

determined by using the information from the microstructure [21]. There are two basic requirements to be 

maintained in the homogenization: (1) the scales of the material microstructure are much smaller than that 
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of the bulk material, and (2) material microstructure needs to be periodically distributed in the bulk material. 

An example of the bulk material with only a kind of material microstructure is shown in Fig. 3, where the 

microstructure is described in the coordinate system 𝐲. 

 
Fig. 3. The bulk material composed of a kind of material microstructure 

Considering the linear elasticity, the displacement field 𝐮𝜖 at the bulk material can be characterized by the 

asymptotic expansion theory, expressed as: 

𝐮𝜖(𝐱) = 𝐮0(𝐱, 𝐲) + 𝜖𝐮1(𝐱, 𝐲) + 𝜖
2𝐮2(𝐱, 𝐲) + ⋯ (6) 

where 𝜖 is the aspect ratio between the scales of the microstructure and the bulk material, which is far less 

than 1. For numerical simplicity, only the first-order variation term with respect to the parameter expansion 

𝜖 is considered. The effective elastic tensor of the bulk material 𝐷𝑖𝑗𝑘𝑙
𝐻  can be computed as: 

𝐷𝑖𝑗𝑘𝑙
𝐻 =

1

|Ω|
∫ (휀𝑝𝑞

0(𝑖𝑗)
− 휀𝑝𝑞(𝑢

𝑖𝑗))𝐷𝑝𝑞𝑟𝑠 (휀𝑟𝑠
0(𝑘𝑙) − 휀𝑟𝑠(𝑢

𝑘𝑙))
Ω

𝑑Ω (7) 

where |Ω| is the area (2D) or volume (3D) of the microstructure, and 𝐷𝑝𝑞𝑟𝑠 is the locally varying elastic 

property. 휀𝑝𝑞
0(𝑖𝑗)

 is the linearly independent unit test strain field, containing three components in 2D and six 

in 3D. 휀𝑝𝑞(𝑢
𝑖𝑗) denotes the unknown strain field in the microstructure, which is solved by the following 

linear elasticity equilibrium equation with y-periodic boundary conditions (PBCs): 

∫휀𝑝𝑞(𝑢
𝑖𝑗)𝐷𝑝𝑞𝑟𝑠휀𝑟𝑠(𝛿𝑢

𝑖𝑗)
Ω

𝑑Ω = ∫휀𝑝𝑞
0(𝑖𝑗)

𝐷𝑝𝑞𝑟𝑠휀𝑟𝑠(𝛿𝑢
𝑖𝑗)

Ω

𝑑Ω,   ∀𝛿𝑢 ∈ 𝐻𝑝𝑒𝑟(Ω,ℝ
𝑑)  (8) 

where 𝛿𝑢 is the virtual displacement in the microstructure belonging to the admissible displacement space 

𝐻𝑝𝑒𝑟 with y-periodicity, and 𝑑 denotes the dimension of material microstructure. 

The homogenization is numerically performed by discretizing and solving Eq. (8) using the finite element 

method (FEM), namely numerical homogenization [56], and the utmost importance is the imposing of the 

PBCs on the microstructure. As an alternative method, the EBHM with a simplified periodic boundary 
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formulation [22,32,57] is developed. Here, the numerical analysis of material microstructure is performed 

by IGA, with the imposing of the periodic boundary formulation in the EBHM. In IGA, the displacement 

field in material microstructure is approximately expressed by a combination of the NURBS basis functions 

with the displacements at control points: 

𝐮 =∑∑𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐮𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (9) 

where 𝐮𝑖,𝑗 denote the displacements of the (𝑖, 𝑗)𝑡ℎ control point. As we can see, NURBS basis functions 

are linearly combined with nodal displacements to approximate the displacement field in the microstructure. 

In the application of the EBHM to evaluate material effective properties, the displacement field in material 

microstructure needs to satisfy the PBCs, and a general form is expressed as: 

𝐮𝑘
+ − 𝐮𝑘

− = 휀(𝐮0)∆𝑘 (10) 

where 𝑘 denote the normal direction of the structural boundary. 𝐮𝑘
+ indicate the displacements of points 

at the structural boundary with the normal direction 𝑘, and the normal direction is in the positive direction 

of the coordinate axis. 𝐮𝑘
− correspond to the displacements of points at the opposite structural boundary. 

∆𝑘 is the scale of the material microstructure along the direction of 𝑘. The expressions of the boundary 

constraint equations in PBCs in detail can refer to [32] for 2D and [57] for 3D. 

4 Isogeometric topology optimization (ITO) 

As already pointed out in Section 2, the physical coordinates of control points act as control coefficients of 

Eq. (1) in parametrizing of the structural geometry. If each control point is assigned to a nodal density, the 

NURBS response will correspond to a field of density in the structural domain, namely density distribution 

function (DDF). The topology optimization formulation to achieve auxetic metamaterials can be developed 

using the DDF, where IGA is applied to solve structural responses in material microstructure. It is important 

to notice that NURBS basis functions bridge the geometrical model, numerical analysis model, DDF and 

topology optimization formulation. 

4.1 Density distribution function (DDF) 

Before developing the DDF, the definition of nodal densities assigned to control points needs to satisfy two 

basic conditions [58–61]: (1) non-negativity; and (2) the strict bounds ranging from 0 to 1. Meanwhile, the 

Shepard function is firstly used to improve the overall smoothness of nodal densities, so as to make sure 

the smoothness of the DDF. The corresponding mathematical model is given as: 
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𝒢(𝜌𝑖,𝑗) =∑∑𝜓(𝜌𝑖,𝑗)𝜌𝑖,𝑗

ℳ

𝑗=1

𝒩

𝑖=1

 (11) 

where 𝒢(𝜌𝑖,𝑗) is the smoothed nodal density assigned to the (𝑖, 𝑗)𝑡ℎ control point, and 𝜌𝑖,𝑗 is the initial 

nodal density. 𝒩 and ℳ are the numbers of nodal densities located at the local support area of the current 

nodal density in two parametric directions respectively, as shown in the sub area bounded by the blue circle 

in Fig. 4. Hence, the key idea of the current smoothing scheme for nodal densities is that each nodal density 

is equal to the mean value of all nodal densities in the local area of the current nodal density. 𝜓(𝜌𝑖,𝑗) is 

the Shepard function [62] of the (𝑖, 𝑗)𝑡ℎ nodal density, given as: 

𝜓(𝜌𝑖,𝑗) =
𝑤(𝜌𝑖,𝑗)

∑ ∑ 𝑤(𝜌�̂�,�̂�)
ℳ
�̂�=1

𝒩
�̂�=1

 (12) 

where 𝑤 is the weight function of the nodal density of the (𝑖, 𝑗)𝑡ℎ control point, and the weight function 

can be constructed by many functions, such as the inverse distance weighting function, exponential cubic 

spline, quartic spline functions and radial basis functions (RBFs) [60,61]. The compactly supported RBFs 

(CSRBFs) with the C4 continuity [63] are employed in this work due to the compactly supported, the high-

order continuity and the nonnegativity over the local domain, by: 

𝑤(𝑟) = (1 − 𝑟)+
6 (35𝑟2 + 18𝑟 + 3) (13) 

where 𝑟 = 𝑑 𝑑𝑚⁄ , and 𝑑 is the Euclidean distance between the current nodal density and the other nodal 

density in the support domain. 𝑑𝑚 is the radius of this domain shown in Fig. 4. It can be obtained that the 

smoothed nodal densities can still maintain the necessary conditions for a physically meaningful material 

density [58–61]. It is important to notice that the Shepard function to smooth the nodal densities is not just 

a processing procedure, and it will be also considered in the next topology optimization formulation. 

Assuming that the DDF in the structural domain is denoted by 𝒳, the DDF is constructed by the NURBS 

basis functions with a linear combination of the smoothed nodal densities, expressed as: 

𝒳(𝜉, 𝜂) =∑∑𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝒢(𝜌𝑖,𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 (14) 

It can be seen that Eq. (14) for the DDF has the same mathematical formula for NURBS in Eq. (1). The key 

difference is the physical meaning of control coefficients. The initial NURBS-based geometrical model for 

the domain has been converted into a representation of the DDF. Eq. (14) is the global form, which can be 

expanded as a local form depended on the local area of (𝜉, 𝜂) ∈ [𝜉𝑖 , 𝜉𝑖+1] × [𝜂𝑗, 𝜂𝑗+1], that 
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𝒳(𝜉, 𝜂) = ∑ ∑ 𝑅𝑒,𝑓
𝑝,𝑞(𝜉, 𝜂)𝒢(𝜌𝑒,𝑓)

𝑗

𝑓=𝑗−𝑞

𝑖

𝑒=𝑖−𝑝

 (15) 

By virtue of the properties of NURBS described in Section 2.1, the current developed DDF is also featured 

with the non-negativity and strict-bounds. Hence, the DDF can guarantee the strict physical meaning of the 

material density for structural domain in the next optimization formulation. The non-interpolant of NURBS 

has no influence on the DDF, originating from that control points are not necessarily located at the structural 

domain. Moreover, the variation diminishing property of NURBS can make sure the non-oscillatory of the 

DDF, even if the higher-order NURBS basis functions are used [38,39]. Hence, the DDF with several merits 

can be beneficial to the latter topology optimization. 

 

Fig. 4. Nodal densities assigned to control points 

4.2 ITO formulation for auxetic metamaterials 

The Poisson’s ratio of materials is equal to the aspect ratio of the transverse contraction strain to longitudinal 

extension strain in the direction of stretching force. Considering the material elastic tensor, Poisson’s ratios 

in two directions of 2D materials can be defined by 𝜐12 = 𝐷1122 𝐷1111⁄  and 𝜐21 = 𝐷1122 𝐷2222⁄ . In order 

to generate materials with the NPR property, several different objective functions are developed, such as 

the minimization of the weighted square difference between the expected elastic tensor and the evaluated 

elastic tensor [28–30,35], the minimization of the difference between the predicted NPR and its target [33], 

minimizing the combination of the elastic tensor [25,32] and so on [34]. 

Here, the objective function of the optimization of auxetic metamaterials is expressed by a combination of 

the homogenized elastic tensor. It is known that the occurrence of the auxetic behavior is highly related to 

the rotating effect of mechanisms in material microstructures [22,25]. As defined in Eq. (16), minimizing 

the term ∑ 𝐷�̂��̂��̂��̂�
𝐻𝑑

�̂�,�̂�=1,�̂�=�̂�  can guarantee the generation of the mechanism-type layouts, which is beneficial 

to facilitate microstructures with the auxetic behavior. Meanwhile, the term ∑ 𝐷�̂��̂��̂��̂�
𝐻𝑑

�̂�,�̂�=1,�̂�≠�̂�  can prevent 

mechanism-type topologies when its value is smaller than 0. In the defined optimization formulation, the 
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optimizer tends to maximize the second term ∑ 𝐷�̂��̂��̂��̂�
𝐻𝑑

�̂�,�̂�=1,�̂�=�̂�  and minimize the first term ∑ 𝐷�̂��̂��̂��̂�
𝐻𝑑

�̂�,�̂�=1,�̂�≠�̂� , 

simultaneously, so that the objective function can be gradually minimized and materials can be featured 

with the auxetic behavior in all directions. 

{
 
 
 
 

 
 
 
 𝐹𝑖𝑛𝑑: 𝝆 {[𝜌𝑖,𝑗]2D   [𝜌𝑖,𝑗,𝑘]3D}                                                                             

𝑀𝑖𝑛: 𝐽(𝐮,𝒳) = { ∑ 𝐷�̂��̂��̂��̂�
𝐻 (𝐮,𝒳)

𝑑

�̂�,�̂�=1,�̂�≠�̂� 

} − 𝛽 { ∑ 𝐷�̂��̂��̂��̂�
𝐻 (𝐮,𝒳)

𝑑

�̂�,�̂�=1,�̂�=�̂� 

}           

𝑆. 𝑡: 

{
 
 

 
 𝐺(𝒳) =

1

|Ω|
∫𝒳(𝝆)𝑣0
Ω

𝑑Ω − 𝑉0 ≤ 0                                                  

𝑎(𝐮, 𝛿𝐮) = 𝑙(𝛿𝐮), ∀𝛿𝐮 ∈ 𝐻𝑝𝑒𝑟(Ω,ℝ
𝑑)                                      

0 < 𝜌𝑚𝑖𝑛 ≤ 𝝆 ≤ 1, (𝑖 = 1,2,⋯ , 𝑛; 𝑗 = 1,2,⋯ ,𝑚; 𝑘 = 1,2,⋯ , 𝑙)

 

 (16) 

where 𝝆 denotes the nodal densities assigned to control points, working as the design variables. 𝐽 is the 

objective function. 𝛽 is a weighting parameter to denote the importance of the corresponding terms. 𝑑 is 

the spatial dimension of materials. 𝐺 is the volume constraint, in which 𝑉0 is the maximum value and 𝑣0 

is the volume fraction of the solid. 𝒳 is the DDF in Eq. (14). 𝐮 is the unknown displacement field in 

material microstructure, which have to satisfy the PBCs given in Eq. (10). 𝛿𝐮 is the virtual displacement 

field belonging to the admissible displacement space 𝐻𝑝𝑒𝑟 with y-periodicity, which is calculated by the 

linearly elastic equilibrium equation. 𝑎 and 𝑙 are the bilinear energy and linear load functions, as: 

{
 

 𝑎(𝐮, 𝛿𝐮) = ∫휀(𝐮)(𝒳(𝝆))
γ
𝐃𝟎𝜺(𝛿𝐮)

Ω

𝑑Ω

𝑙(𝛿𝐮) = ∫𝜺𝟎(𝒳(𝝆))
γ
𝐃𝟎𝜺(𝛿𝐮)

Ω

𝑑Ω          
 (17) 

It should be noted that the elastic tensor is assumed to be an exponential function with respect to the DDF, 

and γ is the penalization parameter. 𝐃𝟎 is the constitutive elastic tensor of the basic material. 

4.3 Design Sensitivity analysis 

In Eq. (16), the ITO formulation for auxetics are developed using the DDF, and which is expressed by the 

linear combination of the nodal densities and NURBS basis functions. Moreover, the nodal densities are 

design variables. Hence, we firstly derive the first-order derivative of the objective function with respect to 

the DDF before obtaining the sensitivity analysis with respect to the design variables, as: 

𝜕𝐽

𝜕𝒳
= { ∑

𝜕𝐷�̂��̂��̂��̂�
𝐻

𝜕𝒳

𝑑

�̂�,�̂�=1,�̂�≠�̂� 

} − 𝛽 { ∑
𝜕𝐷�̂��̂��̂��̂�

𝐻

𝜕𝒳

𝑑

�̂�,�̂�=1,�̂�=�̂� 

} (18) 
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As we can see, the core of the derivative of the objective function with respect to the DDF is located at the 

computation of the derivative of the homogenized elastic tensor 𝐷�̂��̂��̂��̂�
𝐻 . The derivations for the derivative of 

the homogenized stiffness tensor in detail can refer to [22,25,29], and the final form is given by: 

𝜕𝐷�̂��̂��̂��̂�
𝐻

𝜕𝒳
=

1

|Ω|
∫ (휀𝑝𝑞

0(�̂��̂�) − 휀𝑝𝑞(𝑢
�̂��̂�)) γ(𝒳(𝝆))

γ−1
𝐷𝑝𝑞𝑟𝑠
0 (휀𝑟𝑠

0(�̂��̂�)
− 휀𝑟𝑠(𝑢

�̂��̂�))
Ω

𝑑Ω (19) 

As pointed out in Section 4.1, the DDF is constructed by a linear combination of the NURBS basis functions 

with the smoothed nodal densities, and the smoothed nodal densities are obtained by the Shepard function 

to process nodal densities. The first-order derivatives of the DDF with respect to the nodal densities can be 

derived by: 

𝜕𝒳(𝜉, 𝜂)

𝜕𝜌𝑖,𝑗
=
𝜕𝒳(𝜉, 𝜂)

𝜕𝒢(𝜌𝑖,𝑗)

𝜕𝒢(𝜌𝑖,𝑗)

𝜕𝜌𝑖,𝑗
= 𝑅𝑖,𝑗

𝑝,𝑞(𝜉, 𝜂)𝜓(𝜌𝑖,𝑗) (20) 

where 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) is the NURBS basis function at the computational point (𝜉, 𝜂). 𝜓(𝜌𝑖,𝑗) is the value of 

the Shepard function at the control point (𝑖, 𝑗). It is important to note that the above computational point 

(𝜉, 𝜂) is different from the control point (𝑖, 𝑗). In Eq. (16), the computational points are Gauss quadrature 

points. According to the chain rule, the final form of the derivative of the homogenized elastic tensor with 

respect to the initial nodal densities can be computed by: 

𝜕𝐷�̂��̂��̂��̂�
𝐻

𝜕𝒳
=

1

|Ω|
∫ (휀𝑝𝑞

0(�̂��̂�) − 휀𝑝𝑞(𝑢
�̂��̂�)) γ(𝒳(𝝆))

γ−1
𝐷𝑝𝑞𝑟𝑠
0 (휀𝑟𝑠

0(�̂��̂�)
− 휀𝑟𝑠(𝑢

�̂��̂�))𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝜓(𝜌𝑖,𝑗)

Ω

𝑑Ω (21) 

Hence, the first-order derivative of the objective function 𝐽 with respect to design variables can be derived 

based on Eq. (21). Similarly, the derivatives of the volume constraint can be expressed by: 

𝜕𝐺

𝜕𝜌𝑖,𝑗
=

1

|Ω|
∫𝑅𝑖,𝑗

𝑝,𝑞(𝜉, 𝜂)𝜓(𝜌𝑖,𝑗)𝜐0
Ω

𝑑Ω (22) 

According to Eqs. (18), (21) and (22), the first-order derivatives of the objective and constraint functions 

are strongly dependent on the NURBS basis functions at Gauss quadrature points and Shepard function at 

control points. In the optimization, the NURBS basis functions and Shepard function keep unchanged, and 

they can be pre-stored. Hence, the sensitivity analysis can reduce the computational cost in the optimization. 

Meanwhile, it is noticed that the above derivations are developed for 2D materials, which can be directly 

extended to 3D scenario. 
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5 A relaxed OC method 

It is known that the OC method [64] has been widely employed in structural optimization problems [13] 

where a large number of design variables but only with a single resource constraint. Moreover, the objective 

and constraint functions need to satisfy certain monotonicity properties. However, the positive and negative 

sensitivities of the objective function with respect to the design variables can appear in the optimization of 

auxetic metamaterials considering the above formulation. In previous works [32], the damping factor has 

been eliminated, leading to a result that the volume fraction is inactive in the optimization process. Here, a 

relaxed OC method [65] is applied to update the design variables, and the corresponding update scheme is 

expressed as: 

𝜌𝑖,𝑗
(𝜗+1) =

{
  
 

  
 𝑚𝑎𝑥 {(𝜌𝑖,𝑗

(𝜗) −𝑚), 𝜌𝑚𝑖𝑛} , 𝑖𝑓 (𝛱𝑖,𝑗
(𝜗))

𝜍

𝜌𝑖,𝑗
(𝜗) ≤ 𝑚𝑎𝑥 {(𝜌𝑖,𝑗

(𝜗) −𝑚), 𝜌𝑚𝑖𝑛}

(𝛱𝑖,𝑗
(𝜗))

𝜍

𝜌𝑖,𝑗
(𝜗), 𝑖𝑓 {

𝑚𝑎𝑥 {(𝜌𝑖,𝑗
(𝜗)
−𝑚), 𝜌𝑚𝑖𝑛} < (𝛱𝑖,𝑗

(𝜗)
)
𝜍

𝜌𝑖,𝑗
(𝜗)

< 𝑚𝑖𝑛 {(𝜌𝑖,𝑗
(𝜗) +𝑚), 1}

}

𝑚𝑖𝑛 {(𝜌𝑖,𝑗
(𝜗) +𝑚), 1} , 𝑖𝑓 𝑚𝑖𝑛 {(𝜌𝑖,𝑗

(𝜗) +𝑚), 1} ≤ (𝛱𝑖,𝑗
(𝜗))

𝜍

𝜌𝑖,𝑗
(𝜗)

}
  
 

  
 

 (23) 

where 𝑚 and 𝜍 are the move limit and the damping factor, respectively. The Lagrange multiplier 𝛬(𝜗) at 

the 𝜗𝑡ℎ iteration step can be updated by a bi-sectioning algorithm [13]. The updating factor 𝛱𝑖,𝑗
(𝜗)

 for the 

(𝑖, 𝑗)𝑡ℎ design variable at the 𝜗𝑡ℎ iteration step can be defined as: 

𝛱𝑖,𝑗
(𝜗) =

1

𝛬(𝜗) + 𝜇(𝜗)
(𝜇(𝜗) −

𝜕𝐽

𝜕𝜌𝑖,𝑗
(𝜗)

𝑚𝑎𝑥 (𝛥,
𝜕𝐺

𝜕𝜌𝑖,𝑗
(𝜗)
)⁄ ) (24) 

where 𝛥 is a small positive constant to avoid the fraction with a form of . The updating factor 𝛱𝑖,𝑗
(𝜗)

 

can be positive in the optimization, by choosing an appropriate value of the shift parameter 𝜇(𝜗), namely: 

𝜇(𝜗) ≥ 𝑚𝑎𝑥 {
𝜕𝐽

𝜕𝜌𝑖,𝑗
(𝜗)

𝑚𝑎𝑥 (𝛥,
𝜕𝐺

𝜕𝜌𝑖,𝑗
(𝜗)
)⁄ } (𝑖 = 1,2,⋯ , 𝑛; 𝑗 = 1,2,⋯ ,𝑚) (25) 

A systematic flowchart of the ITO formulation for auxetic metamaterials is shown in Fig. 5, and the detailed 

steps are listed as follows: 

Step 01: Input initial parameters: structural sizes, NURBS basis functions; knot vector and so on; 

Step 02: Construct geometrical model (CAD) of the structure by NURBS; 

Step 03: Construct numerical analysis model (CAE) of the structure, namely IGA mesh; 

Step 04: Construct the initial DDF by NURBS basis functions and Shepard function; 

Step 05: Impose PBCs on the microstructure and apply IGA to solve the displacement field; 
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Step 06: IGA-based EBHM to evaluate the homogenized elastic tensor; 

Step 07: Calculate the objective function and volume fraction; 

Step 08: Calculate the derivatives of the objective and constraint functions; 

Step 09: Update the design variables and DDF by the relaxed OC method; 

Step 10: Check convergence; if not, go back to Step 05; if yes, go to Step 11; 

Step 11: End and Output auxetic metamaterials. 

 
Fig. 5. The flowchart of the ITO formulation for auxetic metamaterials 

6. Numerical Examples 

In this section, several numerical examples are provided to demonstrate the effectiveness and efficiency of 

the ITO method for auxetic metamaterials. 2D auxetic microstructures are firstly studied to show the basic 

features of the developed ITO method. Secondly, the ITO method is applied to discuss the optimization of 

3D material microstructures with the auxetic behavior to demonstrate its superior effectiveness. Finally, the 

auxetic behavior of the topologically-optimized 3D material microstructures are validated in the software 

ANSYS and the 3D auxetic metamaterials are also prototyped by using the 3D printing technique. Only the 

linearly elastic materials are considered, and 2D microstructures will be discretized by the plane stress 

elements. In all examples, the Young’s moduli 𝐸0 and the Poisson’s ratio 𝜐0 for the basis material are 

defined as 1 and 0.3, respectively. In the numerical analysis, 3×3 (2D) or 3×3×3 (3D) Gauss quadrature 

points are chosen in an IGA element. For numerical simplicity, the dimensions of material microstructures 

in all directions are set to be 1. The penalty parameter in Section 4.2 is set as 3. The constant parameter 𝛽 

in all numerical examples is set to be 0.03, expect the specific definition. The terminal criterion is that the 
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𝐿∞ norm of the difference of the nodal densities between two consecutive iterations is less than 1% or the 

maximum 100 iteration steps are reached. 

6.1 2D auxetic metamaterials 

Considering 2D materials, the structural design domain is a square with 1×1, shown in Fig. 1 (a). Here, 

NURBS surface is applied to parametrize the design domain, where the quadratic NURBS basis functions 

are chosen and the knot vectors are set as: Ξ = ℋ = {0,0,0,0.01,⋯ ,0.99,1,1,1}. The corresponding IGA 

mesh for the design domain has 100×100 elements, and 101×101 (10202) control points are contained in 

the NURBS surface. The maximum material consumption 𝑉0 is defined as 30%. As already described in 

Section 4, the developed ITO method aims to optimize the densities in the DDF to represent the evolving 

of the structural topology, until auxetic microstructures can be achieved. As given in Eq. (14), the DDF is 

constructed by the NURBS, which can be viewed as a density response surface in spatial for nodal densities. 

The initial design of material microstructure is displayed in Fig. 6, including the nodal densities at control 

points in Fig. 6 (a), the densities at Gauss quadrature points in Fig. 6 (b) and the density response surface 

of the DDF in Fig. 6 (c). It should be noted that the height direction denotes the density value in Fig. 6. It 

can be easily found that the initial design of material microstructure is homogenously occupied with some 

holes to avoid the uniformly distributed sensitivity field, owing to the imposing of the periodic boundary 

conditions on material microstructure. 

 
Fig. 6. The initial design of material microstructure 

As shown in Fig. 7, the optimized designs of material microstructure are provided, including the optimized 

densities at Gauss quadrature points in Fig. 7 (a) and the optimized density response surface of the DDF in 
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Fig. 7 (b). It can be easily found that the optimized densities at Gauss quadrature points and the optimized 

density response are both featured with the sufficient smoothness and continuity. The main cause is that the 

Shepard function and NURBS basis functions are considered in the construction of the DDF. The former 

can guarantee the smoothness of the DDF by improving the overall smoothness of nodal densities, and the 

latter ensure its continuity. In order to show the details of the optimization of the DDF, we provide a series 

of intermediate density response surfaces of the DDF during the process. As shown in Fig. 6 (c) and Fig. 8 

(a), the initial density response surface has a break from 0 to 1. During the optimization, the smoothness is 

gradually improved with the consideration of the Shepard function in the construction of the DDF, explicitly 

represented by the transition part of the surface from 0 to 1. Additionally, the optimized densities of the 

DDF in material microstructure are distributed nearly 0 and 1, owing to the penalty parameter, and the key 

principle of the penalty mechanism in topology optimization can refer to [16]. 

 

Fig. 7. The optimized designs of material microstructure 

 
Fig. 8. Intermediate density response surfaces of the DDF 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18 

As shown in Fig. 8, the evolving of the DDF represent the topological changes during the optimization. In 

order to obtain an appropriate configuration of material microstructure using the DDF, a heuristic scheme 

is introduced to define the structure topology. The mathematical model is defined in Eq. (26), where 𝒳𝑐 

is a constant, expressed as: 

{

0 ≤ 𝒳(𝜉, 𝜂) < 𝒳𝑐 𝑣𝑜𝑖𝑑

𝒳(𝜉, 𝜂) = 𝒳𝑐 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝒳𝑐 < 𝒳(𝜉, 𝜂) ≤ 1 𝑠𝑜𝑙𝑖𝑑

 (26) 

As we can see, the structural boundaries of material microstructure are expressed by the iso-contour of the 

DDF. The DDF with the densities higher than 𝒳𝑐 describes solids in the structural design domain, and the 

densities lower than 𝒳𝑐 is used to present voids. We can easily find that the current scheme to define the 

structural topology using the DDF is analogous to the implicit boundary representation model in the LSM 

[18–20]. However, it is important to notice that the proposed ITO method for auxetic metamaterials is not 

developed in a framework of the Hamilton-Jacobi partial differential equation to track the advancing of the 

structural boundary. Eq. (26) can be just viewed as a post-processing mechanism to define the topology 

using the DDF, and the core of the developed ITO method for auxetic metamaterials is the optimization of 

the DDF to represent the topological changes. 

In the work, the constant 𝒳𝑐 is set to be 0.5. According to Fig. 7, we can see that the 0.5 is a relatively 

suitable value to define the topology, due to a phenomenon that most densities are distributed nearly 0 or 1 

([0, 0.2] and [0.8, 1]). The corresponding numerical results of material microstructure are listed in Table 

1, including the 2D view of densities at Gauss quadrature points but with only higher than 0.5, the optimized 

topology, the homogenized elastic tensor 𝐃𝐻, the corresponding negative Poisson’s ratio 𝜐 = −0.61 and 

the volume fraction of the optimized topology 𝑉𝑓 = 29.88%. The volume fraction of the final topology is 

mostly close to the prescribed volume fraction 30%, which shows the appropriateness of the threshold value 

0.5 to define the topology using the DDF. The topologically-optimized design of material microstructure 

with the negative Poisson ratio -0.61 also shows the effectiveness of the current ITO method on seeking for 

2D auxetic metamaterials. As given in Fig. 9, two rotating mechanisms related to the generation of the 

auxetic behavior in material microstructures are given, which demonstrates the rationality of the definition 

of the objective function with the consideration of the term ∑ 𝐷�̂��̂��̂��̂�
𝐻𝑑

�̂�,�̂�=1,�̂�=�̂� . 

Additionally, it can be easily found that the optimized topology is featured with the smooth boundaries and 

clear interfaces between solids and voids owing to the DDF with the sufficient smoothness and continuity, 

which can be beneficial to lower the difficulties for the latter manufacturing. Although the ITO method for 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 

auxetic metamaterials is developed on the basis of the conception of material densities, the key intention of 

the ITO formulation is to seek for the optimal DDF with the auxetic characteristic. Finally, the convergent 

curves of the objective function and volume fraction of the DDF are shown in Fig. 10, with the intermediate 

topologies of 2D auxetic microstructure. It can be easily found that the iterative histories are very smooth, 

and the optimization can quickly arrive at the prescribed convergent condition within 38 steps, which shows 

the perfect stability of the proposed ITO method on the optimization of 2D auxetics. 

Table 1. The optimized 2D auxetic metamaterial 

2D view of densities Topology 𝐃𝐻 𝜐 𝑉𝑓 

  

[
0.088 −0.054 0
−0.054 0.088 0
0 0 0.0027

] −0.61 29.88% 

 
Fig. 9. Rotating mechanisms in the optimized 2D auxetic metamaterial 

 
Fig. 10. Iterative curves of 2D auxetic metamaterial 

6.2 Discussions of the weight parameter 

In this section, we study the effect of the weight parameter 𝛽 in the objective function on the optimization 

of auxetic metamaterials. The weight parameter 𝛽 will be discussed with 15 cases, namely 0.03 (Section 
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6.1), 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.0001, 0.0005, 0.02. The related design 

parameters are consistent with Section 6.1, like the NURBS details, the maximum material consumption, 

the initial design and etc. 

As shown in Fig. 11, the corresponding numerical results of the former twelve cases from 0.03 to 0.30 are 

firstly provided. It can be found that the values of the Poisson’s ratio in twelve cases are increased with the 

increasing of the weight parameter. The corresponding auxetic microstructures in the twelve cases are 

shown in Fig. 12. The auxetic behavior is becoming smaller and smaller with the increasing of the weight 

parameter. When the weight parameter is equal to 0.3, the optimized material microstructure is not featured 

with the negative Poisson’s ratio. Meanwhile, the first case with the weight parameter 0.03 can obtain 

auxetic microstructure with the minimum negative Poisson’s ratio -0.614 in the similar iterative steps when 

compared to other cases. 

 

Fig. 11. Numerical results of the former twelve cases 

 
Fig. 12. Auxetic microstructures in twelve cases 
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Three numerical cases with the weight parameter equal to 0.02, 0.005 and 0.0001, respectively, are provided 

in Table 2. If the weight parameter is decreased, the optimizer intends to minimize the negative Poisson’s 

ratio in one direction. As listed in the third row of Table 2, namely 𝛽 = 0.0005, the 𝜐21 is smaller than 

the 𝜐12, and the auxetic microstructure is the orthotropic. However, if the weight parameter is very small, 

equal to 0.0001, the final auxetic metamaterial is the anisotropic. The auxetic behavior of the design results 

from the chiral deformation mechanism. The above phenomenon mainly stems from a fact that the weight 

parameter controls the influence degree of the term ∑ 𝐷�̂��̂��̂��̂�
𝐻𝑑

�̂�,�̂�=1,�̂�=�̂�  in the objective function. Additionally, 

as shown in the last column of Table 2, we can confirm that an increasing number of iterations are required 

to arrive at the convergent criterion in the optimization, with the decreasing of the weight parameter. Hence, 

as far as finding auxetic microstructures with the identical negative Poisson’s ratios in two directions, the 

weight parameter 0.03 is a relatively appropriate value for the ITO method. It should be noted that the 

discussion for the weight parameter is just suitable for the current ITO method. 

Table 2. Numerical results of three cases. 

𝛽 Topology Homogenized elastic tensor 𝐃𝐻 𝜐 Iterations 

0.02 

 

[
0.0762 −0.038 0
−0.038 0.0702 0
0 0 0.0008

] {
𝜐12 = −0.498
𝜐21 = −0.541

 117 

0.0005 

 

[
0.1204 −0.053 0
−0.053 0.0392 0
0 0 0.0011

] {
𝜐12 = −0.442
𝜐21 = −1.352

 101 

0.0001 

 

[
0.084 −0.057 0.013
−0.057 0.085 −0.013
0.013 −0.013 0.0028

] {
𝜐12 = −0.678
𝜐21 = −0.671

 157 

6.3 3D auxetic metamaterials 

In this section, the optimization of 3D auxetic metamaterials is studied to present the superior effectiveness 

of the developed ITO method. As far as 3D material microstructure, the design domain is a cubic with 1×

1×1, as shown in Fig. 13 (a). The structural design domain is parameterized by the NURBS solid, where 

the quadratic NURBS basis functions are used and the knot vectors in three parametric directions are set as 

Ξ = ℋ = 𝒵 = {0,0,0,0.417,⋯ ,0.9583,1,1,1}. The NURBS solid and the IGA mesh for the design domain 

are displayed in Fig. 13 (b) and (c), respectively. The IGA mesh has 24×24×24 elements, and 26×26×26 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 

control points are included in the NURBS solid. The total number of design variables is equal to 26×26×

26. An IGA element contains 3×3×3 Gauss quadrature points, and the total number of Gauss quadrature 

points is equal to 72×72×72. In this section, four different initial designs of 3D material microstructure are 

defined and four causes will be studied. For 3D material microstructure, it is difficult to plot the 4D density 

response surface. We only display the correponding iso-contours of four initial material microstructures, as 

given in Fig. 14, where 𝒳𝑐 is still set to be 0.5. 

 
Fig. 13. 3D material microstructure 

 
Fig. 14. Four initial designs for 3D material microstructure 

The initial design 1 shown in Fig. 14 (a) is considered in Case 1, where the maximum material consumption 

is set to be 30%. As clearly displayed in Fig. 15 (a), the optimized topology of 3D material microstructure 

with the auxetic behavior is provided. In order to observe the interior configuration of the optimized design, 

the middle cross-sectional view of the 3D auxetic microstructure is presented in Fig. 15 (b). Meanwhile, a 

3D auxetic metamaterial with 3×3×3 repetitive microstructures is shown in Fig. 15 (c). It can be easily 

seen that the optimized 3D auxetic microstructure is characterized with the smooth boundaries and distinct 

interfaces between the solids and voids, originating from the constructed DDF with the desired smoothness 

and continuity. Meanwhile, it can be easily observed that the 3D material microstructure shown in Fig. 15 

(a) can exhibit the counterintuitive dilatational behavior, when a load is imposed on one direction of this 

structure. As listed in Table 3, the homogenized elastic tensor of the 3D material microstructure in Fig. 15 

(a) is given and the corresponding Poisson’s ratio is equal to -0.047. Hence, the auxetic behavior of the 3D 

microstructure 1 can be confirmed from not only the qualitative analysis, but also quantitative calculation. 
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Fig. 15. 3D auxetic microstructure No. 1 

 
Fig. 16. 3D auxetic microstructure No. 2 

 
Fig. 17. 3D auxetic microstructure No. 3 

 
Fig. 18. 3D auxetic microstructure No. 4 
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Similarly, Case 2 is performed with the maximum volume fraction 30%, starting from the initial design 2, 

shown in Fig. 14 (b). The initial design 3, illustrated in Fig. 14 (c), is considered in Case 3 also with the 

maximum material consumption 30%, and Case 4 optimizes the 3D microstructure starting from the initial 

design 4 displayed in Fig. 14 (d), but with the maximum volume fraction 24%. The final optimized results 

in Cases 2, 3 and 4 are displayed in Fig. 16, 17 and 18, respectively, also including the optimized topology, 

the cross-sectional view of the topology to illustrate the interior information in detail and 3×3×3 repetitive 

distributed auxetic microstructures. The homogenized elastic tensors of 3D auxetic microstructures 2, 3 and 

4 are listed in Table 3, where the corresponding Poisson’s ratio are also computed, namely -0.082, -0.12, -

0.11. Thereby, the capability of the ITO method to seek for 3D auxetic metamaterials can be presented. 

Table 3. The homogenized elastic tensors of four 3D auxetic microstructures 

3D auxetic microstructure 1 3D auxetic microstructure 2 

[
 
 
 
 
 
0.045 −0.0021 −0.0021 0 0 0
−0.0021 0.045 −0.0122 0 0 0
−0.0021 −0.0021 0.045 0 0 0

0 0 0 0.0031 0 0
0 0 0 0 0.0031 0
0 0 0 0 0 0.0031]

 
 
 
 
 

 

𝜐 = −0.047 

[
 
 
 
 
 
0.0788 −0.0065 −0.0065 0 0 0
−0.0065 0.0788 −0.0065 0 0 0
−0.0065 −0.0065 0.0788 0 0 0

0 0 0 0.0052 0 0
0 0 0 0 0.0052 0
0 0 0 0 0 0.0052]

 
 
 
 
 

 

𝜐 = −0.082 

3D auxetic microstructure 3 3D auxetic microstructure 4 

[
 
 
 
 
 
0.0789 −0.0094 −0.0094 0 0 0
−0.0094 0.0789 −0.0094 0 0 0
−0.0094 −0.0094 0.0789 0 0 0

0 0 0 0.006 0 0
0 0 0 0 0.006 0
0 0 0 0 0 0.006]

 
 
 
 
 

 

𝜐 = −0.12 

[
 
 
 
 
 
0.0331 −0.0038 −0.0038 0 0 0
−0.0038 0.0331 −0.0038 0 0 0
−0.0038 −0.0038 0.0331 0 0 0

0 0 0 0.0024 0 0
0 0 0 0 0.0024 0
0 0 0 0 0 0.0024]

 
 
 
 
 

 

𝜐 = −0.11 

As shown Fig. 19, the 2D views of the topologically-optimized 3D auxetic microstructures are provided, 

which are analogous to the reported 2D auxetic microstructures in previous works [29,32]. However, it is 

not straight to extend the optimization for 2D auxetic metamaterials to 3D scenario. The convergent curves 

of the objective function, the volume fraction of the DDF and the topological change between two adjacent 

iterations in Cases 1 and 2 are displayed in Fig. 20. It can be easily found that the iterative histories in two 

cases are very smooth and quickly arrive at the prescribed convergent criterion, only 34 steps in Case 1 and 

51 steps in Case 2. The intermediate topologies of the 3D auxetic microstructures in Case 1 and 2 are also 

displayed in Fig. 21 and 22, respectively. Hence, the effectiveness and efficiency of the ITO method on the 

optimization of 3D auxetic metamaterials can be demonstrated. Meanwhile, the pre-defined geometrical 

symmetries are not considered in the optimization to allow more freedoms to seek for the novel 3D auxetic 

microstructures. As shown in Fig. 15-18, a series of interesting 3D auxetic microstructures can be achieved 

in the current work. However, the negative Poisson’s ratios of the optimized 3D auxetic microstructures 

are larger than the reported designs [28,34,35]. The negative Poisson’s ratio of the auxetic microstructure 
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strongly depends on the objective function. In Eq. (16), the objective function is expressed by a combination 

of the homogenized elastic tensor, which can only provide a reasonable search direction for the optimizer 

to find auxetic metamaterials. It is difficult to arrive at the expected negative Poisson’s ratio. It should be 

noted that this phenomenon has a negligible influence on the latter applications of the ITO method, owing 

to the fact that the proposed ITO method can achieve topological design of auxetic metamaterials in a more 

effective and efficient manner. Based on the skeleton of the current topologically optimized designs (Fig. 

15-18), the auxetic metamaterials with any given negative Poisson’s ratio can be achieved by further using 

shape optimization, similar to [34]. 

 

Fig. 19. The 2D-views for four auxetic microstructures 

 

Fig. 20. Convergent histories of Cases 1 and 2 

According to the discussion about the weight parameter in Section 6.2, two different cases with 𝛽 = 0.02 

and 0.0001 for 3D auxetic metamaterials are discussed, respectively. The optimized 3D auxetic designs in 

two cases are displayed in Fig. 23, including the optimized topologies and the cross-sectional views of the 

topologies. It can be easily seen that the 3D auxetic microstructure 5 in Fig. 23 (a) is similar to the reported 

microstructure in [35]. The 3D auxetic microstructure No. 6 with the anisotropic is a new finding with the 

chiral deformation mechanism to form the auxetic behavior. The homogenized elastic tensors of two 3D 

auxetic microstructures are listed in Table 4, and the minimum Poisson’s ratios of two cases are equal to -

0.257 and -0.188, respectively. 
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Fig. 21. Intermediate results of Case 1 

 

Fig. 22. Intermediate results of Case 2 

 
Fig. 23. 3D auxetic microstructures No. 5 and 6 
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Table 4. Homogenized elastic tensors of 3D auxetic microstructures No. 5 and 6. 

3D auxetic microstructure 5 3D auxetic microstructure 6 

[
 
 
 
 
 
0.0483 −0.0124 −0.0049 0 0 0
−0.0124 0.0633 −0.0122 0 0 0
−0.0049 −0.0122 0.0505 0 0 0

0 0 0 0.0047 0 0
0 0 0 0 0.0048 0
0 0 0 0 0 0.0047]

 
 
 
 
 

 

𝜐𝑚𝑖𝑛 = −0.257 

[
 
 
 
 
 
0.0457 −0.0028 −0.008 0.0031 0.0009 0.0067
−0.0028 0.0426 −0.0062 −0.0032 −0.0062 −0.0004
−0.008 −0.0062 0.053 −0.0003 0.0045 −0.0053
0.0031 −0.0032 −0.0003 0.004 −0.0002 −0.0002
0.0009 −0.0062 0.0045 −0.0002 0.0038 0.0004
0.0067 −0.0004 −0.0053 −0.0002 0.0004 0.0038 ]

 
 
 
 
 

 

𝜐𝑚𝑖𝑛 = −0.188 

6.4 Simulating validation based on ANSYS 

In this section, the numerical verification of the above optimized auxetic microstructures is performed using 

ANSYS, and the auxetic microstructure No. 1 is considered. The “STL” file of the auxetic microstructure 

No. 1, as shown in Fig. 24 (a), is firstly exported from Matlab and then imported into ANSYS. The “STL” 

file needs to be slightly modified in the SpaceClaim of ANSYS and converted into the solid geometry with 

1cm×1cm×1cm, given in Fig. 24 (b). The volume fraction of the “STL” file for 3D auxetic microstructure 

1 is equal to 29.65% (nearly 30%) and the volume fraction 29.73% of the modified solid geometry is also 

mostly identical to 30%. In order to test the negative Poisson’s ratio with a much higher accuracy, an auxetic 

metamaterial with 5×5×5 auxetic microstructures No. 1 is considered in the latter simulation, as shown in 

Fig. 25 (a), and the corresponding mesh is also shown in Fig. 25 (b) with 19763500 finite elements. 

 
Fig. 24. 3D auxetic microstructure No. 1 

 
Fig. 25. Auxetic metamaterial and its finite element mesh 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

28 

In Fig. 26, three boundary conditions are imposed on the auxetic metamaterial. Condition 1, shown in Fig. 

26 (a), fixes the Z-direction displacements of the surface A with the normal direction Z-. In the Condition 

2, two points at the middle of the surface A are fixed to avoid the rotation of the auxetic metamaterial, given 

in Fig. 26 (b). As shown in Fig. 26 (c), a displacement with 1 mm in Z direction is homogenously imposed 

on the surface C with the normal direction Z+ in Condition 3. It should be noted that the surfaces A and C 

are opposite along Z direction. The deformations of the top and bottom surfaces in X direction of the auxetic 

metamaterial are displayed in Fig. 27. In order to obtain a more accurate value, the difference of the average 

displacements on the top and bottom surfaces is viewed as the deformation degree of auxetic metamaterial 

1 in the X direction. The displacement mean on the top surface is equal to 0.0239 mm, and the mean on the 

bottom surface is -0.0227 mm. Hence, the deformation of auxetic metamaterial in X direction is equal to 

∆𝑥 = 0.0466mm. The negative Poisson’s ratio is defined by 𝜐 = −∆𝑥 ∆𝑧⁄ = −0.0466. We also consider 

different displacements imposed on the Surface C, ranging from 0.1mm to 1mm, and the corresponding 

negative Poisson’s ratios in different cases are all equal to -0.0466, shown in Fig. 28. The simulated values 

are mostly identical to the result calculated by the homogenization in Table 3. 

Finally, all the 3D printing prototypes for the topologically-optimized 3D auxetic microstructures No. 1 to 

6 are fabricated using the SLS technique, shown in Fig. 29, respectively. 

 
Fig. 26. Boundary conditions imposed on the auxetic metamaterial 

 

Fig. 27. Displacement responses of auxetic metamaterial 
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Fig. 28. Mechanical responses of auxetic metamaterial 

 
Fig. 29. 3D printing samples for six auxetic microstructures. 

7 Conclusions 

In this paper, we present an effective and efficient ITO method for the optimization of 2D and 3D auxetic 

metamaterials, where a sufficiently smooth and continuous DDF is constructed to represent the structural 

topology and IGA is applied to solve the displacement responses in microstructures. The homogenization 

to predict the macroscopic effective properties is numerical implemented by the IGA, with the consideration 

of the periodic boundary conditions. A relaxed form of the OC method is applied to derive the advancing 

of the structural topology. 

In numerical examples, 2D and 3D auxetic microstructures are studied to demonstrate the effectiveness and 

efficiency of the ITO method. As we can see, the key characteristic of the current method is to optimize the 

DDF for material microstructures with the auxetic behavior, rather than the spatial arrangements of element 
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densities. The optimized topologies of auxetics have the smooth boundaries and distinct interfaces, which 

is beneficial to the latter manufacturing. Additionally, the ITO method is featured with the higher efficiency 

for the optimization of 3D auxetic microstructures, only 37 steps for the auxetic microstructure No.1 and 

52 iterations for the auxetic microstructure No.2. A series of new and interesting auxetic microstructures 

can be achieved. The proposed ITO method is general, and in the future, it can be extended to other more 

advanced topological design problems, like the nonlinear and multifunctional material microstructures. 
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