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The Architecture of a Quantum Programming Environment

by

Shusen Liu

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

Abstract

This thesis presents the architecture of quantum programming environment, called QSI,

along with its related modules and several quantum experiments. The environment is

based on one specific quantum language, namely quantum while-language. Some partial

experimental results are also presented within QSI.

The first part relates to the architecture, the designing and the implementation of quantum

programming environment which provides a new, powerful and flexible environment for

developing and implementing quantum programs. First, we study the possible structure of

the programming environment which supports a measurement-based case statement and a

measurement-based while-loop. These two program constructs are extremely convenient

for describing large-scale quantum algorithms, such as quantum random walk-based al-

gorithms. We also define a new assembly language called f-QASM (Quantum Assembly

Language with feedback) as an interactive command set. The assembly language is com-

patible with other low-level instruction sets and can be used to directly drive quantum

hardware. Moreover, the simulation of syntax of quantum program and the behaviours

within the architecture on the classical computer are discussed. Finally, we consider the

work-flow which contains the decomposition of unitary matrix to achieve the goal that

executing on Noisy Intermediate-Scale Quantum Computer.

The second part concerns the modules based on quantum programming environment:

termination analysis module, detective separable unitary module and quantum control

module. Along with the architecture, we bring an essential module - termination analysis
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module for the loop structure. It can analyze sub-bodies of quantum program and suggest

the critical termination information. In addition, we improve the Jordan decomposition

step in the original algorithm which consumes extended period for analyzing. This im-

provement also makes the module more robust on executing. A fast permutation algorithm

module clarifies the re-ordering algorithm in case of qubits system. It regenerates the pro-

gram (unitary operator) which is not in pre-ordered sequence. In the detective separable

unitary module, we prove sufficient conditions for separable unitary and its approximate

scenario. The result shows there does not exist a universal algorithm for potential parallel

executing quantum programs without communications (classical or quantum communica-

tions). However, in approximate, there exists a scheme for parallel computing without the

help of communication. In this part, two examples for parallel computing are given. Last,

in quantum control module, an algorithm is suggested towards automatically generating

quantum circuits for quantum case-statement. We believe these analysis modules can help

the compiler to optimize the implementation of quantum algorithms.

The third part is devoted to quantum experiment. First, we focus several experiments

which can be operated directly by QSI : Qloop, BB84 protocol and Grover search al-

gorithm. After that, with the help of IBM’s QISKit, two impressive experiments: dis-

tinguishing unitary gates and Bell states are given on real quantum computer. Finally,

we combine QSI with Microsoft’s LIQUi∣⟩ to implement quantum case-statement. These

experiments significantly show the quantum power and the scalable framework of the

quantum programming environment in practice.
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Chapter 1

Introduction

1.1 Thesis

While loops play a major role in the kernel of many classical programming languages,

their power in the quantum world is still being developed. In 2011, Ying and Feng [1]

proposed the quantum while-language. This was the first high-level programming language

for quantum computers to include verification properties [2]. Moreover, in the original

article, the authors proved its correctness and completeness with respect to quantum

Hoare logic [1], making it the only quantum programming language to date with proven

completeness.

In this thesis, we present a modern programming environment called QSI 1 to support

the quantum while-language. The platform is the culmination of previous theoretical

work and includes a suite of modules to assist programmers fulfill several functional re-

quirements, such as termination, running-time estimation, simulation, and compilation.

A state-of-the-art software architecture behind the programming environment and, with

this platform, users can write quantum algorithms and produce corresponding quantum

circuits. Moreover, it can connect to real quantum computers and execute programs in

the cloud.

1Named after research center http://www.qsi.uts.edu.au

1
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This thesis discusses the architecture that connects quantum programming with classical

topics. Our final vision for the platform is inspired by the concept of ‘quantum supremacy’.

1.2 Background

It is well known that quantum computers can solve certain categories of problems much

more efficiently than classical computers, for example, Shor’s factoring algorithm [3],

Grover’s search algorithm [4] and more recently Harrow, Hassidim and Lloyd’s algorithm

for systems of linear equations [5]. In recent years, governments and industries around

the globe have been racing to build quantum computers. As was the case in the history

of classical computing, once quantum computers are commercialized, programmers will

certainly need a modern platform that can express and implement quantum algorithms

without considering the trivialities of their circuits. Such a platform will be even more

helpful for quantum programming than in classical computing because physically imple-

menting quantum algorithms in a quantum system is somewhat counterintuitive. Using a

programming platform could help programmers understand some of these features, which

may help to (partially) avoid some common errors.

However, as the development of quantum hardware advances, a variety of barriers to

expanding software and application development still remain. For example, Veldhorst et

al. [6, 7] from the University of New South Wales used microwave electron-spin resonance

(ESR) performed on a global Hadamard gate to demarcate the transitions between tick

and tock intervals. Yet applying the same rules to a local Hadamard gate has proven far

more elusive.

In 2016, IBM announced their 5-qubit universal quantum computer [8] (ibmqx2 and ib-

mqx4 ) and in 2017 it announced a more advanced 16-qubit universal quantum computer [9]

(ibmqx5 ). However, both come with several strict constraints. For instance, the number

of gates cannot exceed 40, and only a small set of qubits can operate as controlled qubits.

Hence, without a proper quantum programming environment, software coding has become

a genuinely difficult task for both researchers and developers.
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1.3 Aims, Objectives and Significance

The stakeholders are the programmer in quantum community and the researcher who de-

velops and invents quantum protocols and quantum algorithms. Through the platform,

the programmer can write the codes with a high-level programming language without con-

cerning the details of corresponding quantum circuits. Researchers can develop quantum

protocols (algorithms) using the compiler and the modules of the platform to improve ef-

ficiency. The programming environment is an expendable and convenient way to simulate

quantum features on classical computers. Also, the programmer can verify properties of

their new algorithms such as termination and average running time which are often very

necessary for generating basic quantum circuits. Finally, with the flexible compiler, the

programmers could send code segments written in high-level language and be translated

to an accepted machine-related language for a real quantum computers.

1.3.1 Aims

The aims of this dissertation are as follows:

1. To explicitly describe a flexible framework for a quantum programming environment

that supports quantum while-language.

The QSI quantum programming environment fully explores the structures and com-

ponents for quantum programming. Further, it and its modules are accessible to the

public. The specific modules address termination analysis, average running time,

and compilation that, in principle, are effective for quantum programming. These

toolkits offer programmers deeper insights into quantum behaviours than the mere

statistical results of an algorithm can provide.

2. To prove the criteria for unitary decomposition.

Current theory holds that spontaneously decomposing nontrivial algorithms into

parallel or concurrent algorithms is impossible. However, under an approximate sce-

nario, there is a decomposable unitary arbitrarily closing to the given one. This rule

opens the way for a possible approach to fault-tolerant programming with parallel

quantum computing.
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3. To prove some equivalent conditions for checking termination and average running

time.

Ying et al. [10] illustrate several impressive criteria for checking the termination of

quantum programs written in the pure quantum while-language. They also provide

a criterion for calculating the average running time of quantum programs. However

these contributions cannot be used directly in calculations because existing condi-

tions need to be satisfied. And, currently, there is no way for a computer to ensure

whether they have these properties. Hence, we have explored equivalent conditions

for checking termination and average running time that can be calculated by a com-

puter in finite time.

4. To make a hierarchical structure for driving and connecting quantum computer.

Svore et al. [11] proposed a theoretical command type for quantum programs called

QASM. However, the command type is flat and basic and is only able to denote quan-

tum registers and their corresponding operations. When analysing termination and

average running-times, we need a hierarchical structure that includes more informa-

tion in the quantum while-language descriptions to create more well-defined infor-

mation for physics implementation and relative analysis. Moreover, some calculation

tasks, such as recursion with super-operators, are highly computationally-intensive.

We present some robust structures with high extensibility that are insensitive to

scale and can be implemented in a .NET framework.

1.3.2 Objectives

To achieve these aims, the following objectives must be met.

1. Develop and prove more efficient conditions for termination and average running-

time than those raised in the article [12]. Implement these conditions on the QSI

platform as modules and ensure those modules can evaluate up-to-date quantum

algorithms.

All the proposed computation steps and rules need to be drafted into protocols or

algorithms that can be executed on classical computers in finite time. Also, these
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protocols or algorithms must have low cross-coupling so they can be easily extended

to both parallel and distributed processing models.

2. Prove and explore unitary decomposition conditions in an approximate scenario.

Unitary decomposition is an accessible pre-condition for trivial concurrent or parallel

quantum computation. The goal is to establish that a set can be decomposed in a

simple way and develop an algorithm to search for an approximate unitary matrix.

3. Build a platform embedded in C# language to support quantum while-language.

1.3.3 Significance

Throughout history, it generally takes a long time for people to realise high-level solutions

in conceptual way rather than in detail. The same is true for quantum programs. To

formulate solid quantum algorithms, people need a high-level quantum language and a

corresponding platform to verify the properties of their quantum programs.

However, most modern quantum programming tools are too technical for quantum re-

searchers to use. For example, LIQUi∣⟩ , which stems from the F# language, mixes classical

and quantum features. Yet, while F# is a great functional language with object-oriented

features, LIQUi∣⟩ is difficult to use. Programmers must have a background in quantum

computing to develop quantum code, plus knowledge of classical computer knowledge to

understand its object-oriented features, and a mathematics background to use the func-

tional language features. This is a daunting challenge for any quantum researcher. When

considering a non-flat program structure (i.e., without loops or case statements), the user

is likely to find the behaviours in LIQUi∣⟩ difficult to understand. The most common

loop structure used in F# is recursion, but using recursion raises many unsolved theoreti-

cal problems in quantum programming. To avoid these issues, LIQUi∣⟩ splits classical and

quantum programming into two separate parts. Another analogous example is the software

provided with IBMQ. IBMQ offers a research-friendly cloud version with a website as its

front-end, and the programming process is intuitive. Users only need to drag pre-defined

gates to the stave and hit the “run” button to harvest the experimental results. Hence,

the users (researchers) do not need much background or to know the details of quantum

programming, but this convenience of operations is the result of a trade-off with flexibility.
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Programs are limited to operating on a quantum circuit of no more than 40 gates, and

these constraints limit a quantum researcher’s creativity. As a result, in last few months,

IBM has announced that it plans to release a development environment called QISKit

that embeds all IBMQ’s online features along with other advanced programming features,

such as “IF” and “Swap”. Even though quantum researchers will still find the platform

complicated to learn, its concision and convenience represent a marked improvement to

LIQUi∣⟩ .

There are some potential requirements for developing a quantum programs using the

present environments.

1. Researchers need to have experience in several backgrounds. For most, this creates

a barrier to exploring quantum programming.

2. The languages supported in these programming environment require advanced pro-

gramming skills to isolate classical and quantum structures. Additionally, the loop

and case-statements in classical programming have a tendency to create issues in

quantum coding.

3. The details of the algorithms create sticking points for the programmer. Algorithms

must be decomposed from general gates into the specific gates defined by the plat-

form. For example, LIQUi∣⟩ and IBMQ provide different pre-defined gates, and there

are few tools to help free them this trap.

4. There are no toolkits to ensure the correctness of the program with respect to Hoare

logic, or even the quantum states. Users must assume that the quantum state is

always correct as theory dictates. However, basing decisions on theoretical assump-

tions will not necessarily prove prudent as the complexity of gates and measurements

increases.

5. The quantum programming platforms available today do not allow loops, so repeats

must be implemented manually. Loops and the number of allowed gates provided

are, arguably, the two most pressing bottlenecks for advancing quantum computing.

Hence, when using loops, optimisation is a critical issue as they may quickly consume

the provided gates as well as introducing extra quantum noise.
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1.4 Research Methods

1. To meet the first aim, we built the QSI programming environment from the ground

up – from establishing the principles of its design to implementing the code. Prior to

construction, we conducted a code review using LIQUi∣⟩ and QISKit to confirm the

design was suitable for modern user requirements and the specifications met current

industry standards. We monitored IBMQ’s quantum programming community fo-

rum to keep track of industry developments. We earnestly considered the platform’s

potential users to ensure the platform would be acceptable to most researchers. As a

final step, we executed several experiments on the platform, including BB84, quan-

tum teleportation, and Grover’s search, to verify the coding and outputs.

2. To meet the second aim, we took explored the criteria for unitary decomposition

and its approximate scenarios. We gradually expanded our proofs beginning with

the most trivial two unitary decomposition and induction up to multipartite qubits.

Through this process, we proved it is possible to find a decomposable unitary that

is close to the target unitary and constructed a corresponding algorithm.

3. To meet the third aim, we researched the literature in the classical computation

field for strategies to convert theoretical conditions into computation conditions.

After fully studying the original proofs and kernel components, we abandoned the

Jordan decomposition as an approach and developed some new propositions that

significantly accelerate the process of termination analysis.

4. To meet the fourth aim, we examined the most up-to-date physical quantum com-

puters and their related structures. We catalogued and analysed the advantages

and disadvantages of the different approaches to manipulating quantum objects in

each. Additionally, for compatibility purposes, we developed an expandable low-level

language called f-QASM (Quantum Assembly Language with feedback) to adapt to

variety of quantum back-ends.
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1.5 Literature Review

1.5.1 Programming Languages and Platforms

Several quantum programming platforms have been developed over the last two decades.

The first quantum programming language, QCL, was proposed by Ömer in 1998 [13, 14]

and implemented in C++. A very similar quantum programming language, Q language,

was defined by Bettelli et al. [15] in 2003, which was implemented as a C++ library. In

2000, qGCL was introduced by Sanders and Zuliani [16] as a quantum extension of GCL

(Dijkstra’s Guarded Command Language) and pGCL (a probabilistic extension of GCL).

Over the last few years, some more scalable and robust quantum programming platforms

have emerged. A scalable functional programming language Quipper for quantum com-

puting was proposed by Green et al. [17] in 2013. This was implemented using Haskell

as its host language. LIQUi∣⟩ was developed in 2014 by Wecker and Svore from QuArc

(Microsoft Research Quantum Architecture and Computation Team) [18] as a modern

toolset and is embedded in another functional programming language F#. In the same

year, the quantum programming language Scafford was defined by JavadiAbhari et al. [19].

Its compilation system, ScaffCC, was presented in the article [20]. Smelyanskiy et al. [21]

at Intel built a parallel quantum computing simulator qHiPSTER that can simulate up to

40 qubits on a supercomputer with very high performance.

In a recent new milestone, a new programming language and simulator called Q# was

announced by QuArc at the end of 2017. Q# is designed specifically for full-stack quan-

tum computing and supports 32 qubits on a personal computer and up to 40 qubits on

Azure (Microsoft Cloud). Almost concurrently, the IBMQ team from IBM published their

quantum cloud computer and related Python SDK and Python API tools [22]. It enables

general researchers to access the most advanced and cloud-based quantum hardware. As

the second renaissance in quantum computation, IBMQ has attracted interested both

public and private enterprises.
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1.5.2 Quantum Circuits Synthesis and Decompostion

The literature on quantum circuit synthesis can be traced back to Barenco’s paper [23],

which shows that a set of gates that only consists of one-bit quantum gates and two-bit-

exclusive or gates is universal. They also investigated the number of above gates required

to implement other gates, such as generalised Toffoli gates. As an extension, they show

the exact number of elementary gates required to build up a variety of n-bit Toffoli gates.

An impressive outcome of this paper is that they combine Boolean algebra with quantum

circuits as an efficient way to simulate an n-bit controlled unitary network.

Another very fundamental but significant contribution came from Dawson and Nielsen [24]

in 2005. They showed that a dense set can approximately approach an arbitrary qubit

gate. More precisely, if G is a subset of SU(2) and G is dense in SU(2) there is always an

element in ⟨G⟩(⟨G⟩ indicates a generating set of a group), such that Gl is an ε-net for SU(2),

where l = O(logc(1/ε)). This algorithm opened up the possibility of universal quantum

computing. That is, currently, only a limited number of quantum gates can be produced

but some are special gates with high fidelity, such as a Hadamard gate and a controlled-Z

gate [7]. This raises the question, can all unitary gates be produced approximately? If so,

then what is the method to generate them efficiently?

However, beyond the constraints of quantum hardware, there are still several barriers to

develop practical applications for quantum computers. One of the most serious issues is

the number of physical qubits that physical machines provide. For example, IBMQ makes

quantum computing available to programmers through the cloud, but with far fewer qubits

than a practical quantum algorithm requires. Today, quantum hardware is in its infancy.

But as the number of available qubits gradually increases, many scholars are beginning

to wonder whether the various quantum hardware platforms could be united to work as a

single entity and, as a result, bring about a bloom of growth in the number of qubits.

In considering this possibility, one approach that has been touted is concurrent quantum

programming. Although quantum-specific environments have only focussed on sequential

structures to date, a few researchers have exploited the possibility of parallel or concurrent

quantum programming on a general programming platform in different respects. Vizzotto

and Costa [25] applied mutually exclusive access to global variables in a concurrent Haskell
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programming schema to the case of concurrent quantum programming. Yu and Ying [26]

carefully studied termination in concurrent programs. And the papers [27–30] provide

mathematical tools for process algebra to describe interactions, communication, and syn-

chronisation.

1.5.3 Termination Analysis

Termination analysis is a crucial task in classical programming language and is a necessary

part of modern programming environment. As the quality of software surges, more tools

are required for debugging programs. The earliest tool, called ‘Syntox’, was presented by

Bourdoncle in the article [31]. Syntox hinges on abstract debugging in Pascal using the

scalar variables in programs. In 2006, Cook, Podelski, and Rybalchenko [32], a team of

Microsoft, developed an automatic termination tool that has capacity for large program

fragments. After a decade, Brockschmidt et al. [33], also from Microsoft, proposed a new

open-source tool called T2. T2 supports automatic temporal-logic proving techniques and

can handle a general class of user-provided liveness and safety properties.

Termination with a unitary transformation in a quantum programming was first studied

by Ying and Feng [10]. These authors used a Jordan decomposition to develop an analysis

algorithm. In 2013, they extended the method to termination with superoperator trans-

formations [12]. The termination of non-deterministic and concurrent quantum programs

was studied by Li et al. [34] and Yu and Ying [26] as a problem of quantum Markov

systems. Recently, Li and Ying [35] examined termination using the realisability and syn-

thesis of linear ranking super-martingales (LRSMs) and reduced it into a semi-definite

programming (SDP) problem.

As quantum programming is more counter-intuitive than probabilistic programming be-

cause it includes measurement, superposition, and entanglement, termination in quantum

programs has received considerable attention. In any practical quantum system with

classical loop structure, termination information is always useful in case of the compiler

with explanation type works on infinite steps when executing quantum programs. In the

book [2], Ying formally introduced a quantum language with a loop structure, i.e., the

while-language. The operational semantics, denotational semantics, and related charac-

terisations were systematically researched. Thus, the quantumwhile-language has become
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a powerful language for describing some complicated quantum algorithms. Additionally,

it is also very simple to be used and has made quantum programming easier and more

accessible as problems with termination become a reality.

We discuss termination analysis in Section 3.3, beginning with a review of the definitions

and theorems of quantum termination. Then we present two algorithms that have been

specifically designed and implemented for analysing termination. One is extended directly

into computable conditions from the propositions in the article [12]. The other is an

improved algorithm that does not include a Jordan decomposition. The latter algorithm

produces highly reliable results at significantly faster speeds. The section concludes with

a Qloop termination example to compare the efficiency of each algorithm.

1.5.4 Unitary Discrimination

Perfect discrimination of quantum operations is a fundamental task in quantum mechanics.

Several theoretical schemes for discrimination with nonorthogonal unitary operations have

been developed with the aim reaching more precise results. The original scheme in [36, 37]

efficiently solves the problem using entanglement. Moreover, Duan et al. [38] proved that

sequential schemes not only require the same number of runs but are also optimal in any

scheme that seeks to discriminate between the unitary operators U and V . Given these

theoretical exploits, several pioneering experiments were developed to test the schemes.

Liu and Hong [39] conducted an experiment using the sequential scheme with a Ti:Sapphire

mode-locked laser. They achieved successful probabilities for U (99.5%) and V (99.6%) on

two fixed cases. Zhang et al. [40] also used this laser with the sequential protocol returning

success probabilities of over 98%. Laing, Rudolph, and O’Brien [41] performed unitary

QPD (Quantum process discrimination) with and without entanglement. The results

show a certainty of around 99% without entanglement and greater than 97% certainly

with entanglement-assisted unitary QPD.

Recently, the IBMQ quantum computer in the cloud, which is built on superconductors,

has opened up a new avenue for performing discrimination experiments. The platform

comes with a powerful software toolkit embedded in Python for implementing compre-

hensive experiments. Called QISKit, the software is a full-stack package that supports a

universal operation set for different back-end quantum computer topologies. The toolkit
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includes flexible mathematic functions and device commands that can execute dedicated

quantum experiments on their cloud hardware.

Essentially, QISKit provides a built-in universal gate basis “CNOT+U(θ, φ, λ)” [42] where

CNOT ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

U(θ, φ, λ) ∶= Rz(φ)Ry(θ)Rz(λ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e−i(φ+λ)/2 cos(θ/2) −e−i(φ−λ)/2 sin(θ/2)

ei(φ−λ)/2 sin(θ/2) ei(φ+λ)/2 cos(θ/2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Indeed, U(θ, φ, λ) can be used to construct all the elements of SU(2). Thus, QISKit

offers flexible universal quantum hardware in the sense that local coding (on the client)

performs on quantum circuits. With the help of a quantum compiler, the details of the

superconductor quantum computer do not need to be understood.

To perform a discrimination experiment, we need the ability to implement arbitrary uni-

tary operations. The calculation process requires unitary matrices other than rotations,

which are a some of the fundamental components in QISKit. One module in QSI de-

veloped by our team [43], an arbitrary unitary matrix into real parameters using in-fix

notation for Rz and Ry. This approach works for implementing θ ∈ [0,4π), φ ∈ [0,4π) and

λ ∈ [0,4π) [42].

In Section 4.2.1, we demonstrate through experiments that two nonorthogonal single-qubit

unitary operations can be discriminated using either a parallel scheme or a sequential

scheme on the ibmqx4 quantum computer. Both schemes return acceptable probabilities

in excess of 85% in all rounds. Comparing the results from each scheme shows that, in

most cases, the results from the sequential scheme are more accurate due to entanglement

under the effect of environmental noise.
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1.5.5 Quantum Control

In classical programming languages, Dijkstra [44] proposed a guarded comments GCL

(Guarded Command Language) as a building block for alternative and repetitive con-

structs. Analogously, in quantum programming languages, one stream of research consid-

ers the unitary transformation and measurements process, and the other direction consid-

ers quantum control flow and superposition. In the first stream, there are two alternatives:

Sanders and Zuliani’s quantum programming language (qGCL) and Selinger’s QPL. The

beginnings of the second stream date back to Altenkirch and Grattage’s QML [45] followed

by Ying, Yu, and Feng [46] who extracted a novel quantum language QuGCL (Quantum

Guarded Command Language) to support the superposition paradigm.

Ying et al. [46] derived a family of algebraic laws of QuGCL which can be utilized in

program verification, transformations and compilation. Based on their previous work [10,

12] on quantum program with classical control, they extended a quantum statement �QIF�

exploiting quantum control. The �QIF� clause became the key idea to use quantum

superposition of computing.

However, when attempting to implement Ying et al.’s work [46] in a collection of software

modules based on LIQUi∣⟩, we found that quantum choice using superposition is an indirect

approach. However, in reflecting on the quantum circuit models that are most commonly

used to represent a quantum algorithm, we found that Shende [47] showed an analog of

Shannon decomposition with Boolean functions and a quantum multiplexor (QMUX) as

far back as 2006, and realised this could be used to generalise several known constructions.

That is, QMUX can be used to implement the quantum choice �QIF� in QuGCL.

Hence, in this thesis, we propose a construction based on QMUX to perform �QIF� for

quantum programs with quantum control. Further, to construct the QMUX, we have

focussed on a way to implement an arbitrary unitary transformation using basic CNOT

and quantum rotation gates. Some preliminaries concerning QuGCL and QMUX are

reviewed followed by the steps required to solve the unitary matrix equations. Some

experimental results of controlled unitary using LIQUi∣⟩ are also included. Last, we present

a short review of the process for constructing a multi-qubit QMUX. To some extent, the
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conclusion indicates that the circuits for quantum programs with quantum control can be

constructed with the help of QMUX construction.

1.6 Preliminaries

1.6.1 Quantum while-language

For convenience, a brief review of the quantum while-language follows. The quantum

while-language is a pure quantum language without classical variables. It assumes only

a set of quantum variables denoted by the symbols q0, q1, q2, .... However, in practice,

almost all existing quantum algorithms involve elements of both classical and quantum

computation. Therefore, QSI has been designed such that the quantum while-language

can be embedded into C#, which brings a significant level of convenience to program

design. Some explanations of the quantum program constructs follow; For more detailed

descriptions and examples, see [1] and Chapter 3 of the book [2]. The quantum while-

language is generated using the following simple syntax:

S ∶∶= skip ∣ q ∶= ∣0⟩ ∣ q̄ = U[q̄] ∣ S1;S2 ∣if (◻m ⋅M[q̄] =m→ Sm) fi

∣ while M[q̄] = 1 doSod.

Skip As in the classical while-language, the statement skip does nothing and terminates

immediately.

Initialization The initialisation statement “q ∶= ∣0⟩” sets the quantum variable q to the

basis state ∣0⟩.

Unitary transformation The statement “q̄ ∶= U[q̄]” means that a unitary transforma-

tion (quantum gate) U is performed on quantum register q̄ leaving the other variables

unchanged.

Sequential composition As in a classical programming language, in the composition

S1;S2, program S1 is executed first. Once S1 terminates, S2 is executed.

Case statement In the case statement if (◻m ⋅M[q̄] = m → Sm) fi, M is a quantum

measurement with m representing its possible outcomes. To execute this statement,

M is first performed on the quantum register q̄ and a measurement outcome m is
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obtained with a certain probability. Then, the subprogram Sm is selected according

to the outcome m and executed. The difference between a classical case statement

and a quantum case statement is that the state of the quantum program variable q̄

is changed after performing the measurement.

while-Loop In the loop while M[q̄] = 1 doSod, M is a “yes-no” measurement with only

two possible outcomes: 0 and 1. During execution, M is performed on the quantum

register q̄ to check the loop guard. If the outcome is 0, the program terminates. If

the outcome is 1 the program executes the loop body S and continues. Note that

here the state of the program variable q̄ is also changed after measuring M .

1.6.2 QuGCL

QuGCL was first formally defined in the book [2] and can be thought of as the quantum

counterpart of Dijkstra’s GCL (Guarded Command Language).

QuGCL is generated by the syntax

S ∶∶= skip∣q ∶= ∣0⟩ ∣q̄ = U[q̄]∣S1;S2

∣if(◻m ⋅M[q̄] =m→ Sm)fi

∣whileM[q̄] = 1doSod

∣qif[q̄](◻i ⋅ ∣i⟩ → Si)fiq .

The execution of a quantum program can be properly described in terms of the transition

between configurations.

Definition 1.1. A quantum configuration is a pair ⟨S, ρ⟩, where:

� S is a quantum program or the empty program E;

� ρ ∈D(Hall) is a partial density operator in Hall and it is used to indicate the (global)

state of quantum variables.

The operational semantics of QuGCL follow.

SK
⟨skip,ρ⟩→⟨E,ρ⟩ .
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As with the skip clause in the classical while-language, the statement skip does

nothing and terminates immediately.

IN
⟨q∶=∣0⟩,ρ⟩→⟨E,ρq0⟩

, where

ρq0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩q ⟨0∣ρ ∣0⟩q ⟨0∣ + ∣0⟩q ⟨1∣ρ ∣1⟩q ⟨0∣

if type(q) = Boolean,

∑∞

n=−∞ ∣0⟩q ⟨n∣ ρ ∣n⟩q ⟨0∣

if type(q) = Integer.

The initialisation statement “q ∶= ∣0⟩” sets the quantum variable q to the basis state

∣0⟩. In fact, initialisation projects an arbitrary state to span{∣0⟩}. The initialization

statement “q ∶= ∣0⟩” sets quantum variable q to the basis state ∣0⟩. In fact, the

initialization is projecting an arbitrary state to span{∣0⟩}.

UT
⟨q̄∶=U[q̄],ρ⟩→⟨E,UρU�⟩

.

The statement “q̄ ∶= U[q̄]” means that a unitary gate is performed on quantum

register q̄, leaving other variables unchanged. Because a closed quantum system can

be used by a unitary evolution to describe the process, unitary evolution is designed

as a fundamental component of the platform.

SC
⟨S1,ρ⟩→⟨S′1,ρ⟩

⟨S1;S2,ρ⟩→⟨S′1;S2,ρ⟩
.

The S1 program runs first. After S1 finishes, S2 runs. The quantum-while language

is not designed as a concurrent language so sequential composition is spontaneous.

IF
⟨if(◻m⋅M[q̄]=m→Sm)fi,ρ⟩→⟨Sm,MmρM�

m⟩
, for each possible outcome m of meaurement M =

{Mm} .
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The case statement can be rewritten as

If(◻m ⋅M[q̄] =m→ Sm)fi)

≡if M[q̄] =m1 → Sm1

◻ m2 → Sm2

. . .

◻ mn → Smn

.

The first step in executing of this case statement is to perform a measurement M

on the quantum variable q̄ and check the output result index. A corresponding

subprogram Sm is then chosen based on the output result index. The difference

between a classical case statement and a quantum case statement is that the variable

in a quantum case statement must be changed to the state in measurement output

index once a measurement is performed.

Loop (L0)
⟨while(M[q̄]=1)doS od,ρ⟩→⟨E,M0ρM

�
0⟩
,

(L1)
⟨while(M[q̄]=1)doS od,ρ⟩→⟨Sm,MmρM�

m⟩
.

Quantum loops are a generalisation of classical loops. The guard is a Boolean equal-

ity, and M is a set of measurements. If the measurement set has two members, it

either degenerates into a “yes-no” measurement or the user can define the guard be-

haviours by denoting the compared number. At the very beginning of the program,

users can redefine the general measurement set as “yes-no” measurement. If the

guard is true, the program will enter into the loop body. Otherwise, the program

terminates immediately.

QIF �S�(∣i⟩ ∣ϕ⟩) = ∣i⟩ (�Si� ∣ϕ⟩)

Let S1, S2, . . . , Sn be a collection of general quantum programs whose state spaces

are the same Hilbert space H and the external quantum system called the “coin”

system which can either be a single system or a composite system. Assume that

the state space of system q̄ is an n-dimensional Hilbert space Hq and {∣i⟩}ni=1 with

an orthonormal basis. As such, a quantum case statement S can be defined by
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combining programs S1, S2, . . . , Sn along the basis {∣i⟩}:

S ≡ qif[q̄] ∶ ∣1⟩ → S1

◻ ∣2⟩ → S2

. . .

◻ ∣n⟩ → Sn

fiq

.

When considering the program body as collection of a unitary operators, the defini-

tion can be converted to U(∣i⟩ ∣ϕ⟩) = ∣i⟩Ui ∣ϕ⟩ for any ϕ ∈ H and for any 1 ≤ i ≤ n.

The operator U is called the guarded composition of Ui(1 ≤ i ≤ n) along the basis

{∣i⟩} and written as U ≡ ⊕n
i=1Ui . Actually, this can be explained as a QMUX which

was introduced by Shende [47].

1.7 Overview

The main purpose of this research is to study the architecture of a quantum programming

environment and its related modules. Moreover, the related algorithms for implementing

quantum programming environment need to be carefully studied.

In Chapter 2, we describe the QSI’s architecture and construct the connections between

the semantics and the matrix computation. In addition, we introduce the compiler as

the key component of programming environment and explain how it has been designed

to achieve the primary goal of generating code that can operate on quantum hardware.

The quantum simulator, designed to verify quantum code on a classical computer, is also

presented.

In Chapter 3, each of the three modules are discussed in detail. First, we explore the

separation of multipartite quantum gates. We find that most unitary operators cannot

simply be decomposed into tensor product formals, which means that most algorithms

cannot be paralleled naturally. Here, we present an approach to arbitrary unitary using

the tensor products of the unitary evolutions in approximate conditions. Second, we

propose a fast permutation method to adjust a given unitary in a target system that can
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adapt to the memory limitations of a computer. Unlike the permutation matrix method,

our experiments show this method is able to support high-dimensional matrix adjustments.

Third, we discuss termination analysis and the two algorithms designed to check for correct

termination in quantum programs. One algorithm is a direct extension of the propositions

in [12] into computable conditions. The other is an improved algorithm that relies on the

Jordan decomposition to achieve highly reliable results and significantly improved speed.

Lastly, we introduce the quantum control module as a part of the QuGCL language. We

explicitly describe the quantum control statement �QIF� can be achieved by QMUX and

further show how to construct the syntax of a given clause to implement QuGCL on a

general quantum computer’s circuits.

Chapter 4 focuses how QSI can work with other platforms. Many features of QSI are

demonstrated through a series of experiments. These include: the most fundamental

gate – the CNOT gate; the most famous communication protocol, BB84 – and its channel

cases; quantum Google PageRank; and even Grover’s search. We also illustrate self-coding

for programmers and its related APIs (Application Program Interfaces). The power of

QSI is illustrated in the way it connects to real quantum computers using the QISKit.

Two interesting and fundamental experiments with the IBMQ quantum computer in the

cloud are provided, namely unitary discrimination and distinguishing Bell states with local

measurements. The results showcase IBMQ as a new medium for performing quantum

algorithms and the useful programming environment QSI offers as a supplement. Methods

of connecting with LIQUi∣⟩, an older quantum platform, are also explained. These methods

allow users to access to quantum simulations with the functional language F#. The

method to construct QMUX are conducted through the links between these two platforms.

In Chapter 5, we summarise the contributions of this and discuss future work.

These results are based on the following papers:

� Shusen Liu; Yinan Li; Runyao Duan, “Distinguishing Unitary Gates on the IBM

Quantum Processor”. in SCIENCE CHINA Information Sciences (accepted as reg-

ular paper).
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� Shusen Liu; Xin Wang; Li Zhou; Ji Guan; Yinan Li; Yang He; Ruanyao Duan and

Mingsheng Ying, 2017. “Q∣SI⟩: a quantum programming environment”. arXiv

preprint arXiv:1710.09500.

� Shusen Liu; Li Zhou; Ji Guan; Yang He; Runyao Duan; Mingsheng Ying, (2017-05-

09). “Q∣SI⟩: A Quantum Programming Language”. SCIENTIA Sinica Information.

47 (10): 1300.

� Shusen Liu; Yang He and Cai Zhang. “Towards Automatically Construct Quan-

tum Circuits for Quantum Programs with Quantum Control”, IEEE 85th Vehicular

Technology Conference (VTC Spring), 2017, 1-5.
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Quantum Programming

Environment

2.1 Introduction

This research presents a powerful and flexible new quantum programming environment

called QSI 1, named after my research center – the Centre for Quantum Software and

Information. The core of QSI is a quantum programming language and its compiler. This

language is a quantum extension of the while-language. It was first defined in [1] along

with a careful study of its operational and denotational semantics (see also [2], Chapter

3). The language includes a measurement-based case statement and a measurement-based

while-loop. These two program constructs are extremely convenient for describing large-

scale quantum algorithms, e.g., quantum random walk-based algorithms.

For operations with quantum hardware, we have defined a new assembly language called

f-QASM (Quantum Assembly Language with feedback) as an interactive command set.

f-QASM is an extension of the instruction set QASM (Quantum Assembly Language)

introduced in [48]. A feedback instruction has been added that allows measurement-based

case and loop statements to be implemented efficiently. A compiler then transforms the

quantum while-program into a sequence of f-QASM instructions and further generates a

1http://www.qcompiler.com

21
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corresponding quantum circuit equivalent to the program (i.e., a sequence of executable

quantum gates). QSI also has a module for optimising quantum circuits as well as a

module to simulate its quantum programs developed in the environment on a classical

computer.

2.2 The Structure of QSI

This section provides an introduction to the basic structure of QSI , leaving the details

to be described in subsequent sections. QSI is designed to offer a unified general-purpose

programming environment to support the quantum while-language. It includes a compiler

for quantum while-programs, a quantum computation simulator, and a module for the

analysis and verification of quantum programs. We have implemented QSI as a deeply

embedded domain-specific platform for quantum programming using the host language

C#.

QSI ’s framework is shown in Figure 2.1.

2.2.1 Basic Features of QSI

A description of the main features of QSI follows:

Language support QSI is the first platform to support the quantum while-language.

Specifically, it allows users to program with measurement-based case statements

and while-loops. The two program constructs provide more efficient and clearer

descriptions of some quantum algorithms, such as quantum walks and Grover’s search

algorithm.

Quantum type enriched Compared to other simulators and analysis tools, QSI sup-

ports quantum types beyond pure qubit states, such as density operators, mixed

states, and so on. These types have unified operations and can be used in different

scenarios. This feature provides highly flexible usability and facilitates the program-

ming process.
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Figure 2.1: Framework of QSI . Rectangle modules indicate the main process stream
in QSI with respect to the execution components. The double-edged rectangles indicate
auxiliary modules. The ripple rectangles are the input and output data structures or files.
The QP Verification Module with Q-HOL will link to the theorem prover proposed by

Liu et al. [49] but is currently still in development.

Dual mode QSI has two executable modes. “Running-time execution” mode simulates

quantum behaviors in one-shot experiments. “Static execution” mode is mainly

designed for quantum compilation, analysis, and verification.

f-QASM instruction set Defined as an extension of Quantum Assembly Language (QASM) [48],

f-QASM is essentially a quantum circuit description language that can be adapted

for a variety of purposes. In this language, each line has only one command. f-

QASM’s ‘goto’ structure contains more information than the original QASM [48] or

space efficient QASM-HL [20]. f-QASM can also be used for further optimization

and analysis.

Quantum circuits generation Similar to modern digital circuits in classical computing,

quantum circuits provide a low-level representation of quantum algorithms [48]. Our



24 Chapter 2. Quantum Programming Environment

compiler can produce a quantum circuit from a program written in the high-level

quantum while-language.

Arbitrary unitary operator implementation The QSI platform includes Solovay-Kitaev

algorithm [24] together with two-level matrix decomposition algorithm [50] and a

quantum multiplexor (QMUX) algorithm [47]. Therefore, an arbitrary unitary op-

erator could be transferred into a quantum circuit consisting of quantum gates from

a small pre-defined set of basic gates once these are available from quantum chip

manufactures.

Gate-by-gate description Similar to other quantum simulators, QSI has a gate-by-

gate description feature. Some basic quantum gates are inherently provided in our

platform. Users can use them to build their desired quantum circuits gate-by-gate.

We have also provided a decomposition function to generate arbitrary 2-dimensional

controlled-unitary gates for emulation feasibility.

2.2.2 Main Components of QSI

The QSI platform consists of four main parts.

Quantum Simulation Engine This component includes some support assemblies, a

quantum mechanics library and a quantum simulator engine. The support assem-

blies provide support for the quantum types and quantum language. More specifi-

cally, they provide a series of quantum objects, and reentrant encapsulated functions

to play the role of the quantum program constructs if and while. The quantum

mechanics library provides the behaviors for quantum objects such as unitary trans-

formation and measurement including the result and post-state. The quantum sim-

ulator engine is designed as an execution engine. It accepts quantum objects and

their rules from the quantum mechanics library and converts them into probability

programming that can be executed on a classical computer.

Quantum Program (QP) Analysis Module This module currently comprises two sub-

modules for the static analysis mode: the “QTerminator” and the “QAverage Running-

Timer”. The former provides the terminating information, and the latter evaluates
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the running time of the given program. Their output is sent to the quantum compiler

at the next stage for further use.

QP Verification Module This module is a tool for verifying the correctness of quantum

programs and is still under development. It is based on quantum Hoare logic, which

was introduced by Ying in [1]. One possibility for its future advancement is to link

QSI to the quantum theorem prover developed by Liu et al [49].

Quantum Compiler The compiler consists of a series of tools to map a high-level source

program that represents a quantum algorithm into the relevant language of a quan-

tum device [48], e.g., f-QASM and further into a quantum circuit. Our goal is to be

able to implement any source code without considering the details of the devices, it

will ultimately run on, i.e., to automatically construct a quantum circuit based on

the source code. In future, a tool to optimise the quantum circuit will be added.

2.2.3 Implementation of QSI

One of the basic problems during implementation is how to use probabilistic and classical

algorithms to simulate quantum behaviors. To support quantum operations, QSI has been

enriched with data structures from a quantum simulation engine. Figure 2.2 shows the

procedure for simulating a quantum engine. Three types of languages are supported: the

pure quantum while-language, the classical while-language and a mixed language. The

engine starts a support flow path when it detects the existence of a quantum section of the

program. Then, the engine checks the quantum type for each variable and operator and

executes the corresponding support assembly, which is explained as a constrained object

on a classical computer. As mentioned, one of the main features of QSI are the quantum

while-language support assemblies, with aid programming in the quantum while-language.

All of the behaviours that consider semantics are explained by probabilistic algorithms.

The outputs are extended into C# languages and can be executed directly on a .NET

Framework or can be explained in f-QASM and OpenQASM by the compiler.

The quantum simulation engine involves numerous matrix computations and operations.

In QSI , Math.net is used for matrix computation. Math.NET is an open-source initiative

to build and maintain toolkits that cover fundamental mathematics. It targets both the
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Figure 2.2: QSI The procedure for simulating in the quantum simulation engine. Three
types of languages are supported: the pure quantum while-language, the classical while-
language, and a mixed language. The engine starts a support flow path when it detects
the existence of a quantum section of the program. Then, the engine checks the quantum
type for each variable and operator and executes the corresponding support assembly,
which is explained as a constrained object on a classical computer. As mentioned, one
of the main features of QSI are the quantum while-language support assemblies, with
aid programming in the quantum while-language. All of the behaviours that consider
semantics are explained by probabilistic algorithms. The outputs are extended into C#
languages and can be executed directly on a .NET Framework or can be explained in

f-QASM and OpenQASM by the compiler.

everyday and the advanced needs of .NET developers2. It includes numerical computing,

computer algebra, signal processing and geometry. Math.net is also able to accelerate ma-

trix calculations when the simulation includes a MIC (Many Integrated Core Architecture)

device.

In static analysis mode, Roslyn is our chosen tool for auxiliary code analysis. Roslyn is a

set of open-source compilers and code analysis APIs for C# and Basic languages. Since

2https://www.mathdotnet.com
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our platform is embedded in the .NET Framework for the C# language, Roslyn is used as

a parser to produce an abstract syntax tree (AST) for further analysis.

2.3 The Quantum Compiler

The compiler works as a connection between different devices and data structures and

serves several different functions. It produces f-QASM code, which can be used to emulate

a real or virtual quantum processor. It provides quantum circuits for quantum chip design.

It also optimizes quantum circuits.

The QSI compiler is heavily dependent on other modules. It collects data structures

from the quantum simulation engine and splits the program into several parts, e.g. the

variables, the quantum gates, the measurements, the entry and exit points for each clause

along with their positions. It constructs an AST (Abstract Syntax Tree) from the program,

then reconstructs the program as a sequence of f-QASM instructions for further use. Based

on f-QASM, the compiler provides a method for decomposing the unitary operators. It

can decompose an arbitrary unitary operator U(n) into a sequence of basic quantum

gates from a pre-defined set {U1, U2, . . . , Um} where U1, U2, . . . , Um ∈ U(2) (qubit gate).

This corresponds to a scenario in quantum device development: people need universal

computation in spite of only the few of gates, that manufacturers can currently produce.

Further, the quantum while-language delivers the power of loops, but it also increases the

complexity of compilation. A quantum program with a loop structure is much harder to

trace than the one without loops. The QP Analysis module provides static analysis tools

including a “QTerminator” for termination checking and a “QAverage Running-Timer”

for calculating the expected running time. In addition, the QP Verification module, still in

development, is being designed to verify quantum programs. Once complete, programmers

will be able to insert to debug program behaviors.

2.3.1 f-QASM

QASM (Quantum Assembly Language) is widely used in modern quantum simulators. It

was first introduced in [48] and is defined as a technology-independent reduced-instruction-

set computing assembly language extended by a set of quantum instructions based on the
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quantum circuit model. The article [51] carefully characterizes its theoretical properties.

In 2014, A.JavadiAbhari et al. [20] defined a space-consuming flat description and denser

hierarchical description of QASM, called QASM-HL. Recently, Smith et al. [52] proposed

a hybrid QASM for classical-quantum algorithms and applied it in Quil. Quil is the front-

end of Forest which is a tool for quantum programming and simulation that works in the

cloud.

We propose a specific QASM format, called f-QASM (Quantum Assembly Language with

feedback). The most significant motivation behind our variation is to translate the inherent

logic of quantum program written in a high-level programming language into a simple

command set, so there is only one command in every line or period. However, a further

motivation is to solve an issue raised on the IBM QASM 2.0 list and provide conditional

operators for feedback on measurement outcomes.

2.3.2 Basic Definitions in f-QASM

Let us first define the registers:

� Define {r1, r2, . . .} as a finite set of classical registers.

� Define {q1, q2, . . .} as a finite set of quantum registers.

� Define {fr1, fr2, . . .} as a finite set of flag registers. These are a special kind of

classical register often used to illustrate partial results for a code segment. In most

cases, the flag registers can not be operated directly by any users code.

There are also two kinds of basic operations:

� Define the command “op(q)” as q ∶= op(q), where op is a unitary operator and q is

a quantum register.

� Define the command “{op}(q)” as r ∶= {op}(q), where {op} is a set of measurement

operators, q is a quantum register, and r is a classical register.

After defining registers and operations, we can define some assembly functions:
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� Define “INIT (q)” as q ∶= ∣0⟩ ⟨0∣, where q is a quantum register. The value of q is

assigned into

⎡⎢⎢⎢⎢⎢⎣

1 0

0 0

⎤⎥⎥⎥⎥⎥⎦

.

� Define “OP{q, num}”, where q is a quantum register, num ∈ N and OP is an op-

erator, in another functional form of q ∶= op(q). num can be 0 or other value, i.e.,

0 means the unitary operator belongs to a pre-defined set of basic quantum gates

which can be prepared by either the manufacturer or the user. Otherwise, num can

only be ignored or used after being decomposed into basic gates, or be ignored.

� Define “MOV (r1, r2)”, r1 and r2 as the classical registers. This function assigns the

value of the register r2 to the register r1 and empties r2.

� Define “CMP (r1, r2)” as fr1 = δ(r1, r2) or as fr1 = (r1 == r2), where r1, r2 are two

classical registers, δ is the function comparing whether r1 is equal to r2: if r1 is equal

to r2 then fr1 = 1; otherwise fr1 = 0.

� Define “JMP l0” as the current command which goes to the line indexed by l0.

� Define “JE l0” as indexing the value of fr1 and jumping. If fr1 is equal to 1 then

the compiler executes JMP l0, otherwise it does nothing.

2.3.3 f-QASM Examples

Some simple examples to help readers understand f-QASM follow,

2.3.3.1 Initialisation

q ∶= ∣0⟩ means the program initialises the quantum register q in the state ∣0⟩. In f-QASM,

initializing two quantum registers Q1 and Q2 in the state ∣0⟩ would be written as

INIT(Q1);

INIT(Q2);
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2.3.3.2 Unitary transformation

q̄ = U[q̄] means the program performs a unitary transformation on the register q. The

compiler checks whether the unitary matrix is a basic gate or not. An example program

segment of unitary transformation follows:

hGate(q1);

Here we support hGate is a Hadamard gate performed on single qubit, i.e., hGate =

1√
2

⎡⎢⎢⎢⎢⎢⎣

1 1

1 −1

⎤⎥⎥⎥⎥⎥⎦

. To transform this into an f-QASM instruction, it is written as

hGate(q1, 0);

2.3.3.3 Case statement

The following program segment is written as a case statement in quantum while-language:

QIf(m(q1)

() =>

{

xGate(q1);

},

() =>

{

hGate(q1);

}

);

zGate(q1);

where hGate is a Hadamard gate performed on single qubit, xGate is a bit-flip gate per-

forming on single qubit xGate =

⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦

, and zGate is a phase-flip gate zGate =

⎡⎢⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎥⎦

.

Here we assume that all the gates can be provided. M is a user-defined measurement.

The compiler interprets this segment as the following f-QASM instructions:

MOV(r,{M}(q1));

CMP(r,0);
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JE L1;

CMP(r,1);

JE L2;

L1:

xGate(q1,0);

JMP L3;

L2:

hGate(q1,0)

JMP L3;

L3:

zGate(q1,0);

2.3.3.4 Loop

A loop construct is provided using QWhile(M(q)), where QWhile is a keyword, M is a

measurement and q is a quantum register. An example program segment with quantum

while-loop follows:

QWhile(m(q1),

() =>

{

xGate(q1);

}

);

hGate(q1);

Both hGate and xGate are basic gates as above. These can be transformed into f-QASM

as follows:

L1:

MOV(r,{M}(q1));

CMP(r,0);

JE L2;

XGate(q1,0);
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JMP L1;

L2:

hGate(q1,0);

2.3.4 Decomposition of a General Unitary Transformation

Given a set of basic gates {U1, U2, . . . , Un}. If any unitary operator can be approximated

to an arbitrary accuracy with a sequence of gates from this set, then the set is said to be

universal [50].

In the compiler, there are two kinds of built-in decomposition algorithms. One is the QR

method given in [23, 50], which consists of the following steps:

1. An arbitrary unitary operator is decomposed exactly into (the composition of) a

sequence of unitary operators that act non-trivially only on a subspace spanned by

two computational basis states;

2. Each unitary operator, which only acts non-trivially on a subspace spanned by two

computational basis states are further expressed using single qubit gates (U(2)) and

the CNOT gate;

3. Each single qubit gate can be decomposed into a sequence of gates from a given

small set of basic (single qubit) gates using the Solovay-Kitaev theorem [24].

The other is the QSD method presented in [47], consisting of the following steps:

1. An arbitrary operator is decomposed into three multiplexed rotations and four

generic U(2d−1) operators, where d is the number of qubits;

2. Repeatedly execute step 1 until U(4) is generated;

3. The U(4) operator is decomposed into U(2) operators with two extra CNOT gates;

4. Each single qubit gate in U(2) is decomposed into gates from a given small set of

basic (single qubit) gates using the Solovay-Kitaev theorem [24].
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2.4 The Quantum Simulator

2.4.1 Quantum Types

Data types can be extended from classical computing to quantum computing. For example,

quantum generalisations of Boolean and integer variables were introduced in [1]. The state

space of a quantum Boolean variable is a 2-dimensional Hilbert space Boolean = H2, and

the state space of a quantum integer variable is an infinite-dimensional Hilbert space

integer = H∞. In QSI , every kind of quantum variable has its own initialization method

and operation. Currently, QSI contains only finite-dimensional quantum variables, but

infinite-dimensional variables will be added in the future. The quantum types used in QSI

are presented in Figure 2.3.

The entire set of quantum types are defined as subclasses of one virtual base class called

QuantumTypes⟨T ⟩. This virtual base class has only been introduced to indicate that all of

the derived subclasses are quantum objects. From the virtual base class QuantumTypes⟨T ⟩,

two extended virtual base classes inherit: Vector⟨T ⟩, which represents a class of quantum

variables which share some vector rules, and Matrix⟨T ⟩, which represents a class of quan-

tum operators that share some operator rules.

Figure 2.3: QSI Quantum types layer
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Quantum variables come in two basic types: Ket is used to denote a quantum variable

of arbitrary dimension, and type Bra is the conjugate transpose of Ket. Two specialised

(sub)types QBit and QBitBra are provided for 2-dimensional quantum variables. Note

that both are compatible when we consider the Boolean type as a subtype of an integer.

Also, these types must follow a few rules, as explained in the next sections.

Normalised states If a qubit is written as ∣ψ⟩ = α ∣0⟩ + β ∣1⟩, the result when measured

on a computational basis is either 0 with a probability of ∣α∣2 or 1 with a probability

of ∣β∣2. Since these probabilities must sum to 1, it obeys ∣α∣2 + ∣β∣2 = 1. Thus, the

length of a vector should be normalised to 1 during initialization and computation.

For convenience, QSI provides a function QBit.NormlizeSelf() to keep the norm of

the variable types QBit and Ket.

Hidden states It is well-known that information about a QBit or a Ket cannot be ex-

tracted unless the state is measured. However, as indicated by Nielsen and Chuang

in [50] , “Nature evolves a closed quantum system of qubits, not performing any

‘measurements’, she apparently does keep track of all the continuous variables de-

scribing the state, like α and β ”. In QSI , we use the following trick to simulate

quantum computing: a quantum state is a black box- each part in the box cooper-

ates with others, but an external viewer knows nothing. Functions and other object

methods including unitary transformation or a quantum channel know the quantum

state exactly, but a viewer knows nothing about this hidden information unless it is

measured. Thus, we classify the state of information storage as a “Protect” class,

which means that information about a quantum state cannot be accessed easily.

The matrix form is widely used in (the semantics of) the quantum while-language. There

are three categorised of matrix: DensityOperator⟨T ⟩, MeasureMatrixSet and SuperOpera-

tor. DensityOperator⟨T ⟩ is a virtual basic class with two sub-classes: PureDensityOperator

and MixDensityOperator. In fact, the difference between PureDensityOperator and Mix-

DensityOperator is that only MixDensityOperator accepts an ensemble, namely a set of

probabilities and their corresponding states, which can be expressed by a PureDensityOp-

erator⟨T ⟩ or a Vector⟨T ⟩. The object quantum variable ρ of DensityOperator⟨T ⟩ satisfies

the following two conditions: (1) ρ has trace 1; and (2) ρ is a positive operator. Every
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operation on an object triggers a verification of these conditions to ensure the object is

a real density operator. MeasureMatrixSet is a measurement containing an array of ma-

trix M = {M0,M1, . . . ,Mn} satisfying a completeness condition ∑iM
�
i Mi = I. Defining a

quantum measurement in this way is very flexible. There are two built-in measurements –

a plus-minus basis {∣+⟩ , ∣−⟩} and a computation basis {∣0⟩ , ∣1⟩}, so that users can easily use

their desired measurement. A SuperOperator can be used to simulate an open quantum

system. It uses an array of Kraus operators E = {E0,E1, . . . ,En} satisfying ∑iE
�
iEi ≤ I as

a representation.

2.4.2 Simulating of Quantum Behaviors

The basis of simulating quantum computation is to simulate the quantum behaviors defined

by the four basic postulates of quantum mechanics [50]:

� Postulate 1: Associated with any isolated physical system is a complex vector

space with an inner product (Hilbert space) known as the state space of the system.

The system is completely described by its state vector, which is a unit vector in the

system’s state space.

In QSI , a function in Math.net called

double ConjugateDotProduct(Vector⟨T ⟩ other)

is used to support the inner product.

� Postulate 2: The evolution of a closed quantum system is described by a unitary

transformation. That is, the state ∣ψ⟩ of the system at time t1 is related to the state

∣ψ′⟩ of the system at time t2 by a unitary operator U which depends only on the

time t1 and t2. ∣ψ′⟩ = U ∣ψ⟩.

To simulate this feature in QSI , we have added the function UnitaryTrans to

some of our quantum types in a closed quantum system, such as QBit, Ket and

DensityOperator⟨T ⟩. In addition, the static global function SuperMatrixTrans is

provided to describe the dynamics of an open quantum system as a super-operator

E .
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� Postulate 3: Quantum measurements are described by a collection {Mm} of mea-

surement operators. These are operators that act on the state space of the system

being measured. The index m refers to the measurement outcomes that may occur

in the experiment. If the state of the quantum system is ∣ψ⟩ before the measurement,

then the probability that the result m occurs is given by p(m) = ⟨ψ∣M �
mMm∣ψ⟩ and

the state of the system after the measurement is
Mm∣ψ⟩

⟨ψ∣M�
mMm∣ψ⟩

.

In QSI , quantum measurements are simulated with a modified Monte Carlo method,

i.e., simulating measurement with a pseudo-random number sampling.

� Postulate 4: The state space of a composite physical system is the tensor product

of the state spaces of the component physical systems. Moreover, if we have systems

numbered 1 through n, and system number i is prepared in the state ∣ψi⟩, then the

joint state of the total system is ∣ψ1⟩ ⊗ ∣ψ2⟩ ⊗ . . .⊗ ∣ψn⟩ .

The function void KroneckerProduct (Matrix⟨T ⟩ other, Matrix⟨T ⟩ result) is used in

the tensor product method, which is embedded in Math.net.

2.4.3 Simulating Operational Semantics in the Quantum while-language

Simulating the computation of a program written in the quantum while-language is based

on simulating the operational semantics of the language. To clearly delineate coding in

mixed classic-quantum programs in the quantum simualation engine, a quantum if -clause

is denoted as cif and a quantum while-clause is denoted as cwhile. To simulate these

two functions, the related function methods are encapsulated in the Quantum Mechanics

Library.

The execution of a quantum program can be conveniently described in terms of transitions

between configurations.

Definition 2.1. A quantum configuration is a pair ⟨S, ρ⟩, where:

� S is a quantum program or the empty program E (termination);

� ρ is a partial density operator used to indicate the (global) state of quantum variables.
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With the preparations in the previous subsections, we are able to simulate the transition

rules that define the operational semantics of the quantum while-language:

Skip

⟨skip, ρ⟩ → ⟨E, ρ⟩
.

The statement skip does nothing and terminates immediately. Both I-identity op-

eration and the null clause satisfy this procedure requirement for simulation in QSI

.

Initialisation

⟨q ∶= ∣0⟩ , ρ⟩ → ⟨E, ρq0⟩
,

where

ρq0 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩q ⟨0∣ρ ∣0⟩q ⟨0∣ + ∣0⟩q ⟨1∣ρ ∣1⟩q ⟨0∣ if type(q) = Boolean,

∑∞n=−∞ ∣0⟩q ⟨n∣ ρ ∣n⟩q ⟨0∣ if type(q) = Integer.

The initialization statement “q ∶= ∣0⟩” sets the quantum variable q to the basis state

∣0⟩.

In QSI , initialization has two forms. When the variable q is a QBit, it is explained

as �q ∶= ∣0⟩�(ρ) = ∣0⟩ ⟨0∣ρ ∣0⟩ ⟨0∣ + ∣0⟩ ⟨1∣ρ ∣1⟩ ⟨0∣; otherwise, it is explained as �q ∶=

∣0⟩�(ρ) = ∑d
n=0 ∣0⟩ ⟨n∣ρ ∣n⟩ ⟨0∣, where d is the dimension of the quantum variable q.

Moreover, a more flexible initialization method is provided with the help of unitary

transformation.

Unitary evolution

⟨q̄ ∶= U[q̄], ρ⟩ → ⟨E, UρU �⟩
.

The statement “q̄ ∶= U[q̄]” means that the unitary gate U is performed on the

quantum register q̄ leaving other variables unchanged.
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A corresponding method called QuantumTypes⟨T ⟩ .UnitaryTrans(Matrix⟨T ⟩ other)

has been designed for QBit,Ket,DensityOperator⟨T ⟩ objects to perform this function.

This function accepts a unitary operator and performs the operator on the variable

with null returns. We have also provided a global function called

UnitaryGlobalTrans(QuantumType⟨T ⟩, Matrix⟨T ⟩)

that perform an arbitrary unitary matrix on quantum variables.

The quantum while-languages do not include any assignment claim for a pure state

because a unitary operator U exists for any pure state ∣ψ⟩ satisfies ∣ψ⟩ = U ∣0⟩.

Therefore, any pure state can be produced from a combination of an initialisation

clause and a unitary transformation clause. However, for convenience, QSI provides

a flexible state claim to initialise a QBit, or a Ket using a vector, and to initialise a

DensityOperator⟨T ⟩ using a positive matrix.

Sequential composition
⟨S1, ρ⟩ → ⟨S′1, ρ⟩

⟨S1;S2, ρ⟩ → ⟨S′1;S2, ρ′⟩
.

The current version of the quantum while-language is not designed for concurrent

programming. Thus sequential composition is spontaneous.

Case statement

⟨if(◻m ⋅M[q̄] = m → Sm)fi, ρ⟩ → ⟨Sm,MmρM �
m⟩

,

for each possible outcome m of measurement M = {Mm} .

The first step in executing of the case statement is performing a measurement M on

the quantum variable q̄ and observing the output result index. The corresponding

subprogram Sm is then chosen according to the index.

Case statements in QSI use an encapsulated function with the prototype

cif(QuantumTypes⟨T ⟩,MeasureMatrixSet,Func⟨T ⟩, Func⟨T ⟩ . . .)
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.

By default, the Func⟨T ⟩ sequence is a subprogram corresponding to a measurement

output index, i.e., the nth Func⟨T ⟩ corresponds to the nth measurement output

index. We have also considered cases where the user has not provided a subprogram

corresponding to every measurement output index. In these situations, QSI ’s strat-

egy is to automatically skip that clause if the outcome index exceeds the value of

Func⟨T ⟩. In fact, in this case, nothing needs to be done to the variables except for

a measurement.

Another difference between a classical and a quantum case statement is that quan-

tum case statement variables must be modified into the state corresponding the

measurement output index after performing a measurement. We call the function to

return the measurement result and go to the correct subprogram

intMeasu2ResultIndex(MeasureMatrixSet)

, which then inherently calls the voidStateChange(int) and changes the variable q̄

to the corresponding state after the measurement.

Loop statement

(L0)
⟨while(M[q̄] = 1)doS od, ρ⟩ → ⟨E,M0ρM

�
0⟩

,

(L1)
⟨while(M[q̄] = 1)doS od, ρ⟩ → ⟨S;while(M[q̄] = 1)doS od,M1ρM

�
1⟩

.

To implement this loop statement in QSI , we use an encapsulated function with the

prototype

cwhile(QuantumTypes⟨T ⟩,MeasureMatrixSet, int,Func⟨T ⟩)

This function accepts quantum types, a measurement, and an integer. Then, it

compares the measurement result with the given integer in the guard. If the guard

has a value of ‘1’, it enters into the loop body, otherwise it terminates. In addition,
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the state will have been changed after being measured in the guard. The function

intMeasu2ResultIndex(MeasureMatrixSet)

is called to return the guard index and go to the correct subprogram, then it inher-

ently calls the voidStateChange(int) as per the case statement.



Chapter 3

QSI Modules

3.1 Separation of Multipartite Quantum Gates

3.1.1 Introduction for Separability of Multipartite Quantum Gates

Along with the motivation to increase the number of accessible qubits in quantum hard-

ware, one approach is concurrent quantum programming. Although the recent quantum-

specific environments have only focussed on sequential structures, some researchers have

exploited the possibility of parallel or concurrent quantum programming in different ways.

For example, Vizzotto and Costa [25] applied mutually exclusive access to global vari-

ables for concurrent programming in Haskell to the case of concurrent quantum program-

ming. Yu and Ying [26]carefully studied the termination of concurrent programs. The

papers [27–30] provide mathematical tools for process algebras that describe interactions,

communication, and synchronisation.

The majority of this chapter is devoted to the separability of unitary gates, which plays an

important role in most programming languages as an access point to concurrent quantum

programming. When implementing parallel programs, the very first obstacle is to separate

multipartite quantum gates into the tensor products of local gates. If separation is possible,

a potential parallel execution will result naturally. Here, we provide the sufficient and

necessary conditions for the separability of multipartite gates. Unsurprisingly, multipartite

41
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quantum gates seldom exist that can be separated simply. However, we can confirm there

is always a separable gate close to a non-separable gate in certain approximate conditions.

Moreover, we show an approximate separable example in a 2-qubit system.

3.1.2 Theoretical Analysis of Quantum Gates Separation

In this analysis, let Hk be a separable complex Hilbert space of finite or infinite di-

mension and let ⊗n
k=1Hk the tensor product of Hks. Denote B(⊗n

k=1Hk),U(⊗n
k=1Hk) and

Bs(⊗
n
k=1Hk) as the set of all bounded linear operators, unitary operators and self-adjoint

operators on the underlying space ⊗n
k=1Hk.

In finite-dimensional cases, a correspondence exists from the unitary group to the space of

self-adjoint operators through the formula U = exp[itH]. However, in infinite dimensional

systems not all unitary gates can be expressed using the above formula. For this purposes

of this example, when a multipartite system has finite dimensions, let U be an arbitrary

unitary operator on a complex Hilbert space and let T be the unit circumference {exp[it] ∶

t ∈ [0,2π]}. As far as we know, the spectrum of U σ(U) ⊆ T. We write σ(U) = {exp[it] ∶

t ∈ Ω ⊆ [0,2π]. It follows that U has the spectral integral

U = ∫
t∈Ω

exp[it]dEt,

where {Et}t∈Ω is the set of spectral projections. Taking H = ∫t∈Ω tdEt, we have H as a

self-adjoint operator and we have U = exp iH. However, if H is a self-adjoint operator

with a spectral set of Δ, then H = ∫t∈Δ tdEt. Let

U = exp[iH] = ∫
t∈Ω

exp[it]dEt,

then U is a unitary operator.

Let U be a multipartite gate on the composite system ⊗n
k=1Hk. We say that U is separable

(local or decomposable) if there exist quantum gates Uk on Hk such that

U = ⊗n
k=1Uk . (3.1)
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Next, we estabilish the separability problem for multipartite gates as follows.

The Separability Problem: Consider the multipartite system ⊗n
k=1Hk. If U = exp[iH]

with H = ∑
NH
i=1 A

(1)
i ⊗ A

(2)
i ⊗ ... ⊗ A

(n)
i for a multipartite unitary gate U , do any unitary

operators Uk on Hk exist such that U = ⊗n
k=1Uk? Further, how does the structure of each

Uk depend on the exponents of A
(j)
k , i = 1,2, ..., n?

Remark 3.1. Note that when the dimension of ⊗n
k=1Hk is finite, every unitary gate U has

the form U = exp[iH] with H = ∑
NH
i=1 A

(1)
i ⊗ A

(2)
i ⊗ ... ⊗ A

(n)
i and NH < ∞. Generally

speaking, in the decomposition of H = ∑
NH
i=1 A

(1)
i ⊗A

(2)
i ⊗ ... ⊗A

(n)
i with NH < ∞, many

selections of the operator set {A
(j)
i }i,j (even A

(j)
i exist that may not be self-adjoint. Hence,

we call the self-adjoint decomposition of H if each A
(j)
i is self-adjoint). For an arbitrary

(self-adjoint or non-self-adjoint) decomposition of H = ∑
NH
i=1 B

(1)
i ⊗B

(2)
i ⊗ ...⊗B

(n)
i , there

exists a self-adjoint decomposition H = ∑
NH
i=1 A

(1)
i ⊗A

(2)
i ⊗ ...⊗A

(n)
i such that ([53])

span{B
(j)
1 ,B

(j)
2 , ...,B(j)

n } = span{A
(j)
1 ,A

(j)
2 , ...,A(j)

n } .

In the following, we always assume that H takes its self-adjoint decomposition.

To answer the separability question, we begin the discussion with a simple case of H: the

length NH = 1, i.e., H = A1 ⊗A2 ⊗ ...⊗An. Let us first deal with a case where n = 2.

Theorem 3.2. Let H1⊗H2 be an arbitrary dimensional bipartite system. For a quantum

gate U = exp[iH] ∈ U(H1 ⊗H2) with H = A⊗B, the following statements are equivalent:

(I) there exist unitary operators C,D such that U = C ⊗D;

(II) one of A,B belongs to RI, and there exist real scalars α,β such that either C =

exp[i(tA + αI)],D = I if B = tI, or D = exp[i(sB + βI)], C = I if A = sI.

Before the proof of Theorem 3.2, let us recall the following lemmas about separating

vectors in von Neumman algebras. Let A be a C∗-algebra on a Hilbert space H. We call

the vector ∣x0⟩ is a separating vector of A if T (∣x⟩) = 0 ⇒ T = 0 for all T ∈ A.

Lemma 3.3. [54] Every Abel C∗-algebra has separating vectors.

Proof of Theorem 3.2 (II)⇒ (I) is obvious. Next we show (I) ⇒ (II).
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For any unit vector ∣x⟩, ∣x′⟩ in the first system and ∣y⟩, ∣y′⟩ in the second system. It is

obvious that

U ∣xy⟩⟨x′y′∣ = exp[iA⊗B]∣xy⟩⟨x′y′∣

= ∣xy⟩⟨x′y′∣ + iA⊗B∣xy⟩⟨x′y′∣ −
A2 ⊗B2∣xy⟩⟨x′y′∣

2!
− ...

+ ik
Ak ⊗Bk∣xy⟩⟨x′y′∣

k!
+ ...

(3.2)

We also have the equation

U ∣xy⟩⟨x′y′∣ = C ⊗D∣xy⟩⟨x′y′∣. (3.3)

Connecting Eq. 3.2 and 3.3 and taking a partial trace of the second (first) system respec-

tively, we have

⟨y∣D∣y′⟩C ∣x⟩⟨x′∣ = ⟨y∣y′⟩∣x⟩⟨x′∣ + ⟨y∣B∣y′⟩A∣x⟩⟨x′∣

− ⟨y∣B2∣y′⟩
A2

2!
∣x⟩⟨x′∣ − ... + ik⟨y∣Bk∣y′⟩

Ak

k!
∣x⟩⟨x′∣ + ...

and

⟨x∣C ∣x′⟩D∣y⟩⟨y′∣ = ⟨x∣x′⟩∣y⟩⟨y′∣ + ⟨x∣A∣x′⟩B∣y⟩⟨y′∣

− ⟨x∣A2∣x′⟩
B2

2!
∣y⟩⟨y′∣ − ... + ik⟨x∣Ak∣x′⟩

Bk

k!
∣y⟩⟨y′∣ + ...

It follows from the arbitrariness of ∣x′⟩ and ∣y′⟩ that

⟨y∣D∣y′⟩C ∣x⟩ = ⟨y∣y′⟩I ∣x⟩ + ⟨y∣B∣y′⟩A∣x⟩

− ⟨y∣B2∣y′⟩
A2

2!
∣x⟩ − ... + ik⟨y∣Bk∣y′⟩

Ak

k!
∣x⟩ + ... (3.4)
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and

⟨x∣C ∣x′⟩D∣y⟩ = ⟨x∣x′⟩I ∣y⟩ + ⟨x∣A∣x′⟩B∣y⟩

− ⟨x∣A2∣x′⟩
B2

2!
∣y⟩ − ... + ik⟨x∣Ak∣x′⟩

Bk

k!
∣y⟩ + ... (3.5)

Next, we divide the three cases to complete the proof.

Case 1. B = tI. Taking y′ = y in Eq. 3.4, we have

⟨y∣D∣y′⟩C ∣x⟩ = I ∣x⟩ +A∣x⟩ − t2
A2

2!
∣x⟩ − ... + iktk

Ak

k!
∣x⟩ + ... = exp[itA]∣x⟩ .

Note that C and exp[itA] are unitary, so C = exp[iα] exp[itA] = exp[i(tA+αI)]. It follows

that U = exp[i(tA + αI)] ⊗ I.

Case 2. A = sI. Similar to Case 1, we have D = exp[iβ] exp[isB] = exp[i(sB + βI)] for

some B. It follows that U = exp[i(sB + βI)] ⊗ I.

Case 3. A,B ∉ RI. In this case, a contradiction is induced, so that Case 3 may not

happen. Dividing the following two subcases, have

Subcase 3.1. Either dim H1⊗H2 < ∞, or dim H1⊗H2 = ∞ but both A and B have two

distinct eigenvalues. It follows that there exist two different real numbers t1, t2 such that

A∣x1⟩ = t1∣x1⟩ and A∣x2⟩ = t2∣x2⟩, and s1 ≠ s2 such that B∣y1⟩ = s1∣y1⟩ and B∣y2⟩ = s2∣y2⟩.

Taking ∣x⟩ = ∣x′⟩ = ∣x1⟩ and ∣x⟩ = ∣x′⟩ = ∣x2⟩ in Eq. 3.5 respectively, and ∣y⟩ = ∣y′⟩ = ∣y1⟩ and

∣y⟩ = ∣y′⟩ = ∣y2⟩ in Eq. 3.4 respectively, we have that

⟨x1∣C ∣x1⟩D = exp[t1B], ⟨x2∣C ∣x2⟩D = exp[t2B] ,

⟨y1∣D∣y1⟩C = exp[s1A], ⟨y2∣D∣y2⟩C = exp[s2A] .

It follows that

⟨x1∣C ∣x1⟩ =
exp[s1t1]

⟨y1∣D∣y1⟩
, ⟨x2∣C ∣x2⟩ =

exp[s1t2]

⟨y1∣D∣y1⟩
.
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So
⟨y1∣D∣y1⟩ exp[t1B]

exp[s1t1]
= D =

⟨y1∣D∣y1⟩ exp[t2B]

exp[s1t2]
.

Taking the inner product for ∣y2⟩ on both sides of the above equation, we have

exp[t1s2]

exp[t1s1]
=
exp[t2s2]

exp[t2s1]
.

It follows that exp[t1s2 − t1s1] = exp[t2s2 − t2s1], i.e., t1 = t2. This is a contradiction.

Subcase 3.2. When Subcase 3.1 does not happen, since A,B ∉ RI, then A or B

has the continuous spectrum set. Assume that A has the continuous spectrum set, sim-

ilarly we can deal with the case when B has the continuous spectrum set. Let A =

cl span{I,A,A2, ...,An, ...} be an Abelian C∗-algebra. By Lemma 3.3 , it has a separating

vector ∣x0⟩. Replacing ∣x⟩ with ∣x0⟩ and taking vectors the ∣y⟩, ∣y′⟩ satisfies ⟨y∣D∣y′⟩ = 0.

Then,

0 = ⟨y∣D∣y′⟩C ∣x0⟩

= ⟨y∣y′⟩I ∣x0⟩ + ⟨y∣B∣y′⟩A∣x0⟩ − ⟨y∣B2∣y′⟩
A2

2!
∣x0⟩ − ... + ik⟨y∣Bk∣y′⟩

Ak

k!
∣x0⟩ + ...

= (∑
k

λkA
k)∣x0⟩

(3.6)

where λk =
ik⟨y∣Bk

∣y′⟩
k! . It follows from the definition of separating vectors that ∑k λkA

k = 0.

Next we first show that each λk = 0. For any fixed ∣y⟩, ∣y′⟩, note that the function f(z) =

∑k λkz
k is analytic. Since f(A) = 0, the spectrum set of f(A) σ(f(A)) contains the unique

element 0, i.e.,

{0} = σ(f(A)) = {f(λ)∣λ ∈ σ(A)}.

Note that A has the continuous spectrum set. So the analytic function f(z) is zero. Then

each λk = 0. It follows that

⟨y∣Bk∣y′⟩ = 0, k = 0,1,2, ..., n, ...

for any vectors ∣y⟩, ∣y′⟩ satisfying ⟨y∣D∣y′⟩ = 0. When k = 0, we have ⟨y∣D∣y′⟩ = 0 ⇒ ⟨y∣y′⟩ = 0

for any vector ∣y⟩, ∣y′⟩. Thus D ∈ RI. When k = 1, we have that ⟨y∣D∣y′⟩ = 0 ⇒ ⟨y∣B∣y′⟩ = 0
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for any vector ∣y⟩, ∣y′⟩. ThenD,B is linearly dependent. SoB ∈ RI, which is a contradiction

to Case 3.

This completes the proof. ◻

When the bipartite system has finite dimensions, the following corollary applies.

Corollary 3.4. Assume that dim (H1 ⊗ H2) < ∞. For a bipartite quantum gate U =

exp[iH] ∈ U(H1⊗H2) with H = A⊗B, U is separable if and only if one of A,B belongs to

RI, and there exist real scalars α,β such that either C = exp[i(tA + αI)],D = I if B = tI,

or D = exp[i(sB + βI)], C = I if A = sI.

Next, we extend the result for Theorem 3.2 to a multipartite case. Before introducing the

claim, some notations are required. Let Ai be self-adjoint operators on Hi, i = 1,2, ..., n

such thatH = A1⊗A2⊗...⊗An. If there exists at most one element in the set {A1,A2, ...,An}

which does not belong to the set RI, we define a scalar

δ(Aj) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∏k≠j λk, (Aj ∉ RI)

0, (Aj ∈ RI)

(3.7)

where Ak = λkI when Ak ∈ RI.

Based on Theorem 3.2, we reach the following conclusion in the multipartite case.

Theorem 3.5. Let ⊗n
i=1Hi be the arbitrary dimensional multipartite system. For a multi-

partite quantum gate U = exp[iH] ∈ U(⊗n
i=1Hi) with H = A1 ⊗A2 ⊗ ...⊗An, the following

statements are equivalent:

(I) there exist unitary operators Ci ∈ U(Hi) (i = 1,2, ..., n) such that U = ⊗n
i=1Ci;

(II) there exist at most one element in {Ai}
n
i=1 not belong to RI, and there is a number

of unit modulus number λ such that

U = λ⊗n
j=1 exp[iδ(Aj)Aj]. (3.8)

Proof. (II) ⇒ (I) is obvious. To prove (I) ⇒ (II), we use induction on n.
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According to Theorem 3.2, (I) ⇒ (II) holds true for n = 2. Assume that the implication is

true for n = k. Now let n = k + 1. We have

exp[iA1 ⊗A2 ⊗ ...⊗Ak+1] = exp[iH] = C1 ⊗C2 ⊗ ...⊗Ck ⊗Ck+1 = T ⊗Ck+1 .

It follows from Theorem 3.2 that either Ak+1 ∈ RI or A1 ⊗A2 ⊗ ...⊗Ak ∈ RI. If A1 ⊗A2 ⊗

... ⊗ Ak ∈ RI, then each Ai belongs to RI. According to the induction assumption, (II)

holds true. If Ak+1 ∈ RI, assume that Ak+1 = wI, then

exp[iH] = exp[iwA1 ⊗A2 ⊗ ...⊗Ak] ⊗ I = C1 ⊗C2 ⊗ ...⊗Ck ⊗ I.

It follows from the induction assumption that (II) holds true. Eq. 3.8 is obtained by

repeating uses of (II) in Theorem 3.2. This completes the proof. ◻

Similarly, in the finite dimensional case, we have the following corollary.

Corollary 3.6. Assume that dim(⊗n
i=1Hi) < ∞. For a multipartite quantum gate U =

exp[iH] ∈ U(⊗n
i=1Hi) with H = A1⊗A2⊗ ...⊗An, U is separable if and only if there exist at

most one element in {Ai}
n
i=1 that does not belong to RI, and there is a unit-model number

λ such that

U = λ⊗n
j=1 exp[δ(Aj)Aj].

Next we turn to a general case of H: 1 < NH < ∞.

Before the main results, an important tools needs to be introduced. The Zassenhaus

formula [55] states that

exp[A +B] = exp[A] exp[B]Pz(A,B) , (3.9)

where Pz(A,B) = Π∞

i=2 exp[Ci(A,B)] and each a term Ci(A,B) is a homogeneous Lie

polynomial in the variables A,B. That is, Ci(A,B) is a linear combination (with rational

coefficients) of the commutators in the form [V1...[V2, ..., [Vm−1, Vm]...]] with Vi ∈ {A,B}

([55, 56]). Especially, C2(A,B) = −1
2[A,B] and C3(A,B) = 1

3[B, [A,B]]+ 1
6[A, [A,B]]. As

shown, if Π∞

i=2 exp[Ci(A,B)] is a multiple of the identity, exp[A] exp[B] = λ exp[A +B].

However, when AB = BA, Π∞

i=2 exp[Ci(A,B)] ∈ CI, what happens in a multi-variable
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case? We have

exp[
N

∑
i=1

Ai] =
N

∏
i=1

exp[Ai]Pz(AN−1,AN) ⋅ Pz(AN−2,AN−1 +AN)...Pz(A1,
N

∑
j=2

Aj)

=
N

∏
i=1

exp[Ai]
N

∏
k=1

Pz(Ak,
N

∑
j=k+1

Aj).

(3.10)

Assume that a multipartite quantum gate U = exp[−itH] with H = ∑
NH
i=1 Ti = ∑

NH
i=1 A

(1)
i ⊗

A
(2)
i ⊗ ...⊗A

(n)
i . If there exists at most one element in each set {A

(1)
i ,A

(2)
i , ...,A

(n)
i } that

does not belong to the set RI, we define the function:

δ(A
(i)
k ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∏k≠i λ
(k)
j , (A

(i)
j ∉ RI)

0, (A
(i)
j ∈ RI)

(3.11)

where A
(k)
j = λ

(k)
j I if A

(k)
j ∈ RI.

Theorem 3.7. For a multipartite quantum gate U ∈ U(⊗n
k=1Hk), if U = exp[−itH] with

H = ∑
NH
i=1 Ti = ∑

NH
i=1 A

(1)
i ⊗A

(2)
i ⊗...⊗A

(n)
i and each A

(j)
i has two eigenvalues at least for any

i, j, the product of homogeneous Lie polynomials in Eq. 3.10 ∏N
k=1Pz(Tk,∑

N
j=k+1 Tj) ∈ CI

and there exists at most one element in each set {A
(1)
i ,A

(2)
i , ...,A

(n)
i } that does not belong

to the set RI, then

U = U (1) ⊗U (2) ⊗ ...⊗U (n) , (3.12)

where U (i) is the local quantum gate on Hi,

U (i) =
NH

∏
k=1

exp[itδ(A
(i)
k )A

(i)
k ] ,

where δ
(i)
k is defined by Eq. 3.11.

Remark 3.8. In Theorem 3.7, we provided a sufficient condition for the separability of

a multipartite gate. However, this condition is not easy to check since the product of

homogeneous Lie polynomials in Eq. 3.10 ∏N
k=1Pz(Tk,∑

N
j=k+1 Tj) is complex and difficult

to calculate. We observe that if [Tk, Tl] ∈ CI for any pair k, l, then ∏N
k=1Pz(Tk,∑

N
j=k+1 Tj) ∈

CI. To make this easier to check, if [Tk, Tl] ∈ CI and there exists at most one element in

{A
(1)
i ,A

(2)
i , ...,A

(n)
i } that does not belong to the set RI, then U has the tensor product
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decomposition in Eq 3.12. Impressively, in the finite-dimensional case, if [Tk, Tl] ∈ CI,

[Tk, Tl] has to be zero. Moreover, when the system is of finite-dimension, the condition

“each U
(j)
i has two eigenvalues at least for any i, j” can be omitted.

Proof of Theorem 3.7 Let U ∈ U(⊗n
k=1Hk), U = exp[−itH], and H = ∑

NH
i=1 Ti =

∑
NH
i=1 A

(1)
i ⊗A

(2)
i ⊗ ...⊗A

(n)
i .

Let us first observe that for any real number r, exp[rT ] = (exp[T ])r. Further, exp[rT⊗S] =

exp[rT ]⊗exp[rS] if exp[T⊗S] = exp[T ]⊗exp[S]. Indeed, for an arbitrary positive integer

N , it follows from Baker’s formula that exp[NT ] = (exp[T ])N . In addition, exp[T ] =

exp[ T
M ⋅M], so exp[ T

M ] = (exp[T ])
1
M . In summary, for any rational number a, exp[aT ] =

(exp[T ])a, so does any real number.

According to the assumption and the definition of δ
(i)
j , when writing

N

∏
k=1

Pz(Tk,
N

∑
j=k+1

Tj) = λI ,

it follows from Theorem 3.5 that

U = exp[itH]

= exp[it(
NH

∑
i=1

Ti)]

=
NH

∏
i=1

exp[itTi]
N

∏
k=1

Pz(Tk,
N

∑
j=k+1

Tj)

= λ
NH

∏
i=1

exp[itTi]

= λ
NH

∏
i=1

exp[itA
(1)
i ⊗A

(2)
i ⊗ ...⊗A

(n)
i ]

= λ
NH

∏
k=1

exp[itδ
(1)
k A

(1)
k ] ⊗

NH

∏
k=1

exp[itδ
(2)
k A

(2)
k ] ⊗ ...⊗

NH

∏
k=1

exp[itδ
(n)
k A

(n)
k ] .

Absorbing the unit mode scalar λ, let U (i) = ∏
NH

k=1 exp[itδ
(i)
k A

(i)
k ]. This completes the

proof. ◻

Some examples of separable gates follow.
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Here, we assume that the Planck constant equals to 1 and denote σX , σY and σZ as the

Pauli matrices
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

⎛
⎜
⎝

0 −i

i 0

⎞
⎟
⎠

⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠
.

Example 3.1. In the 2-qubit composite spin-1
2 system, the total spin operator S2 is defined

by S2 = S2
X + S2

Y + S2
Z , where

SX = σX ⊗ I + I ⊗ σX ,

SY = σY ⊗ I + I ⊗ σY ,

SZ = σZ ⊗ I + I ⊗ σZ .

The three operators SX , SY , SZ assign the X,Y,Z components of the spin to the composite

system respectively.

Considering the Hamiltonian HX = I ⊗ σX + σX ⊗ I and since HX satisfies the separation

conditions in Theorem 3.5, we can decompose the X-spin quantum gate by applying the

Eq. 3.12 as follows:

UX = exp[−itHX]

= exp[−itI ⊗ σX − itσX ⊗ I]

= exp[iδ
(1)
1 I] exp[iδ

(1)
2 σX] ⊗ exp[iδ

(2)
1 σX] exp[iδ

(2)
2 I] .

It follows from the definition of δ
(i)
j that δ

(1)
1 = 0, δ

(1)
2 = −t, δ

(2)
1 = −t and δ

(2)
2 = 0. Thus,

we have

UX = exp[−itHX] = exp[−itσX] ⊗ exp[−itσX] .

Similarly, we have

UY = exp[−itHY ] = exp[−itσY ] ⊗ exp[−itσY ] .

UZ = exp[−itHZ] = exp[−itσZ] ⊗ exp[−itσZ] .

Generally, we have

UA,B = exp[−itHA,B] = exp[−itσA] ⊗ exp[−itσB] ,
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where HA,B = A⊗ I + I ⊗B.

Further, let us consider the so-called special 7-parameter Hamiltonian introduced in [57],

where

H =
4

∑
i=1

(aiσi ⊗ I + I ⊗ biσi) ,

with a0 + b0 = tr(H) (i.e., with seven not eight parameters). We rewrite H = (∑4
i=1 aiσi) ⊗

I + I ⊗ (∑4
i=1 biσi).

U = exp[−itH] = exp[−it(
4

∑
i=1

aiσi)] ⊗ exp[−it(
4

∑
i=1

biσi)].

Example 3.2. In the bipartite continuous variable system HA ⊗ HB, let (x̂, p̂) be the

pair of the position and momentum operators on the system HA. For any real numbers

r1, r2, s1, s2, and H = (r1x̂ + s1p̂) ⊗ I + (r2x̂ + s2p̂) ⊗ I. Since

[r1x̂ + s1p̂, r2x̂ + s2p̂] = −ih̵(r1s2 + r2s1)I,

So H satisfies the separation conditions of Theorem 3.5 (see Remark 3.8). It follows that

U = exp[iH]

= exp[−i
h̵(r1s2 + r2s1)

2
] exp[i(r1x̂ + s1p̂)] ⊗ exp[i(r2x̂ + s2p̂)]

= exp[−i
h̵(r1s2 + r2s1)

2
] exp[−i

h̵r1s1
2

] exp[ir1x̂] exp[is1p̂)]

⊗ exp[−i
h̵r2s2
2

] exp[ir2x̂] exp[is2p̂)]

= exp[−i
h̵(r1s2 + r2s1 + r1s1 + r2s2)

2
] exp[ir1x̂] exp[is1p̂)] ⊗ exp[ir2x̂] exp[is2p̂)] .

3.1.3 Approximate Separation of Multipartite Gates

In this section, we turn to the approximate separation problem with multipartite gates.
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ε-approximate separation question Given a positive scalar ε and a multipartite quan-

tum gate U ∈ U(⊗n
k=1Hk), whether or not there are local gates Ui ∈ U(Hi) such that

d(U,⊗n
i=1Ui) < ε, (3.13)

where d(⋅, ⋅) is a distance of two operators. We consider U to be ε-approximate separable

if Eq. 3.13 holds true. Further, the way to search these local gates Ui.

Remark 3.9. Note that the set of tensor products of local unitary gates Ul = {⊗n
i=1Ui∣Ui ∈

U(Hi)} is closed, it follows that d(U,Ul) = ε0 > 0 when U is not separable. So Eq. 3.13

holds true only if ε is greater then ε0. So ε can not be chosen freely.

In the following theorem, we provide an upper bound for the distance between an arbitrary

unitary operator and a separable one.

Theorem 3.10. Let U = exp[itH] ∈ U(⊗n
k=1Hk) be a multipartite quantum gate with H

and Ui = exp[itHi] ∈ U(Hi) with Hi ∈ Bs(Hi). Then

(I)

∥U −⊗n
i=1Ui∥ ≤ M∥H −∑

i

Ĥi∥, (3.14)

where Ĥi = I1 ⊗ I2 ⊗ . . . Ii−1 ⊗ Hi ⊗ Ii+1 ⊗ . . . In, Ij is the identity on Hj, M =

∣t∣∥ exp[−it∑n
i=1 Ĥi]∥∥ exp[−itH]∥ and ∥ ⋅ ∥ denotes an arbitrary norm of operators.

(II) If the norm is chosen as the operator norm, then

∥U − ⊗n
i=1Ui∥o ≤ ∣t∣∥H −∑

i

Ĥi∥o. (3.15)

Remark 3.11. The norm ∥ ⋅ ∥ in Eq. 3.14 can be selected freely. For example in Eq. 3.14,

when we choose the operator norm ∥ ⋅ ∥o defined by ∥A∥o = supx
∥Ax∥
∥x∥ , then M = ∣t∣, since

∥ exp[−it∑n
i=1 Ĥi]∥o = 1 = ∥ exp[−itH]∥o. So Eq. 3.14 can be simplified as Eq. 3.15. In the

finite-dimensional case, the norm ∥ ⋅ ∥ can be selected as arbitrary matrix norm, including

the trace norm and Hilbert-Schmidt norm.

Before the proof of Theorem 3.10, we need the following lemmas. The first lemma is

obvious from Theorem 3.5.
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Lemma 3.12. For self-adjoint operators Ais, ⊗n
i=1 exp[−itAi] = exp[∑n

i=1(−itÂi)], where

Âi = I1 ⊗ I2 ⊗ . . . Ii−1 ⊗Ai ⊗ Ii+1 ⊗ . . . In.

Lemma 3.13. ([58]) exp[A +B] − exp[A] = ∫
1
0 exp[(1 − t)A]B exp[t(A +B)]dt.

Proof of Theorem 3.2 According to the assumption, it follows from Lemma 3.12 and

Lemma 3.13 that

∥U − ⊗n
i=1Ui∥ = ∥ exp[−itH] − ⊗n

i=1 exp[−itHi]∥

= ∥ exp[−itH] − exp[
n

∑
i=1

(−itĤi)]∥

= ∥∫
1

0
dx exp[(1 − x)(−itĤi)](−itH −

n

∑
i=1

(−itĤi)) exp[x(−itH)]∥

≤ ∥ exp[−itĤi]∥∥ − itH −
n

∑
i=1

(−itĤi)∥∥ exp[−itH]∥

= ∣t∣∥ exp[−it
n

∑
i=1

Ĥi]∥∥H −
n

∑
i=1

Ĥi∥∥ exp[−itH]∥.

Let M = ∣t∣∥ exp[−it∑n
i=1 Ĥi]∥∥ exp[−itH]∥, we complete the proof. ◻

The next task is to design an operational program for approximate separation of a multi-

partite quantum gate.

To arrive at the approximate separation for a given approximate bound ε and a multipartite

gate U = exp[itH] ∈ U(⊗n
k=1Hk), we find self-adjoint operators Ĥi such that in Eq. 3.14,

∥H −∑
i

Ĥi∥ <
ε

M
, (3.16)

so Eq. 3.13 holds true.

We take the real variable set as {a
(i)
ki

}Ni

ki=1
with Ni = dim(Hi) ≤ +∞, i = 1,2, ..., n, where

each a
(i)
ki

is unknown. Let

Λi = diag{a
(i)
ki

}Ni

ki=1
.
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Note that Ĥi in Theorem 3.10 will belong to the following local unitary orbit:

U local = {I ⊗ (Uidiag(Λi)U
∗

i ) ⊗ I ∶ ∀ Ui ∈ U(Hi)}.

So ∑i Ĥi will be in

U local(∑
i

Ĥi) = {∑
i

I ⊗ (Uidiag(Λi)U
∗

i ) ⊗ I ∶ ∀ Ui ∈ U(Hi)}.

Thus, Eq. 3.16 is equivalent to

d(H,U local(∑
i

Ĥi)) <
ε

M
. (3.17)

In summary, the following sequential approach is designed to arrive at approximate sepa-

ration.

For a given multipartite gate U = exp[itH] ∈ U(⊗n
k=1Hk) and the bound ε:

1. Assume the real variable set {a
(i)
ki

}Ni

ki=1
, and select the available norm for the distance

is d(H,U local(∑i Ĥi));

2. Design a program to calculate the minimal value:

inf d(H,U local(∑
i

Ĥi));

3. When m < ε/M , estabilish the corresponding the parameters of Λi and the local

unitary operators Uis. Therefore, we obtain each Hi, and the local gates Ui =

exp[−itHi].

3.1.4 Approximate Separation in a 2-qubit 1
2-spin System

Example 3.3. In a 2-qubit 1
2 -spin system, an arbitrary quantum gate U = exp[itH] with

a 4 × 4 Hermitian matrix H. Let d(A,B) = ∥A −B∥o. Assume a 2×2 real diagonal matrix

Λ1 = diag(r1, r2) and Λ2 = diag(s1, s2). To calculate the distance, use

d(H,U local(Λ1 ⊗ I2 + I1 ⊗Λ2)) = sup
U1,U2

∥H −U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 ∥o , (3.18)



56 Chapter 3. QSI Modules

where U1, U2 run through all 2 × 2 unitary matrices.

∥H − (U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 )∥o = λmax(H − (U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 ))

(3.19)

where λmax(A) denotes the maximal eigenvalue of
√
AA∗.

Taking a simple example. Let ε0 > 0 and U = exp[−itHX] with HX = σX ⊗ σX , where

σX =
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠
. From Theorem 3.2, U can not be separated directly. In the following

discussion, we take an technique for Eq 3.18.

∥HX − (U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 )∥o

≤ ∥
1

2
HX −U1Λ1U

∗

1 ⊗ I2∥o + ∥
1

2
HX − I1 ⊗U2Λ2U

∗

2 ∥o .
(3.20)

The following explanations dealing with each of the four cases separately. To simplified the

cases, we have chosen U1, U2 as the real orthogonal matrices with the parameters θ1, θ2.

Case 1. U1, U2 are all symplectic. An element T in the local unitary orbit U local(Λ1⊗I2)

have the following form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r1 cos
2 θ1 + r2 sin

2 θ1 0 (r2 − r1) cos θ1 sin θ1 0

0 r1 cos
2 θ1 + r2 sin

2 θ1 0 (r2 − r1) cos θ1 sin θ1

(r2 − r1) cos θ1 sin θ1 0 r1 sin
2 θ1 + r2 cos

2 θ1 0

0 (r2 − r1) cos θ1 sin θ1 0 r1 sin
2 θ1 + r2 cos

2 θ1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

So

∥
1

2
HX −U1Λ1U

∗

1 ⊗ I2∥o =
1

2
(r1 + r2 ±

√
(r1 + r2)2 cos2 2θ1 + ((r2 − r1) sin 2θ1 ± 1)2 .

Similarly, an element in the local unitary orbit U local(I1 ⊗Λ2) has the following form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1 cos
2 θ2 + s2 sin

2 θ2 (s2 − s1) cos θ2 sin θ2 0 0

(s2 − s1) cos θ2 sin θ2 s1 sin
2 θ2 + s2 cos

2 θ2 0 0

0 0 s1 cos
2 θ2 + s2 sin

2 θ2 (s2 − s1) cos θ2 sin θ2

0 0 (s2 − s1) cos θ2 sin θ2 s1 sin
2 θ2 + s2 cos

2 θ2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



Chapter 3. QSI Modules 57

So

∥
1

2
HX −U1Λ1U

∗

1 ⊗ I2∥o =
1

2
(s1 + s2 ±

√
(s1 + s2)2 cos2 2θ2 + ((s2 − s1) sin 2θ2 ± 1)2.

It follows that

∥HX −U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 ∥o

≤
1

2
(r1 + r2 ±

√
(r1 + r2)2 cos2 2θ1 + ((r2 − r1) sin 2θ1 ± 1)2

+
1

2
(s1 + s2 ±

√
(s1 + s2)2 cos2 2θ2 + ((s2 − s1) sin 2θ2 ± 1)2

=B1(r1, r2, s1, s2, θ1, θ2).

Case 2. U1 is symplectic but U2 is not. Similar to the ideal to deal solution in Case 1,

we have

∥HX −U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 ∥o

≤
1

2
(r1 + r2 ±

√
(r1 + r2)2 cos2 2θ1 + ((r2 − r1) sin 2θ1 ± 1)2

+
1

2
(s1 − s2 cos 2θ2 ±

√
(s1 + s2)2 cos2 2θ2 + ((s2 − s1) sin 2θ2 ± 1)2

= B2(r1, r2, s1, s2, θ1, θ2).

Case 3. U2 is symplectic but U1 is not. Similar to the ideal solution in Case 1, we have

∥HX −U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 ∥o

≤
1

2
(r1 − r2 cos 2θ1 ±

√
(r1 + r2)2 cos2 2θ1 + ((r2 − r1) sin 2θ1 ± 1)2

+
1

2
(s1 + s2 ±

√
(s1 + s2)2 cos2 2θ2 + ((s2 − s1) sin 2θ2 ± 1)2

= B3(r1, r2, s1, s2, θ1, θ2).
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Case 4. U1, U2 are not symplectic. Similar to the ideal solution in Case 1, we have

∥HX −U1Λ1U
∗

1 ⊗ I2 + I1 ⊗U2Λ2U
∗

2 ∥o

≤
1

2
(r1 + r2 ±

√
(r1 + r2)2 cos2 2θ1 + ((r2 − r1) sin 2θ1 ± 1)2

+
1

2
(s1 + s2 ±

√
(s1 + s2)2 cos2 2θ2 + ((s2 − s1) sin 2θ2 ± 1)2

= B4(r1, r2, s1, s2, θ1, θ2).

Thus, we have the following conclusion.

Proposition 3.14. Let ε0 > 0 and U = exp[itσX ⊗ σX] on HA ⊗HB. Then there exists a

UA, UB on HA,HB such that ∥U −UA ⊗UB∥o < ε0 if

max
j

Bj(r1, r2, s1, s2, θ1, θ2) <
ε0
∣t∣

.

3.1.5 Conclusion and Discussion

In Section 3.1.2, we established a number of evaluation criteria for the separability of

multipartite gates. These criteria demonstrate that all A except one A ∈ {Ai}
n
i=1 should

belong to RI to be able to separate multipartite gate U where H = A1 ⊗ A2 ⊗ . . . ⊗ An

and U = exp[iH]. As shown in Theorem 3.5, a random chosen multipartite gate cannot

fundamentally satisfy this separability condition. We devoted Section 3.1.3 to the existence

of the infimum of the gap between U and a local gate Ui and illustrated the search algorithm

approaching to the given unitary using local gates. Moreover, as shown in the examples,

a 2-qubit composite spin-12 system is a very practical tool for checking the criteria.

This work directly suggests that there are very few quantum computational tasks (quantum

circuits) that can be automatically parallelised. Concurrent quantum programming and

parallel quantum programming still needs to be researched for a greater understanding of

quantum-specific features concerning the separability of quantum states, local operations,

classical communication and even quantum networks.
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3.2 Fast Permutation and its Application in Compiler Mod-

ule

3.2.1 Introduction for Permutation

Permutation is a necessary aspect of designing a practical quantum compiler and quantum

simulator, especially in multi-qubit scenarios. Permutations greatly influence the execu-

tion of the system in terms of both usability and reliability. In this section, we explore

permutation and propose two permutation algorithms. The first is trivial, relying only

on a permutation matrix that is completely described through permutations of its basis.

Further, the matrix is used to transfer the original state matrix. The second is a special

case of the first algorithm, where each term is treated as a combination of bases. Once

all the relationships between the original basis and the new basis have been identified, the

algorithm prevents a large permutation matrix from being stored.

As we have already introduced the QSI framework and its assumption, we will not repeat

them here. The assumptions for the permutation module are the same. The following

example demonstrates one permutation scenario with the QSI platform with multi-qubit

operations.

Consider three subsystems, q1, q2, q3 ∈ H1
2 ⊗H2

2 ⊗H3
2, where H2 is a 2-dimensional Hilbert

space as defined in Section 3.1.1, a code segment like:

U (q1,q3);

The code means U ∈ H1
2 ⊗H3

2. Both the simulator and compiler usually require U ′ which

is the corresponding impact of U on the whole system. A trivial algorithm is that U ⊗ I

for the whole system and a permutation is only performed on the last step to result in

‘correct’ order. For example, for the code segment U (q1, q3), we have U ′ = U13⊗I22 where

I22 ∈ H2
2. Then U

′123 = P 132−>123(U
′132) where P 132−>123 is a permutation matrix.

In most case, we need to convert the unordered system into an ordered system. Let the

ordered system is H1,H2,H3 . . . and denote P 132−>123 to P 132 by default.
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3.2.2 General Algorithm for Permutation

A trivial algorithm for finding a permutation matrix P finds the basis transformation.

The basic idea is that all transformations can be written as a matrix when the base of the

transformation are fixed. The transformation of the matrix can be completely described

by the transformation of basis. Thus, the description of the basis transformation could

substitute the matrix as P .

The permutation matrix can be constructed using the following steps,

1. Define the set of standard orthogonal bases S = {∣v1⟩ , ∣v2⟩ , . . . , ∣vn⟩}.

2. Describe the transformation of the relationship between the basis of the target system

and the defined basis. For example, for P 312 ∈ H1⊗H2⊗H3, the transformation can

be describe as ∣v1⟩ → ∣v3⟩, ∣v2⟩ → ∣v1⟩ , ∣v3⟩ → ∣v2⟩.

3. Finally, the permutation matrix can be written as P 312 = ∣v3⟩ ⟨v1∣+ ∣v1⟩ ⟨v2∣+ ∣v2⟩ ⟨v3∣.

A few of conclusions can be made from these steps:

1. In general, the permutation matrix is a sparse matrix. There is always a position

taken by 1 in every column or row when standard bases are used. That means storing

matrix is a low efficiency use of the computer’s memory. Also, the permutation ma-

trix is sometimes enormous, i.e., with m systems, of n dimensions, the permutation

would be a nm × nm sparse matrix.

2. The permutation matrix is an elementary column transformation if we choose a

standard orthogonal basis. This provides insight that the target matrix U could be

adjusted directly without P .

3. The permutation process needs to be completely described as the basis whether or

not changes are taken into consideration. In any large dimensional system, this

would lead to an effortless step.

3.2.3 A Fast Permutation Algorithm Based on Fixed and Ordered Basis

Writing any matrix that represents a transformation implies the bases are fixed and or-

dered.
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A fast permutation algorithm can be simply based on the basis transformation rather than

generating the permutation matrix itself, thus saving space for the sparse matrix.

Suppose there is a pure quantum state v in H8, and thus the implication bases are

{∣1⟩ , ∣2⟩ , . . . , ∣8⟩}, i.e., v = a1 ∣1⟩ + a2 ∣2⟩ + . . . + a8 ∣8⟩. For convenience, we also suppose

the current system in the memory where the unitary gate U works is H1
2 ⊗H2

2 ⊗H3
2, the

state vector v123 = a1 ∣000⟩ + a2 ∣001⟩ + . . . + a8 ∣111⟩, i.e., v = ∑
i,j,k=1
i,j,k=0 aijk ∣ijk⟩.

Assuming the permutation matrix converted P 312 to ∣ijk⟩ → ∣kij⟩, then v312 = a1 ∣000⟩ +

a2 ∣100⟩ + a3 ∣001⟩ + a4 ∣101⟩ + a5 ∣010⟩ + a6 ∣110⟩ + a7 ∣011⟩ + a8 ∣111⟩. As the matrix basis

are often fixed and ordered by standard basis, the state v can be written with v123 =

a1 ∣000⟩ + a3 ∣001⟩ + a5 ∣010⟩ + a7 ∣011⟩ + a2 ∣100⟩ + a4 ∣101⟩ + a6 ∣110⟩ + a8 ∣111⟩, i.e., v can be

written as v = {a1, a3, a5, a7, a2, a4, a6, a8} with the standard basis. The transformation

steps follow,

1. Find a set of ordered standard orthogonal bases . Express each item as a vector or

a matrix using this basis, i.e., A = ∑ij⟨i∣A∣j⟩ ∣i⟩ ⟨j∣.

2. Following to the permutation requirement P , a new basis should be constructed and

the relationship ∣i⟩ → ∣i′⟩ will be stored.

3. Adjust the system into the formal order and find the coefficient ⟨i∣A∣j⟩ for each term.

Compared to a general permutation algorithm, we directly adjust the position of elements

for each term to avoid using n2m auxiliary space, where m is the number of systems and

n is the dimension of each system for storing for permutation matrix. In fact, as previ-

ously mentioned, the permutation matrix is a kind of elementary column transformation,

where the fast algorithm considers the order of the bases rather than the matrix. In a

2-dimensional (qubit) system (dim(H1) = dim(H2) = . . . = dim(Hn) = 2), we may find that

the binary expression of the basis is just the system combination, e.g., in 3-qubit systems,

∣1⟩ might be coded as ∣000⟩, ∣2⟩ might be coded as ∣001⟩ and so on. Every position is

enough for one system and thus, the basis transfer would be expressed as a byte transfer.

Moreover, in classical computation systems, the binary computation is always faster than

other operations.



62 Chapter 3. QSI Modules

3.3 Termination Analysis Module

3.3.1 Introduction for Termination Module

Termination analysis is an essential part in programming – especially quantum program-

ming. Measurement, entanglement, and even superposition are the foundations of bizarre

behaviour in quantum programs. In any practical system with a loop structure, termina-

tion information is always useful that the compiler with explanation type may work on

infinite steps in executing quantum programs. Even if termination analysis despiting the

input state, it can provide an indication of the general termination scenarios in a quantum

program. Hence, in this section, we review the definitions and theorems of quantum ter-

mination, followed by the two algorithms we developed for analysing termination. Lastly,

we provide an example of termination – Qloop – to display the efficiency of the algorithms.

3.3.2 Definitions and Theorems

A general quantum loop can be shorten to the form,

while(M[q̄] ∈ X){q̄ = E(q̄);} ,

where q̄ is a quantum variable, M is a measurement that satisfies M �
0M0 +M �

1M1 = I, X

is the set of measurement results, E is a complete positive and trace preserving (CPTP)

map and a denotation for a while sub-program, and E(⋅) = ∑iEi(⋅)E
�
i .

We denote G(ρ) = ∑iEiM1ρM
�
1E

�
i , G in below text is the matrix representation of G.

That is G = ∑i(EiM1) ⊗ (EiM1)
∗. ∣Φ⟩ is the maximally entangled state.

Definition 3.15. (I) We say that a program terminates if the non-termination proba-

bility in the nth step

pNT
n = tr([E1 ○ (E ○ E1)

n−1](ρ0)) = 0

for some positive integer n.

(II) We say that the program almost-surely terminates if limn→∞ pNT
n = 0 , where pNT

n is

as in finite termination definition.
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Prior to outlining the full results, some elementary results are provided as follows. The

first lemma is obvious.

Lemma 3.16. (I) The program terminates if, and only, if Gn(ρ0 ⊗ I) ∣Φ⟩ = 0 for some

integer n ≥ 0;

(II) The program almost-surely terminates if, and only if, limn→∞Gn(ρ0 ⊗ I) ∣Φ⟩ = 0 .

This leads to the following important lemma in termination analysis [12].

Lemma 3.17. (I) The program terminates if, and only if, Gn ∣Φ⟩ = 0 for some integer

n ≥ 0,

(II) The program almost-surely terminates if limn→∞Gn ∣Φ⟩ = 0 .

However, it is not easy to check whether a quantum program terminates or almost-surely

terminates with the above definition or lemmas. But, by splitting the vectors, these asser-

tions can be converted into a computable proposition that assesses the correct termination

type through some operational algorithms (see Section 3).

Recall that G is the matrix representation of the quantum program G. Therefore, the

eigenvalues of G will have norms of 1 or less. Denoted as Eλ, the eigensubspace of G’s

eigenvalue λ gives the space decomposition H = E0⊕E(0,1)⊕E1, where E(0,1) = ⋁∣λ∣∈(0,1)Eλ

and E1 = ⋁∣λ∣=1Eλ.

Theorem 3.18. Suppose the Jordan decomposition of G is G = SJ(G)S−1 with an invert-

ible S and S−1 ∣φ⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∣u⟩

∣v⟩

∣w⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎠

based on the space decomposition H = E0 ⊕E(0,1) ⊕E1. Then

the following statements hold true:

(I) If ∣v⟩ and ∣w⟩ are both 0, the program G is terminating.

(II) If ∣w⟩ is nonzero, the program G is non-terminating.

(III) The program G is almost-surely terminating if and only if ∣w⟩ is 0.

Proof. The proofing technique is similar to that of Proposition 5.1 in the article [12].

Suppose G = SJ(G)S−1, where J(G) = diag(Jk1(λ1), Jk2(λ2), . . . , Jkl(λl)). All of the

eigenvalues 0 ≤ ∣λi∣ ≤ 1 [59]. Without loss of generality, we can assume λ1 = . . . = λs = 0,
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0 < ∣λs+1∣ ≤ . . . ≤ ∣λt∣ < 1 and ∣λt+1∣ = . . . = ∣λl∣ = 1. As Gn = SJ(G)nS−1, Gn ∣Φ⟩ =

SJ(G)nS−1 ∣Φ⟩. Based on the space decomposition H = E0 ⊕E(0,1) ⊕E1, we write

J(G) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

A 0 0

0 B 0

0 0 C

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and S−1 ∣Φ⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∣u⟩

∣v⟩

∣w⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A = diag(Jk1(λ1), . . . , Jks(λs)) ,B = diag(Jks+1(λs+1), . . . , Jkt(λt)) ,

C = diag(Jkt+1(λt+1), . . . , Jkl(λl)) ,

∣u⟩ is an s-dimensional vector, ∣v⟩ is a (t−s)-dimensional vector, ∣w⟩ is a (l−t)-dimensional

vector and S−1 ∣φ⟩ is a combination of ∣u⟩,∣v⟩ and ∣w⟩. It follows that J(G)nS−1 ∣Φ⟩ can be

written as

J(G)nS−1 ∣Φ⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

An ∣u⟩

Bn ∣v⟩

Cn ∣w⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (∗)

Checking (I) first, note that λ1, . . . , λs = 0 and λs+1, . . . , λl /= 0, Jks+1(λs+1), . . . , Jkl(λl) are

non-singular in Eq. (*). If ∣v⟩ and ∣w⟩ are both 0, then according to Eq. (*),

J(G)nS−1 ∣Φ⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

An ∣u⟩

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Now with an n greater than the maximal size of the Jordan blocks Jkj(0), j = 1,2, ..., s,

An = 0. It follows that J(G)nS−1 ∣Φ⟩ = 0. Thus Gn∣Φ⟩ = 0 and, therefore, G is terminating

and (I) is proved. Moreover, if ∣w⟩ ≠ 0, then J(G)nS−1 ∣Φ⟩ ≠ 0 for any n since C is

non-singular. So Gn∣Φ⟩ ≠ 0 for any n, and (II) is proved.
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Turning to (III), note that always limn→∞An = 0 and limn→∞Bn = 0. Further, ∣w⟩ is zero

if and only if Cn ∣w⟩ = 0 since C is non-singular. It follows that ∣w⟩ is 0 if, and only if,

lim
n→∞

J(G)nS−1 ∣Φ⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

An ∣u⟩

Bn ∣v⟩

Cn ∣w⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 0 ,

Therefore, (III) holds true.

The following proposition concerns the output matrix representation of terminating pro-

gram and almost-surely terminating programs which can be used for nested and concurrent

program analysis.

Proposition 3.19. Suppose that G is defined in Theorem 3.18 and N0 = E0 ⊗E∗

0 .

(I) If the program G terminates after k-steps, then the matrix representation of the

program becomes G′ = ∑k−1
n=0N0G

n.

(II) If the program G almost-surely terminates, then the matrix representation of the

program becomes G′ = ∑∞

n=0N0G
n = N0(I −G)−1.

Concluding Proposition 5.1 in the article [12], we can draw another two sufficient condi-

tions.

Proposition 3.20. (I) If Gd ∣Φ⟩ = 0, where d is the rank of G, then the program G

terminates.

(II) If ∣Φ⟩ is orthogonal to all eigenvectors of G� corresponding to eigenvalues with mod-

ule 1, then the program G almost-surely terminates.

Theorem 3.21 is the lower bound of the terminating steps, i.e., for any terminating pro-

gram, when the executing step nany ≥ ninf , the program must terminate. Proposition 3.19

determines the fixed output matrix representation of a program.

Theorem 3.21. If the program G terminates, then the lower bound of the terminating

steps

ninf = max
Jk1 ,...,Jks

min{k′j , n
′

j} ,
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where k′j is the size of the jth Jordan block Jkj of G with 0 ≤ j ≤ s, n′

j is the number of

non-zero elements in the vector block corresponding to the jth Jordan block of G.

Proof. Let B1 = Jk1(0), . . . ,Bs = Jks(0) and S−1∣Φ⟩ = ∣y⟩ = (∣y1⟩ , . . . , ∣ys⟩)
T . Therefore, G

is terminating if and only if

B ∣y⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

B1

⋱

Bs

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∣y1⟩

⋮

∣ys⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

B1 ∣y1⟩

⋮

Bs ∣ys⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Further, if the program is terminating, then there is an n such that

Bn ∣y⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Bn
1 ∣y1⟩

⋮

Bn
s ∣ys⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (�)

To complete the proof, we only need to show that for each block under the condition

min{k′j , n
′

j}, every block must ensure B
n′j
j ∣yj⟩ = 0. ninf = maxmin{k′j , n

′

j} is enough to

ensure all blocks are 0, i.e., B ∣y⟩ = 0.

Now, with Eq.(�), Bn
1 ∣y1⟩ = 0, . . . ,Bn

s ∣ys⟩ = 0 for each block. It is clear that after k′j times

with the size of k′j , B
k′j
j = 0 where 0 ≤ j ≤ s as follows

Bj =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1

0 1

⋱

0 1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B
k′j−1

j =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1

0 0 0

⋱

0 0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B
k′j
j =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0

⋱

0 0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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However, suppose ∣y⟩ = (y1, y2, . . . , yj)
T for each block Jkj(0). Here we have

B
n′j
j ∣yj⟩ = B

n′j−1

j Bj ∣yj⟩ = B
n′j−1

j

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1

0 1

⋱

0 1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1

y2

y3

⋮

yj

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= B
n′j−1

j

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y2

y3

⋮

yj

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= B
n′j−1

j ∣y1j ⟩ = B
n′j−2

j ∣y2j ⟩ = . . . = ∣ynj ⟩ .

If the first n′

j number of ∣yj⟩ = (y1, y2, . . . , yj)
T is not 0, then the first n′

j − 1 number of

∣y1j ⟩ = (y2, y3, . . . , yj)
T is not 0. After n′

j times, ∣y
n′j
j ⟩ = 0.

Thus, we can conclude that for each block under the condition min{k′j , n
′

j}, it ensures

every block B
n′j
j ∣yj⟩ = 0. ninf = maxmin{k′j , n

′

j} is enough to ensure all blocks are 0, i.e.,

B ∣y⟩ = 0. This completes the proof.

3.3.3 Algorithms for Termination Analysis

In Section 3.3.2, we outlined several useful theorems and propositions for termination

analysis. Here, we provide two computational algorithms for termination analysis. The

first algorithm considers Jordan decomposition and only has efficient complicity from a

theoretical perspective. The second algorithm is more flexible and efficient theoretically

and practically.

Algorithm 3.1 (Algo 3.1) re-illustrates the process we used to prove Theorem 3.18. The

input of the function CheckTermination is the matrix representation of G. As the ter-

mination is defined for programs that exclude an input quantum state, our concern is

programs with measurement, M0 or M1 and loop body E and G is enough to check ter-

mination. The outputs of Algorithm 3.1 are: State, which is byte represents termination,

almost-surely termination or non-termination and Instead, which is also a matrix repre-

sentation for substituting the program segment as a new super-operator ∑k−1
n=0N0G

n where

N0 is the matrix representation of measurement operator M0. It can be easily inferred

that for a k-step termination program the first k − 1 steps can be treated as Gn, and the

last step must be M0 which shows the after-measurement effect. Lines 10-12 are for cases
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Algorithm 3.1 Check Terminating Algorithm with Jordan Decomposition

1: function [State,Instead]=CheckTermination(G)
2: ∣φ⟩← MaxEntangledState where d(∣φ⟩) = d(G)
3: [J,S] ← Jordan(G) s.t. G = SJS−1

4: ∣φ⟩′←S−1 ∣φ⟩

5:
⎛
⎜
⎝

∣u⟩
∣v⟩
∣w⟩

⎞
⎟
⎠
←∣φ⟩′ where d(∣u⟩) = number of eignvalues with value 0, d(∣w⟩) =

number of eignvalues with module 1, d(∣v⟩) = d(∣φ⟩′) − d(∣u⟩) − d(∣w⟩).
6: if ∣v⟩ = 0 and ∣w⟩ = 0 then
7: k← CalSteps(G)
8: return State←Finite Termination
9: return Instead←∑k−1

n=0N0G
n

10: if ∣w⟩=0 then
11: return State←Almost-surely termination
12: return Instead←∑∞

n=0N0G
n = N0(I −G)−1

13: return State←Non-termination or Unknown
14: return Instead←NULL

Algorithm 3.2 Check Terminating Algorithm without Jordan Decomposition

1: function [State,Instead]=CheckTermination(G)
2: ∣φ⟩← MaxEntangledState
3: [V,D] ← eig(G�)
4: D1 ← D where their eigenvalues with module 1
5: if ∣φ⟩ ⊥ D1 then
6: return State←Almost-surely termination
7: return Instead←∑∞

n=0N0G
n = N0(I −G)−1

8: if Gd ∣φ⟩ = 0 where d is the dimension of G then
9: k← CalSteps(G)

10: return State←Finite termination
11: return Instead←∑k−1

n=0N0G
n

12: return State←Non-termination
13: return Instead←NULL

where the program almost-surely terminates. According to Proposition 3.19, the infinite

steps effect can be substituted by N0(I −G)−1. The last scenario is the non-termination or

an unknown program. In Algorithm 3.1, the most significant barrier for implementation

is the Jordan decomposition on Line 3. Even though Jordan decomposition can achieve a

time complexity of O(n3) [60]. The Jordan decomposition process is often unacceptable

as the reason of using symbolic calculation for Jordan form to avoid the discontinuous

property of matrix entries.
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ρ0

ρ1;ρ
′
1

ρ2 ρ3

F

M0

M1

E

Figure 3.1: Flowchart of a Qloop

Compared to Algorithm 3.1, Algorithm 3.2 can achieve a far more reasonable time com-

plexity because it checks for termination without relying on a Jordan decomposition. Input

G and the outputs State and Instead are defined as per Algorithm 3.1. Line 2 generates

a maximally entangled state. The key difference is Lines 03-Line 05 where we focus on

Proposition 3.20 and use the eigenvector set of G� to check the termination . This avoids

the need for a Jordan decomposition. It is worth noting that even though we have proven

the two algorithms to be equivalent, the process of calculating the eigenvalues and eigen-

vectors is a theoretical implementation of a polynomial process and other than the time

complexity of a Jordan decomposition.

One of the necessary steps in both Algorithm 3.1 and Algorithm 3.2 is CalSteps, which

decides k to output Instead. k can be decided easily with Theorem 3.21.

3.3.4 Termination Examples- Qloop

A Qloop is a simplified version of a quantum random walk - a powerful quantum computa-

tion algorithm. The flow chart of a Qloop is shown in Figure 3.1. Unlike the 1-dimensional

quantum walk, a Qloop does not include a direction translation operator. The direction

Left or Right of ρ1 is only determined by the measurement result. If the result is 0, the

status moves to ρ3, whereas if the result is 1, the status moves to ρ2. After an operation

E in a single quantum or a sub-program, the current status would move to ρ′1 and a mea-

surement M would be projected on to it. The new measurement result may lead to a Left

or a Right route. The following two termination examples show two code-segments of a

fixed value with a Qloop.
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Qloop 3.3 Qloop with Hadamard gate as a sub-program

Require: ρ = ρ1 = ∣1⟩, M = ∣0⟩ ⟨0∣, HGate = 1
√

2
[
1 1
1 −1

] .

Ensure: ρ
1: function Qloop(ρ)
2: while M(ρ) do
3: HGate(ρ)

4: return ρ

Qloop 3.4 Qloop with bit flip gate as a sub-program

Require: ρ = ρ1 = ∣1⟩, M = ∣0⟩ ⟨0∣, XGate = [
0 1
1 0

] .

Ensure: ρ
1: function Qloop(ρ)
2: while M(ρ) do
3: XGate(ρ)

4: return ρ

Although the difference between Qloops 3.3 and 3.4 is only a small section of the sub-

program, each program has completely different behaviours. The quantum state ρ af-

ter the first measurement is equivalent to ∣1⟩, but after the sub-programs it would be

ρ = 1
√

2
(∣0⟩ + ∣1⟩) and ρ = ∣0⟩, respectively. This could lead to different results when ρ is

measured again. For instance, in Qloop 3.3, which is an almost-surely terminating pro-

gram, the program would immediately terminate if the measurement result is 0 with a

probability of 50%. However, if the result is 1 with a probability of 50%, the subprogram

would continue executing and become ρ = 1
√

2
(∣0⟩ + ∣1⟩) in the next loop. In Qloop 3.4,

which is a terminating program, the program would immediately terminate 100% of the

time.

We implemented Algorithms 3.1 and 3.2 in MATLAB and tested the speed of both with:

a Qloop case; a Hadamard gate; and a bit-flip gate, respectively. Figure 3.2 shows the

results.

3.3.5 Conclusion and Discussion

In Section 3.3, we extended the results in the article [12] (see also, Chapter 5 in the

book [2]). Two computational algorithms for quantum while-language were presented,
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Figure 3.2: Algorithm 3.1 and Algorithm 3.2 were programmed in MATLAB 2017b.
The experiment was conducted on a PC with Core i7 processor and 16 GB memory.
Qloops 3.3 and 3.4 were executed 1000 times with one setting and statistics over the total
running time. The figure clearly illustrates Algorithm 3.2 which does not include a Jordan
decomposition accelerates termination analysis 300 times faster than Algorithm 3.1 in

both termination and almost-surely termination scenario.

along with the lower bound of the terminating steps for outputting a matrix representa-

tion with terminating quantum programs. The termination analysis experiments illustrate

that the algorithm without a Jordan decomposition can significantly speed up the calcu-

lation process. Moreover, both algorithms have been integrated into QSI ’s Termination

Module [43] to provide extra information about the characteristics of quantum programs

for the quantum compiler with some practical success.

3.4 Quantum Control Module

3.4.1 Introduction

QuGCL is a quantum programming language with quantum control. It is a high-level

language which can describe quantum algorithms efficiently. For connecting this language

to quantum circuits model, we exploited the counterparts of syntax and implementation.

Here, we establish that the �QIF� clause is a quantum multiplexor (QMUX) and can

be implemented with the help of construction arbitrary 2-dimensional controlled-unitary

using Z-Y rotation using LIQUi∣⟩. Following this work, it is possible to construct quantum

circuits automatically without knowing every detail of unitary transformation is possible.
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3.4.2 QMUX Preliminaries

3.4.2.1 QMUX

In classical computation, the simplest multiplexor is a conditional - It is best described

as the “if . . . then . . .else . . .” construction , i.e., if a condition is true, then perform the

specified action, “else” the condition is false. Quantum conditionals are a quantum analog

of the classical formed by replacing the condition after “if” with a qubit, i.e., true and

false is replaced with the basis states ∣1⟩ and ∣0⟩.

Definition 3.22. Let p̄ = p1, . . . , pm and q̄ = q1, . . . , qn be quantum registers, and for

each x ∈ {0,1}m, let Cx = Ux[q̄] be a quantum gate. The quantum multiplexor (QMUX)

“⊕Cx” is a gate on m + n qubits p̄, q̄, having the first m qubits p̄ as the selected qubits

and the remaining n qubits q̄ as the data qubits. A QMUX preserves any state of the

selected qubits, and performs a unitary transformation on the data qubits, depending on

their state:

(⊕
x
Cx) ∣t⟩ ∣ψ⟩ = ∣t⟩Ut ∣ψ⟩

for any t ∈ {0,1}m and ∣ψ⟩ ∈ Hq̄

The matrix representation of a QMUX is a diagonal:

⊕
x
Cx =

2m−1

⊕
x=0

Ux =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U0

U1

⋱

U2m−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

When there is a single selected qubit, the matrix of the QMUX is a block diagonal U =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

U0

U1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. We denote this as U = U1 ⊕ U2. The multiplexor will apply U0 or U1 to the

data qubits according to the select qubit, i.e.,

qif ∣0⟩ thenU0 elseU1.

Shende [47] was the first to show a 2-qubit multiplexor can be decomposed. Subsequently,

he proved any qubit multiplexor can be decomposed.
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•

U V U †

Figure 3.3: Decomposition of QMUX

eit/2

V θZc θZb θY b θY a θZa

Figure 3.4: QMUX gate rotation decomposition, θZc = Rz(
θ−β
2

), θZb = Rz(
θ+β
2

), θY b =
Rz(

γ
2
),θY a = Rz(

γ
2
), θZa = Rz(β).

Lemma 3.23. For ∀U ′ where U ′ = U ⊕ V , U and V are one-qubit gates, there exists a

decomposition U ′ = U ⊕ V U �U .

The last theorem can be implemented as circuit model as shown in Figure 3.3.

The idea is to first unconditionally apply U on the second qubit, and then apply an

A = V U � condition on the first significant qubit. Decomposition for such control operator

is well known [23]. If we write A = eiαRz(β)Ry(γ)Rz(θ), then U ⊕V can be implemented

with the following two lemmas:

Lemma 3.24. A 2-dimensional unitary matrix can be written as

U = eiα
⎡
⎢
⎢
⎢
⎢
⎢
⎣

e−iβ/2 0

0 eiβ/2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cos δ/2 − sin δ/2

sin δ/2 cos δ/2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e−iγ/2 0

0 eiγ/2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= eiαRz(β)Ry(γ)Rz(δ).

Lemma 3.25. For any special unitary matrix W (W ∈ SU(2)),there exist matrices A,B

and C ∈ SU(2) such that A ⋅B ⋅C = I and A ⋅ σx ⋅B ⋅ σx ⋅C = W where A ≡ Rz(β)Ry(γ/2),

B ≡ Ry(−γ/2)Rz(−(δ + β)/2) and C ≡ Rz((δ − β)/2) and α, β, γ, δ are in Equation 3.24.

With Lemmas 3.24 and 3.25, any arbitrary controlled-unitary operator can be constructed

as Figure 3.5 shows.

Thus, the problem of producing two-qubit quantum circuits with “if” syntax becomesa

problem of producing arbitrary controlled-unitary operators automatically.



74 Chapter 3. QSI Modules

• • eiθ

C B A

Figure 3.5: Decomposition of arbitrary controlled unitary gate

LIQUi∣⟩ [18] offers a wide range of operations that can be performed. For physical mod-

elling, the rotation gates Rx,Ry,Rz are supplied as inherent gates, but they cannot auto-

matically generate a universal unitary gate. Users must provide a matrix corresponding

to the unitary gate before compilation. The ability to automatically generate arbitrary

unitary gates is very important because we rarely have the matrix details for an A = V U �

in a QMUX, nor do we want to be concerned with such detail when simulating a unitary

gate in a large quantum network. Therefore, constructing an arbitrary controlled-unitary

matrix is essential to the simulation process.

3.4.3 Solving Equations

Given a 2-dimensional unitary gate U , where

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a b

c d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

the goal is to derive the corresponding α, β, γ, δ.

The first inclination is to find the answers by solving equations, i.e.,

e−iϕ1 cos δ/2 = a ,

−e−iϕ2 sin δ/2 = b ,

eiϕ2 sin δ/2 = c ,

eiϕ1 cos δ/2 = d .

However, even when using an out-of-line procedure, MATLAB, or Math.net (a math library

in .net Framework), solving these transcendental equations is hard. “Fsolve” and “Fzero”

functions, which work as inherent functions in MATLAB can solve the problem using a

non-fixed probability while other unitary matrices can be decomposed at random.
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Fortunately, we have found another method to solve this issue.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ei(α−β/2−δ/2) cosγ/2 −ei(α−β/2+δ/2) sinγ/2

ei(α+β/2−δ/2) sinγ/2 ei(α+β/2+δ/2) cosγ/2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a b

c d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

When all a, b, c, d are not zero,

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiβ tan γ
2 = c

a

−e−iβ tan γ
2 = b

d

−eiδ tan γ
2 = b

a

e−iδ tan γ
2 = c

d

ei2α = det(U)

.

We can implement that,

ei(2β) = −
cd

ab
⇒ β = angle(−

cd

ab
)/2 + 2kπ ,

ei(2δ) = −
bd

ac
⇒ δ = angle(−

bd

ac
)/2 + 2kπ ,

tan2
γ

2
= −

cb

ad
⇒ γ = 2arctan(

√

−
cb

ad
) + π ,

detU = ei2α ⇒ α = angle(detU)/2 ,
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where k ∈ Z and angle(z) in x + yi is defined as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan( yx) if x > 0

arctan( y
x) + π if x < 0 and y ≥ 0

arctan( yx) − π if x < 0 and y < 0

π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

indeterminate if x = 0 and y = 0.

When a = 0, then d = 0 and b, c /= 0, i.e.

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 b

c 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

Since ∥b∥2 = ∥c∥2 = 1, then γ = π. detU = −bc = e2iα and α + β/2 − δ/2 = angle(c),

α + β/2 = angle(c) + δ/2. We can always assume δ = 0, β = 2(angle(c) − α).

When b = 0, then c = 0 and a, d /= 0, i.e.,

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a 0

0 d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

Since ∥a∥2 = ∥d∥2 = 1, then γ = 0. detU = ac = e2iα and α − β/2 − δ/2 = angle(a),

α − β/2 = angle(a) + δ/2. We can always assume δ = 0, β = 2(α − angle(a)).

This procedure can be implemented easily in MATLAB and Math.net to find the decom-

position. The results of the equations can be transferred as parameters (α, β, γ, δ) to

reconstruct the controlled-unitary matrix with LIQUi∣⟩.
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Experiments

4.1 Experiments with QSI

4.1.1 Configuration

Download the QSI Online Setup or QSI Offline Basic Setup from http://www.qcompiler.

com, and execute the setup package. The project will be installed on desktop by default.

If Visual Studio and MATLAB are already installed, the user can skip the following in-

structions and launch QSI.sln immediately.

If Visual Studio and MATLAB are not installed, follow the additional setup procedure

below.

1. Double-click vs community.exe. We recommend the commercially licensed Enter-

prise version of Visual Studio because it includes many productive toolkits, the

Community version is also acceptable. Note that the DGML component in Visual

Studio Community is not able to draw one qubit quantum circuits.

2. Choose .NET desktop development (Figure 4.1) and press the Install button. This

may take about 15 minutes to complete depending on the user network.

3. Double-click Matlab Runtime.exe (Figure 4.2). Install the MATLAB runtime com-

ponents from the Internet. This may take about 15 minutes depending on the user

network.

77
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4. Open QSI.sln from the QSIMain folder with Visual Studio 2017 Community.

5. Menu → Debug → Start Debugging.

Screen captures of the procedure follow.

Figure 4.1: .NET desktop development

Figure 4.2: MATLAB support assembly
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4.1.2 Experiments

The following subsections describe and provide an analysis of each example experiments.

For user convenience, the coding for all the examples has been assembled in Project

“UnitTest” under the Root Solution, as shown in Figure 4.3.

Figure 4.3: Examples in Project “UnitTest”

4.1.2.1 CNOT gate showcase-“Option 1”

Input and output

1. Enter the number 1 to start the CNOT Gate Showcase.

2. The console should display “The experiment begins. . . ”. The experiment will execute

about 1000 times and show the statistic result as Figure 4.4.

Behind the console This is a very simple and standard example of QSI . This code

segment is so trivial that it is listed here directly for reference.

Figure 4.4: CNOT experiment
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class TestQuantMulti0 : QEnv

{

public Reg r1 = new Reg("r1");

public Reg r2 = new Reg("r2");

public Quantum q1 = MakeDensityOperator(2, "{[0.5 0.5;0.5 0.5]}");

public Quantum q2 = MakeDensityOperator(2, "{[1 0;0 0]}");

U.Emit CNot = MakeU("{[1 0 0 0;0 1 0 0;0 0 0 1;0 0 1 0]}");//1->2 Cnot

M.Emit m = MakeM("{[1 0;0 0],[0 0;0 1]}");

protected override void run()

{

CNot(q1, q2);

Register(r1, m(q1));

Register(r2, m(q2));

}

We can see that the quantum object q1 is a quantum state q1 = ∣+⟩ ⟨+∣ and the quan-

tum object q2 is q2 = ∣0⟩ ⟨0∣. The CNOT gate (from q1 to q2 ) is defined as CNOT =
[1 0 0 0; 0 1 0 0; 0 0 0 1; 0 0 1 0]. After the CNOT gate, the state will be

∣00⟩+∣11⟩
√

2
. If

measurement {∣0⟩ , ∣1⟩} are performed on q1 and q2, the result should:

� Only consider q2, And about half the time the result should be 0 and half the time

should be 1.

� Consider results for both q1 and q2. The 0 result for q1 should be the same as the

0 result for q2.

Figure 4.4 illustrates the results just as we predicated.

4.1.2.2 Termination Analysis-“Option 2,3”

Input and output

1. Enter the number 2 (or 3) to start the termination analysis example.
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2. The Console should display the termination ability of the corresponding example.

the user can see the “Final Result: Termination”in Figure 4.5 from Example 2 and

“Final Result: Almost Sure Termination” in Figure 4.6 from Example 3.

3. The user can also see the real execution results from the Console.

Figure 4.5: Termination

Figure 4.6: Almost-surely termination

Behind the console Loops raise the question: “Does the quantum program termi-

nate?” The Termination Analysis module partly answers this question. See Chapter 3 for

details.

4.1.2.3 BB84-“Option 4, 41, 42, 43”

BB84 is a quantum key distribution (QKD) protocol developed by Bennett and Brassard

in 1984 [61]. The protocol is an already-proven security protocol [3] that relies on a

no-cloning theorem.

Simple BB84-“Option 4”,

Input and output

1. Enter the number 4 to start the simple BB84 protocol.
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2. The Console will ask for an “Input Array Length”. This is the raw initial key length.

Input 5 as a test number.

3. The Console will then provide a hint “In basis, 0 is {∣0⟩ , ∣1⟩} measurement and 1 is

{∣+⟩ , ∣−⟩}” along with other information.

Let’s interpret Figure 4.7 as an example. The protocol is trying to find consensus

for a key length of 5 bits. The initial bits (raw keys) are 11000 and the basis are

{∣+⟩ , ∣−⟩},{∣0⟩ , ∣1⟩},{∣0⟩ , ∣1⟩},{∣+⟩ , ∣−⟩},{∣+⟩ , ∣−⟩} . With these two conditions com-

bined, we know that Alice has generated the states {∣−⟩ , ∣1⟩ , ∣0⟩ , ∣+⟩ , ∣+⟩}. On the

other hand, Bob chooses the basis {∣+⟩ , ∣−⟩},{∣+⟩ , ∣−⟩},{∣0⟩ , ∣1⟩},{∣0⟩ , ∣1⟩},{∣+⟩ , ∣−⟩} .
to measure the qubits he received, and he broadcasts these basis. After Alice receives

Bob’s basis, she checks her chosen basis and finds that the correct positions are 1,3

and 5. She broadcasts the correct positions. Bob only keeps positions 1,3 and 5 of

the measurement results. Both Bob and Alice reach an agreement key of 100.

Figure 4.7: Simple BB84 example

Behind the console In this case, a client-server model is used as a prototype for a

multi-user communication protocol. A “quantum type converter” is used to convert a

‘Ket’ into a density operator. Also, in this case, we use the Quantum Type ‘Ket’ and do

not consider a quantum channel or an Eve. The flow path is shown in Figure 4.8.

The entire flow path follows.

1. Alice randomly generates a sequence of classical bits called a rawKeyArray. Candi-

dates from this raw key sequence are chosen to construct the final agreement key.

The sequence length is determined by user input.
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Figure 4.8: Simple BB84 protocol

2. Alice also randomly generates a sequence of classical bits called basisRawArray. This

sequence indicates the chosen basis to be used in next step. Alice and Bob share a

rule before the protocol:

� They use {∣+⟩ , ∣−⟩} or {∣0⟩ , ∣1⟩} as the basis to encode the information.

� A classical bit 0 indicates a {∣0⟩ , ∣1⟩} basis while a classical bit 1 indicates

{∣+⟩ , ∣−⟩}. This rule is used to generate Alice’s qubits and to check Bob’s

chosen basis.

3. Alice generates a sequence of quantum bits called KetEncArray, one by one according

to the rules below,

� If the basisRawArray[i] in position [i] is 0 and the rawKeyArray[i] in position

[i] is 0, KetEncArray[i] would be ∣0⟩.
� If the basisRawArray[i] in position [i] is 0 and the rawKeyArray[i] in position

[i] is 1, KetEncArray[i] would be ∣1⟩.
� If the basisRawArray[i] in position [i] is 1 and the rawKeyArray[i] in position

[i] is 0, KetEncArray[i] would be ∣+⟩.
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� If the basisRawArray[i] in position [i] is 1 and the rawKeyArray[i] in position

[i] is 1, KetEncArray[i] would be ∣−⟩.
4. Alice sends the KetEncArray through a quantum channel. In this case, she sends it

through the I channel.

5. Bob receives the KetEncArray through the quantum channel.

6. Bob randomly generates a sequence of classical bits called measureRawArray. This

sequence indicates the chosen basis to be used in next step.

7. Bob generates a sequence of classical bits called tempResult, using quantum mea-

surement according to the rules:

� If the measureRawArray[i] in [i] position is a classical bit 0, Bob uses a {∣0⟩ , ∣1⟩}
basis to measure the KetEncArray[i] while a classical bit 1 indicates using a

{∣+⟩ , ∣−⟩} basis.
8. Bob broadcasts the measureRawArray to Alice using a classical channel.

9. Alice generates a sequence of classical bits called correctBroadArray, by comparing

Bob’s basis measureRawArray and her basis basisRawArray. If the position [i] is

correct, the correctBroadArray[i] would be 1, otherwise would be 0.

10. Alice sends the sequence correctBroadArray to Bob.

11. Alice generates a sequence of classical bits called FinalALiceKey using the rule:

� If position [i] in correctBroadArray[i] is 1, she keeps rawKeyArray[i] and copies

it to FinalALiceKey , else she discards rawKeyArray[i].

12. Bob generates a sequence of classical bits called FinalBobKey using the rule:

� If position [i] in correctBroadArray[i] is 1, he keeps tempResult[i] and copies it

to FinalBobKey[i], else he discards tempResult[i].

13. GlobalView: We use a function compare whether every position [i] in FinalALiceKey

and FinalBobKey[i] are equal.

This case shows some useful features,



Chapter 4. Experiments 85

� Quantum Computation Engine Direct Call (QCEDC). This example uses several low-

level components of QSI (i.e., the functions directly from the quantum computation

engine). This mode can be employed to design and code quantum communication

protocols that cannot easily be described in formal quantum language.

� Client-server Mode. The process uses a client-server model to simulate the BB84

protocol. The model includes many powerful features such as waiting thread and

classical concurrent communication in the next example.

� Measurement. According to the theoretical result, choosing a random measurement

basis may arrive at half of the correct result. As a result, the agreement of classical

shared bits should be almost half length of raw keys.

Multi-clients BB84-“Option 41” A multi-client BB84 model is a more attractive and

practical example. In a multi-client BB84 model, only one Alice generates the raw keys,

but several Bobs construct an agreement key with Alice.

Input and output

1. Enter the number 41 to start the simple BB84 protocol.

2. The Console will ask for an “Input Array Length”. This is the raw initial keys length.

Input 5 as a test number.

3. The Console will ask the user to “Input Numbers of Clients”. This is the number of

“Bobs” to be generated. Input 2 as a test number.

4. The Console will then print the final Alice Key for Thread number 7 is 010 and for

Thread 8 is 00 which are the same as final Bob Key for each Bob.

BB84 with a noise channel-“Option 42”, A very interesting and practical topic

for QSI is to use the BB84 model to consider noisy quantum channels. Because no quan-

tum system is ever perfectly closed, quantum operations are key tools for describing the

dynamics of open quantum systems.

Input and output
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Figure 4.9: Multi-clients BB84 console

1. Enter the number 42 to start the simple BB84 protocol.

2. The Console will ask for the “Input Array Length”. This is the raw initial key length.

Input 5 as a test number.

3. Then, the Console will print a hint that “In basis, 0 is {∣0⟩ , ∣1⟩} measurement and 1

is {∣+⟩ , ∣−⟩}” along with other information.

Let’s interpret Figure 4.10 and 4.11 as an example. In Figure 4.10, the protocol is

trying to find consensus for a key length of 5 bits. The initial bits (raw keys) are

10100 and the basis are {∣+⟩ , ∣−⟩},{∣0⟩ , ∣1⟩},{∣+⟩ , ∣−⟩},{∣0⟩ , ∣1⟩},{∣0⟩ , ∣1⟩} . With these

two conditions combined, we know that Alice has generated the quantum states

{∣−⟩ , ∣0⟩ , ∣−⟩ , ∣0⟩ , ∣0⟩} and sends them through a quantum channel. On the other

hand, Bob chooses the basis {∣+⟩ , ∣−⟩},{∣+⟩ , ∣−⟩},{∣+⟩ , ∣−⟩},{∣0⟩ , ∣1⟩},{∣+⟩ , ∣−⟩} to mea-

sure the qubits he received, and he broadcasts these basis. After Alice receives these

basis, she checks her chosen basis, finds the correct positions are 1 and 2. She broad-

casts the correct positions. Bob only keeps positions 1 and 2 of the measurement

results. Bob and Alice reach an agreement of key 10; however, the key agreement

is not successful. In Figure 4.11, Alice and Bob follow the protocol outlined above,

but, the BB84 fails due to interference in the quantum channel.

Behind the console In this example, different channels, such as the bit flip, depolariz-

ing, amplitude damping, and I-identity channels are described by a set of Kraus operator.
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Figure 4.10: BB84 with a quantum channel, success

Figure 4.11: BB84 with a quantum channel, failure

Alice and Bob use these quantum channels to communicate with each other via the BB84

protocol as Figure 4.8 shows. To ensure successful communication, verification steps also

need to be considered.

Some quantum channels E that can be used during communication are defined below:

Deplarizing channel, where p = 0.5,
E ∶= {⎡⎢⎢⎢⎢⎢⎣

√

5
√
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√
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√
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⎤⎥⎥⎥⎥⎥⎦} .

Amplitude damping channel, where γ = 0.5,
E ∶= {⎡⎢⎢⎢⎢⎢⎣

1 0

0 1
√

2

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
0 1

√

2

0 0

⎤⎥⎥⎥⎥⎥⎦} .
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And three kinds of bit flip channel:

Bit flip channel, where p = 0.25,
E ∶= {⎡⎢⎢⎢⎢⎢⎣

1
2 0

0 1
2

⎤⎥⎥⎥⎥⎥⎦ ,
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0

√
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2 0

⎤⎥⎥⎥⎥⎥⎦} .

Bit flip channel, where p = 0.5,
E ∶= {⎡⎢⎢⎢⎢⎢⎣
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Bit flip channel, where p = 0.75,
E ∶= {⎡⎢⎢⎢⎢⎢⎣

√
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2 0
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2

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
0 1
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1
2 0

⎤⎥⎥⎥⎥⎥⎦} .

The program flow path follows the simple BB84 protocol. The only differences are in Step

4 and an added sampling step.

� Alice sends the KetEncArray through a quantum channel. In this case, it is one of

the channels mentioned above.

BB84 with statics and channels-“Option 43” From above example, we know that

both the quantum channel and the verification (check) affects the quantum state. In

this example, we want to answer the question: What is a suitable proportion for a fixed

quantum channel?

Input and output

1. Enter the number 43 to start the BB84 protocol with statistics and channel.

2. The Console will display “x-axis. . . ” and “y-axis. . . ”.
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3. We assume that, in the verification step, any one-bit difference will cause a failure

in that run. We can send different lengths of data packets and use the criteria to

check the percentage of the protocol.

A one-time experiment is shown in Figure 4.12. Let’s interpret Figure 4.12. The

BB84 protocol is in an amplitude damping quantum channel (defined as E ∶= {⎡⎢⎢⎢⎢⎢⎣
1 0

0 1
√

2

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
0 1

√

2

0 0

⎤⎥⎥⎥⎥⎥⎦})
In the output, the number in Column 1 and Row 1 means the protocol has an 85%

chance of success if it performs in the amplitude damping quantum channel defined

above with a 32 qubit data packet and 10% of the results are used for verification.

Figure 4.12: BB84 with statistics and quantum channel

Behind the console The program flow path follows the simple BB84 protocol. The

only differences are in Step 4 and an added sampling step is added,

� Alice performs the KetEncArray through a quantum channel. In this case, it is one

of the channels mentioned above.

� Sampling check step: Alice randomly publishes some sampling positions of the bits.

Bob checks these bits against his own key strings. If all the bits in these sampling

strings are the same, he believes the key distribution is a success; Otherwise the

connection fails.

For a statistical quantity characterising success in a channel in the BB84 protocol, this

experiment should be executed as 100 shots for each channel. In every shot for each

channel, different sampling percentages and package lengths should be considered. Tables
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and figures are provided that show the trade-off between success times, different sampling

proportions, and package lengths in each of the quantum channels.

Different channels and different proportion for BB84 Success times for different

sampling percentages in different channels over 100 shots are shown in Figure 4.13.
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(c) Bit Flip Channel, p = 0.75, loops = 100
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(d) Depolarizing Channel, p = 0.5, loops = 100
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(f) Amplitude Damping Channel, p = 0.5, loops = 100
Figure 4.13: Statistics of success communication via BB84 with channels

Features and analysis The example generates some ‘error’ bits during communication

due to the properties of quantum channels and cause a failed connection. However, not

all error bits can be found in the sampling step because, in theory, almost half the bits
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are invalid in the measurement step. Additionally, the sampling step is a probability veri-

fication step, which means it does not use all the agreed bits to verify the communication

procedure.

Sub-figures (a), (b) and (c) in Figure 4.13 are bit flip channels with different probabilities.

Overall, the number of successful shots increases as p and the raw key length shortens.

This is because p is a reflection of the percentage of information remaining in bit-flip

channel, and an increase in p means fewer communication errors. A shorter length ensures

fewer bits are sampled. Sub-figures (d), (e) and (f) illustrate the communication capacity

of the BB84 protocol in the other three channels. Note that the I-identity channel has a

100% success rate which means it is a noiseless channel and can keep information intact

during the transfer procedure.

4.1.2.4 Quantum teleportation with QASM-“Option 5”

Input and output

1. Enter the number 5 to start Quantum Teleportation with QASM.

2. The Console will display that “Quantum Teleportation begins. . . ” and show the

experiment result.

3. Meanwhile, the Console pops up a notebook and displays the generated “QASM”.

4. The teleportation experiment will run 1000 times and the statistic results will be

shown on the Console.

Behind the console The key code segment is trivial enough to show here.

In Lines 01 to 16, we define: one classical register r3; three quantum registers Alice, Bob1

and Bob2; four quantum gates hGate, CNot, xGate and zGate; and one measurement

m. Lines 19 to Line 21 define how the quantum gates perform on the quantum registers.

The most interesting section is from Lines 22 to 35 which includes two advanced �QIF �

clauses in the code segment. A measurement in Line 37 illustrates how to ensure that the

received quantum state is real the Alice state.
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Figure 4.14: Quantum teleporation with f-QASM

4.1.2.5 Quantum Google PageRank-“Option 6”

Input and output

1. Enter the number 6 to start the Quantum Google Rank.

2. The Console will ask “Please enter the length. . . ”. the user can just press Enter the

key to use the default configuration.

3. By default, the Console will display the adjacency matrix (see the corresponding

graph in Figure 4.15) and show the steps of the quantum transformation.

4. After a while, the program will show the averaged quantum pagerank.

Figure 4.15: Default network structure
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4.1.2.6 Quantum Grover search-“Options 7,71,72 & 73”

Grover search algorithm is a representative quantum algorithm. It solves search prob-

lems in databases consisting of N elements, indexed by number 0,1, . . . ,N − 1 with an

oracle providing the answer as a position. The algorithm is able to find solutions with a

probability O(1) within O(√N) steps.
Grover Search, with a pre-defined oracle - “Option 7”

Input and output

1. Enter the number 7 to start Grover search.

2. The Console will display “The default oracle . . . ” and the result.

3. Of course, the user can check the results of the algorithm. However the key compo-

nent of this example is the source code corresponding to the experiment.

“Option 71”- Standard Grover Search

Input and output

1. Enter the number 71 to start a standard Grover search.

2. The Console will ask ”How large . . . ”. Type 7 for an instance. We recommend not

making the user instance larger than 9 on PC as it consumes too much time and

memory during the measurement stage.

3. The Console will ensure the volume of the database and display the number. Then,

it will ask ”where is the correct answer. . . ”. Type 56 for an instance. The oracle

will be set up in this step.

4. After the oracle has been called 8 times (R ≤ π
4

√
N
M ), the result will be displayed.

Behind the console Suppose ∣α⟩ = 1
√

N−1
∑′′x ∣x⟩ is not the solution but rather ∣β⟩ =

∑′x ∣x⟩ is the solution where ∑′x indicates the sum of all the solutions. The initial state ∣ψ⟩
may be expressed as

∣ψ⟩ =
√

N − 1
N
∣α⟩ +√ 1

N
∣β⟩ .
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Every rotation makes the θ to the solution where

sin θ = 2
√
N − 1
N

.

When N becomes larger, the gap between the measurement result and the real position

number is less than θ = arcsin 2
√

N−1
N ≈ 2

√

N
. It is almost impossible to have a wrong answer

within r times.

4.1.2.7 Grover search with automatic toolkits - “Option 72”

Input and output

1. Before executing go to TestGroverH.cs file, find //#undef DEBUG and uncomment

it as #undef DEBUG at the second line of the file.

2. Then press “F5” to execute the program and enter the number 72 to start the

Automatic Toolkits Grover Search.

3. The Console will run the experiment 16 times and set the Oracle from 0 to 15.

4. Do not forget to restore the uncomment line to comment line (#undef DEBUG to

//#undef DEBUG).

Behind the console This experiment is an automatic toolkit the user can use to verify

an algorithm. This functionality can be quite useful when the user consider generating

many oracles in a program.

4.1.2.8 Standard Grover search -“Option 73”

Input and output

1. Enter the number 73 to start a standard Grover search.

2. The Console will ask “How large. . . ”. Type 7 as an instance. We recommend not

making the user instance larger than 9 on PC as it consumes too much time and

memory during the measurement stage.
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3. The Console will ensure the volume of the database and display the number. Then,

it asks “Where are the correct answers. . . ”. Type 56 and 57 for an instance. The

oracle will be set up in this step.

4. The Algorithm will try to search for the target numbers.

Behind the console This experiment is a multi-object Grover’s search algorithm that

supposes the multi-answer (position) of the oracle. We use the strategy of adding that a

blind box to reverse the proper position of the answer.

This experiment reveals that Grover’s algorithm leads to an avalanche of errors in a multi-

object setting, indicating that the algorithm needs to be modified in some way. A new

blind box (a unitary gate) is added that reverses the proper position of the answer. In

short, the oracle is a matrix where all the diagonal elements are 1, but all the answer

positions are −1. Thus, the blind box is a diagonal matrix where all the elements are

1, and all the answer position that have been found are −1. When these two boxes are

combined, we create a new oracle with the answers to all the questions except the ones

that were found in previous rounds.

The measurement shows different probabilities of the final result. Theoretical result holds

that if we have multiple answers, the state after r times oracles and phase gates should

become the state near both of them. For example, if the answers are ∣2⟩ , ∣14⟩ ∈ H64, the

state before the measurement is expected to be almost 1
√

2
(∣2⟩ + ∣14⟩). We should get the

∣2⟩ or ∣14⟩ the first time and the other one the next time. However, we actually get results

other than ∣2⟩ and ∣14⟩ with high probability, which indicates that the multi-object search

strategy is not very good.

It worth noting that due to multi-objects, the real state after using Grover’s search algo-

rithm becomes a a(∣2⟩+ ∣14⟩)+b(∣1⟩+ ∣3⟩+ ∣4⟩+ ∣5⟩+ ....), where a, b are complex scalars that

satisfy ∣a∣2 + ∣b∣2 = 1. However, b cannot be ignored even it is very small. An interesting

issue occurs when the wrong position index is found. If the wrong index is obtained by the

measurement, the algorithm creates an incorrect blind box and reverses the wrong position

of the oracle, i.e., it adds a new answer to the questions. In next round, the proportion

of correct answers is further reduced. For example, in the last example, we would have
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gotten the wrong answer by a measurement of, say ∣5⟩. After another procedure, the state
would become: a(∣2⟩ + ∣14⟩ + ∣5⟩) + b(∣1⟩ + ∣3⟩ + ∣4⟩ + ∣5⟩ + ....). It becomes harder and harder

to find the correct answer with this state.

In short, one wrong answer in a round causes an avalanche of errors with Grover’s search

algorithm.

4.1.3 Serious Coding

After a taste of some examples with QSI , we are going to illustrate user-defined code.

Sub-section 4.1.3.1 figures out the user-defined components insisting of entry point, body

code structure and quantum while-language in practice.

Sub-section 4.1.3.2 demonstrates “Qloop”, a very impressive “HelloWorld” example of the

quantum realm that illustrates the power of our platform. This example will familiarise

the user with some of the advanced components available in QSI .

Sub-section 4.1.3.3 demonstrates the way to use the termination module.

Sub-section 4.1.3.4 is designed to teach the user details of the quantum compiler and

related configures.

4.1.3.1 From UnitTest to HelloWorld

This section provides a brief tutorial for writing a standard quantum code segment. The

tutorial includes two main parts: quantum programming and related classical function

programming.

Entry to the user code Start the user code in a QSI project. QSI (Project) is designed

for user code that does not include too many assumptions or definitions compared with

UnitTest (Project).

PATH: Solution ‘Testudo’ → QSI(Project)(Figure 4.16)

Writing Quantum Code
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Figure 4.16: Entry to the user code

Code file Test.cs under the QSI Code (Folder) is a good file name for the user quantum

code.

PATH: Solution ‘Testudo’ → QSI(Project) → QSI Code → Test.cs

the user can give the user quantum code any file name. We only suggest naming the user

code ‘Test.cs’ because some modules, such as Termination Analysis, require the user to

designate a file path to the quantum code and, in this example, we have designated the

target file for termination analysis as ‘Test.cs’ in ‘Program.cs’ under the QSI (Project).

Component quantum libraries Two .Net assemblies are provided that relate to the

quantum code:

Assemblies: QuantumRuntime, QuantumToolkit .

These two assemblies conclude analogous namespace:

Namespace: QuantumRuntime, QuantumToolkit .

Each has several different sub-namespaces:

QuantumRuntime Sub-namespace: Operator

QuantumToolkit Sub-namespace: Parser, Runtime, Type

Suitable namespace A suitable Namespace is an essential part of quantum program-

ming development. In fact, it is also necessary for developing most C# programs. Unless,
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the user figure out all the functions and objects in the namespace, we suggest the user

introduce following namespaces:

Default Namespaces for Development: QuantumRuntime, QuantumToolkit, QuantumToolkit.Parser

.

the user can use the code segment to introduce our recommended namespaces:

using QuantumRuntime;

using QuantumToolkit;

using QuantumToolkit.Parser;

Don’t forget to introduce the other assemblies required in classical programming. A full

example has been given in the ‘Test.cs’.

Exploit namespace The user can exploit our provided assemblies using ‘Reflection’

inherited in Visual Studio.

PATH: Menu → View → Object Browser

Import static functions To allow the user to access static members of a type without

having to qualify the access with the type name, ‘using static’ is a good option. Please

import commonly used static functions like code segment shows.

using static QuantumRuntime.ControlStatement;

using static QuantumRuntime.Operator.E;

using static QuantumRuntime.Operator.M;

using static QuantumRuntime.Operator.U;

using static QuantumRuntime.Quantum;

using static QuantumRuntime.Registers;

Inheriting is essential for reducing code complexity A parent class called QEnv

has been provided to reduce code complexity. In fact, the QEnv is the base class in the

quantum programming environment. It inherited from MarshalByRefObject to ensure a

clean and separate environment for each experiment.

In our Test.cs, we have provided the following example. Please do not delete it:



Chapter 4. Experiments 99

Table 4.1: Quantum variable types and corresponding initial methods

Type Keywords Example Initialization

Quantum Register Quantum Quantum Bob1 MakeDensityOperator
& MakeQBit

Unitary Gate U.Emit U.Emit hGate MakeU

Quantum Channel E.Emit E.Emit BitFlip MakeE

Measurement M.Emit M.Emit m MakeM

Classical Register Reg Reg r1 new Reg

Table 4.2: Quantum variable initialisation matrix form

Function Component Example

MakeDensityOperator Matrix MakeDensityOperator( “[1 0;0 0]”)

MakeQbit Matrix MakeQbit(“[1; 0]”)

MakeU Matrix MakeU(“[1 0;0 -1]”)

MakeM Matrix MakeM(“[1 0;0 0],[0 0;0 1]”)

MakeE Matrix MakeE(“[1 0;0 0],[0 0;0 1]”)

class Text:QEnv

{

}

Declaring registers, quantum registers, quantum gates and quantum measure-

ment A variable is simply a name given to a storage area that our programs can manip-

ulate. Each variable in C# has a specific type, which determines the size and the access

way to variable’s memory. The basic quantum variable types and initial methods provided

in QSI can be categorised as per Table 4.1.

Both kinds of registers, the classical and the quantum registers, need a number to indicate

the dimensions of the object and a matrix for filling the object during the initialization

function. In quantum code, QSI derives this dimension implicitly so users can ignore this

aspect of the register. Conceptually, unitary gates, quantum channels, and measurements

do not rely on dimension information, so all inputs need only be in matrix form as Table 4.2

shows.

run() as a container for quantum circuits (workflow) After defining the “input”,

Gates (Unitary Matrix), measurement and the initial quantum state, the user can write

the self-defined quantum circuits inside the function run().
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A very brief example follows to illustrate the run() function.

protected override void run()

{

hGate(q1);

Register(r1, m(q1));

}

The gates should match the number of qubits. In most scenarios, a single-qubit universal

gate set and a two-qubit gate, CNOT, is enough to construct a quantum circuit. But QSI

does support other dimensions of a unitary matrix. Any given multi-qubit gates (excluding

a CNOT) could be translated into single unitary gates and CNOTs.

Writing classical code A standard program should include both classical and quantum

coding. In the previous section, we showed how to write a quantum code segment as the key

to the experiment, but classical coding is also essential. As a programming environment,

only a few high-level functions have been provided for classical code, such as analysis,

execution, compilation and so on. Also, as a flexible environment, being able to control

everything just the way the user wants is a cool setting for a programmer. We suggest

that all classical coding should be placed in ‘Program.cs’, which is also the entry point

for the project in the C# language.

At the very beginning, take note that QSI has two modes: static and dynamic. Static mode

is used for analysing the code structure, termination, and compilation, whereas dynamic

mode is used to execute the code.

Create, initialise, run, and collect

Creat The first code step is to create an instance of the quantum code the user wrote

and saved as Test.cs.

Creat: var test = QEnv.CreateQEnv<QSI Code.Test>();
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The default configuration allows the user to display any changes about classical registers.

If the user do not need any modification of registers trigger display, the user can use the

following command to stop the outputting status:

Reg Display Control: test.DisplayRegisterSet = false;

Initilise Initialisation is a preparation step that makes all the quantum objects available

to the classical code. It also initialises the background variables and the input matrix.

Init: test.Init();

Run The initialisation process will come to a halt, and it is time for the key steps to

take over.

Run: test.Run();

Note that test.Init(); only needs to be executed once, while test.Run(); can be

executed many times. In fact, most quantum experiments rely on statistical results, which

means that the user will probably need to execute test.Run(); many times depending

on the user’s requirements.

Collect Results will need to be “collected” in the classical part of the coding. All classical

registers are NOT and can be viewed or indexed by functions belonging to classical code

by default. Thus, a “public” modifier is a good choice for making collection by other

programs possible. A display process is shown here as a collection.

Collect: Console.WriteLine(test.r1.value);

Using the quantum while-language After that brief introduction, we can start to

code with the quantum while-language. The new clauses are based on the previous syntax.

Thus, the only clauses “to be updated” are two new structures: qif and qwhile.

QIf Prototype

QIf(Measure(Qubits), () => {Sub program 1}, () => {Sub program 2}), . . . ;
Measure is a measurement, which could be a binary output measurement or a multi-bit
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output measurement;

Qubits is a set of qubits indexed by a variable; and

Sub program is a subprogram written in the quantum while-language. The behavior

of this structure is actually a case statement. First, a measurement is performed on the

variable Qubits. Then, a sub program is executed according to the output index, i.e., the

output according to the size of the number. For example, Subprogram 1 is executed when

the measurement gives the result 0, while Subprogram 2 is executed when the measurement

gives the result 1.

Qwhile Prototype

QWhile(Measure(Qubits), () => {Sub program});
Measure is a measurement, which should be a binary output measurement;

Qubits is a set of qubits indexed by a variable; and

Sub program is a subprogram written in the quantum while-language. The behavior

of this structure is actually a loop statement. First, a measurement is performed on the

variable qubits. Then, based on the output (NOT output index), i.e., result 0 or result 1, a

Subprogram may be executed. For example, result 1 means the Sub program is executed,

but result 0 leads to SKIP the Sub program , and the clause after QWhile is executed

instead.

4.1.3.2 A simple example

Let’s write a simple example that includes QIf and QWhile. This example is a modified

quantum teleportation that illustrates the power of these new structures.

The code is shown in Figure 4.17 shows.

The code segment is similar to a standard quantum teleportation. Note that a QWhile

has been added in Line 23. That means the body of the quantum teleportation will only

be executed when the measurement result is 1. Another modification has been added at

Lines 30 and 34 – a QIf that shows an Empty or a unitary matrix xGate (or zGate) is

performed on the qubits according to the result of the measurement.
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Figure 4.17: Teleportation with loops

4.1.3.3 Checking for termination

Termination abstract Here, the user may notice that although loop structures give

true power to program, a serious issue is raised: termination. When a loop is added,

a program may become non-terminating, meaning the program never halts. Users may

also know that the non-halting problem is a hot topic in classical computing. However,

quantum scenarios are more complex than classical ones. A quantum state could be

in a superposition that, in simple terms, means it could execute in a non-halting way

across several workflows. Given loop structure is also an influencing factor, this type of

termination problem is non-trivial in most cases.

For more details on the termination analysis module, please refer to the articles listed in

the references.

Checking for termination using the modules provided To check the whether a

given program is properly terminated, the user needs to specify the path of the input file

and the class name of the target program. An example follows.

var exeDir = Path.GetDirectoryName(

Process.GetCurrentProcess().MainModule.FileName);
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var inputFile = Path.Combine(exeDir, @"..\..\QSI_Code\Test.cs");

var generator = new Generator(File.ReadAllText(inputFile));

generator.Parse("Test");

generator.MatRepANDAnalysis(false);

Lines 01 and 02 denote the path of the target class. Line 03 produces a generator, which

is core to static analysis. Line 04 then tries to analyse the input class file. Please do

not forget to mention the target class if there is more than one class in the file. Line 05

attempts to find the corresponding termination function and outputs the result.

The termination analysis tool only supports pure quantum codes. That means users should

NOT mix any classical code in classes with quantum code.

4.1.3.4 Compilation

QASM (Quantum Assembly Language) is widely used in modern quantum simulators.

We propose another format of QASM called f-QASM (Quantum Assembly Language with

feedback). The most significant motivation behind this variation is to translate the inher-

ent logic in high-level programming languages into a simple command set, i.e., so there is

only one command in every line or period. However, a further motivation is to solve an is-

sue raised on the IBM QASM 2.0 list and provide conditional operations for implementing

feedback based on measurement outcomes.

f-QASM (Quantum Assembly Language with feedback) f-QASM is an improved

quantum assembly language that can be used with the compiler in quantum simulators

and real quantum processors. A set of measurement-based operations is defined to execute

if and while structures. Using f-QASM, the compiler can compile a high-level quantum

language that includes loop and case-statements into a low-level device-independent or

device-dependent instruction set.

Compile quantum program using compile module

Compile modules Prototype

QAsm.Generate(“Parameter 1”, Parameter 2, Parameter 3, Parameter 4,

Parameter 5(generator.OperatorGenerator.OperatorTree));
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QAsm.WriteQAsmText(Parameter 1);
The first command is the quantum compilation command.

Parameter 1 is the class name to be compiled.

Parameter 2 is a number from 0-3 indicating how “deep” the user want the quantum

circuits to be generated.

Parameter 3 is an integer from 1-100 indexed to the accuracy of decomposition for the

arbitrary gate U which is performed on a single qubit. In fact, given any ε > 0, the Solovay-
Kitaev theorem can generate a series of gates from a fixed finite set to approximate U with

a precision ε of Θ(logc(1/ε)), where c is a small constant approximately equal to 2 [50].

In the article [24], accuracy is determined by a recursion number, and that number can

be set here.

Parameter 4 is an enumeration type consisting of two options:

1. QuantumMath.PreSKMethod.OrginalQSD,

2. QuantumMath.PreSKMethod.OrginalQR.

The first option, QuantumMath.PreSKMethod.OrginalQSD, uses the algorithm from the

article [47]. The second option uses the algorithm from Section 4.5 of the book [50].

Parameter 5 is a fixed OperatorTreeNode Type which is generated by the static analysis

module.

The second command writes f-QASM into a file. Parameter 1 is a Boolean value: true

or false. true means the f-QASM file will open automatically after program compilation.

Compiled results The compiled results can be found under the folder, bin/Debug/temp

or bin/Release/temp .

The command

QAsm.Generate(“Parameter 1”, Parameter 2, Parameter 3, Parameter 4,

Parameter 5(generator.OperatorGenerator.OperatorTree));

generates the compiled files. The compiled level is decided by the Parameter 2.
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Figure 4.18: Compiled file structure

1. Parameter 2=0 would do nothing to the compilation.

2. Parameter 2=1 would convert all the super-operator E into the system environ-

ment model with the U matrix. This number is currently ignored and will be devel-

oped in the next stage.

3. Parameter 2=2 would convert all the U gates into qubit gates and CNot gates.

4. Parameter 2=3 would convert all qubit gates into H,TInv, T gates using the

Solovay-Kitaev algorithm, where H = 1
√

2

⎡⎢⎢⎢⎢⎢⎣
1 1

1 −1
⎤⎥⎥⎥⎥⎥⎦, T = ⎡⎢⎢⎢⎢⎢⎣

1 0

0 expiπ/4

⎤⎥⎥⎥⎥⎥⎦ and TInv =
⎡⎢⎢⎢⎢⎢⎣
1 0

0 exp−iπ/4

⎤⎥⎥⎥⎥⎥⎦.
The accuracy for approximating of qubit gates and CNOT gates to arbitrary gate is decide

by Parameter 3. A large integer means higher accuracy. For general usage, an integer of

3 is enough for approximation. Accuracy can reach exp−6 accuracy, i.e., ∣∣U −U ′∣∣2 < exp−6
where U ′ is constructed with H,T,TInv gates.
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4.2 Experiments with QISKit and QSI

4.2.1 Implementing the Perfect Discrimination of Unitary Operators on

IBMQ Cloud Quantum Computer

4.2.1.1 Introduction

Any two unitary operators from a fixed finite set can be discriminated is a useful prop-

erty of quantum information realm. Recently, IBMQ has released their public accessible

quantum computers based on superconductor which have high fidelity both on single qubit

(Gate error is under 7�) and paired qubits (Multqubits Error is under 12.28%). We exper-

imentally demonstrate discrimination procedure by programming the schemes on ibmqx4

quantum computer with QISKit and QSI modules. Sequential and parallel discrimination

schemes are described and both of them reach success at least 86% probability. The re-

sults show that the sequential scheme is still more accurate than the parallel one under

the condition of superconductor quantum computer. From the procedure, we can see that

experimental efficiency can be improved significantly by the programming tools.

4.2.1.2 Description of the Experiments

The Discrimination Schemes

The Parallel Schemes As described in [36, 62], the perfect discrimination protocols for

arbitrary two unitary operators require an N -partite (N < ∞) quantum states ∣Ψ⟩ as the
input. ∣Ψ⟩ is chosen to satisfy that U⊗N ∣Ψ⟩ and V ⊗N ∣Ψ⟩ are orthogonal. To identify the

unknown unitary operator, we perform the measurement {M0 = U⊗N ∣Ψ⟩⟨Ψ∣ (U⊗N)�,M1 =
V ⊗N ∣Ψ⟩⟨Ψ∣ (V ⊗N)�}. If the outcome is 0, we assert that the unknown operator is U ;

otherwise the unknown operator is V .

In our setting, we set U = ⎡⎢⎢⎢⎢⎢⎣
1 0

0 e
2
3
iπ

⎤⎥⎥⎥⎥⎥⎦ and V = I2 =
⎡⎢⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎥⎦. N can be chosen as 2 and the

input state is chosen as

∣Ψ⟩ = ( 1√
3
∣0⟩ + 1√

6
∣1⟩) ⊗ ∣0⟩ + (− 1√

6
∣0⟩ + 1√

3
∣1⟩) ⊗ ∣1⟩ . (4.1)
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It is easy to verify that

U⊗2 ∣Ψ⟩ = ( 1√
3
∣0⟩ + e

2
3
iπ√
6
∣1⟩) ⊗ ∣0⟩ + (−e 2

3
iπ√
6
∣0⟩ + e

4
3
iπ√
3
∣1⟩) ⊗ ∣1⟩ ,

and ⟨Ψ∣U⊗2 ∣Ψ⟩ = 0. Thus, the measurement {M0 = U⊗2 ∣Ψ⟩⟨Ψ∣ (U⊗2)�,M1 = ∣Ψ⟩⟨Ψ∣} is

sufficient to achieve the perfect discrimination.

The Sequential Schemes As described in [38], arbitrary two unitary operators U

and V can be distinguished without entanglement, albeit additional unitary operators

are required. Explicitly, an input state ∣Φ⟩ is needed, and a finite number of ancil-

lary unitary operators X1, . . . ,XN−1 are required, such that UX1U⋯UXN−1U ∣Φ⟩ and

V X1V⋯V XN−1V ∣Φ⟩ can be distinguished perfectly.

In our settings, only 1 ancillary operator is needed, which is

X = ⎡⎢⎢⎢⎢⎢⎣
√

2
√

3
− 1

√

3

1
√

3

√

2
√

3

⎤⎥⎥⎥⎥⎥⎦ .

Notice that X is indeed the rotation matrix

⎡⎢⎢⎢⎢⎢⎣
cosα − sinα
sinα cosα

⎤⎥⎥⎥⎥⎥⎦ with α = arctan(1/√2). More-

over, we can choose the input as

∣Φ⟩ ∶= 1√
2
(∣ϕ0⟩ + ∣ϕ1⟩) , (4.2)

where ∣ϕ0⟩ and ∣ϕ1⟩ are the eigenvectors of

X�UXU = ⎡⎢⎢⎢⎢⎢⎣
2
3 + 1

3e
2
3
iπ −√

2
3 e

2
3
iπ + √

2
3 e

4
3
iπ

−√

2
3 + √

2
3 e

2
3
iπ 1

3e
2
3
iπ + 2

3e
4
3
iπ

⎤⎥⎥⎥⎥⎥⎦
= ⎡⎢⎢⎢⎢⎢⎣

1
2 + √

3i
6 −√

6i
3−√

2
2 + √

6i
6 −1

2 − √

3i
6

⎤⎥⎥⎥⎥⎥⎦ .

Eventually, we perform the measurement {M0 = UXU ∣Φ⟩⟨Φ∣U �X�U �,M1 =X ∣Φ⟩⟨Φ∣X�}.
As result of 0 implies the unknown operator is U , while a result of 1 implies the unknown

operator is I.
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(a) The parallel scheme to distinguish the unknown operator O ∈ {U, I}, where Up and Um indicate
the state preparation and measurement circuits.

(b) The sequential scheme to distinguish the unknown operator O ∈ {U, I}, where Up and Um

indicate the state preparation and measurement circuits.

Figure 4.19: Parallel and sequential discrimination schemes

Although compute the input states (and ancillary operators) is fundamental with unitary

operators for both parallel and sequential discriminations, this is not a straightforward

process with experiments on IBM’s quantum processor. On the one side, suitable unitary

operators are required to produce the desired input states (Eq. 4.1 and Eq. 4.2) from

the state ∣0⟩, which is the only quantum state initiated by IBM’s quantum processor.

On the other side, IBM’s quantum processor is only able to measure quantum states

on computational basis for each register. Thus, we need additional unitary operators

to rotate the desired measurements. Specifically, the measurement performed in parallel

discrimination needs to be localised to fulfil the requirements of IBM’s quantum processor.
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Implementation details The parallel and sequential discrimination schemes in Fig-

ure 4.19a and Figure 4.19b, respectively. Note that the unitary operator U = ⎡⎢⎢⎢⎢⎢⎣
1 0

0 e
2
3
iπ

⎤⎥⎥⎥⎥⎥⎦ is
a simple phase rotation gate (with the parameter λ = 2

3π) and can be generated either by

QISKit [42] or directly in Composer advanced mode of IBM Q Experience. In general,

QISKit can be used to implement all single-qubit unitary gates, parameterised as

U(θ, φ, λ) ∶= Rz(φ)Ry(θ)Rz(λ)
= ⎡⎢⎢⎢⎢⎢⎣

e−i(φ+λ)/2 cos(θ/2) −e−i(φ−λ)/2 sin(θ/2)
ei(φ−λ)/2 sin(θ/2) ei(φ+λ)/2 cos(θ/2)

⎤⎥⎥⎥⎥⎥⎦ ,
on the quantum processor with gate fidelity of around 99.9% (depending on the status of

the processor). Whereas, IBM’s quantum processor can only provide the ground (qubit)

state ∣0⟩, and measures the output with respect to a computational basis of {∣0⟩⟨0∣ , ∣1⟩⟨1∣}
for each register. Such limitations require us to generate the input state preparation cir-

cuits (Up’s in Figure 4.19a and 4.19b) and rotate the measurement on a computational basis

(Um’s in Figure 4.19a and 4.19b). In the sequential scheme (Figure 4.19b, Up and Um can be

chosen as two qubits rotation gates: To convert ∣0⟩ to the input ∣Φ⟩, computed by Eq. 4.2,

one can choose Up = U(1.1503,6.4850,2.2555) and Um = U(0.7854,6.0214,6.1913) 1. Im-

plementing the circuit in Figure 4.19b and measuring the output state, we say O is U if

the (measurement) output is 0, and O is I if the output is 1.

While in the parallel scheme, to prepare the input state ∣Ψ⟩, computed in Eq. 4.1, we use

the circuit shown in Figure 4.20. However, in the measurement step, as the two possible

outputs are bipartite qubit states, we cannot directly perform an entangled measurement

to distinguish them, due to the limitation of IBM’s quantum processor. Fortunately, any

two multipartite orthogonal quantum states can always be distinguished locally [63]. We

use a circuit for this with the computational basis, shown in Figure 4.21. Implementing the

circuit in Figure 4.19a and measuring the output state, we say O is U if the (measurement)

output is 01 or 10, and O is I if the output is 00 or 11.

1We mention that the software platform QSI provides a toolbox to compute the parameters for arbitrary
qubit unitary matrices.
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Figure 4.20: The quantum circuit (Up) generates ∣Ψ⟩ from ∣0⟩ ⊗ ∣0⟩.

Figure 4.21: The quantum circuit (Um) distinguishes U⊗2 ∣Ψ⟩ and ∣Ψ⟩.
4.2.1.3 The experiments

We performed a series of discrimination experiments with IBM’s quantum processor ibmqx4

and generated the circuits with QSI (the key code segments can be found at (https://

github.com/klinus9542/UnitaryDistIBMQ)) . First, we generated a uniformly random

bit to select the identity of I and U , which QSI can easily accomplish. Then, we generated

the discrimination protocols, as shown in Figure 4.19a and Figure 4.19b, replacing the gate

O with the chosen gate with respect to the random bit. QSI provides all the single-qubit

parameters for each gate along with access to the application programming interface (API)

for IBM’s quantum cloud service by transforming the quantum program into QASM. Prior

to executing the experiment, QSI provides simulation and verification toolkits to check

whether the programs are written correctly. For each random bit, we executed the schemes

on ibmqx4 1024 times and gathered the measurement results.
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Based on the theoretical calculations, the identity of the unknown unitary operations

should be uniquely determined. For instance, with the parallel scheme (Figure 4.19a)

and O as the chosen U , the measurement outputs should only be 01 and 10 and appear

an equal number of times. However, current quantum technologies may not be able to

achieve theoretical performance standards. As mentioned, the fidelity of a single-qubit

gate is 99.9%, which creates an unavoidable error. But another type of error arises from

the state preparation circuits and measurement circuits. This is because the theoretical

input states and the measurements contain irrational parameters presented by the float

type in the software, which cannot be created accurately.

Also note that even measurement on real quantum computers must be synchronous for

each single qubit because unused qubits measurement results would also be reported while

only the results of the working qubits would be taken into account. For statistical purposes,

other changes on unused qubits would be ignored.

Having applied the parallel and sequential discrimination schemes shown in 4.19a and

Figure 4.19b, Figure 4.22a and Figure 4.22b show the statistical measurement results for

the parallel discrimination scheme, and Figure 4.23a and Figure 4.23b show the statistical

measurement results for sequential discrimination scheme. The results need to be sorted, as

some ‘impossible’ results might appear. In principle, the statistical results might be xy000

when using the 5-qubit ibmqx4 chip. However, the outputs may actually be arbitrary 5-bit

strings given the errors between used qubits and unused qubits. Here, we ignore the unused

qubits and sort the final results. In addition, the optimisation module in QISKit prevents

results from objective gates and measurement error conditions, which may automatically

combine neighbour gates into rotation gates depending on the strategy. We also use barrier

functions to force the program to execute on the original circuits without combining gates.

Figure 4.24 illustrates the box-plot of success probabilities with the parallel and sequential

schemes. In the experiment, replacing O by U or I depends on the value of the random bit

by the classical computer. We performed each scheme 10 times with a randomly chosen

O, each of which includes 1024 repeating experiments. Both the worst (85.83%) and the

best (98.63%) success probabilities came from the discrimination experiments using the

sequential scheme with a standard deviation of σ = 0.061. The best success probability was
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achieved when O was replaced by I. Hence, the discrimination scheme (in Figure 4.19b)

contained only 3 qubit gates to perform. The worst success probability was achieved when

O was replaced by U , where 5 (rather complicated) qubit gates needed to be performed on

the inputs. With the parallel scheme, the success probabilities ranged from 88% to 92%,

with not insignificant differences (standard deviation σ = 0.017).

(a) Perform the circuit in Figure 4.19a
by replacing O by U for 1024 times. Af-
ter sorting the outputs, 834 rounds out-
put either 01 or 10 (indicates O is U),
and 190 rounds output either 00 or 11
or other results (indicates O is not U).

(b) Perform the circuit in Figure 4.19a
by replacing O by I for 1024 times. Af-
ter sorting the outputs, 875 rounds out-
put either 00 or 11 (indicate O is I),
and 190 rounds output either 01 or 10
or other results (indicate O is not I).

Figure 4.22: Statistical results in the parallel discrimination experiments.

(a) Perform the circuit in Figure 4.19b
by replacing O by U for 1024 times. Af-
ter sorting the outputs, 857 rounds out-
put 0 (indicate O is U), and 167 rounds
output either 1 or other results (indicate

O is not U).

(b) Perform the circuit in Figure 4.19b
by replacing O by I for 1024 times.
After sorting the outputs, 1007 rounds
output 1 (indicate O is I), and 17
rounds output either 1 or other results

(indicate O is not I).

Figure 4.23: Statistical results in the sequential discrimination experiments.
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Figure 4.24: The discrimination success probability distributions. Both the sequential
and parallel discrimination are shown here. For each round in each scheme, U and I
was chosen depending from a random coin-flip. We execute the experiment for each
scheme with 10 randomly chosen O, and repeated the experiment 1024. In each box, the
central mark indicates the median, and the top and the bottom indicate the 75% and

25% percentiles, respectively.

4.2.1.4 Conclusion and Discussion

In this sub-section, we used IBM ’s quantum processor (ibmqx4) to discriminate between

unitary operators, with the help of the QISKit and QSI modules. The results shown in

Figure 4.22 and Figure 4.23 indicate that both schemes were able to distinguish the qubit

unitary gates U and I with rather high success probabilities, although not perfectly. In

addition, we used QSI modules to perform 10 random experiments, where U and I were

chosen at random and uniformly executed in each discrimination scheme. The result in

Figure 4.24 suggests that both schemes were able to distinguish between the randomly

chosen unitary gates with high probability.

Although we only considered two simple qubit unitary gates in these experiments, U =⎡⎢⎢⎢⎢⎢⎣
1 0

0 e
2
3
iπ

⎤⎥⎥⎥⎥⎥⎦ and I = ⎡⎢⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎥⎦, the success probability distributions in Figure 4.24 implies that,
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the sequential scheme may have produced higher success probabilities than the parallel

scheme. However, the success probabilities with the parallel scheme are more robust.

From this we conclude that when the set of known unitary operations have rather simple

structures, such as an identity or Hadamard gate, a sequential scheme would be more

suitable than a parallel scheme. Our assertion is due to the fact that the coherence and

fidelity of two-qubit gates are still not ideal in IBM quantum processors. Further, while

using a parallel discrimination scheme is more robust, it may not achieve a 99% success

probability, but the success probabilities do not differ too much.

As the first implementation to distinguish quantum operations in a real quantum pro-

cessor, we believe that our experiments provide evidence of how to choose parallel and

sequential schemes in discrimination tasks. If the known quantum operation sets are not

too complicated, sequential schemes are preferred and should generate higher success prob-

abilities. However, if more robust results are required, parallel discrimination schemes may

be more suitable. We have left the implementation of discrimination in general quantum

operations as a further research direction.

4.2.2 Distinguishing Bell States with Local Measurement on IBMQ

4.2.2.1 Introduction and Preliminaries

It is well known that Bell state cannot be distinguished using local operations and classical

communication (LOCC) in one-shot by one-copy. Nonlocality lays the heart of quantum

information as it ensures that, even if a compound quantum system consisting of two

parts and the quantum states are orthogonal, it is not always possible to reliably dis-

cover which state the system is in through local measurement or even LOCC. Bennett et

al. [64]demonstrate that there are orthogonal sets of product states that cannot be reliably

distinguished by a pair of separated observers no matter which of the states has been sent

to them. Even if LOCC is allowed, these authors prove that a finite gap exists between

mutual information by a joint measurement on the state and a measurement in which only

local actions are permitted. Since their paper was published, some further studies have

been conducted in the hope of distinguishing various orthogonal Bell states [63, 65, 66].

Virmani et al. [66] showed that if two copies of a Bell state are provided, they can be
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distinguished by LOCC with certainty. Therefore, in this section, we demonstrate how to

distinguish Bell states using two copies on an IBMQ quantum computer.

Bell States We assume two parties, Alice and Bob, share one side of a Bell entanglement

state. The candidate Bell states are assumed to be ∣Φ0⟩AB = 1
√

2
(∣00⟩ + ∣11⟩), ∣Φ1⟩AB =

1
√

2
(∣01⟩ + ∣10⟩), ∣Φ2⟩AB = 1

√

2
(∣00⟩ − ∣11⟩), ∣Φ3⟩AB = 1

√

2
(∣01⟩ + ∣10⟩).

Obviously, there is no method to distinguish ∣Φ1⟩, ∣Φ2⟩, ∣Φ3⟩ and ∣Φ4⟩ with LOCC with

one copy.

Let’s consider two copies. Let two copies of Bell states be defined as

∣Ψ0⟩ = ∣Φ0⟩A1,B1
⊗ ∣Φ0⟩A2,B2

= 1

2
(∣0000⟩ + ∣0101⟩ + ∣1010⟩ + ∣1111⟩)A1A2B1B2 ,

∣Ψ1⟩ = ∣Φ1⟩A1,B1
⊗ ∣Φ1⟩A2,B2

= 1

2
(∣0011⟩ + ∣0110⟩ + ∣1001⟩ + ∣1100⟩)A1A2B1B2 ,

∣Ψ2⟩ = ∣Φ2⟩A1,B1
⊗ ∣Φ2⟩A2,B2

= 1

2
(∣0000⟩ − ∣0101⟩ − ∣1010⟩ + ∣1111⟩)A1A2B1B2 ,

∣Ψ3⟩ = ∣Φ3⟩A1,B1
⊗ ∣Φ3⟩A2,B2

= 1

2
(∣0011⟩ − ∣0110⟩ − ∣1001⟩ + ∣1100⟩)A1A2B1B2 .

4.2.2.2 Protocol

Charlie generates two copies one of the prepared states secretly, and then sends A1 and A2

to Alice and B1 and B2 to Bob. As only computational measurement can be performed on

an IBMQ quantum computer, Alice performs a {∣0⟩ , ∣1⟩} project measurement on A1 and

{∣+⟩ , ∣−⟩} project measurement on A2 while Bob performs a {∣0⟩ , ∣1⟩} project measurement

on B1 and a {∣+⟩ , ∣−⟩} project measurement on B2.

4.2.2.3 Experiment

Quantum circuits on IBMqx4 We use the following circuits to generate the targeted

Bell state.

4.2.2.4 Ideal Results

For convenience, we re-order the system from A1,B1,A2,B2 to A1,B1,A2,B2. The mea-

surement results can easily be seen as binary results. The result for {∣0⟩ , ∣+⟩} is denoted
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(d) Generate ∣Ψ3⟩
Figure 4.25: Circuits for generating Bell states

Table 4.3: Ideal measurement results on two copies of a Bell state

Possible Results∣Ψ0⟩ = 1
2(∣0000⟩ + ∣0101⟩ + ∣1010⟩ + ∣1111⟩)A1A2B1B2 0011 0000 1100 1111∣Ψ1⟩ = 1
2(∣0011⟩ + ∣0110⟩ + ∣1001⟩ + ∣1100⟩)A1A2B1B2 0100 0111 1000 1011∣Ψ2⟩ = 1
2(∣0000⟩ − ∣0101⟩ − ∣1010⟩ + ∣1111⟩)A1A2B1B2 0001 0010 1110 1101∣Ψ3⟩ = 1
2(∣0011⟩ − ∣0110⟩ − ∣1001⟩ + ∣1100⟩)A1A2B1B2 0110 0101 1010 1001

the integer 0, and the result for {∣1⟩ , ∣−⟩} is denoted as 1. The ideal results can therefore

be expressed as a four-bit-length string set, as shown in Table 4.3.

4.2.2.5 Experimental Results

Two Copies The experiment was performed on ibmqx4 universal quantum computer.

Figure 4.26 shows the experimental results.

As shown, four surges exist for each state, even though the results are not balanced. Addi-

tionally, half the strings (16 of 32) have significant peaks, which indicates a corresponding

quantum state. Moreover, as the errors may come from gate and measurement fidelity

issues on a real quantum computer, half of the strings that should not emerge have also

been provided within a small proportion.
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Figure 4.26: Measurement results with two copies of a Bell state. Charlie uniformly
chooses one of Bell states from ∣Ψ1⟩, ∣Ψ2⟩, ∣Ψ3⟩ and ∣Ψ4⟩. In this example, Charlie exactly
chooses 1024 shots for ∣Ψ1⟩, ∣Ψ2⟩, ∣Ψ3⟩ and ∣Ψ4⟩. For each state, there are four significant

peaks of results and thus the results reflect the state Charlie chose.

One Copy One copy is not enough to distinguish which Bell state is present with LOCC.

Therefore, we directly perform the measurement on two copies.

Figure 4.27: One copy experiment and computational measurement.

As Figure 4.27 shows, all four strings have two peaks which indicate the corresponding
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state. Hence, when a result is given, we are still unsure about the corresponding state.

For example, if Charlie secretly chooses ∣Ψ0⟩ as a black box and permits Alice and Bob

to perform their measurements and classical communications, they still cannot ensure the

prepared state is either ∣Ψ0⟩ or ∣Ψ2⟩ according to Figure 4.27.

4.3 Experiments with QISKit and LIQUi∣⟩

In this section, we focus on constructing QMUX for �QIF�. As mentioned in the last

chapter, ∧1(U) can be employed to simulate QMUX behaviour with a CNOT gate and a

Z-Y rotation. Moreover, in the Hamilton mode of LIQUi∣⟩, Ry (Z rotation) and Rz (Y

rotation) gates can be used as basic elements. The task is to denote the corresponding

rotation angles and construct phase gates, say Ephase gate,

Ephase =
⎡⎢⎢⎢⎢⎢⎣
1 0

0 eiα

⎤⎥⎥⎥⎥⎥⎦ .

We have used the circuit shown Figure 4.28 to emulate any given circuit. Hence, once a

controlled-unitary is simulated by rotation successfully, it should illustrate the ability to

simulate any original unitary matrix that represents a �QIF� behaviour.

4.3.1 Typical Cases

4.3.1.1 Hadamard Gate Case (H Gate)

Hadamard gates (H Gate) play an important role in quantum networks and algorithms.

An H gate can be defined as converting ∣0⟩ ↦ 1
√

2
(∣0⟩ + ∣1⟩) and ∣1⟩ ↦ 1

√

2
(∣0⟩ − ∣1⟩). We

constructed a controlled-H gate with the input ∣0⟩ or ∣1⟩, ran the simulation several times

and measured it using the computational basis M , in LIQUi∣⟩ to reflect the circuits. When

the control qubit has the state ∣1⟩ and the circuit works properly, the measurement results

for target qubit should be almost half of 0 and half of 1.

After decomposition with the QSI module, the parameters were α = π/2, β = 0.000000, γ =
−π/2, δ = 0.000000. The quantum circuit in Figure 4.28 includes a loop body to measure
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Eπ/2

θZc θZb θY b θY a θZa

Figure 4.28: Controlled-unitary gate decomposition

the output state for 1000 shots. The experiment results are shown in Table 4.4 and clearly

show the controlled-H gate was successfully simulated.

Table 4.4: Measurement results of controlled-Hadamard gate

Input State Measurement Results of the Second Qubit∣0⟩, ∣0⟩ 1000 times with a result of 0, no times with a result of 1∣0⟩, ∣1⟩ 1000 times with a result of 1, no times with a result of 0∣1⟩, ∣0⟩ 599 times with a result of 0, 401 times with a result of 1∣1⟩, ∣1⟩ 470 times with a result of 0, 530 times with a result of 1

4.3.1.2 Identity Gate Case (I Gate)

An identity gate (I gate) should, theoretically, not have any effect on the quantum state

in theoretical computation, for the specific computational basis, ∣0⟩ ↦ ∣0⟩ and ∣1⟩ ↦ ∣1⟩.
We performed ∣0⟩ or ∣1⟩ through a simulated quantum circuit in Figure 4.28 for 1000 shots

and then measured the result. In principle, the result should be similar to the input state

exactly regardless the input state.

After decomposition with the QSI module, the parameters were α = 0.000000, β = 0.000000, γ =
0.000000, δ = 0.000000. The experiment results appear in Table 4.5. As shown, the I gate

composited by the rotation gates worked as accurately as the original form.

Table 4.5: Measurement results of controlled-identity gate

Input State Measurement Result of the Second Qubit∣0⟩, ∣0⟩ 1000 times with a result of 0, no times with a result of 1∣0⟩, ∣1⟩ 1000 times with a result of 1, no times with a result of 0∣1⟩, ∣0⟩ 1000 times with a result of 0, no times with a result of 1∣1⟩, ∣1⟩ 1000 times with a result of 1, no times with a result of 0
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4.3.1.3 Bit-flip Gate Case (X Gate)

A bit-flip gate (X gate) flips the state in quantum circuit as well as flipping the compu-

tational basis, e.g., ∣0⟩ ↦ ∣1⟩ and ∣1⟩ ↦ ∣0⟩. We perform ∣0⟩ or ∣1⟩ through the simulated

quantum circuit in Figure 4.28 for 1000 shots and measured the results. In principle, once

a controlled-qubit is state ∣1⟩, the result should be exactly the opposite to the input state.

After decomposition with the QSI module, the parameters were α = π/2, β = −π, γ = π, δ =
0.000000. The results are shown in Table 4.6.

Table 4.6: Measurement result of controlled-Bit flip gate

Input State Measurement Results of the Second Qubit∣0⟩, ∣0⟩ 1000 times with a result of 0, no times with a result of 1∣0⟩, ∣1⟩ 1000 times with a result of 1, no times with a result of 0∣1⟩, ∣0⟩ 1000 times with a result of 1, no times with a result of 0∣1⟩, ∣1⟩ 1000 times with a result of 0, no times with a result of 1

4.3.2 Extended 2-qubit QMUX

n-qubit QMUXs and its equivalences can be multiplexed with the result from the arti-

cles [67, 68]. The results from the Theorem 8 in Shende et al.’s work [47] can also be

applied.

Theorem 4.1 (Demultiplexing Rk). Demultiplexing multiplexed rotation gates (Rk gates,

where k = y, z) with the circuit as shown in Figure 4.29.

Figure 4.29: Demultiplexing multiplexed rotation gates





Chapter 5

Summary

5.1 Summary of Contributions

In this thesis, we show an explicit approach to a quantum programming environment

including its architecture and implementation.

First, we researched and developed the primary framework as the key fundamental com-

ponent. A new layered embedding language was presented based on a flexible structure

that adapts to the most powerful quantum language – the quantum while-language. We

designed a new compiler for connecting software to real or virtual quantum hardware and

researched an inherited low-level instruction set called f-QASM. An algorithm within the

framework for simulating quantum programs, including loop behaviours, is also presented.

Second, we developed several modules for the programming environment. The proposed

parallel modules and approximate decomposition protocols for extensions to the separation

unitary problem. The protocol enables the parallel computation under the approximate

meaning. The termination modules were transformed from pure theoretical estimating

rules into actual efficiency modules for checking a quantum program’s ability to termi-

nate. The modules include a new and improved algorithm to significantly accelerate the

procedure. The quantum control modules ensure that QuGCL is feasible on current quan-

tum hardware.

123
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Lastly, we prepared a range of experiments to demonstrate the capabilities and flexibility

of the QSI programming environment. For example, we show how the platform is able to

support BB84 protocol, Grover’s search algorithm, etc. Several experiments on unitary

discrimination and Bell-state discrimination are included by connecting the QISKit with

IBMQ. We also demonstrate how a quantum language can be combined with classical func-

tional programming, i.e., Microsoft’s LIQUi∣⟩ as an illustration of QMUX’s construction,

which lays at the heart of QuGCL.

5.2 Future work

Developing a quantum programming environment is a state-of-the-art research topic that

combines the most recent theoretical results in the quantum realm with industry require-

ments. We anticipate that as breakthroughs occur with the development of quantum

hardware, physical implementation and linkage toolkits will be in high demand. In addi-

tion, there are likely to be many types of quantum computer, each with their own related

standards, and each will require compatible toolkits. Hence, there is much work still to

do.

Architecture In its current stage of development, QSI is an academic prototype con-

structed to demonstrate concepts, algorithms, and experimental results. In future, it may

need to be reconstructed. This version of QSI is based on several academic articles research

group has published over the past few years. However, as new functionality is developed,

new modules will be added and QSI will become more and more complicated. Therefore,

an amount of time will be required to adjust “past code” when each new module added.

Architecture and design are critical components of long-lasting software. In the field of

quantum computing and the integration of classical systems into a programming envi-

ronment, the following aspects of research require particular attention: mixed quantum

language models and compilation techniques, the legitimacy of mixed quantum procedures

and other procedural automatic inspection tools, abstract description of new quantum de-

vices, and the characteristics of the simulator.
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Future versions of QSI are intended to integrate C# and the quantum while-language. By

further embedding specialised languages into the quantum domain, our hope is to provide

a platform that is easy-to-program, more efficient, of a higher level, and can support a

next-generation language. This next-generation language would focus the representations

and semantics of quantum data structures, quantum gate descriptions, quantum control

clauses, and quantum computation commands. Interactions with classical language and

storage will also be considered.

Additionally, a layered compiler will be required to transplant a singleton model (QASM)

written in C# into an open LLVM structure, where a collection of modular and reusable

compiler and toolchain technologies could be used to develop both the front-and back-

ends. LLVM provides a unified compiler structure, which opens opportunities to use a

draw on the contributions of a range of advanced compiler tool-chains for many aspects

of a new quantum compiler. Using LLVM also requires a robust quantum intermediate

representation (QIR) that is similar to the classical process. The QIR needs to be designed

as a general and efficient intermediate language that can completely describe the data and

program. All the outputs would depend on a unified data structure in memory. The

unified data structure would provide independent program information for each isolated

quantum device or quantum hardware, and would include specific device information to

generate compatible machine code at a low level.

Computation Engine To improve efficiency, the “computation engine” in QSI needs

to be separated from other trivial components. The calculation engine may need to be

rewritten in C or C++ using parallel technologies to meet performance standards. We also

need to implement a corresponding calculation engine on a supercomputer or in the cloud.

Further, vector machine technology, such as CUDA or OpenCL, have shown significant

speed improvements when handling massive amounts of data in current AI applications.

This technology is also a potential direction to pursue in designing an advanced simulator

and engine.

Applications Beyond pure quantum algorithms, such as Grover’s search and Shor’s

factoring algorithm, there are still many applications to be built for different purposes.
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Embedding a zoo of quantum algorithms into a solver would combine elegant classical

algorithms with a sweep of applications for the quantum era.

Cross-platform Developing QSI also needs to be separated from the .NET Framework

or, as a short-term measure, its front-end needs to be separated, given that potential users

will be running many different operating systems, e.g., Mac OS (Apple), Linux, UNIX,

etc. The .NET Framework is not a good cross-platform solution for this project. Even

though it is possible to transplant the programming environment into other platforms,

crashes and instability are still common, which seriously detracts from a good user expe-

rience. Additionally, the setup configurations required are so tedious and unbearable that

they present a solid barrier for most developers. QSI needs to be more flexible. IBMQ

is an online version of their quantum computer that offers “zero-configuration software

technology” to create a composer that supports “drag and run ”. This feature not only

has wide market appeal, it also reduces the heavy load of studying syntaxes and semantics.

We may need to consider developing this feature when developing QSI into the next stage

quantum programming environment.
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