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Abstract

Visual object tracking is a critical task in many computer-vision-

related applications, such as surveillance and robotics. If the tracking

target is provided in the first frame of a video, the tracker will pre-

dict the location and the shape of the target in the following frames.

Despite the significant research effort that has been dedicated to this

area for several years, this field remains challenging due to a number

of issues, such as occlusion, shape variation and drifting, all of which

adversely affect the performance of a tracking algorithm.

This research focuses on incorporating the spatial and temporal con-

text to tackle the challenging issues related to developing robust track-

ers. The spatial context is what surrounds a given object and the

temporal context is what has been observed in the recent past at the

same location. In particular, by considering the relationship between

the target and its surroundings, the spatial context information helps

the tracker to better distinguish the target from the background, es-

pecially when it suffers from scale change, shape variation, occlusion,

and background clutter. Meanwhile, the temporal contextual cues

are beneficial for building a stable appearance representation for the

target, which enables the tracker to be robust against occlusion and

drifting.

In this regard, we attempt to develop effective methods that take

advantage of the spatial and temporal context to improve the track-

ing algorithms. Our proposed methods can benefit three kinds of

mainstream tracking frameworks, namely the template-based gener-

ative tracking framework, the pixel-wise tracking framework and the

tracking-by-detection framework. For the template-based generative



tracking framework, a novel template based tracker is proposed that

enhances the existing appearance model of the target by introducing

mask templates. In particular, mask templates store the temporal

context represented by the frame difference in various time scales, and

other templates encode the spatial context. Then, using pixel-wise

analytic tools which provide richer details, which naturally accommo-

dates tracking tasks, a finer and more accurate tracker is proposed.

It makes use of two convolutional neural networks to capture both

the spatial and temporal context. Lastly, for a visual tracker with a

tracking-by-detection strategy, we propose an effective and efficient

module that can improve the quality of the candidate windows sam-

pled to identify the target. By utilizing the context around the object,

our proposed module is able to refine the location and dimension of

each candidate window, thus helping the tracker better focus on the

target object.
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