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Abstract

Visual object tracking is a critical task in many computer-vision-

related applications, such as surveillance and robotics. If the tracking

target is provided in the first frame of a video, the tracker will pre-

dict the location and the shape of the target in the following frames.

Despite the significant research effort that has been dedicated to this

area for several years, this field remains challenging due to a number

of issues, such as occlusion, shape variation and drifting, all of which

adversely affect the performance of a tracking algorithm.

This research focuses on incorporating the spatial and temporal con-

text to tackle the challenging issues related to developing robust track-

ers. The spatial context is what surrounds a given object and the

temporal context is what has been observed in the recent past at the

same location. In particular, by considering the relationship between

the target and its surroundings, the spatial context information helps

the tracker to better distinguish the target from the background, es-

pecially when it suffers from scale change, shape variation, occlusion,

and background clutter. Meanwhile, the temporal contextual cues

are beneficial for building a stable appearance representation for the

target, which enables the tracker to be robust against occlusion and

drifting.

In this regard, we attempt to develop effective methods that take

advantage of the spatial and temporal context to improve the track-

ing algorithms. Our proposed methods can benefit three kinds of

mainstream tracking frameworks, namely the template-based gener-

ative tracking framework, the pixel-wise tracking framework and the

tracking-by-detection framework. For the template-based generative



tracking framework, a novel template based tracker is proposed that

enhances the existing appearance model of the target by introducing

mask templates. In particular, mask templates store the temporal

context represented by the frame difference in various time scales, and

other templates encode the spatial context. Then, using pixel-wise

analytic tools which provide richer details, which naturally accommo-

dates tracking tasks, a finer and more accurate tracker is proposed.

It makes use of two convolutional neural networks to capture both

the spatial and temporal context. Lastly, for a visual tracker with a

tracking-by-detection strategy, we propose an effective and efficient

module that can improve the quality of the candidate windows sam-

pled to identify the target. By utilizing the context around the object,

our proposed module is able to refine the location and dimension of

each candidate window, thus helping the tracker better focus on the

target object.
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Chapter 1

Introduction

1.1 Background

Since the costs of high-quality cameras have dropped dramatically, video surveil-

lance systems are nowadays widely used in public spaces. In order to handle

the increasing amount of captured video data, it is essential to utilize automated

video processing techniques [41]. Of the various popular video processing tech-

niques, the visual object tracking technique plays a critical role in a wide range

of applications such as surveillance and robotics.

The goal of visual tracking is to identify the states of a moving object in all the

frames of a video sequence given only the initial state of the target. Commonly,

the state of an object in each frame can be presented in two formats: 1) a bound-

ing box that marks a rectangular region, and 2) a binary mask that highlights an

area at the pixel level. In practice, a bounding box generally uses four numbers

to describe the size and shape of an object. Due to efficiency, the bounding box

is a widely used format to denote the region of interest (ROI) in many computer

vision tasks such as object detection [133] and action recognition [155]. In addi-

tion to the bounding box, the binary mask is another popular format to denote

the ROI. Instead of only denoting a rectangular area, a binary mask provides

a pixel-wise segmentation of the foreground area to identify objects. Although

such pixel-level segmentation of the objects could be more time-consuming during

tracking [116], it can measure the target states in detailed contours and shapes,
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thus achieving a more precise estimation of the target in each frame.

Figure 1.1 shows an example of object states in visual object tracking. In

the figure, the first row presents the frames of a video sequence starting from

time t = 0, and the second row lists the ground truth states of the target in the

corresponding frames. The red rectangle in the bottom-left picture represents the

initial state of the target, i.e., a car in this example, in the form of a bounding

box, and the yellow rectangles in other pictures denote the desired output of a

tracking algorithm. Meanwhile, the states of the target in the form of a binary

mask are illustrated by the white areas in each frame in the second row. Using

the binary mask format, a tracker is supposed to assign 1 to every pixel on the

target and 0 to all other areas.

…

Figure 1.1: An example of object states in online object tracking. The first row
presents a few frames starting from time t = 0, and the second row lists the
ground truth states of the target correspondingly. The states in the form of
a bounding box are illustrated with rectangles, while the states in the form of
binary masks are illustrated in white areas. Either the red rectangle or the white
mask inside represents the initial state of the target. Correspondingly, the yellow
rectangles or the related masks are the desired output of a tracker in each new
frame.

Over the past few decades, various methods have been proposed to tackle the

tracking problem, and promising results have been achieved on different bench-

marks. In general, researchers mainly study two groups of tracking algorithms,

which are generative methods and discriminative methods. Generative methods

attempt to build a robust appearance model of the target. In each new frame,

candidate windows are sampled around a previously estimated location of the

target. Then, according to a maintained appearance model, the window whose
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image content is the most similar to the target will be considered as the new state

of the target. Based on this methodology, researchers have introduced diversified

algorithms to tackle the tracking problem. Some of the most popular generative

algorithms include [88, 112]. Different from generative methods, given a set of

candidate windows, discriminative methods then try to exploit the discrimina-

tive ability of a classifier to distinguish the foreground window from background

windows. In particular, these methods mainly train a target-specific classifier

on-the-fly. For the sampled candidate windows in a new frame, the trained clas-

sifier will provide the foreground/background score for the windows. Then the

window with the highest score could be chosen as the new state of the target.

The most representative methods of this kind are correlation filter-based track-

ers and convolutional neural network-based trackers. The correlation filter-based

trackers, such as [70, 96], train a correlation filter as the target-specific classifier.

By exploiting the properties of circular correlation and performing the correla-

tion operations in the Fourier domain, the correlation filter-based trackers are

extremely efficient and can achieve compelling tracking accuracy. In addition

to the correlation filter, researchers also attempt to take advantage of the im-

pressive expression capacity of Deep Convolutional Neural Networks (DCNNs)

to tackle the tracking problem. In recent years, DCNNs have demonstrated their

outstanding performance in almost all mainstream computer vision tasks, espe-

cially classification. DCNNs have achieved outstanding performance on various

challenges and sometimes they even surpass human annotators. Hence, many

researchers tend to incorporate DCNNs in their tracking models. In particular,

MDNet, which trains a DCNN as the target-specific classifier, achieved first place

in the visual object tracking challenge (VOT15 [110]). Afterward, more powerful

algorithms were introduced in the field of tracking with more intricate network

structures or additional target cues, for example, methods based on Siamese net-

works [10,153], and algorithms with complementary deep information like motion

cues [199].

Despite the great research effort over the last several years, several issues

remain challenging. For example, scale change, shape variation, occlusion, and

background clutter adversely affect the performance of a tracking algorithm sig-

nificantly [146] [179]. Figure 1.2 presents two video sequences from [128] that
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contain some of these challenges. The first row of the figure shows a video clip

that records a soapbox race. The target, which is the vehicle and two drivers

as a whole, suffers from scale change and shape variation because of the trans-

lation of the distance and pose of the target with respect to the camera. The

sequence in the second row indicates a dog that is running in a garden with

clutter background. We can see that barriers in some frames occlude the dog,

making it difficult for trackers to distinguish the target from the background.

Other challenging issues presented in this example include illumination change

and cluttered background surroundings. In addition to these issues, there are

many other challenging issues such as non-rigid deformation, motion blur, in-

plane rotation, out-of-plane rotation, lost and re-appear, and so on. Due to these

issues, a tracker would easily drift to other irrelevant objects and thus fail to

track the target successfully.

Figure 1.2: Example of challenging issues in object tracking. The target in the
first row suffers from scale change and shape variation. The target in the sec-
ond row suffers heavy occlusions, illumination changes and cluttered background
surroundings.

In order to tackle these issues, spatial and temporal visual contexts could

be advantageous for visual tracking. In particular, the visual contexts that sur-

round the target or in the preceding time periods could contain complementary

information to resolve the confusion caused by issues such as scale change, shape

variation, and occlusion. For example, although the dog in Fig. 1.2 is partially

occluded, a tracker would still be able to infer the holistic appearance of the
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target by referring to the surrounding areas.

Some studies have incorporated contexts to help tackle tracking. Researches

like [70, 71] simply crop a larger candidate window to include more spatial con-

texts. The Context tracker [42] explores the visual context in recent frames and

nearby areas to build an accurate appearance model. By analysing the context in-

formation, it avoids the distraction from nearby objects which may have a similar

appearance with the tracking target. The studies in [72,107] develope a long-term

module which stores target information in past frames as temporal contexts to fa-

cilitate the tracking for the current frame. However, it is still challenging for these

studies to deliver robust tracking. To this end, we aim at proposing algorithms

which can effectively and extensively incorporate contexts in different tracking

scenarios. In the next section, we introduce how we build a robust tracker by

referring to informative contextual information.

1.2 Motivation of This Study

Both neurophysiological [141] and statistical analysis on typical natural scenes

and movies [48, 194] demonstrate that the visual processing of objects is pow-

erfully affected by its context, that is, its spatial and temporal neighbourhood.

By studying the mechanism of visual processing of human brains, the work pub-

lished in Neuroscience [141] finds that the human brain uses the complete spatio-

temporal input I to process the visual world. In particular, the work in [50]

studies the local association field of the human visual system and discovers that

most objects in the visual world have large spatial and temporal footprints. This

implies that there exists correlations between Is1(t1) and Is2(t2) where s1 and s2

represent image areas that are spatially near to each other and t1 and t2 represent

different time steps that are close. In addition, the work in [48], in which the con-

text information is analysed in the way shown in Figure 1.3, collects and analyses

image statistics from the real-life Catcam movie database. For spatial statistics,

the patches (denoted by orange circles) give the context for surrounding spa-

tial positions. For temporal statistics, context patches of the neighbouring time

frames of the sequence in the same spatial location are collected. This research

discovers that the statistics of videos for space and time reveal how neighbouring
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spatial and temporal locations are correlated. Existing theoretical and empirical

studies indicate that it is highly beneficial to take contextual information into

account in visual tracking.

The visual context can help a tracker to better locate the target since the

visual appearance of a moving target strongly depends on both spatial context

and temporal context. More specifically, the spatial context provides informa-

tion about what surrounds a given target, making it easier to distinguish the

target from its surroundings. The temporal context then provides information

about what has been observed in the recent past and can properly reveal the

changes in the appearance of the target over time. As a result, combining the

context information is beneficial for building a more accurate and more robust ap-

pearance model against various challenging issues, including scale change, shape

variation, occlusion, and background clutter. Additional contextual information

also contributes extra target details to facilitate the tracker. Finally, contextual

information can reduce the risk of accumulating tracking errors because it enables

the tracker to identify and rectify inappropriate tracking results in a more timely

manner. Hence, it is less likely that the tracker will drift away from the target.

Therefore, this thesis aims at developing robust tracking models by effectively

incorporating rich spatial-temporal context.

Figure 1.3: Spatial and temporal context. The patches (denoted by orange circles)
give spatial context for surrounding spatial positions. For temporal context, the
context patches of the neighbouring time frames of the sequence in the same
spatial location are collected.
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1.3 Summary of Contributions

This thesis focuses on category-independent single object online tracking, in which

we build single generic tracker for all kinds of objects. Given only the initial posi-

tion, the on-line tracking methods aim to track objects in the subsequent frames

of a video. There is no preliminary information about the target object. By

incorporating the spatial and temporal context, robust trackers can be devel-

oped, which are powerful in tackling scale change, shape variation, occlusion,

and background clutter.

First, we design a template-based algorithm for tracking the target, which is

more robust against occlusion. The proposed method enhances the existing sparse

appearance model by introducing mask templates produced by frame difference.

Then, object changes in different time scales can be successfully represented by

the mask templates, especially when the target is occluded. There are two innova-

tions: 1) We introduce a set of templates which not only encodes the context into

the sparse appearance model but also dramatically reduces the dimension of the

�1 minimisation problem. Furthermore, when we model the temporal evolution

of the system, we boost the performance of our tracker by considering the system

dynamic, namely state estimation. 2) We demonstrate that the adapted problem

with template regulation can be solved efficiently using the Accelerated Proximal

Gradient (APG) algorithm. In doing so, we both increase tracking accuracy and

relieve the computational burden.

Second, we build a novel bi-channel fully convolutional network for accurate

pixel-level visual object tracking by utilising the temporal and spatial context.

With the bi-channel structure, where the low-level optical flow branch captures

temporal context while the high-level branch represents semantic change, the

network naturally encodes the spatial-temporal context of the target. This net-

work outputs pixel-level tracking results which are finer and more accurate and

is more robust against shape variation and background clutter than traditional

bounding-box-based methods.

Third, under a tracking-by-detection framework, we propose a module that

can refine the candidate windows for trackers and improve the tracking perfor-

mance. By analysing the spatial context around each candidate window, our
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proposed module rectifies the location and shape of the window. Thus, the re-

fined window will be able to cover the target more precisely and tightly. With this

module, the tracker will be able to better focus on the target and output a more

accurate tracking result in each frame. In addition, the utilization of the pro-

posed module is flexible. It can be easily embedded into the existing tracking-by-

detection framework to boost the performance of the tracker, no matter whether

the tracker is based on traditional features or developed with CNN features, and

the time overhead is negligible.

This thesis is organized as follows. Chapter 2 provides a literature review of

the works most related to our tracking algorithms. Chapter 3, Chapter 4 and

Chapter 5 introduce three proposed trackers that correspond to the aforemen-

tioned contributions respectively. Finally, Chapter 6 presents the conclusions

and future work.

1.4 Publications Related to the Thesis

My publications related to this thesis are listed below:

1. Zijing Chen, Xinge You, Boxuan Zhong, Jun Li, Dacheng Tao. Dynami-

cally Modulated Mask Sparse Tracking. IEEE Trans. Cybernetics 47(11):

3706-3718 (2017)

2. Zijing Chen, Jun Li and Xinhua You. Learn to Focus on Objects for

Visual Detection. Accepted by NeuroComputing.

3. Zijing Chen, Jun Li, Zhe Chen, Xinge You. Generic Pixel Level Object

Tracker Using Bi-Channel Fully Convolutional Network. ICONIP (1) 2017:

666-676

4. Zijing Chen, Xinhua You and Jun Li. Learning to focus for object pro-

posals. SPAC 2017 439-444.

5. Jun Li, Zijing Chen, Zhenyuan Ma. Learning Colours from Textures

by Sparse Manifold Embedding. Advances in Signal Processing: Reviews,

Book Series, Vol. 1.
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6. Zhe Chen, Zijing Chen. RBNet: A Deep Neural Network for Unified Road

and Road Boundary Detection. ICONIP (1) 2017: 677-687

7. Boxuan Zhong, Zijing Chen, Xinge You, Luoqing Li, Yunliang Xie, Shu-

jian Yu. Robust weighted coarse-to-fine sparse tracking. SPAC 2014: 7-14
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Chapter 2

Literature Review

This chapter provides a comprehensive overview of existing tracking methods.

Meanwhile, we also include a brief review of research areas related to the content

of the proposed methods, like object detection and video segmentation.

There is a number of good review works [21,95,146]. We mainly cover studies

that are closely related to my research in tracking. We follow the survey [95,146]

and phrase typical visual object tracking system in four stages: object initializa-

tion, appearance modeling, motion estimation, and object localization. In our

work, we focus on the appearance modeling stage.

The appearance modeling stage is generally composed of visual represen-

tation part and statistical modeling part. The visual representations capture

global and local visual information. Typical global information representations

include vector-based raw pixel representation which used in Incremental Learning

for Tracking (IVT) [135], optical flow representation which used in Parallel Ro-

bust Online Simple Tracking (PROST) [138], haar feature based representation

like Multiple Instance Learning (MIL) [5, 6], Compressive Tracking (CT) [187]

and Structured output tracking (Struck) [64]. Typical local information repre-

sentations include binary pattern based representation like Tracking-Learning-

Detection (TLD) [80] [81], ConteXT tracker (CXT) [42], intensity histogram

based representation used in Fragment-based tracking (Frag) [1], Color-based

Probabilistic tracking (CPF) [129] and so on. In general, they encode global or

local statistical characteristics of an image region. The statistical model performs

tracking in a tracking-by-detection scheme. It focuses on using different types of
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statistical learning schemes to train a robust appearance model for objects.

The performance of a tracker highly depends on the appearance model be-

cause a robust appearance model can successfully distinguish the target from

the background in complex scenarios [18,175] such as occlusions [76,87,145] and

shape variations. As a core component of trackers, the appearance model can

be generative, discriminative, or hybrid [121, 196]. Specifically, in generative

appearance models, candidates are searched to minimize reconstruction errors.

Representative sparse coding is one typical method and has been exploited for

visual tracking [79,100]. In discriminative models [170,178], tracking is regarded

as a classification problem by separating foreground and background.

2.1 Generative Tracking Methods

The generative appearance models mainly concentrate on how to accurately fit the

data from the object class [95]. They incrementally learn visual representations

for the tracking target region information via online-update mechanisms. In prac-

tice, generative trackers often have better descriptive power and demand a small

training set. However, they suffer from distractions caused by the background

regions with a similar appearance to the object class. The generative appearance

models can be divided into Subspace Learning-based models and Kernel-based

models [17]. Here we discuss the Subspace Learning-based methods which are

most related to our work.

Conventional Subspace Models The subspace learning-based appearance

model associates the target with several underlying subspaces. Each of the sub-

space is spanned by a set of basis templates. In details, suppose τ is the target

and (a1, a2, ..., aN) denotes the templates of an underlying subspace, then the

target can be represented by these templates as follows:

τ = (a1, a2, ..., aN)(c1, c2, ..., cN)
T (2.1)

In (2.1), (c1, c2, ..., cN) are the coefficients of basis templates. Thus subspace

learning based appearance models focus on how to obtain the basis templates,
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as well as the coefficients, of the underlying subspace by using tools for subspace

analysis.

Conventional subspace models can use linear or non-linear subspace models.

The linear models can use singular value decomposition (SVD) to obtain a closed-

form solution to subspace learning. For example, [135] use rank-R singular value

decomposition (R-SVD) to build the subspace model with a sample mean up-

date. Also, [167] applies partial least square analysis to learn a low-dimension

feature subspace for tracking. For the non-linear models, the nonlinear dimension

reduction techniques, such as Local Linear Embedding, is used [98]. In addition,

the kernel principal component analysis is constructed to capture the kernelized

eigenspace information from the target samples [25].

Sparse Representation The sparse representation model belongs to uncon-

ventional subspace models [188]. It represents the target with a linear combina-

tion of templates in a dictionary, and has been successfully used in appearance

modeling for a target [168, 177, 195]. With this modeling, the observation like-

lihood for xt can be calculated as shown below. In traditional methods based

on sparse representation, dictionary templates are divided into two parts: one

is called target templates, which describes the rough appearance of target; the

other part is called trivial templates, which consists of a set of images with all but

one pixel being zero, making a complete and trivial set of bases of the template

images. Thus a target candidate y lies in the linear span of dictionary templates:

y = [T, I]

[
a

e

]
� Bc (2.2)

whereB = [T, I] is an over-complete dictionary that is made up of target template

set T and trivial template set I. Each column in T is a target template generated

by reshaping pixels of a candidate region into a column vector while each column

in I is a unit vector that has only one nonzero element. The coefficients of

templates are generated from objective function which is usually constructed by

two functional parts: one helps to get optimal coefficients that can keep the

solution close to the measurement; the other promotes sparsity in the solution.

One typical example can be found in the �1 tracker using Accelerated Proximal
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Gradient approach (L1APG) [8], which uses �1 term to promote sparsity in the

solution and �2 term to keep the solution close to the measurements. Since a

good target candidate will be represented by templates sparsely, we want to have

a sparse solution to Eq. 2.2. This leads to an �1 regularized least squares problem,

which yields sparse solutions [160].

c∗ = argmin
c
‖Bc− y‖22 + λ ‖c‖1 , s.t. c � 0 (2.3)

After deriving the solution of c, the observation likelihood of state xt is given as

p(zt|xt) =
1

Γ
exp{−α||Ta− y||22} (2.4)

It reflects the similarity between a target candidate and the appearance of a

tracking target represented by the target template set T.

The sparse representation model has two intrinsic limitations that need to be

overcome:

(1) The computational complexity

As [8] mentioned, the speed bottleneck is how to solve the �1 optimization

(Eq. 2.3) much faster, on the scale of hundreds of times. Specifically, the ex-

pressive ability of each trivial template (with only one non-zero element) is weak.

Thus a large number of trivial templates are required to compensate for the oc-

clusion appears at any possible locations as an enumeration method [130]. Such a

large number of trivial templates working concretely results to high-dimensional

coefficients, making the �1 optimization expensive.

To reduce the computational cost, some methods try to reduce the dimension

of the dictionaryB: the Robust Sparse Coding (RSC) model [180] removes the oc-

clusion dictionary I from the sparse representation. Given this, the only occlusion

handling part that RSC can truly rely on is a weighted least absolute shrinkage

and selection operator algorithm. From another point of view, some methods try

to reduce the number of �1 optimization. In [113], only these candidates whose

reconstruction errors are above a threshold are selected for �1 optimization. Other

methods may directly handle the computational issue through the fast numeri-

cal method for solving �1 optimization [8] or transform this problem into other
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ways like solving �pq minimization problem [190]. However, these trackers are still

limited when high performance is required for an online tracking task.

(2) Appearance Variation

The appearance variation may be due to the change in the appearance of the

target or corruptions act on targets like occlusion and noise. Tracking methods

that are not robust enough against appearance variation could lead to drifting as

time goes by [185]. Things get worse in sparse coding based trackers which make

use of trivial templates I as variation dictionary. First, the tracker sometimes

does not fit the target very accurately. This is not only because that parts of

the object may also be represented by the trivial templates, but also because

that when updating the appearance model, it is difficult to distinguish between

appearance change of the target and interruptions like partial occlusion and noise.

Second, the assumption in them that only a small number of pixels are corrupted

(in order to use the sparse prior to calculating c∗ in (2.3)) is always not true.

Based on the above issues, the appearance variation should be learned adap-

tively and be represented precisely. The Bounded Particle Resampling tracker

(L1BPR) [113] detects occluded pixels and disable the updating of appearance

model when heavy occlusion happens. However, the construction of the variation

dictionary is rigid. Since the form of each trivial template is fixed, they cannot

adapt to or capture the specialty of various targets. Considering this, [190] repre-

sents each candidate by target templates, background templates and error basis,

and [191] represents the candidate by target templates, occlusion templates, and

context templates. Then the appearance variations can be learned online when

new observations are available over time. However, some variations, like long-

term occlusions, may appear for a relatively long period of time in consecutive

frames [75,90,150]. Thus they do contain meaningful prior knowledge for subse-

quent frames and should not only be regarded as noise. In summary, when mod-

eling the appearance variation, these methods only utilize spatial correlation but

leave out the temporal association between the target and corruptions. However,

temporal information among consecutive video frames does have key confidential,

since the motion information of the target and irrelevant disturbances, including

locations, speed, and direction of movements, present different patterns in the

video [193]. Thus the expression of corruption could be more comprehensive if
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both spatial and temporal information is gathered in building correspondent tem-

plates. Apart from this, for sparse coding based methods, no matter appearance

variations happen or not, both outdated and representative templates coexist

in the dictionary and they are treated equally in the �1 optimization process.

A tracker with accelerated proximal gradient solver (L1APG) [8] automatically

constrains all of the trivial templates when there is no occlusion. However, it can-

not limit the interferences coming from inaccurate target templates which may

improperly play roles in the appearance model.

2.2 Discriminative Tracking Methods

Discriminative appearance models regard tracking as a binary classification issue

and aim to learn some decision bounds between the object and non-object re-

gions discriminately. Discovering highly informative features is important for the

discriminative based tracking algorithms. The variants of the tracking target can

be incrementally learned with discriminative classifiers for the purpose of object

prediction [134]. However, a major limitation of the discriminative based tracking

methods is that the appearance model heavily relies on the selection of training

samples.

2.2.1 Traditional Methods

For discriminative trackers with hand-crafted features, numerous classifiers have

been adapted for object tracking, such as structured support vector machine [64],

boosting [159], random forest [73,137], and discriminative correlation filters [52].

Three typical methods are introduced here.

Boosting-based Methods Boosting-based trackers first train a classifier over

the data from previous frames and subsequently use the trained classifier to es-

timate the location of the target in the current frame. A set of positive samples

and negative samples which are labeled by the previously trained classifier, are

then selected to update the classifier [58]. D. Tran et al. [91] develops the online

GradientBoost which contains a set of noise insensitive loss functions to enhance
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the robustness of the tracker. To tackle the drifting problem, transfer learning

based methods are developed [53]. D. Levi et al. [174] categorize the samples into

the auxiliary sample and target samples and exploring the intrinsic proximity

relationships among these samples, leading to robust tracking results.

SVM Based Methods The Support Vector Machine (SVM) based methods

discover and remember informative samples as support vectors for the classi-

fier [4,105], thus has strong discriminative power. [154] use an ensemble of linear

SVM classifiers which can be adaptively weighted according to their discrimi-

native abilities in tackling large appearance variations. Then [182] is developed

based on a structured output support vector machine. It integrates the structured

constraints into the max-margin optimization problem to avoid the heuristic and

unreliable step of training sample selection in previous works. In addition, [7] is

based on ranking SVM which pose tracking as a weakly supervised ranking prob-

lem thus captures the relative proximity relationship between samples towards

the true target samples.

Correlation Filter-based Methods Recently, significant attention has been

paid to Discriminative Correlation Filters (DCF) based methods for real-time vi-

sual tracking. The correlation filter can produce correlation peaks for the target

while yield low response to the background, thus can be used as detectors of the

target [13, 15, 86, 108]. The general working flow of DCF can be summarized as

follows. It is initially trained with image patches cropped around the target in

the first frame. Then in the subsequent frames, the candidate patches near/at the

previously predicted position is cropped for detection. The correlation operations

are performed on these candidate patches and spatial confidence map, or response

map, can be obtained. The position with a maximum value in this map is pre-

dicted as the new state of the target. Finally, the correlation filter is updated by

the appearance at the estimated position. In practice, the correlation procedure

is obtained by the inverse Fast Fourier Transform (FFT) operation. According

to [21], this workflow can be described mathematically as follows. Suppose x

is either the image patch or extracted features, h is the correlation filter, and

operationˆrepresents the result of FFT. Then the confidence map Mc is obtained
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by

Mc = x⊗ h (2.5)

= F−1
(
x̂� ĥ∗

)
(2.6)

In Eq. 2.6, ∗ represents the complex conjugate of the vector, ⊗ denotes the circu-

lant convolution, and F−1 represent the inverse Fourier transform. Suppose y be

a 2D Gaussian shaped labels, then the correlation filter is learned by minimizing

the ridge regression objective:

ĥ∗ = argmin
ĥ∗

{Φ(ĥ) = ‖x̂� ĥ∗ − ŷ‖2 + λ‖ĥ∗‖2} (2.7)

where λ denotes the regularization parameter. Denote by x̂ the Fourier trans-

form of x, and x̂∗ the complex conjugate of x. With FFT, the closed-form solution

to Eq. 2.7 can be given as:

h = F−1

(
x̂∗ ⊗ ŷ

x̂∗ ⊗ x̂+ λ

)
(2.8)

Algorithms based on correlation filtering have demonstrated superior compu-

tational efficiency and fairly good tracking accuracy, due to the two important

properties. First, by exploiting the properties of circular correlation and per-

forming the correlation operations in the Fourier domain [126, 139], DCFs are

suitable for fast tracking. For example, conventional DCF trackers can perform

at more than 100 frames per second (FPS) [70], which is significant for real-time

trackings. Second, DCFs regress the circularly shifted versions of input features

to soft labels, i.e., generated by a Gaussian function ranging from zero to one.

In contrast to most existing tracking-by-detection approaches [63, 122] that gen-

erate sparse response scores over sampled locations, DCFs always generate dense

response scores over all searching locations.

The CF-based trackers can be classified as conventional DCF trackers and

trackers combine deep features with correlation filters. We first introduce con-

ventional DCF trackers here. Then the trackers work with deep features are

presented in section 2.2.2. The tracker with Minimum Output Sum of Squared
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Error filter (MOSSE) [14] encodes target appearance through an adaptive corre-

lation filter by optimizing the output sum of squared error. After the success of

MOSSE, several extensions have been proposed to considerably improve tracking

accuracy. CSK [70] take the advantage of kernel trick [78,140] to the correlation

filter formula. By exploiting the property of the circulant matrix [61, 69], they

provide an efficient solver in the Fourier domain. Then the Kernelized Correlation

Filter (KCF) [71] improved the tracking performance by extending the correla-

tion filter to multi-channel inputs and kernel-based training. Other extentions

on DCF include subspace learning [101], scale estimation [35], and reliable collec-

tion [97]. However, methods based on the DCF usually take a region of interest

as the input, which makes it very difficult to exploit the structural information

of the target. In addition, the cyclically constructed samples also introduce the

unwanted boundary effects. Thus many improvements have also been proposed.

Methods like the Spatially Regularized Discriminative Correlation Filters based

tracking (SRDCF) [38], Correlation Filters with Limited Boundaries (CFLB) [83],

Context-Aware Correlation Filter Tracking (CACF) [118], Background-Aware

Correlation Filters for tracking (BACF) [51] are proposed to mitigate boundary

effects in the Fourier domain. The better performance is obtained but the high-

speed property of DCF is broken. Thus STRCF, an advanced version of SRDCF,

incorporates both temporal and spatial regularization to handle boundary effects

without much loss in efficiency and achieve superior performance in terms of ac-

curacy and speed. BACF has two limitations: first, it exploits the augmented

Lagrangian method for model learning, which limits the model extension; second,

even though the background region outside the bounding box is suppressed, the

tracker may also be influenced by the background region inside the bounding

box. To against the impact from the background, the joint Discrimination and

Reliability learning Tracker (DRT) [149] jointly models the discrimination and

reliability information. It introduces a local response consistency regular term to

emphasize equal contributions from different regions and avoid the tracker being

dominated by unreliable regions. Besides, scale adaptive CF trackers are pro-

posed to estimate target scale changes during tracking. The Scale Adaptive with

Multiple Features tracker (SAMF) [96] and Discriminative Scale Space Tracker

(DSST) [36] are two commonly used methods for scale estimation. In specific,
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DSST developed a new correlation filter that can detect scale changes of the tar-

get. The tracker searches over the scale space for correlation filters to handle the

variation of object size and obtain a good accuracy result in the VOT2015 compe-

tition [84]. However, such a strategy is time-consuming in the case of large-scale

space, and many improvements over them have been proposed. To speed up scale

space searching, the Multi-Kernel Correlation Filter based tracker (MKCF) [151]

proposes bi-section search and fast feature scaling method. Then, for more stable

detections, the tracker with Multi-Template Scale-Adaptive Kernelized Correla-

tion Filters (MTSAKCF) [11] maximizes the posterior probability rather than the

likelihood in different scales. Additionally, Spatio-Temporal Context tracker [186]

also suggest a robust scale estimation method that exploits the use of context in-

formation to average the scales over several consecutive frames. Despite these

successes in isometric scale variation, such kind of methods cannot well address

aspect ratio variation. To address this issue, the research in [94] introducing a

family of 1D boundary CFs to localize the boundaries in videos and cope with

the aspect ratio variation flexibly during tracking. Other efforts in improving the

performance of correlation filter based trackers include the Long-term Correlation

Tracker (LCT) [107] and the MUlti-Store Tracker (MUSTer) [72] which integrate

correlation filters with an additional long-term memory system [3] for long time

tracking. The trackers use Attentional Correlation Filter Network (ACFN) [26]

and an SCT with four attentional feature-based correlation filters (SCT4) [28]

add attentional mechanism exploiting previous target appearance and dynamics

into the tracker. Inspired by works like [158] and [144], colour attributes also

contributes a lot to DCF based trackers. [40] uses multiple dimensional features,

which propose an adaptive low-dimensional variant of colour attributes. Staple

tracker [9] combines complementary template and color cues in a ridge regression

framework. However, all these DCF-based trackers are developed with hand-

crafted features, which hinder their accuracy and robustness.

2.2.2 Convolutional Neural Network-based Methods

Since the visual representation is critical for visual tracking, the powerful Convo-

lutional Neural Networks (CNNs) is becoming an ideal feature extractor for this
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task. Benefited from the CNN’s pre-trained on object recognition and detection

tasks [20], visual trackers are more robust to experimental noises. These CNN

trackers can be divided into two groups: combine deep features with DCF, or

design deep tracking networks.

Combine Deep Features with DCF Since DCF provides an excellent frame-

work for recent tracking research, the first trend is using CNN as a feature ex-

tractor and adopt correlation filter as their base tracker. For example, Deep-

SRDCF [37], an extended work of regularized correlation filter SRDCF, exploits

shallow CNN features in a spatially regularized DCF framework. In Hierarchical

Convolutional Features based tracking (HCF) [106] and Hedged Deep Tracking

(HDT) [131], CNN are employed to extract features which replace handcrafted

features, and final tracking results are obtained by combining hierarchical re-

sponse and hedging weak trackers, respectively. Considering that the CNN’s

provided features are either coarse and abstract or fine and primitive, HCF pro-

poses to combine feature maps generated by three layers of convolution filters,

and introduce a coarse-to-fine searching strategy for target localization. HDT

estimates the target position by fusing the response maps obtained from convolu-

tional features of various resolutions. However, the above mentioned DCFs based

tracking algorithms are limited by two aspects. First, learning DCFs is indepen-

dent of feature extraction. Thus the achieved tracking results of these methods

may be suboptimal because the chosen CNN features are always pre-trained in

different tasks and individual components in tracking systems are learned sepa-

rately. Second, noisy updates may lead to drifting. This is due to the fact that

most DCFs trackers use a linear interpolation operation to update the learned fil-

ters over time. Such an empirical interpolation weight is unlikely to strike a good

balance between model adaptivity and stability. To overcome these drawbacks,

Convolutional RESidual learning for visual Tracking (CREST) [127] reformulates

DCFs as a one-layer convolutional neural network that directly generates the re-

sponse map as the spatial correlation between two consecutive frames. With this

formulation, feature extraction through pre-trained CNN models, correlation re-

sponse map generation, as well as model update are effectively integrated into

an end-to-end form. The tracker which uses Continuous Convolution Operators
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for visual Tracking (C-COT) [39] employs the implicit interpolation method to

solve the learning problem in the continuous spatial domain. As fewer model

parameters are used in the model, C-COT is insusceptible to the over-fitting

problem. By considering the linear combination of raw deep features, Efficient

Convolution Operators for tracking (ECO) [34] is an improved version of C-COT

in performance and speed. However, neither C-COT nor ECO are designed to-

wards real-time applications. Then regarding the processing time, TRACA [27]

achieves high computational speed over 100 fps. The major contribution to the

high computational speed lies in the proposed deep feature compression that is

achieved by a context-aware scheme utilizing multiple expert auto-encoders. More

recently, Learning Spatial-Aware Regressions for Visual Tracking (LSART) [148]

makes a combination of the spatial aware kernelized ridge regression model which

focuses on the holistic object, and the spatial-aware CNN model which focuses on

small and localized regions. The complementing design results in better perfor-

mance and is ranked first in performance in the VOT 2017 challenge [85]. These

trackers have two major drawbacks. Firstly, they can not end-to-end train and

perform tracking systems. Secondly, they only consider appearance features in

the current frame and can hardly benefit from motion and inter-frame informa-

tion. To tackle these issues, some trackers introduce the optical flow as a motion

feature for object tracking into the correlation filter. The motion features from

different frames provide diverse information for the same object instance, such as

different viewpoints, deformation, and varied illuminations. [56] is based on the

SRDCF framework, and additionally use deep motion cues to extract discrimi-

native and complementary information that can improve tracking performance.

FlowTrack [199] formulate the optical flow estimation, feature extraction, ag-

gregation and correlation filter tracking as special layers in the network, which

enables end-to-end learning. Then the previous frames are warped to a specified

frame by the guiding of flow information, and they are aggregated for consequent

correlation filter tracking. However, they can only tune the hyper-parameters

heuristically since feature extraction and tracking process are separated.

Design Deep Tracking Networks The other trend of CNN-based trackers

is to design the tracking networks and pre-train them which aim to learn the
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target-specific features and handle the challenges for each new video. The deep

learning models have become an essential oracle to improve the tracking accu-

racy, especially for complex tracking scenarios, mainly due to their large model

capacities and strong feature learning abilities.

Discriminative model-based trackers first generate multiple target candidates

and then refine them with online classification. For example, [163] adopts the

use of denoising autoencoder to identify the foreground patch. These methods

commonly require a large amount of auxiliary training data as well as off-line

pre-training to allow promising performance, which makes the resulting track-

ers quite computational costly. Besides, an efficient online updating scheme is

essential for CNN trackers when handling challenges in the new video. The

Sequentially Training Convolutional networks for visual Tracking (STCT) [162]

propose a sequential training method for CNNs to effectively transfer pre-trained

deep features for online visual tracking. The Fully Convolutional Network based

Tracker (FCNT) [161] proposes a two-stream fully convolutional network to cap-

ture both general and specific object information for visual tracking. However,

its tracking components are still independently, so the performance may be im-

paired. What is more, the FCNT can only perform at 3 FPS on GPU because

of its layers switch mechanism and feature map selection method, which hinder

it from real-time applications. Compared with FCNT, the Unified Convolutional

networks based Tracker (UCT) [198] introduces peak-versus-noise ratio (PNR)

criterion into its updating module, and scale changes are handled efficiently by

incorporating a scale branch into the network. The Multi-Domain Network based

tracker (MDNet) [120] treated tracking as a classification problem. It trained a

multi-domain network, which has shared CNN layers to capture a generic feature

representation, and separate branches of subsequent domain-specific layers to do

the binary classification (target vs. background) for each sequence. The classi-

fier is updated online by adding some learnable fully-connected layers to perform

tracking with the Particle Filter framework [23]. Other works include [31] which

tries to construct an appearance model with more pixel details but still need

careful training and updating procedure, Action-Decision Network based tracker

(ADNet) [184] which suggests a new tracking method using an action decision

network which can be trained by a reinforcement learning method with weakly
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labelled datasets, and Deep Learning Tracker (DLT) [163] which utilize stacked

denoising autoencoder to refine the tracker through online classification.

In brief, the above-mentioned trackers based on online deep learning require

frequent fine-tuning of the networks, which is slow and prohibits real-time track-

ing. In addition, since the labeled training data for tracking is limited, online

training a convolution neural network is prone to overfitting, which makes it be-

come a challenging task. In contrast to these CNN based methods that require

running back-propagation to online train the network during tracking, the Re-

current Filter Learning based tracker (RFL) [181] discards online training, and

instead uses a recurrent network to update the target appearance model with

each frame to obtain a faster processing speed. VIsual Tracking via Adversarial

Learning (VITAL) [147] overcomes the class imbalance between positive and neg-

ative samples by taking advantage of the recent progress in adversarial learning

which augments training data to facilitate the deep classifier training.

Some excellent trackers are designed with Siamese network, which receives

growing attention due to its two-stream identical structure. It compares two

branches’ features in the implicitly embedded space, especially for contrastive

tasks. For the tracking task, it adopts an alternative approach to target classifi-

cation which actually trains a similarity function for pairs of images, and regards

visual tracking as an instance searching problem. In this case, the target im-

age patch in the first frame is regarded as a query image to search the object

in the following frames. SINT [153] formulates visual tracking as a verification

problem. It trains a Siamese architecture to learn a metric for online target

matching. SiamFC [10] introduces a fully-convolutional Siamese network for vi-

sual tracking, which maps an exemplar of the target and a larger search area of the

second frame to a response map. This network is trained off-line and evaluated

without any online fine-tuning. In a similar structure, [68] achieves tracking by

predicting location axis. Another similar framework is called GOTURN, where

the motion between successive frames is predicted using a deep regression net-

work. In specific, it is trained to regress the targets position and size directly

by inputting the network with a search image (current frame) and a query im-

age (previous frame) that contains the target. However, these mentioned studies

only denote tracking result with bounding boxes by providing location and scale
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information of the target. It lacks semantic information and inevitably contains

corruptions from background areas. Inspired by the contribution in context-aware

tracker [42, 60, 172, 197] and the success in detection [133], the work in [24] uti-

lizes the context information with object proposals to build a tracker with finer

results. The Siamese region proposal network based tracker (SiamRPN) [93]

consists of Siamese subnetwork for feature extraction and region proposal sub-

network including the classification branch and regression branch. It generates

a small number of high-quality proposals by a novel instance-specific objectness

measure. Different from standard RPN, it uses the correlation feature map of the

two branches for proposal extraction. In addition, it does not have pre-defined

categories, the template branches used to encode the targets appearance infor-

mation into the RPN feature map to discriminate foreground from background.

Then the Residual Attentional Siamese Network based tracker (RASNet) [166]

introduces different kinds of attention mechanisms into the tracking model learn-

ing to produce more adaptive discriminative learning. With an end-to-end deep

architecture, it extensively explores diverse attentional mechanisms to adapt the

offline learned contextualized and multi-scaled feature representation to a specific

tracking target. The residual learning within the RASNet further helps to encode

a more adaptive representation of the object from multiple levels and a weighted

cross correlation layer is proposed to learn the Siamese structure. To guaran-

tee high tracking efficiency, all these learning processes are performed during the

offline training stage. Above mentioned methods have superior performance in

the speed, which are able to perform at 86 FPS and 100 FPS respectively on

GPU. On the one hand, their simplicity and fixed-model nature lead to high

speed because no fine-tuning is performed. On the other hand, this also loses the

ability to update the appearance model online which is often critical to account

for drastic appearance changes in tracking scenarios. Therefore, there still is

an improvement space of performance for real-time deep trackers. SA-Siam [65]

improves the generalization capability of SiamFC with expressive features and

corresponding classifiers that are simultaneously discriminative and generalized.

The enhanced generalization capability results in a tracker which is more robust

against significant appearance change. Conventionally, both the discrimination

and the generalization power need to be strengthened through an online training
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process. However, online updating is time-consuming, especially when a large

number of parameters are involved. Thus it is crucial for the CNN based trackers

to balance the tracking performance and the run-time speed.

2.3 Other Related Research Areas

Our work also has connections with other computer vision fields, such as ob-

ject detection and video segmentation. Hence, brief reviews on the most related

methods of these topics are provided here.

Object Detection The arguably widely used visual detectors are based on

sliding-windows, where a scanner exhausts all possible locations on the image

plane, and a classifier determines whether a certain region contains the object of

interest. Numerious research efforts have been made to improve the performance

of a detector, including these dealing with features [33, 136, 169, 183], classifiers

[109, 119] , or exploring other effective schemes [43, 171]. In addition, since the

scenario of visual detection becomes more challenging, it becomes increasingly

difficult for the scanner to explore more general regions to allow flexible presence

of complex objects, and limit the total number of regions to be processed by

the classifier to keep the system in high efficiency. To alleviate the burden of

scanning, efforts have been made, such as shifting some flexibility from the scanner

to the classifier [49], or to allow the classifier to reject unlikely regions with

fewer computations [173]. Nevertheless, a consensus has been reached that more

powerful detectors could be constructed if we can make a wise revision of the

practice of blindly exhausting all regions within an image.

Detectors can address the task of classification and where-to-classify simul-

taneously, utilizing the knowledge of object appearance gained in a learning

stage [12, 142]. There are also schemes treat these two problems separately

[2, 132, 157, 200]. It is convenient to be able to generate candidate detection

windows for generic objects, especially in the case that various categories of ob-

jects are of interest and multiple category-specific classifiers are subscribing to

a common window proposer. By drawing inspiration from the research in inter-

est points [115], saliency detection [74,165], and semantic segmentation [55], the
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objectness measure exactly applies to this case. It quantifies how likely for a can-

didate window to cover an object of any class, thus is helpful in producing object

proposals. However, generating accurate object proposals is extremely challeng-

ing since objects may compose of heterogeneous colors, textures, and shapes [82].

Besides, it may appear at any location in the scene with various sizes. In order

to cope with this tough situation, some of the object proposal generators aim at

digging more powerful features [200]; some of them increase the number of can-

didate windows to thousands even millions level, to ensure the coverage of target

object; and some focus on delicate framework like cascade [132] or bottom-up

grouping [157] to improve the overall performance.

With the development of Deep Learning, the features extracted by CNN lay-

ers become more powerful than hand-crafted features, which significantly benefits

object detection and other vision applications [62,103,164]. Considering this, Fast

R-CNN [54] introduces the object proposals generated by hand-crafted features

into the object detection framework. The CNN features are generated and clas-

sified based on the proposal areas, and the detection accuracy can be improved.

After that, the Faster R-CNN [133] is proposed. It makes use of RPN to generate

high-quality proposals with CNN features and largely reduce the number of can-

didate proposals thus performs more efficiently than Fast R-CNN. RPN predicts

which box at each image location may contain an object and then decides how to

adjust the predicted box to better cover the object. By checking image contents,

it is possible to locate semantically interesting areas and filter out a large number

of useless object proposals to reduce computation costs. These proposals are gen-

erated by sliding windows; thus target at any location can be detected. However,

RPN uses a single convolutional kernel for predicting proposals at each location.

As a result, proposals generated at the same location share the same receptive

field. Since the same information is used, judging objects with various scales and

aspect ratios is not easy. The Single Shot multiBox Detector (SSD) [102], an

advanced work of RPN, relieves the scaling issue by generating object proposals

at multiple feature maps from the later stages of a network in order to perform

detection at multiple scales. However, SSD cannot avoid enumerating bounding

boxes as proposals since they are needed to deal with the aspect ratio issue. Be-

sides, if the proposal represented by the bounding box is too small, it is hard to hit
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the target. If the proposal area is too large, it will lose precision in localization.

In addition, these RPN based methods are not category independent.

Our work in chapter 5 addresses the problem from an alternative angle when

comparing it to the existing measurements and proposal generating policies. As

aforementioned, the transformation models can be adapted to any object proposal

generating framework, and as a result, the overall detection system gains efficiency

or accuracy or both with little overheads. The proposed method not only has

flexible receptive filed to deal with various scale and aspect ratio but also can be

category independent.

Our research is also connected with the works in visual attention, which has

been studied via both biological and artificial neuron networks [117, 123, 152]. It

is notable that our work is more focus on benefiting a practical object detection

system, rather than exploring the biological mechanism of visual attention.

Video Segmentation The tracking results which are depicted in the bound-

ing box format only provide location and scale information of the target. It

lacks semantic information and inevitably contains corruptions from background

areas. Algorithms based on video segmentation illuminate us about how to ac-

quire a more accurate representation of the target, since these methods output

the specific shape of target together with its location. To acquire a more robust

performance, most video segmentation methods take both visual and temporal

information as input [22]. Compared with single image segmentation, the tempo-

ral information is key for capturing the latest stage of a target. For instance, [125]

uses unsupervised motion-based segmentation on videos to obtain segments and

FusionSeg [77] adapts optical flow as temporal hint. Different from above, the

One-Shot Video Object Segmentation (Osvos) [16] do not use any temporal infor-

mation and process each frame independently as they are uncorrelated. Thus the

performance of Osvos is strongly depended on the pre-trained models developed

upon millions of images. However, the performance of these segmentation meth-

ods is restricted by lacking densely labeled training data. Thus [127] generates

artificial masks by deforming the annotated mask via affine transformation as well

as non-rigid deformation via thin-plate splines. [77] gets hypothesized foreground

regions from bounding boxes to generate training samples. However, a single
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object may display multiple motions simultaneously. To learn the rich signals in

unconstrained images, sufficient training data is necessary for video segmentation

methods.

Our method in chapter 4 is different from one-shot learning based trackers.

These trackers employ a quick tunning upon observing the target object, which

often dubbed as one-shot learning or appearance model [113] [16]. Our work is also

different from zero-shot learning method [192]. Zero-shot needs an intermediate

description to extrapolate to novel classes, which is not applicable to tracking.
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Chapter 3

Template-Based Tracking with

Sparse Representation

This chapter details the research for the template-based tracker called MMST

which belongs to the generative method. It enhances the existing appearance

model based on sparse representation by introducing mask templates produced

by frame difference with efficient solutions as well as including system dynamics in

the model. The spatial and temporal context in consecutive frames is encoded and

updated by these templates to build a robust appearance model. The proposed

tracker is robust against occlusion.

3.1 Introduction

As mentioned in the literature review section (Chapter 2.1), the sparse represen-

tation model represents the target with a linear combination of templates in a

dictionary, which has been successfully used in appearance modelling for a tar-

get. These templates comprise two parts, the target template used to describe the

rough appearance of the target and the trivial templates that make a complete

and trivial set of bases of the template images. However, the sparse representation

model, which uses the trivial template set to represent corruptions as described

above, has two intrinsic limitations: high computational complexity and hard to

deal with appearance variation. The former is caused by the bottleneck of solving
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the �1 optimization while the latter is caused by corruptions such as occlusion

and noise that are beyond the representation power of trivial templates.

To overcome these two limitations, by taking advantage of the spatial and

temporal context, we propose a novel dynamically modulated mask sparse track-

ing (MMST) method. Taking advantage of the temporal context, a temporal

scale pyramid that is composed of a range of frames that conserves the object

changes in different time scales, is proposed. The algorithm uses the frame dif-

ference produced by the temporal scale pyramid to build mask templates that

capture the sudden corruptions on the target. The benefits from the mask sparse

representation are as follows. Firstly, it is a kind of personal tailor of different

tracking objects and corruptions. The non-zero pixels in the mask templates can

fit the corruption’s shape more precisely than trivial templates. Furthermore,

the knowledge of corruptions in the mask templates is preserved in a self-learning

mechanism. This learning mechanism can be implemented with frame differences.

The learned out-of-target mask templates 1) are complementary to the target ones

to capture the spatial information among target and corruptions; and 2) possess

a proper structure to record the temporal context among them. In addition, a

competitive advantage lies in speeding up the process of solving the �1 minimiza-

tion problem: massive trivial templates are replaced with a small number of mask

templates while still maintaining the good performance of tracker. We further

boost the performance of MMST with the spatial context through dynamically

modulated templates to limit the interferences coming from inaccurate templates

in the sparse representation stage. In this way, accumulated errors, as well as

the drifting phenomenon, are alleviated due to the increase in the probability

that candidate samples can exactly cover the target. Lastly, our tracker is highly

applicable to practical online tracking usage since we provide an efficient solver

for it.

3.2 Sparse Tracking with Mask templates

Compared with traditional appearance models used in sparse representation, the

proposed model stands at higher perspective and portrays the target and cor-

ruptions separately in different layers like the form of oil painting to depict the
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inter and intra relationship between them more precisely. In traditional methods,

both the target and the corruption are represented with a flat plain model, in

which the corruption is considered as part of object appearance. As shown in Fig.

3.1, when the subject’s mouth is occluded by the book, the appearance model

will make the book contribute to the representation of the face. This is because

the algorithm cannot distinguish between occlusion and the real appearance of

the target as mentioned before. However, by simulating human visual perception

process and modelling the appearance of objects in a three-dimensional way, the

real target (subject’s face) will locate in the base layer and the occlusion (book)

will stand in an upper layer. In this case, the corruption acts like a mask covered

on the real target. It is reasonable to do this. First, corruptions like occlusion

and illumination variance normally change in different pace and direction. As

Fig. 3.1 shows, the cropped area of frame difference represented by image m2

naturally contains spatial information of corruptions (the book) with pixel in-

tensity. Second, frame differences with a various number of interval frames (e.g.,

m2 and m5) describe multiple scales of the evolution of the motion of corrup-

tions over a period of time. By synthesizing the temporal information together,

we can make relatively good and dynamic predictions of the variance pattern of

corruptions and objects, which further helps us to accurately predict the state of

the object area in the next frame. Considering above, we tend to construct the

mask templates, which are complementary with target templates, based on the

on-going changes in the target area of video frame.

In particular, a Temporal Scale Pyramid (TSP) composed of multiple back-

ward windows is used in our scheme. The TSP is built in the “bottom-up”

manner with frame difference in multiple temporal scales. Each temporal scale

is defined by the time span ς of the backward window, which means that the

model subtracts the image patch locates at time point t− ς from the one at t− 1

to get a mask template at this scale. Since the template-sized tracking result

areas of past frames have been gotten under the framework of the particle filter,

the frame difference between results at t− ς and t− 1 can be easily obtained to

manage this task. Further, the construction of the mask templates under various

scales is shown in Fig. 3.2. The bottom layer of TSP consists of consecutive

previous frames from time k − n to k − 1. In the illustration, we let n = 7
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Figure 3.1: Frame differences with a various number of interval frames (e.g. m2

and m5) describe multiple scales of the evolution of the motion of corruptions
over a period of time.
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Figure 3.2: Establishing mask templates based on temporal context. The mask
template can capture the on-going changes in the target area.
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and remark these frames from A to G. The red bounding boxes marked on these

frames illustrate the tracking results of frames. We set ς = 2 for the bottom

layer. Therefore, by calculating frame difference between resized image patches

cropped from those bounding boxes in adjacent frames, the minimum changes of

the target in a short moment can be precisely depicted in mask template subset

marked as D2. The second layer of TSP is composed of frame images sampled

every two frames. Thus frames A,C,E,G are picked out. Also, the patch dif-

ferences generated by two of them adjacent to each other (correspond to ς = 3)

are preserved by another subset of mask templates in the same manner as the

bottom layer. These mask templates are related to a larger scale of the change

of corruptions over time. Similarly, frames C,G lie in the third layer are used

to generate subset correspond to ς = 5 and A,G in top layer for the subset

that ς = 7. Thus changes in different scales can be successfully obtained with

TSP. In summary, we achieve triple benefits by this model. First, the appearance

change, no matter how distinct or inconspicuous, can be accurately detected by

mask templates. As shown in the right part of Fig. 3.2, when to compare among

layers, it is obvious that the difference among subsets is significant. The subset

D2 precisely records the fast movement of corruption (occlusion from a book)

while D7 marks long-term variation of the target (outline of the target’s head).

Second, the interferences produced by the movement of the camera or the target

are greatly alleviated because of a two-step processing procedure which lies in the

mask template construction. Firstly, we aligned the image patches cropped from

bounding boxes by the affine transformation. Subsequently, since the corrup-

tions from the background are excluded, we could minus two pure targets easily.

Lastly, such scheme saves computational resources not only because just a small

patch cropped from one previous frame needs to be stored, but also because the

difference is to calculate on an undersized template rather than the whole image

frame.

Applying our multi-scale templates to the appearance model in (2.2), the cor-

ruptions can be well represented, just like what trivial templates do in traditional

sparse coding representation schemes. In our method, the particle observations
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can be represented by (3.1).

y = [T,M]

[
a

em

]
� Bc (3.1)

In (3.1), T represents target templates and M contains about a dozen of mask

templates. The target templates are constructed with visual observations of the

tracked object possibly under a range of appearance changes as in [111]. By image

patch subtraction, each mask template acquires rich knowledge of corruptions.

Vector a and em are corresponding coefficients of T and M. Compared with

(2.2), both the dimension of �1 minimization problem and the number of mask

templates are no longer affected by the size of the template. As a result, it is

obvious that em � e can be achieved and the dimension of coefficients is reduced.

For the proposed model, the sparse representation of the target candidate y is

formulated as a minimum error reconstruction issue through a regularized l1 min-

imization function with non-negativity constraints as (2.3) describes. The major

difference lies in our work is that B = [T,M] is composed of target template set

T and mask template set M. Correspondly, c = [a, em], where e is replaced by

mask coefficients em. Both a and em are non-negativity coefficients.

3.3 Performance boosting

In the previous part, we made use of mask templates to tackle sudden corruptions

like occlusions and noises. Then we further improve the performance of our

tracker, especially in drifting resistance, by considering the system dynamic. In

the following part, we introduce how to manage this through dynamic consistency

estimation. With this estimation, we could dig into the invariant information

among frames, namely dynamic consistency, to promote the performance of our

tracker.

It is obvious that, during a short time-slot, some abstract features of an ob-

ject remain unchanged. For example, when comparing among a few successive

frames of a video that records a running car, we can find out that the velocity,

angle, and scale of the car may change equably. These attributes whose rate of
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change keep constant are marked as target’s state. Then, an object’s state in the

next frame can be predicted with the knowledge from former frames. Inspired

by the predictable states information, we propose a dynamic consistency estima-

tion mechanism, which mainly overcomes two drawbacks in particle filter based

trackers. First, with the assistance from dynamic consistency estimation, the

overall performance of particles is more approximate to the real target, whereas

in traditional approaches [8,111,112], particles are randomly sampled around the

state of the tracked object in the last frame. If an object’s state is changing in

a roughly predictable direction, it is more reasonable to sample particles based

on the predicting state, rather than the state in the last frame. Second, differ-

ent from traditional methods which treat particles equally, our state estimation

system picks out particles that are more similar to the predicted ones. Conse-

quently, the observation likelihood of state xt can be calculated by combining

reconstruction error and state estimation value that summarized as:

p(zt|xt) =
1

Γ
exp{−α ‖Ta− y‖22 − β ‖(Sp − Se)Ψ‖22} (3.2)

where the state variable Sp denotes the state of each particle, and Se represents

the predicting state of the target. Both of them can be modeled by six parameters

of the affine transformation. Additionally, Ψ = diag(μ1, . . . , μ6) are parameters

used to normalize these parameters and adjust their significance in our state

estimation compensation. If a particle is similar to the predicted state, then

the distance between Sp and Se is small, and this particle will be assigned with

a higher observation likelihood p(zt|xt). With (3.2), we use the prediction to

weight particles according to their different states in the process of calculating

the possibilities. Therefore, by revising the re-sampling process according to

the state prediction, the drifting phenomenon is alleviated due to the fact that

candidate samples could cover the target accurately with a higher probability.

35



3.4 Dynamically Modulated MST with Efficient

Solver

With the mask sparse representation model described above, each candidate tar-

get patch can be found via solving a minimum error reconstruction problem. How-

ever, traditional minimum error reconstruction schemes which could be translated

into (2.3) have an obvious defect in common: templates that are less useful in

constructing a robust appearance model are treated as equally as the useful ones

when chosen as candidates for the component of the appearance model. To tackle

this problem, we utilize the spatial context to propose a dynamically modulated

mask sparse tracking model which is able to limit the interferences coming from

inaccurate templates in sparse representation stage. In our model, an adaptive

parameter regularization scheme designed for both target and mask templates is

adopted to represent the target more accurately and efficiently, by accounting for

occlusion using a specialized regularization scheme. In addition, we demonstrate

that the proposed model can be solved more efficiently with APG algorithm.

In model construction, the contribution of each template can be regulated by

the regularization parameter which acts on the template’s coefficient. Smaller

parameters are assigned to more important templates, allowing the template to

contribute more significance to the appearance model. Furthermore, the criteria

for adjusting regularization parameters are different between target templates

and mask templates and are also affected by whether corruptions are detected.

The above motivations lead to the following minimization model for dynamically

modulated mask sparse tracking:

c∗ = argmin
c
‖Bc− y‖22 + ‖l� a‖1 + μ ‖em‖1

= argmin
c
‖Bc− y‖22 + λ1|a1|+ · · ·+ λN |aN |

+ μ ‖em‖1 s.t. c � 0

(3.3)

where B = [T,M], c = [a, em] have the same definition with (3.1). The oper-

ator � is element wise product. l = [λ1, λ2, · · · , λN ] are non-negative regular-

ization parameters adjusting the contribution of target templates while vector
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μ = [μ1, μ2, · · · , μM ] are non-negative regularization parameters designed for

mask templates. The value of l and μ are set as follows.

First, the regularization parameters l are assigned according to the similarity

between target templates and the tracked object in previous frames. Due to

this, the target templates which preserve correct appearance information of the

object are of significance, and the appearance model will be less disturbed by

corruptions or out-of-date target templates. Specifically, if a target template is

similar to the object, the intersection angles (θi) between them is small and the

template should be less constrained by λi. Thus the corresponding regularization

parameter is computed as λi = 1 − β cos θi, where β is a constant in interval

(0, 1).

Second, the parameter vector μ of mask templates are assigned according to

the derivation of each template. If produced from the bottom layer of TSP, tem-

plates will be less penalized due to the continuity of corruptions, rendering them

more important in building the appearance model. In contrast, the penalty for

mask templates produced by TSP’s upper layers will increase. On the other hand,

since they contain crucial information about long-term variation tendency of the

appearance model, they have also included in mask template set even though

they are not as important as other mask templates in the current reconstruction

process.

Third, since mask templates are to compensate for corruptions in the track-

ing process, they will be attached with higher significance when heavy corruption

appears. Hence, when obvious corruptions are detected, the penalty for mask

templates μ = [μ1, μ2, · · · , μM ] will be alleviated for the sake of endowing them

more power to capture the corruptions. Furthermore, in this situation, the sim-

ilarity between target templates and the target can no longer express the varia-

tion tendency of the appearance model. Therefore, to protect the regularization

parameters of target templates from the disturbance of heavy corruptions and

restrict their energy in the reconstruction process, they are all set to be the same

value, which is larger than μ.

The benefits of applying the adaptively regularized parameters are two folds:

the target could be represented more accurately and the computational burden

is dramatically decreased. For the first benefit, by penalizing the templates with
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these regularized parameters, both target and mask templates will be modulated

according to their different ability to represent the target. Besides, the energy

of the mask template associated coefficients, em, can be dynamically adjusted

according to the appearance of corruptions. For the second benefit, the length of

the coefficients c, which is constant regardless of the size of templates, is much

shorter than its counterpart in traditional �1 tracking methods, enabling the

convergence of coefficient solver with fewer iterations. In addition, our model can

be solved with APG approach, a fast numerical method for solving minimization

problems proposed in [156]. Next, we will explain how the APG approach is

applied in our model seamlessly.

The APG algorithm has been successfully used to solve similar �1 tracking

models in numerous approaches such as [8] and [189]. Though our model (3.3)

looks very different from them, it is actually equivalent in essence to the format

which meets the condition of adopting APG algorithm. The demonstration is as

follows.

Proof of the Equivalence of Two �1-min Problem

Proposition 1. Minimizing

min
c
‖Bc− y‖22 + λ1|a1|+ · · ·+ λN |aN |
+μ ‖em‖1 s.t. c � 0

can be converted to minimizing

min
c
‖Bc− y‖22 + λ ‖c‖1 , s.t. c � 0

without increasing computational complexity.

Proof: Suppose the dimension of m is n. Since �1-norm of a vector means
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the sum of the absolute values of all of its components, we have:

min
c
‖Bc− y‖22 + λ1|a1|+ · · ·+ λN |aN |
+μ ‖em‖1 s.t. c � 0 (3.4)

= min
c
‖Bc− y‖22 + ‖λ1a1‖1 + · · ·+ ‖λNaN‖1

+ ‖μ1em,1‖1 + · · ·+ ‖μMem,M‖1 (3.5)

= min
c
‖Bc− y‖22 + ‖Λc‖1 (3.6)

= min
c̃

∥∥BΛ−1c̃− y
∥∥2

2
+ ‖c̃‖1 (3.7)

= min
c̃

∥∥∥Φ̃c̃− y
∥∥∥2

2
+ ‖c̃‖1 s.t. c̃ � 0 (3.8)

where Λ = diag(λ1, · · · , λN , μ1, · · · , μM) ∈ R(N+M)×(N+M) is a diagonal matrix,

c̃ = Λc and Φ̃ = BΛ−1. Thus proposition 1 is right.

With the help of proposition 1, we can solve (3.3) using APG method as

proposed in [8]. We refer readers to [8], [156] for more details of APG method.

For further reducing the number of needed l1 minimizations, we adopt a minimal

error bounding method which was proposed in [112] for problems with the same

form as (2.3).

The detailed description of the dynamically modulated mask sparse tracker,

called MMST, is given in algorithm 1.

3.5 Experimental Results

We implement the proposed method on MATLAB and compare it with 21 state-

of-the-art trackers. Among them L1APG [8], MTT [189] are the most similar

trackers to our work. Besides, other related methods which use generative model,

such as CPF [129], LOT [124], IVT [135] and LSK [99], are also involved. Then,

we further compare our method with algorithms which employ discriminate mod-

els like OAB [58], SBT [59], MIL [5], CT [187], TLD [81], Struct [64], CSK [70]

and CXT [42]. In addition, to make our experiment more objective, we also com-

pare our tracker with other popular trackers like DFT [143], KMS [30], SMS [29],
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Algorithm 1 MMST Tracker

1: Input:
2: Current frame It
3: Sample set St = {skt }Mk=1

4: Target and mask template sets T = {ti}Ni=1, M = {mi}Ki=1

5: Compute qi and τ according to [112]
6: while i < M and qi ≥ τ do
7: Solve the l1 minimization problem (8) for yit
8: Compute the observation likelihood p(zt|sit) (denoted as pi for short)
9: end while

10: Set pj = 0, ∀j ≥ i
11: Output:
12: Find the maximum value of pi and obtain the current tracked result s∗t
13: Detect occlusion and update μi and λi

14: Update template set T and M
15: Resample {skt }Mk=1 according to {pk}Mk=1

VTD [88], VTS [89], SCM [196] and Frag [1]. To illustrate the effectiveness of our

tracker under different tracking conditions, we have gathered 13 video sequences

that contain different types of typical corruptions such as occlusion, background

clutter, illumination variations, rotation, scale variations, deformation and blur-

ring.

Qualitative comparison and quantitative comparison are carried out in this

section. In the Qualitative Comparison part, we present the results of dif-

ferent tracking algorithms in Fig. 3.3 with bounding boxes in various colors.

Then in the Quantitative Comparison, we present our results comprehensively

in three aspects. First, the details of the performance of the evaluated track-

ers on selected frames are shown in Fig. 3.4 and Fig. 3.5 by curves. Sec-

ond, the average performances of the trackers on all the collected video se-

quences are listed in Table 1 and Table 2. The reader is referred to our website:

https://sites.google.com/site/motionbasedmasksparsetracking/ for more detailed

results on other sequences. In general, the presented experimental results demon-

strate the superiority of our tracker on the average performance and also the

robustness against heavy occlusion, rotation, dramatic illumination changes, and

scale variations.
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Implementation Details The parameters of the 21 methods compared are set

according to [176], which is an objective benchmark in the visual tracking area.

For each sequence, the initial position of the object obtained from [176] applies

for all 22 methods and the standard positions of tracking targets as in [176] are

used to calculate three metrics (success rate (SR), center location error (CLE)

and overlap rate (OR)) in our experiment. Our algorithm, MMST, is conducted

on the following specific settings: � The number of particles is 800, which is

200 more than the counterpart setting in L1APG (Even though, our algorithm

operates faster than L1APG on average as demonstrated in Table 3.3). � The

regularization parameters [λ1, λ2, · · · , λN ] in (3.3) are initially set equally to 1.

During tracking, each of them is computed as λi = 1−β cos θi, where β is set equal

to 0.1. � The parameters Ψ = diag(μ1, . . . , μ6) used to normalize six parameters

of the affine transformation and change their significance in our state estimation

compensation are set in two steps. First, set μ1, . . . , μ6 to be the reciprocal of

the six affine parameters of the first frame. Second, times μ1, . . . , μ6 with their

own weights set in the dynamic consistency estimation system, which are [0.001,

0.001, 0.001, 0.001, 1, 1].
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(a) Tracking results of the car4 sequence 

CSK          CT           L1APG          MIL           TLD           IVT           SCM           Struck          MMST 

(b) Tracking results of the carScale sequence 

(c) Tracking results of the coke sequence 

(d) Tracking results of the sylv sequence 

(e) Tracking results of the singer1 sequence 

(f) Tracking results of the walking2 sequence 

(g) Tracking results of the freeman3 sequence 

(h) Tracking results of the dog1 sequence 

Figure 3.3: Tracking results of different methods on parts of the selected se-
quences.
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Qualitative Comparison In the frames presented in Figure 3.3 , the results

of different tracking algorithms are marked by bounding boxes of different colors.

To exhibit the performance of different trackers more concise and make them

easy to compare, we show the tracking results of 8 representative trackers on 8

sequences.

Occlusion: Representative sequences are carScale, coke and walking2. In the

middle of the sequence carScale, the car is partially occluded by a tree, making

it difficult for a tracker to catch the object precisely. According to the results

presented in Fig. 3.3 (b), our tracker is still able to track the target robustly when

the car is occluded while other trackers fail to provide an appropriate estimation

of the target. In walking2, while walking through a corridor, the woman is heavily

occluded by a man walking across her from frame #185 to frame #240. When

many trackers lose the target and mistakenly regard the man as the target, our

tracker is not distracted by the occlusions. A similar situation also happens in

the sequence coke, when the coke bin is totally blocked by the leaf.

Drifting : The results of drifting resistance are shown in sequence freeman3.

In Fig. 3.3 (g), the man wearing a T-shirt walks from the center of the room to

the right wall and then turn back to the front between frame #0292 and #0426.

During this period, L1APG, the tracker which is most similar to our work and

marked in purple, drifts to the corner near the right wall and lost the target while

MMST keeps tracking of the target successfully.

Appearance Variation and Rotation: Trackers’ robustness to rotation and ap-

pearance variations can be evaluated in sequences sylv and mhyang. In sylv, the

toy mainly undergoes dramatic rotation and appearance variations. It can be

found that even in the challenging frames #668, #673, #1045, our tracker can

better adapt to the changing appearance of the target. Additionally, at frame

#724, our tracker performs favorably even though the illumination changes sig-

nificantly.

Illumination Variation: The most representative sequences of heavy illumina-

tion variation are car4 and singer1. At frame #228 of sequence car4, our method

is the only one that can still accurately track the target during dramatic illumi-

nation variations. In sequence singer1, the illumination changes are so dramatic

that locating the target is quite challenging even for human beings, rendering
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many other trackers drifting from frame #82. Only SCM tracker and our tracker

can track the target through the sequence.

Scale Variation: This kind of corruption can be densely shown in sequence

freeman3 and dog1. In freeman3, since the size of the target is small at the

beginning, some information of the background is introduced into the appearance

model and disturbs the tracker heavily in successive frames. Frame #148 shows

how trackers like TLD, CT, and MIL lose the target when clutter background

appears. Moreover, when the man is walking towards the camera, a long-term

scale variation and continual rotation happen to his face, enhancing the difficulty

of tracking. Then at frame #356, only SCM and our tracker are able to get the

target successfully. For sequence dog1, due to scale variation and blurring, all

the trackers but ours lose the target at frame #1036. Theoretically, SCM, IVT,

and L1APG have the potential ability to handle scale variations, but they are

not robustness enough when scale variations are accomplished by blurring and

rotation, rendering their failure in tracking the dog in this sequence.
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Figure 3.4: Center location error for each test sequence. The result of MMST,
which is marked by red lines, has the lower error rate on average for the test
sequences.
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Figure 3.5: Overlap rate for each test sequence. The result of MMST is marked
by red lines and has higher overlap rate on average.
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Quantitative Comparison Three metrics are adopted to quantitatively eval-

uate the robustness of our tracker under challenging conditions and compare it

to other popular trackers. Following the benchmark [176], we use success rate

(SR) and center location error (CLE) to measure the performance. Besides, we

also introduce the overlap rate (OR) to the evaluation criterion in order to more

precisely judge the similarity in size and shape between tracking results which are

marked by bounding boxes and the manually labeled ground truths. Specifically,

the OR is quantified as the score in (3.9):

S =
area(RT

⋂
RG)

area(RT

⋃
RG)

(3.9)

where RT is the region of tracking bounding box and RG is the region of ground

truth bounding box. The SR is computed as the proportion of success frames

to whole frames of a video. In this metric, the tracking result is considered as

success if the score S, which is referred to in calculating OR, is large than 0.5 in

one frame. The CLE (in pixels) is measured by the Euclidean distance between

the center locations of the tracking results and the ground truths.

The details of the performance of each tracker are shown with curves in Fig.

3.4 and Fig. 3.5 which exhibit the CLE and OR result respectively. It can be seen

in Fig. 3.4 that in most frames the curve of our method is below others, which

indicates that our algorithm can locate the target better than other algorithms.

On the other hand, Fig. 3.5 shows our method’s outstanding ability to handle

the scale variations due to the higher overlap rate of our tracker against other

evaluated trackers. For example in dog1 and freeman3, as the object becomes

larger, the overlap rate of other methods decrease dramatically compared to our

method. Although in some overlap rate curves of sequences such as crossing and

faceocc1, our performance is not the best all the time, the average performance

is always close to the top. Moreover, if we synthetically consider both the perfor-

mances of CLE and OE, our algorithm is better on average. For example, from

frame 430 to 450 in the freeman3 sequence, the values of CLE are similar between

our tracker and SCM (see Fig. 3.4). However, at the same time, the performance

of our tracker in OR is much better than SCM (see Fig. 3.5). Apart from Fig. 3.4

and Fig. 3.5, more detailed results of CLE and OR of trackers on other sequences
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Table 3.1: Center location error (in pixels). The blod and italic numbers indicate
the best and the second-best respectively.

Method car4 david2 sylv mhyang singer1 coke crossing dog1 walking2 walking freeman3 carScale faceocc1 Ave

MMST 2 1 5 3 3 7 2 4 3 2 2 17 15 5
CT 84 77 6 13 16 38 3 7 32 7 65 25 26 31
CSK 18 2 9 3 14 12 9 4 15 7 54 81 12 18
DFT 55 17 30 8 19 71 20 37 22 6 33 73 22 32

L1APG 72 1 24 2 53 49 60 4 5 3 33 77 17 31
LOT 158 4 10 111 142 62 34 5 45 2 41 99 35 58
MTT 21 2 4 3 36 25 54 4 4 3 16 85 21 21
TLD 13 5 5 9 8 24 22 4 39 10 29 22 27 17
IVT 2 1 20 2 11 83 2 4 3 2 36 12 18 15
SCM 4 3 8 2 3 49 2 7 2 2 3 32 13 10
CPF 40 5 10 13 7 43 9 8 48 4 103 31 28 27
Struck 8 2 5 2 14 10 3 6 9 4 17 35 19 10
MIL 49 11 14 19 16 44 3 8 35 3 88 33 30 27
Frag 124 57 14 13 89 119 37 12 47 9 40 19 11 45
OAB 88 34 14 7 13 29 4 6 31 5 40 30 25 25
SBT 47 10 62 9 98 48 3 12 12 101 59 27 23 39
KMS 56 35 16 20 53 48 8 23 48 8 64 40 19 34
SMS 131 60 14 15 9 76 8 55 35 8 34 23 23 38
LSK 69 18 63 3 21 49 54 7 22 31 39 13 30 32
VTS 36 3 6 4 5 62 41 12 34 5 18 35 21 22
VTD 36 3 6 4 4 69 25 11 35 6 24 37 20 22
CXT 46 1 8 4 11 22 21 5 31 198 4 23 25 31

are provided on our website mentioned above.

Besides, in Fig. 3.6 and Fig. 3.7, the overall performance of all the evaluated

trackers are illustrated by bars and points. The statistic results with respect to the

22 trackers are marked with different colors, and the relations between the bars

and the trackers are listed below the plots. These statistic results are generated

by gathering and sorting the CLE and OR results of a tracker on each frame in

ascending order. The intermediate 85 percent of tracking results of a tracker on a

sequence is represented by the corresponding bar while the remaining 15 percent

of results are scattered as points in the top and bottom of the bar. As shown in

the plots, the bars of our methods are lower in the CLE and higher in the OR in

comparison with other methods, indicating that the average performance of our

method is more favorable than other trackers. For example, on sequence car4,

carScale and freeman3 in Fig. 3.7, the bars of our tracker are generally higher

than other trackers. Although our tracker may not achieve the highest bars in

some sequences, such as david2, singer1 and faceocc1, the difference between our

results and the best results is quite small. Moreover, the scattered points of our

tracker are closer to the bars when compared to most of the other trackers, which
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Table 3.2: Successful rate (in pixels). The blod and italic numbers indicate the
best and the second-best respectively.

Method car4 david2 sylv mhyang singer1 coke crossing dog1 walking2 walking freeman3 carScale faceocc1 Ave

MMST 100 100 98 100 100 98 100 100 100 100 100 82 100 98
CT 30 0 93 73 25 10 100 64 48 52 0 45 85 48
CSK 30 100 73 100 30 82 35 64 49 54 33 45 100 61
DFT 29 55 49 83 28 10 70 54 48 57 33 45 84 50

L1APG 33 100 52 98 38 23 27 88 97 100 33 59 100 65
LOT 5 78 73 27 24 32 34 99 49 97 7 47 31 46
MTT 34 100 97 100 35 39 25 82 99 96 48 57 100 70
TLD 85 95 96 95 99 70 56 66 43 40 58 44 83 71
IVT 100 93 81 100 48 15 26 89 100 100 44 71 97 74
SCM 97 91 89 100 100 39 100 88 100 96 93 66 100 89
CPF 3 46 76 19 32 8 60 97 45 92 15 53 55 46
Struck 34 100 97 100 30 99 98 64 54 58 20 44 100 69
MIL 30 33 61 41 28 12 100 64 48 56 1 45 77 46
Frag 23 30 72 71 22 4 42 61 44 53 31 44 100 46
OAB 30 26 74 96 24 20 85 64 48 50 19 44 91 51
SBT 26 55 50 79 18 17 88 61 47 29 20 44 91 48
KMS 25 37 51 54 24 10 55 50 45 52 8 30 94 41
SMS 0 1 1 58 62 4 30 5 47 44 27 54 84 32
LSK 6 64 31 100 20 19 13 91 56 61 33 64 43 46
VTS 39 99 97 97 43 16 44 68 51 84 34 49 91 62
VTD 39 99 97 95 43 15 45 69 51 82 35 48 95 62
CXT 33 100 89 88 32 66 37 100 50 23 94 79 79 67

Table 3.3: Speed (fps). Blod fonts indicate the best performance algorithm.

Method car4 david2 sylv mhyang singer1 coke crossing dog1 walking2 walking freeman3 carScale faceocc1 Ave

MMST 19.82 12.94 14.23 14.96 12.21 13.74 11.5 13.15 14.8 16.38 9.85 14.12 18.44 14.32
SCM 0.49 0.47 0.41 0.52 0.31 0.32 0.38 0.32 0.38 0.35 0.37 0.31 0.43 0.39

L1APG 1.67 2.49 2.2 2.67 2.25 1.32 2.16 3.73 3.3 4.34 1.87 2.6 4.56 2.70
LOT 0.63 0.65 0.56 0.65 0.18 0.23 0.91 0.28 0.3 0.39 0.69 0.37 0.30 0.47
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means that our method is more stable on these sequences. In particular, as shown

in the freeman3 of Fig. 3.6, our method has the least scattered points among the

evaluated trackers.

Further, the average performances are shown in Table 3.1 and Table 3.2 which

exhibit the CLE and SR of 22 trackers on 13 challenging sequences. For CLE,

among all the 13 sequences shown in Table 3.1, our approach achieves best per-

formance (marked as bold) regarding half of the sequences. For SR in Table 3.2,

our tracker performs the best in all but one sequence. Compared to different

sequences, our tracker acquires excellent results in the following situations. First,

when the image sequence has corruptions such as heavy occlusion and illumina-

tion changes like in car4, singer1, carScale, coke. The center location error of our

method is significantly reduced in comparison with other template based sparse

tracking methods like L1APG. Compared with other template based sparse track-

ing methods like L1APG, the center location error of our method is significantly

reduced. This result validates the effectiveness of employing the mask template

set to represent heavy occlusion and illumination changes. Second, the proposed

method also performs excellent tracking capability when the target suffering other

corruptions like large scale variations (car4, dog1, freeman3 ) and in-plane rota-

tions (sylv, david2 ). Last but not the least, our tracker offers good comprehensive

performances at low cost. On average, our method performs much better than

other tested methods, especially for similar methods like L1APG.

In addition, the comparisons of speed are shown in Table 3.3. The experiment

is conducted on a PC with Intel I5-4570 (3.20GHz) and on average, our tracker is

about 5 times faster than L1APG, 37 times faster than SCM and 30 times faster

than LOT. We choose them because L1APG is the one that mostly related to our

method, SCM ranked the second-best in both Table 3.1 and Table 3.2, and LOT

is a representative example of the generative method based tracking algorithms.

Through the comparisons, we noticed that the speed is heavily related to two

facts: First, the number of templates. The length of the related coefficient vector

grows as the number of templates increases. This further significantly augments

the computational burden for convergence because the goal of �1 minimization

problem is to find a set of optimized coefficients which lead to the minimum of the

equation. In the experiment, for car4 sequence (similar for other sequences), we
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formed our dictionary with only 10 dynamic updated target templates, 1 fixed

target templates from the first frame and 4 mask templates. Meanwhile, the

original L1APG algorithm uses 10 dynamic updated target templates, 1 fixed

target templates and 180 trivial templates, which is about 13 times larger than

ours; Second, if the tracking result is corrupted, the speed will seriously decrease.

This is because if the templates cannot accurately represent the target, it will

take more loops to reach convergence. As a consequence, because our dynamic

modulated representation model can represent the result more efficiently and

accurately, it will take our model fewer loops to reach convergence than the

original L1APG algorithm.

To sum up, considering both the speed and tracking accuracy, our method

outperforms 21 other cutting-edge algorithms, especially when the corruption

exists.

3.6 Conclusion

In this chapter, a robust and efficient visual object tracking method is developed

based on an improved subspace learning-based appearance model based on the

spatial and temporal context. In our work, mask templates are introduced, sig-

nificantly helping to reduce the complexity of the system and with a theoretical

guarantee of the efficiency of the solution. Our method is also characterized by its

exploitation of the dynamic information of the tracking target which significantly

improves the tracking accuracy and coverage of the target. Extensive experiments

validate the efficiency and robustness of our method, especially in situations with

frequent and obvious large-scale corruptions such as occlusions and illumination

variations. In future work, our MMST model could be extended to multi-object

tracking problems with other promising corruption modelling methods.
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1 2 3 4 5 6 7 8 9 10 11 
CT CSK DFT L1APG LOT MTT TLD IVT SCM CPF Struck 
12 13 14 15 16 17 18 19 20 21 22 
MIL Frag OAB SBT KMS SMS LSK VTS VTD CXT MMST 

Figure 3.6: Statistic results of center location error of all trackers.
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1 2 3 4 5 6 7 8 9 10 11 
CT CSK DFT L1APG LOT MTT TLD IVT SCM CPF Struck 
12 13 14 15 16 17 18 19 20 21 22 
MIL Frag OAB SBT KMS SMS LSK VTS VTD CXT MMST 

Figure 3.7: Statistic results of overlap rate of all trackers.
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Chapter 4

A Robust Tracker Based on a

Bi-channel Fully Convolutional

Neural Network

This section introduces a bi-channel fully convolutional neural network to tackle

a pixel-level tracking problem. The proposed model accepts two video frames as

well as the tracking result of the previous frame as input. It has two branches of

the sub-network, which can capture and analyse low-level motion variance and

high-level semantic variance, respectively. The low-level branch focuses on the

temporal context, the movements of local parts of the target across frames, by

extracting and operating optical flow data, while the high-level semantic branch

concentrates on the spatial-temporal context and outputs the prediction of to-

and-fro alternation between background and target for each pixel in the current

frame. Both branches employ fully convolutional neural networks for processing.

Combining these two, the foreground target area is obtained and can be calculated

to carry on the tracking operation for new frames.

4.1 Introduction

Practical object tracking in videos is often formulated as updating the location

and size of a bounding box upon observing each new frame in the video, where
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the target is specified by the bounding box in the previous frame. Using the

bounding box in tracking follows the conventional usage of a rectangular region

of interest (ROI). A rectangle is a minimalistic and practical representation of a

target and has been ubiquitously used in many machine vision tasks, including

object detection [133] and action recognition [155]. On the other hand, pixel-level

analytics has long been considered desirable as it provides richer details and nat-

urally accommodates complicated cases such as multi-target detection/tracking,

especially when dealing with occlusion and shape variation. Unfortunately, pixel-

level processing of images and videos entails the formidable task of capturing fine

structures in the visual signals.

A breakthrough has been made recently with the impressive development of

deep convolutional neural networks [32, 104]. Given sufficient data and with the

cost of an expensive training session, when deployed, these models are able to

make quick and accurate predictions at a similar resolution to the input sig-

nal [92]. The various receptive fields of CNN kernels, together with a multi-layer

architecture which incorporates features at different levels, naturally encode the

spatial context to provide a finer result. Thus, a wide range of machine vision

tasks, such as object identification and semantic scene understanding, has ad-

vanced their granularity of analysis to the pixel level. The work presented in this

chapter aims to harvest the benefit of the analytic tools based on neural networks

and achieve finer and more accurate object tracking. Although there exists some

work dealing with the pixel-level tracking task, such as Osvos [16] and Pixel-

track [45], they always need to fine-tune the model of the trained tracker with

the first frame. With this fine-tuning step, the model will be adjusted to better

capture the newly come features of the target. In contrast, our method avoids

such fine-tuning step which is time-consuming. Our model automatically obtains

these features by analysing the temporal context between the newly come frame

and the first frame.

4.2 Generic Pixel Level Tracker

The aim is to build a category-independent model to track targets given at run

time. In particular, we capture the low-level motion variance to provide an intu-
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High-level Semantic Branch

Low-level Optical Flow Branch

Fusion

Figure 4.1: The processing flow of the bi-channel fully convolution neural network.
Based on the input information, low-level and high-level temporal information are
extracted and analysed in corresponding branches. By fusing the results of two
branches, the foreground area of the target can be identified.

itive estimation of the movement of each local part of the target, and represent the

overall change of the distribution of foreground pixels by introducing high-level

target-specific semantic variance. Thus we introduce a bi-channel neural network

to process both of the variances for producing a pixel-level tracking result. In

particular, the network consists of two processing branches: one for robust pre-

diction of low-level optical flow and the other for tracking high-level semantic

objects. Both branches employ the deep fully convolutional network (FCN) ar-

chitecture [104]. Figure 4.1 shows the structure of the network. The low- and

high-level branches share the input of a pair of consecutive video frames, with

the high-level branch additionally taking the target object mask in the previous

frame. Then after a series of convolutional and de-convolutional feedforward op-

erations, the high-level semantic branch outputs the predicted target object mask

in the new frame. The prediction is enhanced by fusing information from the low-

level branch, which outputs predicted optical flow summarised in super-pixels by

clustering.

Low-level Optical Flow Branch We define that the low-level motion variance

represents the displacements of the same pixel in two adjacent frames. Particu-

larly, optical flow is an ideal description of such temporal context variance since

a flow of light and colors directly indicates the low-level visual changes of a mov-

ing target in the video. However, the raw flow data cannot be directly used to

predict the mask of a tracking target, due to the following limitations. First,
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Low-level Optical Flow Branch 

 
 Optical Flow in 

Color Space 
Cluster FCN 

Figure 4.2: The working flow of the low-level branch: the optical flow data is
extracted by a fully convolutional neural network with a clustering operation
afterwards, so that foreground and background areas can be separated.

High-level Semantic Branch 

 
 FCN 

 

 
+ 

Figure 4.3: The working flow of the high-level branch. It adopts the fully con-
volutional neural network to predict the decrease and increase (red and blue) of
the foreground mask of the target. By adding the predictions to the previous
foreground mask, an initial estimation of the target can be obtained.
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the raw flow contains noise from the background and would be scattered when

corruptions like occlusion appear on the image. Second, when one object moves

in diversified speeds and directions, the raw flow will present different features

and may confuse the judgment of the algorithm. Third, different parts of a single

object may present utterly different optical flow features.

Considering above, we design the low-level branch to extract and manage the

optical flow for getting an output where the foreground and background areas

are distinguished from each other. To accomplish this, we first refer to a deep

convolutional neural network based on FCN to extract the optical flow considering

the high speed and accuracy. The network has a similar structure with FlowNetC

and FlowNetS provided by Flownet [44]. The number of channels is reduced

to make a trade-off for better time efficiency. After that, this branch would

process the obtained optical flow using the following steps. Step1: the flow data

represented by angle and amplitude are mapped into color images. Step2: optical

flows with different attributes (angle, amplitude) are clustered into superpixels,

so that the underlying correspondence between flow data and the target can be

revealed. Step3: optical flows clustered by the frames at different time intervals

are combined, to reduce the impact of variance in moving speed. Figure 4.2

illustrates this process of generating the optical flow summarized in groups by

clustering.

High-level Semantic Branch In the high-level branch, we introduce the fully

convolutional neural network to update the parsing of object / scene semantics

in each new frame regardless of its category. We call this responsible sub-network

as “semantic branch”.

Mathematically, suppose Mt−τ and Mt are foreground areas at time t− τ and

t respectively. For a pixel located at (x, y), the related semantic variance during

time interval τ is marked as dx,y,τ . Then the relationship of dx,y,τ and Mt can

then be written as:

Mx,y,t = f(Mx,y,t−τ + dx,y,τ ) (4.1)

where f is the operation that constrains the values of the changed foreground

pixels to lie in [0, 1].
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In this branch, we introduce a deep convolutional neural network to directly

capture the difference between Mt and Mt−τ . Unlike segmentation based algo-

rithms which need prior knowledge as a reference to the foreground area, the

proposed network does not need fine-tuning on the first frame to learn the tar-

get’s appearance from zero. The detailed design of this branch is shown in Fig.

4.3. The inputs include consecutive video frames and tracking results on previous

frames. The former contains rich difference information while the latter gives a

reference to the location of the target. Three kinds of pixel-level labels (0, 1, and

2) are designed for the network to reflect what happens between input images

(colored in red, black and blue in Fig. 4.3. If the target mask covers one pixel in

the former image but excludes the pixel at the same location in the latter image,

label 0 is assigned to the pixel to represent target vanish on it. On the contrary,

label 2 will be assigned to such a pixel which is newly added to the target mask

in latter images. Label 1 covers the remaining situations: the attribution of the

pixel does not change during the interval between images. It remains to the target

or background during the time-slot. The basic architecture of the neural network

is based on FCN [104] except that batch normalization is introduced to stabilize

the training procedure. In addition, to capture more details about the variance,

the feature maps are upsampled to the input image size. Furthermore, multiple

image pairs of different time intervals are loaded to better capture the change.

The branch generates a foreground probability map at last.

Fusion Based on the observation that the outputs two branches share locations

on the image, the output of high-level semantic branch can be directly enriched

with flow data at the same location given by the low-level optical flow branch. By

fusing the outputs of two branches, we obtain the appropriate tracking results.

The detailed algorithm can be summarized using a four-stage procedure. In

the first stage, we perform a voting scheme on the optical flow in groups according

to the foreground probabilities at the shared location. In the second stage, we

distinguish out foreground clusters and background clusters based on a threshold,

with an appearance descriptor constructed for each group. In this work, the ap-

pearance descriptor is the average value of the attribute of corresponding optical

flow. Then the third stage discards the foreground areas predicted in stage 1
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Figure 4.4: Architecture of CNN of the semantic branch. We add batch nor-
malization to the five convolutional layers adapted from FCN. Five up-sampling
operations are applied to make the final output the same shape as the input
image.

if its appearance descriptor is close to the appearance descriptor of background

clusters. In the last stage, the overall tracking result is generated by merging the

identified foreground clusters together and being smoothed among temporal and

spatial axis.

4.3 Experiment

Implementation Details The convolutional network of the semantic branch

has been modified from that of FCN, and the architecture is illustrated in Fig-

ure 4.4. We introduce batch normalization after every convolution layer of the

network. Also, we employ five upsampling operations to make the final output

the same shape as the input image. When training the network, we additionally

introduce an auxiliary loss function on the top of the fifth convolution layer to

make the training more stable. For the convolutional network used by the optical

flow branch, we use the pre-trained network parameters instead of fine-tuning

the net on DAVIS [128] . We use the thin models which have 3
8
of the channels

corresponds to FlowNetS and FlowNetC.

The source code of this work will be accessible to on1. Please refer to our

1https://github.com/ZijingChen/trackBySeg
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project page to see all the experiment results1.

Data and Evaluation In this work, we evaluate the proposed tracking method,

along with several state-of-the-art trackers on the densely annotated dataset for

video trackers [128] (DAVIS dataset). The video contains challenges such as fast

motion, shape complexity, and deformation. Besides, the pixel-accurate annota-

tions are ideal for our requirements. Using the DAVIS, we have 30 video clips

of training, which include 2079 images. To illustrate the detailed performance

of each method on different kinds of tracking conditions, we randomly pick out

another 15 video sequences from the remaining set of DAVIS as our evaluation

set. The target in our evaluation set can be a single object like a dancing girl.

It can also be multiple objects that connected with each other, for example, the

soapbox video. Since our method is based on bi-channel FCN, we call it FCN2

tracker.

We refer to the pixel-level ROC curve as the basic evaluation metric. The

ROC curve refers to the receiver operating characteristic curve, where true pos-

itive rates are plotted against false positive rates at various threshold settings,

which correspond to y- and x-axis respectively. In particular, our model gives

pixel-by-pixel predictions of class probability, ROC is calculated by varying the

classification threshold θ, (i.e. Ii,j is predicted as target if P (Ii,j = target) > θ.

For trackers representing target using the bounding boxes, say, a tracker predict-

ing a box B∗, we generate a series of boxes, centred at the centre of B∗, with

varying sizes {B1, B2, . . .}. ROC curve for the tracker is calculated by predicting

the target as pixels within B1, B2, respectively.

Our performance is compared with state-of-art trackers: siamese-fc [153], CF2

[106], CSK [70], STRUCK [63], DSST [35], and L1APG [8]. Fig. 4.5 presents

the results of the compared trackers in bounding boxes and the proposed method

in the probability map. The presented frames come from 6 challenging video

sequences which include in-plane rotation, large-scale deformation, ambiguous

edge and so on. The illustrated results demonstrate that our method is robust

to a various challenging transformation of the target while other trackers become

quite vulnerable. For example, when tracking the dancers, many trackers cannot

1https://sites.google.com/site/tbdtracker2017/
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tightly cover the target due to significant deformations. Instead, the proposed

method can still predict precise foreground layout for the target.

Figure 4.6 and figure 4.7 show the ROC of our algorithm and compared track-

ers. Each frame has its own ROC. However, we only report the average value

of ROC to present a statistic result. To illustrate the performance of evaluated

methods during different periods of the video sequence, we divide each video se-

quence into ten separate parts according to arrival orders. The results presented

in the figure supports that the proposed algorithm achieved superior tracking

performance, which is consistent with the intuitive assessment shown in Fig. 4.5.

In specific, with tracking through more frames, the ROCs of all trackers deterio-

rate due to drifting and failures. Nevertheless, FCN2 tracker remains superior to

rival methods.

4.4 Conclusion

This chapter presents a new approach for visual object tracking based on bi-

channel FCN that 1) produces a finer tracking result and 2) works for the generic

object without fitting the network to the appearance of any specific object class,

which needs a large scale of training data. Our model can extract the temporal

relationship between two observations of a target that works together with optical

flow information to generate a robust tracking result. In future work, we plan to

explore extensions that could encode more changes in the semantic information

of the tracking target.
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Figure 4.5: Qualitative comparison among trackers. Our output is marked in red
shadow. The result of the other trackers are shown by bounding boxes.
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Figure 4.6: ROC, from the beginning to the 60% of a video sequence. Our output
is shown by black lines marked with stars. The rest of the other trackers are shown
by curves in color.
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Figure 4.7: ROC, from the 60% to the end of a video sequence. Our output is
shown by black lines marked with stars. The rest of the other trackers are shown
by curves in color.
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Chapter 5

Learn to Focus on Objects for

Tracking-by-Detection

The tracking-by-detection strategy is effective in tackling the visual tracking prob-

lem. It considers tracking as an online detection problem. In practice, researchers

often train a detector on the fly and use it to identify the target from the back-

ground image areas. In this chapter, using the tracking-by-detection strategy, we

introduce a novel algorithm to help the online detector better focus on the target

in the face of challenging issues. Our proposed method substantially improves

the robustness and accuracy of a tracker.

5.1 Introduction

In recent years, tracking-by-detection methods have become increasingly popular,

achieving excellent performance in the tracking problem. This is because such

kinds of tracking methods are more robust against appearance variations and

drifting. It is also easier for the tracking-by-detection methods to re-locate objects

in a video sequence which have disappeared, especially when tracking objects such

as pedestrians and cars.

Despite the advantages, tracking-by-detection methods are extremely time-

consuming due to the enormous model complexity brought by the employed de-

tector. Since an object detector needs to train a classifier to identify objects, re-

66



searchers tend to introduce deep convolutional neural networks (DCNNs) to fulfil

the classification tasks considering their outstanding expressive capacity. How-

ever, training and using DCNNs could be computationally intensive because they

generally have a large number of parameters. As a result, a tracking-by-detection

method becomes significantly slow if the DCNN-based detectors attempt to find

a target from a large number of image patches. To address this issue, researchers

have introduced object proposals, which is a set of windows that may contain the

objects, to reduce the computational complexity of a DCNN-based detector.

The utilization of object proposals can accelerate the detection process by

identifying and discarding a large number of obvious background patches with

the help of object proposal generators. An object proposal generator commonly

accepts as input the low-level or convolutional neural network (CNN) features,

and outputs a short-listed set of candidate detection windows for the classifier to

make the final decision. Compared with sliding window-based detectors which

straightforwardly scan over image locations in an exhaustive way to generate the

candidate object area, the employment of an object proposal addresses two funda-

mental limits of the exhaustive search in the sliding window framework: (i) waste

of discriminative computations on areas of an image where the presence of any

object is unlikely, and (ii) waste of training data by ad hoc sub-sampling tricks

to get the positive and negative samples balanced. Thus, the object proposal

has been widely used in state-of-art detection algorithms and largely boosts the

performance of the detector, including detectors based on traditional features and

classifiers, and those based on the convolutional neural networks [54]. Regarding

the contribution of object proposal for object tracking [67], it indicates the pos-

sible location and shape of the target in a newly arriving frame and relieves the

computational burden.

However, the generation of object proposals remains challenging. The accu-

racy of proposals is usually reduced when dealing with complex vision scenarios,

where the objects can appear at arbitrary image locations, of different scales,

within different categories, and their number may vary across different images.

This is due to the fact that the scheme is of the pre-discriminative stage, i.e.,

the algorithm is NOT allowed to access any object category-specific information,

and yet must provide full coverage: guarantees that any object to be detected is
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covered by one of the candidate windows. Thus for traditional methods relying

on global or local image features, the focus of object proposal research has been

duly put on inventing various measurements that gauge how likely an area may

contain any interesting target (known as objectness measure), and investigating

the low-level image cues based on which the measurements and proposals are

constructed [2, 132, 183, 200]. These object proposal generators based on hand-

crafted features need to process tens of thousands, if not hundreds of thousands of

candidate windows to generate object proposals which could ensure full coverage

of potential objects in an image. Besides, since the features used to judge the

quality of the proposal may not be so powerful, proposals contain background ar-

eas can be mistakenly selected as good references for the object detector and spoil

the performance of the detector. Additionally, with more powerful features, the

deep learning based methods employ the Regional Proposal Network (RPN) to

simultaneously predict object bounds and objectness scores at each position as a

reference for the object detector. With RPN, the number of object proposals has

been reduced, and the overall quality of the proposals remains at a high standard.

Thus RPN or similar modules has become a needful part of deep learning based

detectors, such as [133] and [102]. One of the main limitations of RPN is that

it only uses small convolution kernels, i.e. 3x3, to propose bounding boxes for

all the objects presented in the images. In deep learning, the small convolution

kernel means that the corresponding receptive field is also small. In practice, a

small receptive field will force the network to make a judgement about whether

there exists an object based on a limited range of visual features. Without suffi-

cient visual features, it will become difficult for RPN to propose bounding boxes

for objects of different sizes and shapes robustly and accurately. According to

the above, we propose a complementary method to work with object proposals,

which can be used to improve the performance of both the traditional detectors

and deep learning based detectors. It also avoids above limits and become more

flexible and accurate.

Our works are motivated by biological patterns: Humans focus on the target

in the view fastly. In fact, humans and many animals do not look at a scene in

fixed steadiness; instead, the eyes move around, locating interesting parts of the

scene. The paper published in Nature [114] reveals human observer can move their

68



eyes toward the target with adaption. The recent research in the deep learning

book [57] indicates that human glimpses the most visually salient or task-relevant

parts of a scene, which is a small area rather than the entire scene. Based on

these, we can find that human can efficiently and accurately focus on the target

because they can adapt their focus by utilizing the context information.

Considering above, our work presents an alternative development of the object

proposal algorithms to improve the performance of tracker called TRM Tracker

(TRMT). The main idea is to utilize the context information around possible ob-

ject areas to help the tracker better focus on the target and output more accurate

tracking result. The image cues around the existing proposal act as context to

redeem the partially aligned windows in any set of candidate windows and thus

improve the overall proposal. The proposed scheme is called TRansformation

Model (TRM) which acts as a compliment and is orthogonal to the efforts of so-

phisticated searching schemes. It can be applied flexibly to the proposals based on

hand-crafted features, or proposals produced by CNN features. For the former, a

learning-based TRM is developed to iteratively address the translation and defor-

mation bias from misalignment. In particular, the transformation model (i) moves

a candidate window on the image plane to where a nearby object may present,

and (ii) adjusts the dimensions of the window to achieve more accurate coverage

of the object. For the latter, the TRM is implemented by a Focus Proposal Net

(FoPN) which is constructed of several convolutional layers. It first generates

candidate proposals similarly to RPN. Then, the context information around the

candidate area is extracted by specifically designed dilated convolution kernels.

After that, the location and shape of the candidate area are adjusted iteratively

to help the refined proposal focus on the target. Experiments on real-life images

show that the transformation model improves existing proposals. In addition,

the performance of the detector and tracker can be improved when loaded with

the proposed transformation model. In details, we have observed a statistically

significant increase in the coverage of the objects in the images from a given set of

candidate windows to one that is transformed by our model. Besides, the overall

performance of the detector is improved when providing FoPN. Finally, the over-

lap rate on the test tracking sequence is increased, which indicates that a more

robust tracker can be obtained. With our proposed method, the quality of every
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object proposal can be improved and thus the performance of object detection

algorithms, as well as the tracking-by-detection algorithms, would be significantly

advanced even when using a small set of proposals. Empirical studies show that

our method boosts the detection and tracking performance with a great margin,

demonstrating the effectiveness of the proposed components.

This chapter is organized as follows. In Section 2, we summarize the works

most related to ours. Then we describe the proposed scheme in Section 3, in-

cluding the application of the proposals generated by hand-crafted features or by

convolutional neural networks. We present experiments in Section 4 and finally

draw conclusions in Section 5.

5.2 The Transformation Model

This transformation model is developed to serve the proposal-based object de-

tectors. The main idea is to redeem the partially aligned windows to improve

any existing proposal. In particular, given an image I, suppose B includes all

the rectangular areas of interest. Then the object proposals are generated by the

function: φ : I → PI ⊂ B, where PI, the output of this function, is a set of

candidate windows. The windows of PI are expected to contain all potentially

interesting objects in I. Instead of designing yet-another φ, what this transfor-

mation model contributes is to construct learning based statistical models for

adjusting windows: ψ : I → b′|b, where b, b′ ∈ B. Compared with b, b′ is sup-

posed to be more focused on the object. By analyzing the context information,

the model ψ adjusts proposals in PI so that they are transformed to areas more

likely to contain objects. Thus φ ◦ ψ, which generates proposal and then adjusts

them, becomes a better proposal scheme. With such structure, the model can

work with any existing proposal scheme (such as [157]). In practice, the proposed

scheme can be implemented with hand-crafted features to improve the traditional

object proposal algorithms such as [157, 200], and with CNN features that can

be injected into existing object detection framework easily. Before we introduce

the details on how to build the transformation models ψ to predict appropriate

adjustments for different windows, it is helpful to discuss some aspects that may

be of concern: (i) our focus is to alter the proposal framework; flexibility should
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Figure 5.1: Focus on objects with transformation models. The transformation
model transforms partially aligned original proposals and focus them on objects.

be given to the particular implementation of the ψ model. Particularly, when

representing the image context, any feature used by existing schemes φ could

be reused for building ψ, so that the extra steps would incur negligible compu-

tational overheads. (ii)If coverage of the object of interest is to be guaranteed

in a certain stochastic sense by the proposal system, then the introduction of ψ

can be considered as making the system more tolerant to the original proposals

φ. As an example, if the original system needs approximately 105 windows like

in [2], we can afford a ψ model to achieve similar performance by only using 500

windows. (iii) Since ψ examines local image context to adjust windows, some

partially aligned windows are required to work with. Based on the above con-

cerns, as Fig. 5.1 shows, the inputs of the designed transformation model are

original proposals and context represented by image features taken within and

around the proposal of question, while the output is the instruction on how to

adjust the proposal window to better cover the target.

Suppose the initial state of a proposal is marked by the top-left corner location,

the width, and the height of the proposal. Then this state can be marked by a

4-dim vector b = [xmin, ymin, width, height]. Suppose the context information

around this propsoal b is describe by a funciton g(b), the transformation model

ψ(·) analyzes g(b) and iteratively adapts b to the target’s location and dimension.
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The function of the transformation model is described as:

bk+1 = ψ(bk) (5.1)

ψ(bk) = bk + δ(bk) (5.2)

δ(b) = h(W, g(b)) (5.3)

The function h(·) in Eq. 3 takes the W, the weights learned with training data,

as well as the context information as input, and outputs the change in location

and shape of the proposal. Then, combining the change, δ(b), with the state

of the existing proposal, a new proposal can be obtained as Eq. 2 shows. The

subscript k in Eq. 2 indicates the k-th iteration.

Next, we will introduce the details of designing the transformation model

(TRM), which is different for the proposal generation that based on hand-crafted

features or CNN based features.

5.2.1 TRM with hand-crafted features

For refining proposals generated by hand-crafted features, two types of trans-

formation are considered in our work. One of them translates the centre of a

candidate window within a range to a different position that may be closer to the

object and the other adjusts the dimensions of a window to make it cover the ob-

ject more properly. Correspondingly, the TRM is composed of two sub-models,

the translation model and the deformation model. The working flow and the

output of each model are as Fig. 5.2 shows. In this case, δ(bk) is related to the

location change in the vertical direction (dv), the horizontal direction (dh), and

the dimension change in width (Δw) and height (Δh). The translation model

outputs the location adjusted in dv and dh while the deformation model handles

the shape change in Δw and Δh.

5.2.1.1 Translation model

By analyzing context information, the translation model moves the original pro-

posals that are partially aligned with interesting objects to achieve better align-

ment. Since any offset of a window can be decomposed into vertical and horizontal
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Figure 5.2: The working flow of improving proposals based on hand-crafted fea-
tures. Original proposals have been generated on the input image. With the
processing of the translation model, the locations of these proposals are adjusted
to better align the target. Then with the deformation model, the scale and shape
of the proposal are amended to better focus on the object.

components, the desired outputs of this model are two rectification movements

along corresponding directions. In order to facilitate the framework to work with

proposals of variant sizes, its output is rescaled to [−1, 1] as proportions to the

scale of the original window. The sign of the output denotes the direction of

movement, where the negative sign refers to the movement in opposite direction

compared to the positive sign. Suppose τv and τh are outputs of the translation

model along vertical and horizontal direction, a pair of regression models can be

constructed based on image features:

τv = ĥ(〈Wv, fv〉) (5.4)

τh = ĥ(〈Wh, fh〉) (5.5)

where fv and fh are vertical and horizontal feature vectors extracted from the

image, which are related to contexts in vertical and horizontal directions (will be

explained later). Wv and Wh are the corresponding learned weight vectors. ĥ(·)
can be implemented with squashing function and we choose tanh(·) to be the

function. Afterwards, the desired transformation movements, which are propor-

tional to the height and width of a window, are calculated by following equations:

dv = τv ·Hb (5.6)

dh = τh ·Wb (5.7)
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Figure 5.3: Area arrangement of feature extraction for one proposal. Above
figures show how the characters of the context around and within an original
proposal (represented by the shadowed area marked as ‘O’ in (a)) are extracted.
As in (a), surrounding areas are organized in a grid. These grid cells can be
combined to generate surrounding features. For example, if we use braces to
represent a combination of cell areas, then features can be extracted from {A,
B, C, D, O, E} and {F, G, H} separately. In addition, the proposal area, O, is
partitioned in two passes, one horizontally and the other vertically, generating
internal horizontal (b) and vertical (c) features.

where Hb and Wb are height and width of the proposal b.

For solving Eq. 5.4 ∼ Eq. 5.7, we first introduce how to build the features fv

and fh, then discuss the training of weight vectors,Wv and Wh.

To represent the spacial characteristics of the context efficiently, the arrange-

ment of the feature extraction areas is carefully designed. Since the candidate

proposal may only partially overlap with the potential object, when constructing

fv and fh, image features both around and within the window areas are considered

to tackle various cases. Surrounding features are extracted to judge the offset of a

proposal window when the object is located in the vicinity of it or crossing it. As

Fig. 5.3(a) shows, the areas around the original proposal (marked by O) are or-

ganized by a grid, thus vertical and horizontal surrounding feature vectors fv·surr
and fh·surr can be extracted from areas represented by different combinations of

the grid cells (marked by A to H) and the proposal O. For example, suppose we

use braces to represent a combination of cell areas. Then by dividing the area into

an upper part and a bottom part, the features extracted from {A, B, C, D, O,

E} and {F, G, H} can form two elements in fv·surr. Similarly, features extracted

from {A, B, D, O, F, G} and {C, E, H} form two elements in fh·surr respectively.

On the other hand, internal features are helpful to capture the presence of the
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object when it is partially or fully contained within the candidate window. As

Fig. 5.3(b)(c) illustrates, the internal area of the window ‘O’ is scanned twice

by the feature extractor, once vertically and thence horizontally, to produce the

corresponding feature vectors fh·in, fv·in. These two-direction internal partitions

serve well for predicting the vertical and horizontal offsets to move the current

candidate window for a better alignment. The grid partition in Fig. 5.3(a) is

not used to produce internal features for the following reasons: (i) features can

be extracted more efficiently, which saves computation power; (ii) the required

training sample size can be reduced; (iii) a strip area, which is larger than a cell

area, contains richer information for the feature to catch.

The features extracted in each surrounding or inner area are represented as a

vector. Also, the translation model is open to any type of image features as long

as it is descriptive and efficient to compute. In this work, we use the saliency

descriptor as in [2] because this feature is widely used in existing object proposal

algorithms. Besides, with the help of integral saliency image, which is a quick

and effective way of calculating the sum of values in a rectangular area within

the image, the feature computation will not incur any overhead if our adjustment

is used in conjunction with these proposal algorithms.

Lastly, one vertical feature vector and one horizontal feature vector for each

candidate window are generated by concatenating feature vectors belong to the

corresponding directions as follows:

fv = [fv·in, fv·surr] (5.8)

fh = [fh·in, fh·surr] (5.9)

In our implementation, both fv and fh are 22 dimensional real-valued vectors.

Each element of them is calculated with several simple addition and subtraction

operations on the pre-calculated integral image which is generated from the input

image.

Compared with powerful learning models such as decision tree and structured

SVM, a regression model is chosen for training the weights Wv and Wh. This

is because this thesis aims at highlighting the effectiveness of the active learning

scheme rather than the contribution of learning model itself. Furthermore, all
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features can be significant in the logistic regression model after analyzing the

significance of features in different models statistically.

In our experiment, the nonlinear least squares regression is used. As a result,

Wv and Wh are respectively trained by optimizing the following problems .

min
Wv

∑
i

(
τ̂vi − ĥ(〈Wv, fv〉)

)2

(5.10)

min
Wh

∑
i

(
τ̂hi − ĥ(〈Wh, fh〉

)2

(5.11)

where τ̂vi, τ̂hi are labeled offset ratios of the i-th training sample and the squashing

function ĥ(·) = tanh(·).

5.2.1.2 Deformation model

The dimensions of proposals are adjusted by the deformation model. Since the

deformation model addresses the uncertainty about the scale and shape of the ob-

ject, the searching space in the detection process can be inflated. The translation

model and the deformation model can work jointly and significantly to improve

the accuracy and coverage of object proposals.

Given a proposal, the deformation model enhances the chance that the pro-

posal covers an object accurately by iteratively attempts to stretch or shrink it.

The deformation process alternates between the horizontal and the vertical di-

rections. In each iteration, the proposal is shrunken or stretched according to

the context around it. Specificially, the deformation model updates the latest

shape and scale of the proposal in each iteration with the variance in width (Δw)

and height (Δh). The iteration will be ended if a local optimal dimension of the

proposal has been reached, according a deformation evaluation model :

C(b) = Ω(g(b)) (5.12)

= α1 · log(S(b))− α2 · log(A(b)) (5.13)

where C(·) estimates the compactness of the candidate window b, which is de-

pended on the context represented by g(b), and Ω is the scoring function. S(b)

is the sum of saliency measures within b, A(b) is the area of the window. S(b)
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and A(b) jointly defined g(b). α1 and α2 are balancing weights between S(b)

and A(b). As [2] mentions, a distinct character of the object is “stands out as

salient”. Thus S(b), which can be efficiently calculated with a pre-calculated

integral image, is used to capture holistic characters in the proposal and should

be positive correlation with C(·). Besides, A(b) is adopted not only because of

the significance of S(b) is related to the area, but also for punishing the windows

being excessively large. Thus A(b) is considered as being negatively correlated to

C(·). It is worth noting that unlike the intersection-over-union (IoU) score which

measures the degree of the overlap with the ground truth, C(b) is computable

on both the training and the test images, i.e., evaluation of Eq. 5.12 does NOT

rely on any annotation of the image. In summary, the iteratively change in the

aspect ratio of the proposal can be represened by:

Δwk,Δhk = arg max
Δw,Δh

{C(bk−1 + [0, 0,Δw,Δh])− C(bk−1)} (5.14)

The details of the algorithm are explained in Algorithm 2. The parameter λ

referred in lines 6,10 and 22 is introduced to resist interference. The parameters

α1, α2 and λ are chosen so that C(b) reflects the true degree of overlap between

b and some ground truth annotations. In our empirically study, letting α1 and

α2 be 1.0 led to effective evaluation criteria, and λ is learned from the training

set so that Algorithm 2 produced satisfactory deformed proposals.

5.2.2 TRM with CNN features

Besides hand-crafted visual features, our proposed transformation model can also

benefit the proposal generators that refer to CNN features as a more powerful

representation of objects. Following the basic concept of improving quality of pro-

posals by using context and adaptation operations, it is easy to implement the

proposed method by directly injecting appropriate convolution operations in the

existing CNN-based proposal generation pipeline and thus make the whole pro-

cessing flow have an end-to-end architecture. We consider the convolution blocks

that introduced to acquire the value of ψ(bk) as Focus Proposal Net (FoPN).

In FoPN, we attempt to achieve focusing procedure by actively including rich
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context information in diversified spatial ranges and by introducing a cascaded

structure to fulfill the task of iterative proposal adapting procedure.

5.2.2.1 Context Module

The context information is crucial for adjusting the proposal. Instead of trans-

forming surrounding hand-crafted features into the expected context feature vec-

tors as mentioned in the previous section, we attempt to incorporate the contexts

by using different shape-transformed kernels in convolution operations. Further-

more, the contexts in different ranges are also considered with the help of dilated

convolution kernels [19].

In specific, as Fig. 5.4 shows, three kinds of shape-transformed kernels are

utilized to capture different kinds of contextual features. First, to better under-

stand object structure in a vertical view, we design a bar-shaped (Fig. 5.4(a))

convolution kernel to extract vertical contexts. To explore the context informa-

tion in multiple spatial ranges, we use several dilated convolutions to implement

the convolution kernels which applied to the original spatial area, and to wider

spatial ranges. The dilation rates d are set to d = 1, d = 2 and d = 4. The

horizontal context is extracted in a similar way, but the kernels are applied in a

horizontal direction (Fig. 5.4(b)). We believe that these bar-shaped convolution

kernels are essential for adjusting the location of the originally proposed areas

because features of a single direction (vertical or horizontal) can be concentrated.

In addition to the bar kernels, there is a third kernel, which is used to explore

the pattern of the surrounding areas of the candidate as Fig. 5.4(c) shows. Con-

texts lie in rectangular areas can be captured to facilitate judging the shape of

interested objects.

5.2.2.2 Iterative proposal adapting

In addition to using context to adjust proposal states, the adjusted proposals can

be further refined to have improved coverage about objects. Similar to humans,

we adopt the use of iterative adaptation procedure to refine proposals step by

step. However, the difficulty of employing iterative processing module for CNNs

is that existing neural networks are generally defined by directed acyclic graphs,
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Figure 5.4: Explore the context in multiple spatial ranges. Three kinds of kernels
are utilized here. The bar-shaped convolution kernels in (a) and (b) are designed
to extract vertical patterns and horizontal patterns separately. The area kernel
in (c) is used to explore the pattern of surrounding areas. Besides, to analyze the
context information in multiple spatial ranges, the Atrous convolution is applied
on these kernels.

Figure 5.5: Focus proposal net. With the iterative self-adapting block, the trans-
formation parameters predicted at step k will be combined with parameters ob-
tained at step k − 1 which helps the proposal to gradually focus on the target.

meaning that we are not able to directly use processing loops to implement it-

erative adaptation. As a result, we propose to achieve the iterative operations

by employing the Iterative Self-adapting block which has a cascaded structure as

illustrated in Fig. 5.5.

In specific, we predict the transformation parameters in each processing step

of the cascade. The transformation parameters predicted at step k will be com-
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bined with parameters obtained at step k − 1. Following this pattern, the final

transformation parameters can be predicted by fusing the outputs of all the pre-

vious processing steps in the cascade in an iterative manner. In this section, we

make the network produce the transformation parameters for both location and

shape adjustment. Suppose we have context feature representation, g(bk), for

bounding box bk at k-th step. Then the proposed FoPN learns to predict δ(bk)

directly from g(bk). SmoothL1 [133] is used to optimize the weight parameters

for the mapping from g(bk) to δ(bk). According to Eq. 5.2, the fusing operation

on results from different steps is implemented by the addition operation. It is

worth noting that we can re-use the kernels that consider surrounding context to

produce transformation parameters in the cascade.

5.2.2.3 Object detector

The FoPN can be easily embedded into prevailing the detection framework to form

an advanced version of the detector. The working flow of the advanced object

detector is as Fig. 5.6 shows. It takes gray or colour image as the input, and

uses a base network to generate feature maps which preserved key information of

the target object. Then the proposed FoPN processes with the feature map, and

generate refined proposes. These proposals are sent to the detection part (e.g.,

Fast R-CNN), and output the detection result which contains a label marked the

category of the target and a bounding box specified the location and shape of the

target.

5.3 Experiments

In this section, we empirically evaluate the proposed TRM, as well as the pro-

posal generators, detector and tracker which integrate our transformation models.

The experiments are conducted on proposals generated by hand-crafted features

and CNN based features. We first examine how the transformation model af-

fects the distribution of the object proposals. Then we show that the effects

of our approach on object proposals of individual images can generalize to bet-

ter object proposals on a large real-life image data set, the Pascal VOC 2007
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Figure 5.6: The working flow of object detector with FoPN. The detector takes
an image as the input and uses a base network to generate feature maps which
preserved key information of the target object. Then the proposed FoPN pro-
cesses with the feature map, and generate refined proposals. These proposals are
sent to the detection part (Fast R-CNN), and output the detection result.

set [46]. Besides, the improvement in the performance of a state-of-art object

detector, with the embedded transformation model, has also been proved by the

results. Finally, the boosted performances of visual tracker that equipped with

the proposed transformation model are presented and analysed in this part.

The source code of this work will be accessible to on1. Please refer to our

project page to see all the experiment results2.

5.3.1 Compared With Traditional Proposal Methods

For constructing the TRM, the training samples and labels are generated from

the training set of the VOC 2007 dataset. Since the ground truth objects have

been specified with bounding boxes on each of the training images, our training

samples can be obtained by simply adding random location displacements and

dimension changes to these boxes. Then, the offsets regarding the ground truth

are calculated to generate the training labels. The additional running time of

using TRM is depended on the number of candidate object proposals of each

frame. In our experiment conducted on the VOC 2007 test set, the average

1https://github.com/ZijingChen/focuson/
2https://sites.google.com/site/focusproposal2017/
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processing time of our model for one proposal is 1.1ms on 2.3GHZ E5-2650 CPU

without any parallel running tricks.

To judge the improvement of the quality of object proposals based on hand

crafted features, we utilize the overlap score taken from [47] to measure the area

of the intersection between a proposal p and a ground truth annotation g divided

by its union:

Overlap(p,g) =
A(p

⋂
g)

A(p
⋃

g)
(5.15)

5.3.1.1 Improvement on proposal population

First of all, how the TRM works on a population of object proposals regarding

a variety of real-life images is discussed in details. The beneficial effects are

demonstrated by both visual inspection and will be later verified by the statistical

investigation.

The effects of the translation and deformation models on real-life images are

illustrated in Fig. 5.7. For each test image, six sub-figures arranged in three

columns are illustrated and compared to show the performance. From left to

right, the three columns correspond to the performance of three stages. They are

random boxes as initial proposals, adjusted proposals after applying the trans-

formation model, and further refined proposals with the help of the deformation

model. The real-life images in the first row show the 5 top-ranked proposals out

of all proposals in each stage. The ranking is according to the scores computed as

in [2]. Take the sheep image on the top-left as an example. Due to the small set of

proposals (tens as opposed to ∼ 105 commonly used in object proposal schemes),

the five selected proposals are only roughly related to the subject. In addition,

the proposals at the second stage are now better aligned with the subject than the

original 5. Finally, the proposals adjusted by the deformation model at the third

stage are clearly improved when compared to the performance of the counter part

in the initial stage. The three sub-figures in the second row show the degree of

coverage by the entire set of proposals. In these images, the more frequently a

pixel is covered by proposals, the brighter red it is. Obviously, the red area in

the second stage is dispersive while the red area in the third stage is centralized.

This phenomenon proves that, with translation and deformation progress, most
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of the proposals can move toward objects and achieve better alignments. TRM

also works well with images that contain multiple objects. The performance can

be illustrated by the image depicting two dogs running in the snow, or the image

where a man is petting a dog. However, there are also situations that our model

may be failed as the Fig. 5.8 shows. The man driving the car is missed because

his size is too small compared to the car; two cats are identified as one object

because one of them is severely occluded by the other.

5.3.1.2 Improvement on data set

To further validate the efficacy of our model on diversified images, we present

several quantitative experiments based on the popular Pascal VOC benchmark.

We mainly use the VOC 2007 test set for evaluation.

As mentioned previously, our framework should be able to improve any exist-

ing proposal generators with substantial boost for the quality of the proposals.

To demonstrate this flexibility, we first apply our method to randomly generated

proposals. If our method works well with random proposals, it can also im-

prove other proposal generation methods because the generated proposals share

the same form (i.e. coordinates for the top-left and bottom-right corner). More

specifically, we generate random proposals on each image in the test set and then

perform TRM on them. As a result, the horizontal and vertical translation and

the deformation are subsequently performed on the proposals. The overlap scores

between ground truth annotations and the proposals are calculated with Eq. 5.15,

and the accumulative numbers of proposals whose overlaps lie in different ranges

are presented in Fig. 5.9. The random proposals that only cover background

areas are ignored in this sector because our model targets on partially aligned

proposals. According to the statistical results presented in the figure, it can be

found that the translation model and the deformation model reduce the number

of proposals whose overlaps with the ground truth are lower than 0.2 and enlarge

the number of proposals whose overlaps are higher than 0.3. This proves that

our model can promisingly improve the alignment of original proposals.

Next, we present several experiments which illustrate how our transforma-

tion models improves the performance of proposals provided by popular proposal
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Figure 5.7: Effect of TRM on object coverage by object proposals: visual assess-
ments. Each test image is illustrated with six sub-figures that arranged in three
columns and corresponds to 3 stages (from left to right) separately. They are
random boxes as initial proposals, adjusted proposals after applying the trans-
formation model, and further refined proposals with the deformation model. The
real-life images in the first row show the 5 top-ranked proposals out of all propos-
als in each stage. The second row shows the degree of coverage by the entire set of
proposals in the corresponding stage, where brighter colours are for higher levels
of coverage, i.e. when a pixel is included in more windows within the proposal
set, its colour will be brighter.
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Figure 5.8: Effect of TRM on object coverage by object proposals with failure
cases. The man driving the car is missed because his size is too small compared
to the car; two cats are identified as one object because one of them is severely
occluded by the other.
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Figure 5.9: Statistical analysis of object coverage by proposals with TRM. The
figure shows the statistical analysis of overlap variations of random proposals
(blue), translated proposals (green) and deformed proposals (red). By comparing
the hists, it is obvious that TRM increase the number of proposals with high
overlaps and reduce the number of proposals with low overlaps.
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generators including Rahtu [132], Edge Boxes [200], Selective Search [157] and

Objectness [2]. The codes of Rahtu and Edge Boxes are set with default parame-

ters, and a few thousands of proposals can be obtained with these methods. For

Selective Search, we choose one set of parameters to control the number of pro-

posals at a similar level with Rahtu and Edge Boxes. In addition, for Objectness

which generates ∼ 105 ranked proposals per image, we only select 1000 proposals

with highest scores to achieve higher efficiency and also maintain a similar num-

ber of proposals used for evaluation. In the following parts, these proposals are

regarded as original proposals and we perform the TRM on them.

In the second experiment, we compare the mean overlaps between original

proposals and transformed ones. The overlap scores between original proposals

and ground truth annotations are ranked in descending order and saved in set

O. Similarly, the overlap scores of transformed proposals are saved in set T.

Afterwards, the mean value of K highest overlap scores in set O and set T are cal-

culated. In this sector, K is increased from 10 to 1000 with a step of 5 to illustrate

how our model improves the performance of original proposal generators under

different proposal quantity requirements. As Fig. 5.10 shows, when compared to

above four proposal generators, the mean overlap scores of transformed proposals

(dashed lines) are consistently higher than the original ones (solid lines). Con-

sequently, the introduction of the transformation model has been demonstrated

to be beneficial for improving the mean overlap scores of the original proposals,

which also means that the transformed proposals are more likely to cover objects

in diversified scenes in different images.

The third trial compares the mean overlaps and the required number of pro-

posals, when these proposals are produced by original methods and methods

boosted by TRM separately, to evaluate the efficiency of TRM. Commonly,

the performance of a proposal-generating scheme can be better if more candi-

date proposals are generated. Using our framework, the number of proposals to

achieve roughly the same level of performance should be less than that of original

proposal-generating systems. In this trial, we record and plot the mean overlap

of the best 100 proposals in Fig. 5.11 as the number of proposals generated by

original and transformed schemes grow. Based on the results, it can be found

that much fewer proposals are required to achieve similar mean overlap of best
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Figure 5.10: Improvements on mean overlap scores (w.r.t. ground truth) when
applying TRM on popular object proposal algorithms. The means of K highest
overlap scores achieved by original proposals and corresponding transformed pro-
posals are respectively plotted by solid and dashed lines when K varies from 10
to 1000. For each tested proposal generator, it has been shown that the dashed
line is always above the solid line, which proves that better coverages on objects
can be obtained if proposals are refined by TRM.
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Figure 5.11: Comparison between mean overlaps and a required number of pro-
posals. The transformed proposals (in dashed lines) could achieve the same over-
lap scores with less number of proposals.

100 proposals by using our transformation model. As an example, the original

Edge Box method needs approximately 600 ∼ 1000 proposals to make the mean

overlap of its best 100 proposals achieve the level of 0.45, while the transformed

Edge Box method only needs 480 ∼ 650 proposal to obtain a similar level of

overlap.

In another point of view, the fourth trial compares the numbers of required

proposals to achieve similar performance for each evaluated method. In general,

the performance of top K windows would be better if more candidate proposals

are generated. Under this situation, by introducing transformation models, the

number of proposals to achieve roughly the same level of performance is supposed

to be much smaller than original schemes. Fig. 5.12 shows the comparisons in the

numbers of proposals to achieve similar performance for using original proposals

and transformed ones. The boxes in the same column share a similar range of

mean overlap of top 100 proposals. Refined proposals sourced from different

proposal generators are coloured by different colours. Based on the illustrated

results, it has shown that our method requires much fewer proposals to achieve a

similar mean overlap score for the top 100 proposals. In particular, in the third
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Figure 5.12: This box plot shows the comparisons in the numbers of proposals
to achieve similar performance for using original proposals and transformed ones.
The boxes in the same column share a similar range of mean overlap of top
100 proposals. Refined proposals sourced from different proposal generators are
coloured differently. For Selective Search, to achieve the similar mean overlap
score of top 100 windows when 400 ∼ 600 original proposals are generated in total
(as the yellow area marks), only 180 ∼ 250 transformed proposals (marked by
the blur bar) are required for using TRM to improve the proposals. Thus a fewer
number of transformed proposals is required to achieve the similar performance.

column, to achieve the similar mean overlap score of top 100 proposals when

800 ∼ 1000 original proposals are generated in total by Edge Boxes (as the yellow

area marks), only 550 ∼ 600 transformed proposals (marked by the magenta bar)

are required for using TRM to improve the proposals. As a consequence of the

above two experiments, our framework is able to provide high-quality proposals

based on fewer total generated proposals and thus can boost the efficiency of

original proposal generators.
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5.3.2 Compared With Regional Proposal Network

TRM with CNN feature is also trained and test on the VOC 2007 dataset. The

generation of training samples is as follows: a set of pre-defined boxes are first

generated on the whole image. Then the pre-defined box which has a high IoU

value with the ground truth object is regarded as a positive sample. Only positive

samples are used for training the TRM, and the regression labels are obtained

based on the offsets in [x, y, w, h] regarding the most related ground truth box.

Concerning the running time, our approach is end to end and can produce refined

proposals simultaneously for an image. If 100 proposals are refined on the image,

the extra time for processing this image is 1ms and the extra space for parameters

is 3MB.

The performance of the TRM based on CNN features is compared with the

regional proposal network (RPN) which is widely used for generating proposals.

Using a set of pre-defined boxes (known as anchors), RPN predicts which box at

each image location may contain an object and then decides how to adjust the

predicted box to better cover the object. However, RPN is only implemented

by a single convolution operation using the 3x3 kernel. We argue that this is

not appropriate to handle anchors with different scales and aspect ratios because

the receptive field of the network is too limited. In this section, we can prove

the effectiveness of the proposed transformation module to tackle the mentioned

issue of RPN based on improvements over proposal recall rates and final detection

performance. All the following experiments are conducted based on the VGG

network.

5.3.2.1 Improvement On Proposals

For a qualitative comparison, results are shown in Fig. 5.13. The top 3 proposals

from TRM are shown with red boxes while the top 3 of RPN are illustrated

with dashed blue boxes (Boxes are judged and ranked as in Fast RCNN [54]).

Generally, the results given by TRM is more precise and compact. TRM works

well with a cluttered background as the 4th row shows or with small objects as

listed in the 5th row. In addition, our model performs well on a variety of object

categories, including different animals, transportations, and indoor objects, which
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have irregular contour, along with huge shape and appearance variations. Besides,

the proposed method can handle objects with diverse pose towards the camera.

For example, no matter the dog is front to or side to the camera, it can be

precisely covered by the top proposals. Failure cases include the cat which is

heavily occluded by a desk as the bottom-left image shows, or meaningless area

found by the small box in the bottom-right image.

For quantitative comparisons, we evaluate the recall rates of the proposals

generated by RPN and the proposed method. Fig. 5.14 shows the experimental

results on the VOC 2007 test set. From the figure, we can find that the proposed

transformation module effectively increases the recall rates using the same number

of generated proposals. Comparing among the sub-figures, it is obvious that our

method keeps advantages in the recall rate regardless of the number of proposals.

Such advantage is distinct when the number of proposals is small. For example, in

Fig. 5.14(a), proposals obtained by the proposed method is able to provide around

20% improvement over the recall rate of RPN. Since higher recall rates mean that

more proposals can cover the ground-truth data, our method is demonstrated to

have the ability to produce higher quality proposals.

5.3.2.2 Improvement On Detection

In addition to the recall rates of the proposals, we also evaluate detection perfor-

mance using the proposals generated by RPN and the proposed method. Table 5.1

shows the statistics about the detection score on VOC 2007 test set. Given differ-

ent numbers of proposals, the evaluated performance illustrates that our method

can help the detector achieve better detection score. In specific, our model pro-

vides significant improvement for detecting difficult objects such as “boat” and

“bottle” that may be extremely slim. Moreover, the overall detection score can

also be improved by our method, indicating that the proposal generated by the

proposed method is more advantageous for the object detection task. Particu-

larly, when the number of used proposals is extremely small, our method shows

great strength in facilitating object detectors to achieve high detection rates. As

shown in Table 5.1, if the number of proposals is 50, the mean average precision

of our method is 66.2 while the RPN is 63. When the number reduced to 10, our
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Figure 5.13: Performance comparison between the proposed FoPN and RPN. The
red bounding boxes are results of the proposed method while the blue dashed
bounding boxes are from RPN.
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Figure 5.14: The recall rates of the proposed proposal generation method (TRM)
compared to the Region Proposal Network (RPN) [133]. The recall rates of the
compared methods are evaluated with top 10, 50 and 100 proposals.

Method
Num
Prop

aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

RPN 10 53.6 54.0 43.9 39.3 24.8 60.8 54.4 62.9 24.0 61.3 51.1 62.2 72.1 51.7 53.0 22.8 52.0 47.3 62.9 35.0 49.5
TRM 10 61.4 54.1 59.6 44.4 33.7 61.6 63.1 79.0 32.3 68.4 40.4 70.4 72.1 60.0 61.6 29.9 60.0 53.8 69.7 52.5 56.4

RPN 50 62.3 71.1 61.3 51.0 44.9 69.5 71.9 79.5 38.8 69.2 59.0 77.9 79.9 69.7 69.4 32.8 60.5 55.8 77.6 57.9 63.0
TRM 50 68.7 70.8 67.4 51.8 47.2 76.7 79.3 79.5 44.3 75.1 61.4 77.2 80.1 69.4 70.0 32.7 67.6 61.3 76.7 66.4 66.2

RPN 90 69.4 71.3 69.1 51.1 45.5 70.2 79.5 80.2 44.8 75.6 64.5 78.2 80.4 70.0 69.5 36.5 67.4 61.6 77.8 62.6 66.3
TRM 90 67.7 76.5 67.0 55.4 50.3 77.1 79.9 85.2 48.9 75.1 63.0 77.2 80.4 69.1 76.1 36.7 67.6 60.9 77.2 70.4 68.1

Table 5.1: Detection score for using different numbers of proposals generated by
RPN and the proposed method. The detection is performed using the Fast RCNN
method. Best scores for each category and final performance are illustrated in
bold.

method has higher precision than RPN on almost all the sub-sequences.

5.3.3 Improvement On Tracking

Apart from improvements on detection, we evaluate the tracking-by-detection

performance using the proposals generated by RPN and the proposed method.

The test sets come from the Visual Tracker Benchmark1, which include almost

all the challenges and corruptions for the trackers in the benchmark. In specific,

these challenges are marked by the benchmark as follows: The Jogging sequence

contains multiple targets, where a tracker can be attracted by other targets and

1http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
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cause drifting. Other challenging aspects in this sequence include occlusion, non-

rigid object deformation and out-of-plane rotation that the target rotates out of

the image plane. The challenging aspects in the CarScale sequence include scale

variation, occlusion, fast motion, in-plane rotation that the target rotates in

the image plane and out-of-plane rotation. The Couple sequence contains scale

variation, non-rigid object deformation, fast motion, out-of-plane rotation and

background clutters. The Human2 sequence is suffered by illumination variation,

scale variation, motion blur and out-of-plane rotation.

A powerful tracker called MDNet, which is the champion of Visual Object

Tracking Challenge, is chosen as the baseline tracker in the experiment. In this

algorithm, the online tracking is performed by evaluating the candidate windows

randomly sampled around the previous target state. To evaluate the performance

of our model, we replace the randomly generated windows with proposals out-

put by the proposed TRM model to construct an enhanced tracker called TRM

Tracker (TRMT). To further outstand the contribution of TRM, we also compare

the tracking performance with RPN tracker, where the MDNet is refined by the

Regional Proposal Network (RPN). RPN is a CNN based method that predicts

which box at each image location may contain an object and then decides how

to adjust the predicted box to better cover the object. The number of proposals

of each test method is equal, which is about tens of windows. Both qualitative

comparisons and quantitatively comparisons are presented in this part.

Firstly, the qualitative comparison, i.e., the visualized results on each test

sequence, are shown by selected frames in each test sequences. For each sub-

figure, the frame number is denoted at the top-left corner, and the results from a

mix of methods are marked by bounding boxes in various colours. The tracking

results of the baseline are marked in black. The result of RPN tracker is marked in

blue and the result of our method is marked by red. Fig. 5.15 illustrates the result

on the CarScale sequence. The first row shows that the result of the baseline and

RPN is not accurate, especially in size and dimension. When occlusion appears,

as frame 161 in the second-row shows, the bounding box of our method tightly

covers the target while other results are not accurate. When in-plane rotation

happens, as the third-row shows, the appearance of the target greatly changed.

But our tracker can still track the car accurately. Fig. 5.16 shows a couple walks
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across the street. In this test set, the camera moves when recording the video. In

addition, the background contains different kinds of objects which may distract

the tracker. As shown in the frame 73 and 79 listed in the second row, although

the RPN tracker is drifted to the car besides the couple, our tracker keeps on the

target and our tracking results are more stable than others. In Fig. 5.17, trackers

can be distracted by a similar object, the woman in white shorts, especially when

occlusion appears in frame 82. In addition, the baseline tracker loses the target

in frame 305, but our tracker performs robustly in this sequence. The Human2

sequence is challenging since the target suffers severe illumination change and

present huge posture change, like squat down and jump. Fig. 5.18 shows that

our method is robust against occlusion, as shown in frame 248, 348, and 640. It

is also robust against appearance change. No matter the human is in front of,

side of, or back to the camera, our tracker catches him.

Figure 5.15: The tracking result on CarScale. The results of the baseline method
are marked in black. The results of RPN are in blue and ours TRMT are in red
(best viewed in colour).

Secondly, the statistical comparisons among the baseline, RPN, and the pro-

posed method are provided. The overlap score on test sequences are shown by

Figure 5.19, 5.20, 5.21 and 5.22. In these figures, the results of baseline, RPN,

and ours are marked in black, blue and red correspondingly. There are six plots

in each figure. Three of them are in light colour. These light plots present the

overlap score between outputs and the ground truth of each frame. The smoothed

overlap score is shown by the plots in a darker colour. In the CarScale sequence,

the baseline failed (the overlap rate is smaller than 0.5) after frame 100, but RPN

and ours successfully track the target from the beginning to the end. The overlap
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Figure 5.16: The tracking result on Couple. The results of the baseline method
are marked in black. The results of RPN are in blue and ours TRMT are in red
(best viewed in colour).

Sequence CarScale Jogging Couple Human2 Average
Baseline 0.4015 0.2553 0.4345 0.3028 0.3485
RPN 0.6291 0.3590 0.5151 0.5585 0.5154

Ours (TRMT) 0.7849 0.6343 0.6582 0.5981 0.6689

Table 5.2: Mean overlap rate. Best scores are illustrated in bold.

rate of our method is higher than RPN. In the Couple sequence, the performance

of baseline tracker and RPN tracker is similar while ours are better than them. In

the Human2 sequence, the overlap rate various during time with the appearance

suffers a variety of challenges. On average, our method outperforms RPN, and is

much better than the baseline. In addition, on the Jogging set, our performance

is still better than the others.

Thirdly, the mean overlap rate on the whole sequence is shown by the table

5.2. The proposed method has the highest mean overlap rate on all the test

sequences, which proves that our tracker performs better than the others.

Finally, the speed of these methods is discussed in table 5.3. It shows the

number of frames processed by each method in one second. Compared with the

baseline tracker, although our tracker introduced additional processing scheme
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Figure 5.17: The tracking result on Jogging. The results of the baseline method
are marked in black. The results of RPN are in blue and ours TRMT are in red
(best viewed in colour).

Sequence CarScale Jogging Couple Human2 Average
Baseline 1.3415 6.2583 5.0268 1.3415 3.4920
RPN 2.3544 3.6229 5.4716 2.3544 3.4508

Ours (TRMT) 2.1833 4.1047 5.3632 2.1833 3.4586

Table 5.3: Mean frame rate per second.

on random windows to improve the quality of candidate windows, the running

speed is at a similar level with the baseline tracker.

5.4 Conclusion

In this thesis, we present the TRM model which improves the quality of object

candidate windows for visual trackers using the tracking-by-detection strategy.

By analysing the context, the TRM adjusts the location and shape of the pro-

posal to gradually focus the proposal on the target area. The model is orthogonal

to existing proposal-generating schemes and can be applied to proposals gener-

ated with hand-crafted features or CNN features. The adjustments are efficient
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Figure 5.18: The tracking result on Human2. The results of the baseline method
are marked in black. The results of RPN are in blue and ours TRMT are in red
(best viewed in colour).

Figure 5.19: The overlap rate on CarScale.
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Figure 5.20: The overlap rate on Couple.

Figure 5.21: The overlap rate on Human2.
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Figure 5.22: The overlap rate on Jogging.

to compute and effective. Our experiments show that, compared with the original

proposals generated by existing proposal generators, the transformed proposals

can reach improved coverage with objects or maintain the performance of the

original proposals with fewer numbers of them. In addition, the model can be

easily embedded into an existing object detection or tracking framework to boost

the performance of the detector or tracker. In the future, our method can be used

to improve the performance of other visual applications, such as image segmen-

tation, multi-object tracking [66], as well as other image processing techniques.
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Algorithm 2 Deformation Algorithm

Input: Proposal window b, MaxRound, MaxStep
Output: New proposal window b′

1: for k in {1, · · · , MaxRound} do
2: for direction in {horizontal, vertical} do
3: bsh ← shrink bk−1 in direction by Δ
4: bst ← stretch bk−1 in direction by Δ
5: if C(bsh) > C(bk−1) + λ then
6: operation← shrink
7: s1 := C(bsh)
8: bnew := bsh

9: else if C(bst) > C(bk−1) + λ then
10: operation← stretch
11: s1 := C(bst)
12: bnew := bst

13: else
14: bnew := bk−1

15: end if
16: step := 0
17: repeat
18: step := step+ 1
19: s0 := s1
20: bnew ← operation(bnew)
21: s1 := C(bnew)
22: until s1 < s0 + λ or step ≥ MaxStep
23: bk := bnew

24: end for
25: end for
26: b′ := bMaxRound
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Chapter 6

Conclusions

Over the past decades, visual object tracking has long been an important com-

puter vision task for researchers. Although various methods have been proposed

and promising progress has been made, it is still challenging for researchers to

build a robust and efficient tracking model due to various challenging issues, in-

cluding occlusion, deformation, shape variation, scale change, background clutter,

and so on. By addressing these issues, this thesis aims to incorporate visual con-

texts to achieve robust visual tracking. Considering contexts in a visual process-

ing system is natural and reasonable. Evidence from both the neurophysiological

and statistical properties of perceiving typical natural scenes in the human brain

supports the view that humans utilize the spatial and temporal context when

recognizing objects. Accordingly, it could be advantageous to utilise visual con-

texts in the visual tracking process. On the one hand, spatial context can provide

complementary visual cues when tracking an object. For example, if the target is

occluded by other objects, spatial context can enable a tracker to infer about the

actual state of this target without accessing its complete appearance. This can

further reduce the risk of losing the target in the following frames. On the other

hand, temporal context can provide strong clues about where an object should

be in each new frame. Different from other computer vision tasks such as generic

object detection and semantic segmentation that make predictions on still im-

ages, objects in a video present slight appearance changes in consecutive frames,

thus the information from previous frames could be helpful to identify the state

of the target in the current frame. In particular, by incorporating the spatial and
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temporal context, this thesis designs three robust visual tracking algorithms to

tackle the tracking problem. The proposed tracking algorithms include a tracker

called MMST that is robust against occlusion, a Bi-channel FCN tracker special-

ized at tackling shape variation, and a tracker providing candidate windows that

better cover the target.

In MMST (Chapter 3), a robust and efficient visual object tracking method

has been developed based on an improved subspace learning-based appearance

model. In this appearance model, we introduce the novel mask templates that

contain the temporal context, greatly reducing the complexity of the system.

For the proposed model, we provide a theoretical guarantee of the efficiency of

the solution. Our method is also characterized by its exploitation of the tempo-

ral context, called ‘dynamic information’ of the tracking target in the study, in

nearby frames. The temporal context can significantly improve the tracking ac-

curacy and coverage of the target. Extensive experiments validated the efficiency

and robustness of our method, especially in situations with frequent and obvi-

ous large-scale corruptions, such as occlusions and illumination variations. Our

MMST model could also be extended to multi-object tracking tasks to enhance

the association approaches when estimating the states of a mix of objects.

Based on Bi-channel FCN, we present FCN2 (Chapter 4) for visual object

tracking that 1) produces finer tracking results at the pixel level, and 2) works for

the generic object without fitting the network to the appearance of any specific

object class which needs a large scale of training data. The proposed bi-channel

FCN progressively incorporates spatial context information of a higher level into

features at a lower level. Furthermore, the proposed model can also extract the

temporal context from the previous frame. In general, the introduced contexts

work together with optical flow information to produce a robust tracking result.

The experiment results demonstrate that the proposed algorithm achieves supe-

rior tracking performance, especially in tackling challenges with in-plane rotation

and deformation.

Using the tracking-by-detection strategy, we also proposed a tracker called

TRMT (Chapter 5). In the proposed tracker, a novel transformation model that

can help the target-specific online detector better focus on the target is designed

to help the candidate windows cover the target more precisely. By analysing the
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spatial context around candidate windows, both the location and dimension of

each window are refined in an iterative manner. In particular, the proposed TRM

model is flexible. It can be combined with methods using hand-crafted features

and methods using CNN features. Empirical results prove that the time cost of

the proposed TRM model is negligible, while the performance of the enhanced

tracker can be boosted. TRMT is robust against object appearance variation and

can avoid drifting due to the presence of similar objects.

In the future, the spatial context will be investigated in a long-short range

manner to build a robust tracker that can provide pixel-level tracking results.

The spatial contexts in both nearby small areas and distanced image patches are

stored in a unified form. In this way, a tracker can better separate the target

from its surroundings. In addition, extensions of the deep neural network-based

tracking algorithms that can encode the multi-view feature to facilitate tracking

will be explored.
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[116] A. Milan, L. Leal-Taixé, K. Schindler, and I. Reid, “Joint tracking and

segmentation of multiple targets,” in Proceedings of the IEEE Conference

118



REFERENCES

on Computer Vision and Pattern Recognition. IEEE, 2015, pp. 5397–5406.

1

[117] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual attention,”

in Advances in Neural Information Processing Systems, 2014, pp. 2204–

2212. 27

[118] M. Mueller, N. Smith, and B. Ghanem, “Context-aware correlation filter

tracking,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 1396–1404. 18

[119] S. A. Mulay, P. Devale, and G. Garje, “Intrusion detection system using

support vector machine and decision tree,” International Journal of Com-

puter Applications, vol. 3, no. 3, pp. 40–43, 2010. 25

[120] H. Nam and B. Han, “Learning multi-domain convolutional neural networks

for visual tracking,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 4293–4302. 22

[121] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes,” in Advances in Neural

Information Processing Systems. MIT Press, 2002, pp. 841–848. 11

[122] J. Ning, J. Yang, S. Jiang, L. Zhang, and M.-H. Yang, “Object tracking

via dual linear structured svm and explicit feature map,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016, pp.

4266–4274. 17

[123] B. A. Olshausen, C. H. Anderson, and D. C. Van Essen, “A neurobiological

model of visual attention and invariant pattern recognition based on dy-

namic routing of information,” The Journal of Neuroscience, vol. 13, no. 11,

pp. 4700–4719, 1993. 27

[124] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless tracking,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, 2012, pp. 1940–1947. 39

119



REFERENCES

[125] D. Pathak, R. Girshick, P. Dollar, T. Darrell, and B. Hariharan, “Learning

features by watching objects move,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, vol. 2, 2017. 27

[126] R. Patnaik and D. Casasent, “Fast fft-based distortion-invariant kernel fil-

ters for general object recognition,” in IS&T/SPIE Electronic Imaging. In-

ternational Society for Optics and Photonics, 2009, pp. 725 202–725 202. 17

[127] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and A. Sorkine-Hornung,

“Learning video object segmentation from static images,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

20, 27

[128] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and

A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology

for video object segmentation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 724–732. 3, 60, 61
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