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Abstract

Visual analysis is an attractive research topic in the field of computer vision. In the
visual analysis, there are two critical directions, visual retrieval and visual classification.
In recent years, visual retrieval has been investigated and developed in many real-
world applications, for instance, in person re-identification. On the other hand, visual
classification is also widely studied, such as in image classification. Typical visual
analysis methods are supervised learning algorithms. In such algorithms, extensive
labeled data is demanded for training supervised models in order to achieve acceptable
performance. However, it is difficult to collect and generate annotated data in the real
world due to the limited resources, such as human labor for annotation. Therefore,
it is urgent to develop methods to complete the visual analysis mission with limited
supervision.

In this thesis, we propose to address the visual analysis problem with limited
supervision. Specifically, we treat limited supervision problem in three scenarios
according to the amount of labeled data. In the first scenario, no labeled data are
provided and only limited human labor for annotation is available; In the second
scenario, scarce labeled data and abundant unlabeled data are accessible. In the third
scenario, only few instances in the target dataset are labeled and there are multiple
sources of labeled data from different domains.

In Chapter 2 and Chapter 3, we discuss the first scenario, when no labeled data are
provided, and only limited human labor for annotation is available. We propose to solve
the problem via active learning. Unlike conventional active learning, which usually
starts with a set of labeled data as the reference, in this thesis, we adopt the active
learning algorithm with no pre-given labeled data. We refer these algorithms as the
Early Active Learning. In this thesis, first, we attempt to select the most contributive
instances for annotation and later being utilized for training supervised models. We
demonstrate that even by annotating a few selected instances, the proposed method
can achieve comparable performance in the visual retrieval. Second, we further extend
the instance based active learning to pair-based early active learning. Other than



x

select instances for annotation, the pair-based early active learning selects the most
informative pairs for annotation, which is essential in the visual retrieval.

In Chapter 4, in the second scenario, we address the visual retrieval problem when
there are scarce labeled data and abundant unlabeled data. In this thesis, we propose to
utilize both the labeled and the unlabeled data in a semi-supervised attribute learning
schema. The proposed method could jointly learn the latent attributes with appropriate
dimensions and estimate the pairwise probability of the data simultaneously.

In Chapter 5 and Chapter 6, in the third scenario, we focus on visual classification
with few or no labels, but there are pre-known labeled data from other domains. To
improve the performance in the target domain, we adopt transfer learning algorithms
to transfer helpful knowledge from the pre-known (source) domain with labeled data.
First, in Chapter 5, the few-shot visual classification problem is considered. We have
access to multiple source datasets with well-labeled data but can only access a limited
set of labeled data in the target dataset. An Analogical Transfer Learning schema
is proposed for this problem. It attempts to transfer the knowledge from the source
domains to enhance the performance of the target domain models. In the algorithm,
an analogy-revision schema is designed to select only the helpful source instances to
enhance the target domain models. Second, in Chapter 6, we challenge a more difficult
problem when there is no labeled data in the target domain in the visual retrieval
problem. A Domain-aware Unsupervised Cross-dataset Transfer Learning algorithm is
proposed to address this problem. The importance of universal and domain-unique
appearances are valued simultaneously and jointly contribute to the representation
learning. It manages to leverage the common and domain-unique representations across
datasets in the unsupervised visual retrieval.
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Chapter 1

Introduction

1.1 Background

1.1.1 Video Analysis

Visual analysis is an attractive research topic in the field of computer vision. In
recent years, visual analysis has been investigated and developed in many real-world
applications. There are two impotent topics in the field of visual analysis, which are
visual retrieval and visual classification.

Visual retrieval gains much attention surveillance computer vision, for instance,
in person re-identification (Re-ID ) [138]. In model Re-ID methods, such as in [48–
50, 79, 138], Re-ID can be formed as an image retrieval task. Given a probe image of a
person from one camera view, the difficulty is to identify images of the same person
from a gallery of images taken by other non-overlapping camera views. Meanwhile, in
recent researches [94, 102, 112, 119] visual classification is also studied widely on, e.g.
image classification [109].

Supervised visual analysis methods can achieve promising results if there are
sufficient labeled training data. In such algorithms, extensive labeled data is demanded
when training supervised models in order to achieve acceptable performance. However,
it is difficult to collect and generate annotated data in the real world due to the
limitation of resources, such as human labor for annotation. Unfortunately, the human
labor for labeling training data is sometimes inadequate in the real world. For instance,
for visual retrieval, annotation of data becomes extremely severe in the Re-ID scenario,
since annotation for pairwise labels is difficult to achieve. Re-ID data requires all pairs
of images to be labeled. It is a tough task even for humans to compare and sort the
images from a potentially massive number of imposters [49, 89].
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1.1.2 Learning with Limited Supervision

It is essential to design effective algorithmS to complete the visual analysis mission
with limited supervision. We consider three scenarios according to the amount of
labeled data. In the first scenario, no labeled data are provided and only limited
human labor for annotation is available; In the second scenario, scarce labeled data
and abundant unlabeled data are accessible. In the third scenario, only few instances
in the target dataset are labeled and there are multiple sources of labeled data from
different domains.

The scenario is usually in the early stage of the experiments when there are no
labeled data and only limited human annotators. In this scenario, we challenge the
visual analysis problem when no labeled data are provided and only a limited human
labor for annotation is available. We propose to solve the problem via active learning.
These kinds of active learning algorithms are referred to as early active learning or early
stage experimental design [85]. It attempts to select the most contributive instances
for annotation and later being utilized for training supervised models. Compared to
conventional active learning, early active learning claims it is developed for the early
stage of experiments when there is no labeled data. We demonstrate that even annotate
a few selected instances, the proposed method can achieve comparable performance. We
develop an instance based early active learning and a pair-based early active learning
for visual retrieval.

The second scenario is usually in the middle stage of the experiments when there
are a number of labeled data (usually very few) and abundant unlabeled data, which
is referred to as semi-supervised learning. The main challenge in this scenario is to
utilize both the labeled and unlabeled data jointly to improve learning performance.
To solve the visual retrieval problem, we proposed a Bayesian framework combine an
Indian buffet process (IBP) [27] prior in an infinite latent factor model that enables
adaptively learning attributes [6]. Additionally, we also define a probability for relation
learning which utilizes both the labeled and unlabeled data.

The third scenario is usually in the late stage of the experiments when there are
already multiple source domains with sufficient pre-known instances, and there is a new
coming (target) domain with only a few instances known. The main difficulty of few-
shot learning is how to optimize the target model when there come new classes of data,
and only a few labeled training instances are provided for each class. Given sufficient
pre-known labeled data from related domains, such a problem can be addressed by
transfer learning (TL) [88]. Transfer learning benefits the target task by transferring
helpful prior knowledge from some source domains. With the prior knowledge from the
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source domains, the performance of the learning task in the target domain could be
improved even with few samples [16, 88]. Moreover, while most existing works rely on
the abundance of labeled exemplars, we consider a more difficult unsupervised scenario,
where no labeled exemplar is provided. One solution for unsupervised visual analysis
that attracts much attention in the recent researches is cross-dataset transfer learning.
It utilizes knowledge from multiple source datasets from different domains to enhance
the unsupervised learning performance on the target domain. In this thesis, we propose
a novel domain-aware representation learning algorithm for unsupervised cross-dataset
transfer learning. The proposed algorithm not only learns a common appearances
across-datasets but also captures the domain-unique appearances on the target dataset
via minimization of the overlapped signal supports across different domains.

1.2 Related Works

1.2.1 Active Learning

To save labor costs, it is essential to design an effective algorithm that can select a
subset of samples that are the most representative and/or informative for training.
Active learning is widely studied to solve this kind of sample selection problem. As
discussed in [85], active learning methods can be divided into two categories. The
first category of algorithms select the most informative samples for labeling when
there are already some labeled samples. They include uncertainty sampling methods
[4, 40, 58, 111] query by committee methods [23, 100]. Most of these active learning
methods prefer to select uncertainty data, or data that is difficult to analyze. They
thus require a certain number of labeled samples to evaluate the uncertainty of the
unlabeled data or sampling bias [85] will result. It is therefore recommended that such
methods are only applied in the mid-stage of experiments when there are sufficient
labeled data. For the purpose of distinguishing between the two categories, we refer to
the first category of active learning methods as traditional active learning. The second
category of active learning methods is considered for application in the early stage of
experiments, when there are limited resources for labeling data. In this case, there are
no labeled samples, thus labeling a small number of representative data is desirable
for training reliable supervised models. In the category of early active learning, there
are clustering-based methods [81, 86] and transductive experimental design methods
[130]. These kinds of active learning algorithms are referred to as early active learning
or early stage experimental design [85].
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1.2.2 Semi-supervised Attribute Learning in Re-id

Attribute learning. One straightforward solution in representation learning for visual
analysis is to learn the most representative features directly from images. Factor-based
representation, such as dictionary learning [47, 50], has shown promising performance.
Additionally, in recent years, some approaches have begun to incorporate deep learning
[120] with even better results. In some recently works [66, 103], it proposed manually
annotating attributes for use in a deep learning framework. In [98, 104], deep learning
models were designed to be trained on separate datasets with attribute labels, then
fine-tuned on target datasets without attribute labels. However, pre-training such
algorithms is still limited by the number and type of attributes in the datasets that
have been manually annotated.

Supervised and semi-supervised learning in person Re-ID. Various tradi-
tional and state-of-the-art machine learning strategies are investigated to solve the
Re-ID problem, such as distance metric learning [62, 63, 80, 108], deep learning[1, 120],
learning to rank[68, 78, 79] and dictionary learning [60, 92]. Among all the existing
methods, most of them are supervised methods. However, these methods are not
scalable as they require a large amount of labeled training data. Supervised methods
for Re-ID needs sufficient images of people to be matched across each pair of camera
views. The annotation task is tough even for the human as it requires identifying
the same person in different camera views from a huge number of imposters. Besides,
sometimes people do not reappear in other camera views. As a result, the scalability
of the supervised methods is limited for large-scale practical Re-ID applications [49].

Semi-supervised Re-ID methods also have been proposed in previous Re-ID works
[49, 79, 113, 135]. Typical semi-supervised and unsupervised methods are offered for a
single dataset with less or no label information and report a much weaker performance
than supervised methods. The reason is that with insufficient labels of matching
pair information, they are not efficient in learning appearance features when there is
dramatically variance of data. Thus they can fail to recognize a person under severe
appearance changes across camera views [89].Some semi-supervised Re-ID methods
have also been proposed [73, 79]. Commonly, the training models in semi-supervised
methods rely on both labeled and unlabeled data. Hence, they produce acceptable
performance compared to supervised methods without an abundance of labeled data
[79].
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1.2.3 Transfer Learning and Few-shot Learning

Transfer learning. Transfer learning aim to improve the learning task in the target
domain (with few instances) by transferring helpful prior knowledge from some source
domains. Multi-source Transfer Learning focus on building an ensemble model from
multiple source domains that suit for the machine learning task on target domain
[64, 117]. There are also multi-task learning [9] which attempts to learn both the source
and the target tasks simultaneously, while transfer learning only aims at improving the
performance of the target domain tasks. Based on the knowledge level they transfer,
transfer learning can be divided into three types: feature transfer learning (FTL),
instance transfer learning (ITL) and parameter/model transfer learning (PTL) [88].
There are also a few joint transfer learning algorithms which joint two or more of the
three algorithms, such as feature and instance transfer [37]. Some of TL algorithms
consider to combine transfer learning with other learning algorithms, such as kernel
learning methods [75] and metric learning methods [125].

Feature transfer learning. In FTL, the algorithms are designed to learn a
feature representation in the source domain and use it for the target domain. The
feature representations are desired to minimize the discrepancy between domains such
that it could enhance the learning performance of the target task. For instance, there
is Kernelized Bayesian Transfer Learning finds a shared subspace of source and target
domain by a kernel-based Bayesian dimensionality reduction model [28].

Instance transfer learning. The main idea of ITL algorithms is to reweigh
or reallocate samples in the source domain based on the target domain data [88].
Some classical works are proposed in [39, 42, 131]. In many works, the importance
of the source instance is stated as the similarity between the source and the target
domain data. Probabilistic methods evaluate the distribution similarity in [5, 93, 105].
Graph-based methods evaluate similarity by its local weights or structure similarity
[19, 20, 24, 26, 38, 82, 95, 99]. Generally, the mentioned algorithms rely on the
estimation of relatedness between the source and the target domain data. However, the
dependence of similarity analysis also brings obstacles to such algorithms. Considerably
different distributions of the source and the target domain can frustrate the measure
of similarity [99].

Parameter/Model transfer learning. In PTL, knowledge is transferred in terms
of parameter or hyperparameters of common distributions [88]. For instance, there is
Projective Model Transfer learning which adopts a regularization term to standard
SVM by analyzing the angle between hyperplanes of the source and the target domain
models [3]. Hypothesis Transfer Learning (HTL) aims to improve target hypothesis
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by transferring source hypothesis. It does not require the estimation of relatedness
of instances between domains. Plenty works have been explored reliable performance
in the field [56, 87, 109]. In [53], the authors present a multi-class hypothesis transfer
learning algorithm. It updates both the target and the pre-trained sources hypothesis
when a new class of target data observed. A recent work [117] presents an unsupervised
hypothesis transfer learning. In the work, pseudo labels are first generated to source
domain samples. Hypothesis learning is then conducted on a model transfer SVM.
In [15], an active selection strategy is used to select semantic constraints rather than
transferring hypotheses. Recently, a simple to complex learning schema is presented
in [70] on transfer learning for action recognition. In [71], the authors discuss the
parameter stability for multi-task learning with shared similar feature structures. In [2],
the effectiveness of the transfer to the target domain and compatibility of the transfer
model HTL algorithms are analyzed. Overall, the mentioned methods consider the
source models as well-trained and unchangeable.

Self-paced learning. Self-paced learning [29, 44, 52] is a study paradigm that
could adaptively learn and select subsets of instances by easiness that improve the
performance of main learning task. In self-paced learning, several discrete regular-
ization terms are present and used in varies of applications [107, 134] For continues
regularization, a work in [123] develops a logistic function related regular term. The
diversity learning of SPL is present in [43, 131], however in discrete form. In our
hypothesis learning algorithm, we use a specialized continues regular term to analyze
and control negative transfers.

Few-shot/one-shot learning. Few-shot/one-shot learning [94, 102, 112, 119]
aims to solve the problem that instead of given one large dataset, there are only a few
annotated samples (or only one annotated example) for each class in training data.
There is gradient-based optimization models [94], metric learning models [102, 112]
and deep embedding methods[106].

1.3 Contributions

For the three scenarios of limited supervision, we propose different algorithms to
address the visual analysis problems. The main contribution of this thesis is stated as
follows:

In Chapter 2 and Chapter 3, this thesis is the first to propose the early active learning
(EAL) methods for visual retrieval. Specifically, we apply two different kinds of EAL
algorithms, which are instance-based and pair-based. The instance-based early active
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learning methods is "Early Active Learning with Pairwise Constraint". In the algorithm,
a pairwise constraint is introduced to the conventional EAL algorithm for person re-id.
The pair-based early active algorithm is "Pair-based Early Active Learning". In the
algorithm, pairs of instances are evaluated with diversity maximization criterion to
enhance the pairwise diversity of selected pairs of samples.

In Chapter 4, this thesis proposes Bayesian framework unifies representation learning
and Re-ID probability estimation and can simultaneously optimize both learning tasks.
In the algorithm, the dictionary of attributes is adaptively determined using an efficient
estimation method.

In Chapter 5 , this thesis proposed a novel analogical transfer learning (ATL)
algorithm. Rather than transferring knowledge from the source hypothesis to learn the
target hypothesis, ATL learns an analogical hypothesis from both source and target
hypothesis. Moreover, ATL is able to revise the source hypotheses by select helpful
source instances according to their contribution to the target hypothesis. As a result,
the proposed algorithm efficiently controls the occurrence of the negative transfer on
both instance and hypothesis level.

In Chapter 6, this thesis proposes a novel unsupervised cross-dataset learning algo-
rithm with support discriminative regularization for person Re-ID . To our knowledge,
it is the first attempt to leverage the common and domain-unique representations
across datasets in the unsupervised Re-ID application.





Chapter 2

Early Active Learning with
Pairwise Constraint

2.1 Background

As we mentioned in Introduction, the primary target of person re-identification (Re-ID
) is to identify a person from camera shots across pairs of non-overlapping camera
views, and research on this topic has attracted considerable attention in recent years
[48–50, 79, 138]. In the field of computer vision, Re-ID can be formed as an image
retrieval task. Given a probe image of a person from one camera view, the difficulty
is to identify images of the same person from a gallery of images taken by other
non-overlapping camera views. Despite the encouraging results reported in previous
works, Re-ID remains a challenge in several respects. The accuracy of identification
is often degrades as a result of the uncontrollable and/or unpredictable variation of
appearance changes across camera views, such as body pose, view angle, occlusion and
illumination conditions [47, 89, 120].

Supervised Re-ID methods can achieve promising results if there are sufficient
labeled training data. Unfortunately, the human labor necessary for labeling training
data is sometimes inadequate. This problem becomes extremely severe in the Re-ID
scenario, since labeling for Re-ID is difficult to achieve. Unlike other recognition tasks
which only requires each image to be labeled, Re-ID requires all pairs of images across
camera views to be labeled. It is a tough task even for humans to identify the same
person in different camera views among a potentially huge number of imposters [49, 89].
At the same time, pairwise labeled data is required for each pair of camera views in
the camera network in Re-ID , thus the labeling cost will become prohibitively given
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the large numbers of cameras in today’s world. For example, there might be more than
over a hundred in one underground train station [89].

To save labor costs, it is essential to design an effective algorithm that can select
a subset of samples that are the most representative and/or informative for training.
Active learning is widely studied to solve this kind of sample selection problem. As
discussed in [85], active learning methods can be divided into two categories. The
first category of algorithms select the most informative samples for labeling when
there are already some labeled samples. They include uncertainty sampling methods
[4, 40, 58, 111] query by committee methods [23, 100]. Most of these active learning
methods prefer to select uncertainty data, or data that is difficult to analyze. They
thus require a certain number of labeled samples to evaluate the uncertainty of the
unlabeled data or sampling bias [85] will result. It is therefore recommended that such
methods are only applied in the mid-stage of experiments when there are sufficient
labeled data. For the purpose of distinguishing between the two categories, we refer to
the first category of active learning methods as traditional active learning. The second
category of active learning methods is considered for application in the early stage of
experiments, when there are limited resources for labeling data. In this case, there are
no labeled samples, thus labeling a small number of representative data is desirable
for training reliable supervised models. In the category of early active learning, there
are clustering-based methods [81, 86] and transductive experimental design methods
[130]. These kinds of active learning algorithms are referred to as early active learning
or early stage experimental design [85]. We illustrate the procedures of and example of
the traditional active learning algorithm, QUIRE [40], and our early active learning
algorithm with pairwise constraint (abbreviated as EALPC) in Fig. 2.1.

In the rest of this chapter, we focus on the early active learning methods for person
re-identification applications. As mentioned, labeling Re-ID data is extremely labor-
consuming and time-consuming. It is therefore highly desirable to enhance the learning
performance in Re-ID applications by early active learning. Unfortunately, early
active learning methods currently merely consider analyzing representative samples
with pairwise relationships. Therefore, directly applying them for Re-ID may be not
appropriate.

To overcome the limitations described above, we propose a novel algorithm for
person re-identification, Early Active Learning with Pairwise Constraint, abbreviated
as EALPC. The main contributions of this chapter are as follows:

1. We propose a novel Early Active Learning with Pairwise Constraint algorithm
for person re-identification. To the best of our knowledge, this is the first
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method considers to consider both (a) applying early active learning for the
Re-ID application, and (b) extending early active learning schema with pairwise
constraint.

2. We introduce the �2,1-norm to our objective function, which improves the robust-
ness of our methods and suppresses the effects of outliers.

3. We propose an efficient algorithm to optimize the proposed problem. Our
optimization algorithm also provides a closed form solution and guarantees to
reach the global optimum in the convergence.

Figure 2.1 Procedures of QUIRE [40] (upper) and our Early Active Learning with
Pairwise Constraint (EALPC) (lower). In QUIRE, pre-labeled samples Xl are used
for the uncertainty evaluation on the unlabeled samples Xu. Then, it selects a subset
samples V ⊂ Xu for labeling. At last, both Xu and V along with their labels are used
for supervised learning. In EALPC, unlabeled data X is analyzed without pre-labeled
data. Meanwhile, pairwise constraint Ψ is introduced to enhance the performance of
early active learning for Re-ID . More details are in Section. 2.2.
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2.2 The Proposed Method

In this section, we first revisit the early active learning algorithm and then propose
our early active learning with pairwise constraint for Re-ID .

Notation
Let the superscript T denote the transpose of a vector/matrix, 0 be a vector/matrix
with all zeros, I be an identity matrix. Let Tr(A) be the trace of matrix A. Let
ai and aj be the i-th column vector and j-th row vector of matrix A respectively.
Let 〈A,B〉 = Tr(ABT) be the inner product of A and B, and ‖v‖p be the �p-norm
of a vector v. Then, the Frobenius norm of an arbitrary matrix A is defined as
‖A‖F =

√
〈A,A〉. The �2-norm of a vector a is denoted as ‖a‖2 =

√
aT a and the

�2,1-norm of matrix A ∈ R
n×m is denoted as ‖A‖2,1 = ∑n

i=1
√∑m

j=1 a2
ij = ∑n

i=1 ‖ai‖2,
where aij is the (i, j)-th element of A and ai is the i-th row vector of A. For analytical
consistency, the �2,0-norm of a matrix A is denoted as the number of the nonzero rows
of A. Let vec(A) be a column vector generated from the matrix A by concatenating all
column vectors of A. Let diag(v) be a diagonal matrix with diagonal elements equal
to v, 〈A,B〉 = Tr(ABT) be the inner product of A and B, and ‖v‖p be the �p-norm
of a vector v. For any convex function f(A), let ∂f(A)/∂A denote its subdifferential
at A.We denote G as a weighted graph with a vertex set X and an affinity matrix
S ∈ R

n×n constructed on X . The (unnormalized) Laplacian matrix associated with
G is defined as L = D − S, where D is a degree matrix with D(i, i) = ∑

j S(i, j). Let
a ◦ b represent the Hadamard (element-wise) product between two vectors a and b.
Let a�2 = a ◦a be the element-wise square of a.

2.2.1 Early Active Learning

We first revisit the early active learning algorithm [85]. Given a set of unlabeled
samples X ∈ R

d×n, the task of active learning is to select a subset of m < n most
representative samples V ∈ R

d×m. Then, the selected samples are queried labeling for
supervised learning. The labeled subset of data is expected to maximize the potential
performance of the supervised learning in the early stage of experiment, when the
available resource for labeling data is limited, i.e. only a small number of data can be
labeled for supervised learning. Generally, we can define the optimization problem of
early active learning as follows:

min
V,A

R(X,V,A)+αΩ(A), s.t. V ⊂ X, |V| = m. (2.1)
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where V is a subset of X, A is a transformation matrix. In Eq. (2.1), the first term
R(·) is the reconstruction loss, the second term Ω(·) is the regularization term and
α > 0 is a leverage parameter.The major purpose of early active learning is to select a
subset V ⊂ X with size m < n that can best represent the whole data X through the
linear transformation matrix A. The selected samples are therefore considered to be
the most representative.

In [130], an early active learning via a Transduction Experimental Design algorithm
(TED) is proposed with the aim of finding the subset V ⊂ X and a project matrix A
that minimizes the least squared reconstruction error:

min
V,A

n∑
i=1

(‖xi −Vai‖2
2 +α‖ai‖2

2)

s.t. A = [a1, · · · ,an] ∈ R
m×n, V ⊂ X, |V| = m.

(2.2)

where Vai is the representation item of xi. However, Eq. (2.2) is an NP-hard problem
to solve, thus an approximate solution by a sequential optimization problem is proposed
in [130].

2.2.2 Early Active Learning with Pairwise Constraint

In this chapter, we focus on early active learning in the person Re-ID problem. As
mentioned previously, person Re-ID is formed as an image retrieval task which aims to
re-identify the same person across non-overlapping camera views given a probe image
of the person. The analysis of pairwise relationships of images in different camera
views is therefore required. For this purpose, we introduce a pairwise constraint to
early active learning:

ΨV(A) =
n∑

i,j=1
‖Vai −Vaj‖2

2SV(i, j), (2.3)

where Vai is the representation item of xi and SV(i, j) is the (i, j)-th element of
similarity matrix S. It is the similarity between the i-th and the j-th representations.
In this chapter we define SV(i, j) as a Gaussian similarity:

SV(i, j)=
⎧⎨⎩ exp(−‖Vai−Vaj‖2

σ2 ), if Vai ∈ Nk(Vaj) and Vaj ∈ Nk(Vai)
0 , otherwise,

(2.4)
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where Nk(x) denotes the set of k-nearest neighbors of x. We can then reformulate the
pairwise constraint in Eq. (2.3) by inducing a Laplacian matrix:

ΨV(A) =
n∑

i,j=1
‖Vai −Vaj‖2

2SV(i, j) = Tr((VA)LV(VA)T ), (2.5)

where LV = D − SV is the Laplacian matrix and D is the degree matrix with each
element Dii = ∑

j SV(i, j). As discussed in [49], minimizing the pairwise constraint will
force the similar representations to be close to each other. Following the assumption
that visually similar images of a person have a high probability of sharing the similar
representation features in Re-ID [49], this will make early active learning schema more
suitable for Re-ID applications.

After introducing the pairwise constraint, the early active learning for person
re-identification can be formulated as:

min
V,A

R(X,V,A)+αΩ(A)+βΨV(A)

s.t. A = [a1, · · · ,an] ∈ R
m×n,V ⊂ X, |V| = m.

(2.6)

where α > 0 and β > 0 are leverage parameters of regularization terms. After substi-
tuting Eq. (2.2) and Eq. (2.5) into Eq. (2.6) we obtain:

min
V,A

n∑
i=1

(‖xi −Vai‖2
2 +α‖ai‖2

2)+βTr((VA)LV(VA)T )

s.t. A = [a1, · · · ,an] ∈ R
m×n,V ⊂ X, |V| = m.

(2.7)

Finding the optimal subset V ⊂ X in Eq. (2.7) is NP-hard. Inspired by [85], we
relax the problem to the following problem by introducing the �2,0-norm for structure
sparsity:

min
A

n∑
i=1

‖xi −Xai‖2
2 +α‖A‖2,0 +βTr((XA)LX(XA)T )

s.t. A = [a1, · · · ,an] ∈ R
n×n, ‖A‖2,0 = m.

(2.8)

However, the �2,0-norm makes Eq. (2.8) a non-convex problem. At the same time, the
least squared loss used in Eq. (2.8) is sensitive to the outliers [85], which makes the
algorithm not robust.

We note that in previous researches [84, 85, 128], the �2,1-norm is used instead of
the �2,0-norm. It is shown in [85] that the �2,1-norm is the minimum convex hull of
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the �2,0-norm when row-sparsity is required. In other words, minimization of ‖A‖2,1
will achieve the same result as ‖A‖2,0 when A is row-sparse. As analyzed in [85, 139],
the �2,1-norm can suppress the effect of outlying samples. We therefore reformulate
Eq. (2.8) as a relaxed convex optimization problem:

min
A

n∑
i=1

‖xi −Xai‖2,1 +α‖A‖2,1 +βTr((XA)LX(XA)T ). (2.9)

In Eq. (2.9), we adopt the �2,1-norm instead of both the least square reconstruction
loss term and the �2,0-norm structure sparsity term for robustness and suppression of
outliers. By inducing the matrix formulation, Eq. (2.9) is rewritten as follows:

min
A

‖(X−XA)T ‖2,1 +α‖A‖2,1 +βTr((XA)LX(XA)T ). (2.10)

After obtaining the optimal solution of A, the importances of samples can be ranked
by sorting the absolute row-sum values of A in the decreasing order. A subset of the
representative samples then can be selected corresponding to the top m largest values
and query labeling.

2.2.3 Kernelization

The proposed algorithm can be extended to the kernel version for non-linear high
dimensional space. We define Φ : Rd → H as a mapping from the Euclidian space
to a Reproducing Kernel Hilbert Space (RKHS) as H. It can be induced by a
kernel function K(x,y) = Φ(x)T Φ(y). Then we can project X to RKHS space as
Φ(X) = [Φ(x1), · · · ,Φ(xn)]. The proposed problem thus becomes:

min
A

‖(Φ(X)−Φ(X)A)T ‖2,1 +α‖A‖2,1 +βTr((Φ(X)A)LX(Φ(X)A)T ). (2.11)

We denote our Early Active Learning with Pairwise Constraint algorithm in Eq. (2.10)
as EALPC and the kenerlized version of our algorithm in Eq. (2.11) as EALPC_K.
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2.2.4 Optimization

We provide an efficient algorithm for optimizing the proposed objective function. Taking
the derivative w.r.t. A in Eq. (2.10) and setting it to zero, we obtain 1:

XT XAP−XT XP+αQA+βXT XALX = 0, (2.12)

where P is a diagonal matrix and its i-th diagonal element is pii = 1
2‖xi−Xai‖2

. Q is
a diagonal matrix and its i-th diagonal element is qii = 1

2‖ai‖2
. Then by setting the

derivative of Eq. (2.12) w.r.t. ai to zero for each i, we obtain:

piiXT Xai −piiXT xi +αQai +βXT XALi = 0, (2.13)

where Li is the i-th column vector of LX. It is sample to verify that ALi = liiai +∑
k �=i lkiak, where lii and lki are the (i, i)-th and (k, i)-th element of LX respectively

and ak is the k-th column vector of A. Therefore, the optimal solution a∗
i can be

calculated by the closed form solution:

a∗
i = (piiXT X+αQ+βXT Xlii)−1(piiXT xi −βXT X

∑
k �=i

aklki). (2.14)

In Eq. (2.12), P and Q are dependent on A, thus they also need to be determined in
each iteration. We propose an iterative algorithm to solve this problem. The detailed
algorithm is described in Algorithm 1. In the next section, we will prove that Algorithm
1 converges to the global optimal solution of Eq. (2.10).

2.3 Convergence Analysis

We first introduce a lemma proposed in [84]:

Lemma 1. For any arbitrary vector m and n there is

‖m‖2 − ‖m‖2
2

2‖n‖2
≤ ‖n‖2 − ‖n‖2

2
2‖n‖2

. (2.15)

Next, in the following theorem we prove the convergence of our algorithm:
1 In practice, when xi −Xai = 0, pii can be regularized as pii = 1

2
√

‖xi−Xai‖2
2+η

. Similarly when

ai = 0, we set qii = 1
2
√

‖ai‖2
2+η

. η is a very small constant. It can be verified that when η → 0 the

problem with η reduces to the original problem in Eq. (2.12).
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Algorithm 1: Algorithm for solving problem in Eq. (2.10)
Input: The data matrix X ∈ R

d×n, parameters α and β.
1 Initialize A ∈ R

n×n.
2 while not converge do
3 Compute the diagonal matrix P, where the i-th diagonal element is

pii = 1
2‖xi−Xai‖2

.
4 Compute the diagonal matrix Q, where the i-th diagonal element is

qii = 1
2‖ai‖2

.
5 Update A by each column ai as in Eq. (2.14):

a∗
i = (piiXT X+αQ+βXT Xlii)−1(piiXT xi −βXT X

∑
k �=i

aklki).

Output: The matrix A ∈ R
n×n.

Theorem 1. Algorithm 1 monotonically decreases the objective function value of
Eq. (2.10) in each iteration.

Proof. Suppose in an iteration the updated A is A+. According to Step 5 in Algorithm
1 we know that:

A+ = argmin
F

f(F), (2.16)

where we denote the function

f(F) = Tr((X−XF)P(X−XF)T )+αTr(FQFT )+βTr((XF)LX(XF)T ).

Thus, in each iteration when updating A to A+ we have

Tr((X−XA+)P(X−XA+)T )+αTr((A+)Q(A+)T )+βTr((XA+)LX(XA+)T )

≤ Tr((X−XA)P(X−XA)T )+αTr(AQAT )+βTr((XA)LX(XA)T ).
(2.17)

According to the definition of P and Q, we thus obtain:

n∑
i=1

(
‖xi −Xa+

i ‖2
2

2‖xi −Xai‖2
+α

‖ai+‖2
2

2‖ai‖2

)
+βTr((XA+)LX(XA+)T )

≤
n∑

i=1

(
‖xi −Xai‖2

2
2‖xi −Xai‖2

+α
‖ai‖2

2
2‖ai‖2

)
+βTr((XA)LX(XA)T ).

(2.18)



18 Early Active Learning with Pairwise Constraint

Meanwhile, according to Lemma 1, we can induce the following inequalities:

n∑
i=1

(
‖xi −Xa+

i ‖2 − ‖xi −Xa+
i ‖2

2
2‖xi −Xai‖2

)
≤

n∑
i=1

(
‖xi −Xai‖2 − ‖xi −Xai‖2

2
2‖xi −Xai‖2

)
, (2.19)

and

n∑
i=1

(
‖ai+‖2 − ‖a+

i ‖2
2

2‖ai‖2

)
≤

n∑
i=1

(
‖ai‖2 − ‖ai‖2

2
2‖ai‖2

)
. (2.20)

After summing Eq. (2.19)and Eq. (2.20) in the both sides of Eq. (2.18), we conclude that:

n∑
i=1

(‖xi −Xa+
i ‖2 +α‖ai+‖2)+βTr((XA+)LX(XA+)T )

≤
n∑

i=1

(
‖xi −Xai‖2 +α‖ai‖2

)
+βTr((XA)LX(XA)T ).

(2.21)

The above inequality indicates that the objective function value of Eq. (2.10) monotonically
decreases in Algorithm 1.

Meanwhile, let ∂f(A)/∂A = 0 is equal to solving Eq. (2.12), thus in convergence,
A will satisfy Eq. (2.10). As Eq. (2.10) is a convex problem, A is the global optimum
solution to our problem. Overall, Algorithm 1 will converge to the global optimum
solution of Eq. (2.10).

2.4 Experimental Study

In the experiments, we compare our proposed EALPC algorithm with five state-of-
the-art and classic active learning algorithms. After determining and labeling the
most representative samples, we train the Re-ID models with these samples using five
popular Re-ID algorithms. All experiments are operated on four widely referenced Re-
ID benchmark datasets. We report the average performance of 10 trials of independent
experiments on each dataset.
Datasets and Algorithms
1). Datasets. We analyze performance of active learning for Re-ID on four widely
referred benchmark datasets for person re-identification. VIPeR: [30] The VIPeR
dataset contains 1,264 images of 632 persons from two non-overlapping camera views.
Two images are taken for each person, each from a different camera. Variations in
viewpoint and illumination conditions occur frequently in VIPeR. PRID: [35] The
PRID dataset contains images of 385 individuals from two distinct cameras. Camera B
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records 749 persons and Camera A records 385 persons, 200 of whom are same persons.
i-LID: [139] The i-LID dataset records 119 individuals captured by three different
cameras in an airport terminal. It contains 476 images with large occlusions caused
by luggage and viewpoint changes. CAVIAR: [14] The CAVIAR dataset contains 72
individuals captured by two cameras in a shopping mall. The number of the images is
1,220, with 10 to 20 images for each individual. The size of the images in the CAVIAR
dataset varies significantly from 39×17 to 141×72.

In the experiments, we use the recently proposed Local Maximal Occurrence
(LOMO) features for person image representation [62]. As in [69, 89], all person images
are scaled to 128 × 48 pixels. We then use the default setting in [62] to produce a
29,960 dimension feature for each image.

2). Active Learning Algorithms. We choose five active learning algorithms and
compare them with our proposed algorithm. Random: As a baseline algorithm,
we randomly select samples and query labeling. K-means: We use the K-means
algorithm as another baseline algorithm as in [85]. In each experiment, samples are
ranked by their distances from the K cluster centers in ascending order. QUIRE: [40]
Active learning by Querying Informative and Representative Examples is an algorithm
which queries the most informative and representative examples for labeling using
the min-max margin-based approach. TED: [130] Active learning via Transduction
Experimental Design is an algorithm that selects a subset of informative samples from a
candidate dataset. It formulates a regularized linear regression problem which minimizes
reconstruction error. RRSS: [85] Early active learning via Robust Representation
and Structured Sparsity is a early active learning algorithm. It uses the �2,1-norm to
introduce structured sparsity for sample selection and robustness. However, RRSS does
not consider the pairwise relations in Re-ID . We also introduce the kernelized RRSS
denoted as RRSS_K. EALPC: Our proposed early active learning with pairwise
constraint algorithm is denoted as EALPC. We also use a kernelized version of our
algorithm denoted as EALPC_K:. For kernelization, we construct a Gaussian kernel
for the candidate dataset, i.e. K(xi,xj) = exp(−α‖xi − xj‖2). To seek the optimal
parameters (if any), we apply a grid search in a region of {10−4,10−3, · · · ,1, · · · ,103,104}
with a five-fold cross validation strategy to determine the best parameters.

3). Re-identification Algorithms. Five state-of-the-art supervised Re-ID algo-
rithms are chosen for the performance analysis of the proposed early active learning
algorithms on person Re-ID . NFST: [132] Null Foley-Sammon Transform space learn-
ing is a Re-ID algorithm for learning a discriminative subspace where the training
data points of each of the classes are collapsed to a single point. KCCA: [69] Ker-



20 Early Active Learning with Pairwise Constraint

nel Canonical Correlation Analysis algorithm seeks a common subspace between the
proposed images extracted from disjoint cameras and projects them into a new space.
XQDA: [62] Cross-view Quadratic Discriminant Analysis learns a discriminant low
dimensional subspace by cross-view quadratic discriminant analysis for metric learning.
kLFDA: [122] Kernelized Local Fisher Discriminant Classifier is a closed form method
that uses a kernelized method to handle large dimensional feature vectors while maxi-
mizing a Fischer optimization criterion. MFA: [126] Marginal Fisher Analysis method
is introduced for dimensionality reduction by designing two graphs that characterize
the intra-class compactness and interclass separability.

4). Settings. We report the average performance of 10 independent trials. In each
trial, we divide each dataset into two equal-sized subsets as training and test sets, with
no overlapping of person identities. Following the setting in [89], we divide the probe
and gallery sets for Re-ID as follows: for datasets recording two camera views, e.g.
VIPeR and PRID, images of one view are randomly selected for the probe sets, and
images from the other view are chosen for the gallery sets. For a multi-view dataset, e.g.
i-LID, images of one view are randomly selected as gallery sets and others are chosen as
probe images. For the training set, we apply active learning methods to select a subset
of training samples and query human labeling. The supervised Re-ID algorithms are
then trained with the labeled samples. For evaluation measurement, we evaluate the
performance of Re-ID by Cumulative Matching Characteristic (CMC) curve, which is
the most commonly used performance measure for person Re-ID algorithms [47, 62, 68].
CMC calculates the probability that there exists a candidate image in the rank k

gallery set that appears to match the prob image. In the experimental study, we also
report the Rank One Matching Accuracy from CMC for simplicity.

Experimental Result Analysis
1). Performance of Re-id. We illustrate the performance of the active learning
algorithms for Re-ID application in Table 2.1. In Table 2.1, each row corresponds to an
active learning algorithm, and each column corresponds to a supervised Re-ID method.
On each benchmark dataset, we select 20% of training samples via active learning
algorithms and query labeling. The labeled subsets of samples are then adopted by
supervised Re-ID algorithms for training models. We report the rank one matching
accuracy in Table 2.1.

As shown in Table 2.1, we observe that: 1) All active learning algorithms perform
better than Random selection. This indicates that active learning algorithms can select
useful samples to improve the performance of Re-ID . 2) Our algorithms consistently
outperform the other active learning algorithms. The table also confirms that our
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Dataset CAVIAR VIPeR

Algorithm NFST KCCA XQDA kLFDA MFA NFST KCCA XQDA kLFDA MFA

Random 23.65 23.47 21.38 27.55 25.87 26.65 23.01 27.23 22.78 23.64

K-means 26.90 25.99 22.05 27.74 27.40 27.59 26.16 27.59 23.15 24.39

TED 29.78 28.70 29,42 27.94 28.08 27.45 28.53 28.43 25.75 26.09

QUIRE 30.66 30.87 31.56 28.18 26.16 28.39 27.43 28.54 26.25 25.13

RRSS 31.87 30.69 33.57 30.95 29.01 31.56 28.54 30.71 27.34 28.04

RRSS_K 31.69 33.03 35.56 31.41 31.13 31.61 28.73 31.46 28.51 29.40

EALPC 34.12 33.57 37.45 33.09 31.16 32.61 29.45 31.82 28.54 29.56

EALPC_K 35.00 35.20 38.75∗ 33.29 31.91 33.66 30.44 34.29∗ 29.18 30.03

Dataset PRID iLIDS

Algorithm NFST KCCA XQDA kLFDA MFA NFST KCCA XQDA kLFDA MFA

Random 24.49 25.47 24.00 23.50 20.00 25.96 23.40 25.00 23.35 25.00

K-means 26.16 27.54 27.01 24.70 21.20 27.02 23.94 27.00 25.57 25.20

TED 27.72 27.71 29.32 24.33 22.11 29.15 25.33 28.13 27.33 29.20

QUIRE 27.24 26.90 29.33 24.40 22.50 28.72 25.74 28.03 29.48 30.20

RRSS 29.21 28.44 30.00 25.09 23.97 28.11 27.66 30.82 30.08 30.55

RRSS_K 30.33 29.03 31.05 25.30 24.10 29.17 27.37 32.00 30.30 31.10

EALPC 32.22 30.63 31.03 25.90 25.60 29.26 27.66 32.34 30.43 31.60

EALPC_K 32.70 31.50 33.40∗ 26.06 25.70 31.19 28.72 34.00∗ 31.60 32.47

Table 2.1 Rank One Matching Accuracy(%) on four benchmarks. Percentage of selected
instances for labeling is 20% of all samples. Each column is an active learning algorithm
and each row is a Re-ID algorithm. The best result of each Re-ID algorithm is marked
in bold numbers. The best result of the algorithms overall is marked with an asterisk(∗).
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algorithms are better than the RRSS and TED method by around 5% on rank one
matching accuracy. RRSS and TED have a similar optimization target to our algorithm
but without pairwise constraint. This implies that our method is much suitable for Re-
ID applications as a result of introducing the pairwise constraint. 3) The performance

(a) CAVIAR (b) VIPeR

(c) PRID (d) i-LID

Figure 2.2 CMC Performance Comparison of Active Learning algorithms. XQDA is
chosen as the Re-ID algorithm. The percentage of selected samples is set to 10% of all
samples.

of the kernelized methods is better than the performance of the linear methods with our
algorithm. This is consistent with the mathematical analysis in [85] that kernelization
produces more discriminative representation by mapping data into high-dimensional
feature space. 4) The active learning algorithms with XQDA method for report better
rank one matching accuracy than those with LOMO features.
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In Figure 2.2, we illustrate the performance via CMC curves of active learning
methods with XQDA as the Re-ID algorithm. The percentage of the labeled training
sample is set to only 10% to present a more challenging task. We choose XQDA as
it returned the best Re-ID results in the previous experiments. As shown in Fig. 2.2,
we can observe that: 1) Our algorithms outperforms other algorithms consistently on
all four benchmark datasets. 2) Compared to the results in Table 2.1, all algorithms
suffer a decrease in the rank one matching accuracy when the percentage of labeled
samples is halved from 20% to 10%. However, our algorithm only decreases around
by 5% on rank one matching accuracy whereas the accuracy of others, e.g. Random
and K-means, reduces approximately 10%. This indicates that our algorithm is more
robust. 3) The matching accuracy of our algorithm is the only one to reach 90% with
rank 15 on CAVIAR and VIPeR, and the only one to reach 90% on rank 20 on PRID
and i-LID. This implies that our algorithm is more effective on Re-ID .

(a) i-LID (b) CAVIAR

(c) PRID (d) VIPeR

Figure 2.3 Rank One Matching Accuracy(%) w.r.t. Number of Selected Instances.
We use XQDA as the Re-ID algorithm and train it with varying numbers of samples
selected by the active learning methods.
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2). Effects on the Number of Selected Instances. Figure 2.3 illustrates the
performance of Re-ID when the number of instances that selected by active learning
methods varies. As displayed in Fig. 2.3, we observe that: 1) Generally, rank one
matching accuracy of all Re-ID algorithms increases gradually when the number of
selected instances increases. 2) All active learning methods report better performances
than Random selection. This indicates that active learning algorithms can improve the
performance of Re-ID applications. 3) Our algorithm consistently performs better than
the other active learning algorithms when the number of selected instance increases.
More specifically, for our algorithm, kernelized methods is better than the linear
methods.
3). Convergence. In Figure 2.4, we draw the objective value of the first 50 iterations
of our algorithm on benchmark datasets. In the experiments, we fix the leverage
parameters as α = 0.1 and β = 1 and set the percentage of selected samples to 20%. As
shown in Fig. 2.4, the object values of our algorithm decrease dramatically and barely
change after the first five iterations on all the benchmark datasets. This indicates that
our algorithm converges very rapidly on all the datasets, which is consistent with our
theoretical analysis of convergence.

2.5 Summary

In this chapter, we have proposed a novel early active learning algorithm with a
pairwise constraint for person re-identification. The proposed method is designed
for the early stage of supervised Re-ID experiments when there are limited labor
resources for labeling data. Our algorithm introduces a pairwise constant for analyzing
graph structures specifically for re-identification. A closed form solution is provided to
efficiently weight and select the candidate samples. Extensive experimental studies
on four benchmark datasets validate the effectiveness of the proposed algorithm. The
experimental results demonstrate that our methods achieve encouraging performance
against the state-of-the art algorithms in the filed of early active learning for person
re-identification. In future work, our algorithm can be applied to other applications
that consider the pairwise relatedness, such as in social network analysis, etc.
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Figure 2.4 Convergence Analysis of EALPC on Benchmark Datasets. The parameters
are set as α = 0.1 and β = 1. The percentage of selected samples is 20%.





Chapter 3

Pair-based Early Active Learning

3.1 Background

In last chapter,we have proposed an early active learning algorithm for Re-ID and
have achieved promising results in other fields. However,the previous works considers
only instance-based active learning schema, but not considers to select the pairs of the
samples for labeling, which is essential and important in the person re-identification
problem.

In the previous works [72, 85, 130], all of the EAL algorithms focus on finding out the
most representative samples on behalf of the whole dataset. However, these algorithms
have two drawbacks. First, they are instance-based active learning algorithms that
only consider to select instances for annotation. They fail to consider to directly select
pairs of samples for annotation, which is essential for Re-ID task. Second, the previous
EAL works only consider to select the most representative instances from the whole
set of data. They fails to analyze the uncertainty of the samples, which is essential
in traditional active learning schema [100]. For Re-ID task, select pairs with higher
uncertainty, such as person images with occlusion, will bring more information and
enhance the robustness of the Re-ID models.

To overcome the limitations described above, we propose a novel algorithm for
person re-identification, Early Active Learning with Pairwise Diversity Maximization,
abbreviated as EAL-PDM. The main contributions of our work are as follows:

• To the best of our knowledge we make the first attempt to consider pair-based
active learning and simultaneously optimize pairwise uncertainty and diversity of
samples for person Re-ID in an early active learning task.
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• We are the first to define the person re-identification probability especially for
the pairwise uncertainty estimation in EAL for Re-ID task.

• We introduce a pairwise diversity maximization criterion to enhance the pairwise
diversity of selected pairs of samples. It is the first attempt that considers pairwise
diversity in EAL.

• We propose an efficient algorithm to optimize the proposed object function. Our
optimization algorithm also provides guarantees to reach the global optimum in
the convergence.

3.2 The Proposed Framework

In this section, we first revisit the early active learning. Then, we propose our early
active learning with pairwise diversity maximization for Re-ID .

3.2.1 Pairwise Uncertainty and Diversity

In this section, we focus on pair-based early active learning for the person Re-ID
problem. Person Re-ID can be formed as an image retrieval task which aims to
re-identify the same person across non-overlapping camera views. Therefore, the
analysis of pairwise relativeness of images across different camera views is essential and
important. In active learning stage, it is desired to select the most informative and
diverse pairs of samples to generate training data to enhance the performance of Re-ID
methods. We evaluate the uncertainty and diversity of pairs of samples as follows:

Pairwise Uncertainty Estimation. To select the most informative subset of
pairs of samples, a common criterion is via uncertainty estimation. In this chapter,
we prefer to evaluate the pairwise entropy of samples to benefit the Re-ID methods
rather than the instance entropy. In order to achieve this, we first define the person
re-identification probability as

p(lij |xi,xj) = 1
1+exp{‖xi −xj‖2

M −η} , (3.1)

where xi and xj is a pair of samples and lij is the pairwise label. The person re-
identification probability estimates how likely xi and xj belong to the same person
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(i.e., lij = 1) or not (i.e., lij = 0). The positive semi-definite matrix M is a pre-defined
metric and η > 0 is a threshold. Accordingly, xi and xj are more likely to belong to
the same person when ‖xi − xj‖2

M ≤ η. In this chapter we simply let M = I. The
discussion of learning M is left for specific research topics such as metric learning [121].
Overall, the uncertainty of samples is estimated by the pairwise entropy defined as:

H(xi,xj) = −1
2

∑
i,j

p(lij |xi,xj) logp(lij |xi,xj). (3.2)

Pairwise Diversity Maximization. In order to maximize the diversity of the
selected samples, we aim to reduce the number of pairs where samples are very similar
to each other. To evaluate the similarity, a similarity matrix K is introduced. Each
element of K can be defined as ki,j = −‖xi −xj‖/σ2 with σ the parameter. We define
Ω(ui) = 1

2
∑

i,j uiujkij = 1
2uTKu. Given two samples xi and xj , ki,j will be larger if

they are more similar to each other. Therefore, minimize Ω(u) will enforce the two
samples not to be selected simultaneously (i.e, either ui or uj or both of them are
forced to zero).

3.2.2 Pair-based Early Active Learning

Finally, we propose the pair-based early active learning schema. Unlike the former
works [72] which provide a relaxation of the problem, we reformulate the EAL problem
to an equivalent problem that can be solved efficiently. As mentioned before, learning
the optimal subset in Eq. (3.3) is NP-hard. We introduce a indicator vector u ∈ R

n×1

with ui ∈ {0,1}. The sample selected is assigned by ui = 1 otherwise ui = 0. Therefore,
we can represent V = Xdiag(u). Then, taken uncertainty estimation in consideration,
the optimization problem of early active learning is reformulated as:

min
A,u

R(X,A,u)+αI(X,u)+Ω(u),

s.t. uT1 = m, ui ∈ {0,1}.
(3.3)

where the first term R(X,A,u) is the representative learning function and I(X,u)
is the informative learning function with a leverage parameter α > 0. We further
introduce a diversity maximization term Ω(u) which will be discussed later. After
introducing u, we reformulate Eq. (2.2) to

R(X,A,u) = ‖X−Xdiag(u)A‖2
F . (3.4)
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Meanwhile, we can formulate the uncertainty objective function as

I(X,u) =
n∑
i

ui(
n∑

j �=i

−H(xi,xj)) = uTξ, (3.5)

where for each element ξi ∈ ξ, we calculate ξi = ∑n
j �=i −H(xi,xj) which estimates the

sum of pairwise uncertainty between xi and the rest of samples xj , j �= i. Notice we
want to choose the pairs with high uncertainty, such that we minimize the negative
entropy in the objective function.

Finally, the overall optimization problem of the proposed algorithm becomes to:

min
A,u

‖X−Xdiag(u)A‖2
F +αuTξ + 1

2uTKu,

s.t. uT1 = m, ui ∈ {0,1}.

(3.6)

3.2.3 Optimization

In this section we propose a effective algorithm optimize the active learning problem
formulated in Eq. (3.6). Note solve Eq. (3.6) with ui are integer is hard, we relax the
problem to

min
A,u

‖X−Xdiag(u)A‖2
F +αuTξ + 1

2uTKu,

s.t. uT1 = 1,ui ≥ 0.

(3.7)

The objective function in Eq. (3.7) can be solved by alternately optimize A and u.
After getting the optimized continues variable of u∗, the optimal indicator vector can
be get by a truncate function u = truncate(u∗,m) which let the top m larger ui in u
be ones and the rest be zeros. Next we discuss the optimization of Eq. (3.7).

Optimize u with fixed A. With A fixed, solve the objective function in Eq. (3.7)
w.r.t. u is a standard quadratic programming (QP) problem. We propose to solve it
by an algorithm based on the augmented Lagrange multiplier (ALM) framework [17].
First we rewrite Eq. (3.7) as follows:

min
A,u

‖x̂ −Qu‖2
2 +αuTξ + 1

2uTKu,

s.t. uT1 = 1,u = p,p ≥ 0,

(3.8)
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where x̂ = vec(X) and Q = [vec(q1), · · · ,vec(qn)] where qi = xiai. The augmented
Lagrangian function of Eq. (3.8) is formulated as

L(u,p,v,λ1,λ2) = v

2(uT1−1+ 1
v

λ1)2

+ v

2‖u −p+ 1
v

λ21‖2
F +‖x̂ −Qu‖2

2 +αuTξ + 1
2uTKu,

s.t. p ≥ 0.

(3.9)

Then we can optimize u with fixed p = p∗ from

minu L(u,p∗,v,λ1,λ2) ⇔ minu uTb+ 1
2uTΣu, (3.10)

where Σ = K+vI+v11T +2QTQ and b = (λ11−v1)+(λ21−vp∗)+αξ −2QTx̂. Thus
the optimal solution of u is

u∗ = Σ−1b. (3.11)

After determined u = u∗, we can optimize p from

min
p≥0

L(u∗,p,v,λ1,λ2) ⇔ min
p≥0

‖p− (u + 1
v

λ2)‖2
F . (3.12)

By solving the above optimization problem, the solution of p is

p∗ = pos(u + 1
v

λ21,0). (3.13)

where pos(z, ε) is a truncate function which assigns zero to each element of z less than
ε, i.e., ∀zi ∈ z,pos(zi) = max(zi, ε).

Optimize A with fixed u. Optimize A in Eq. (3.6) with u fixed can be calculated
by a closed form solution.

A∗ = (VTV)−1VX, (3.14)

where V = Xdiag(u∗).The overall optimization algorithm for solving u is described in
Algorithm 1. It can be verified that Algorithm 1 converges to the global optimum.
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Algorithm 2: Algorithm for solving problem in Eq. (3.6)
Input: The data matrix X ∈ R

d×n, parameters α, v
1 Initialize A ∈ R

n×n, ∀ui ∈ u,ui = 1
n . Set p = u, λ1 = 0 and λ2 = 0.

2 while not converge do
3 Update Σ by Σ = K+vI+v11T +2QTQ.
4 Update b by b = (λ11−v1)+(λ21−vp∗)+αξ −2QTx̂.
5 Compute u∗ by solving the linear system Σu = b.
6 Compute p∗ by p∗ = pos(u∗ + 1

v λ2).
7 Compute A∗ = (VTV)−1VX.
8 Update λ1 by λ1 = λ1 +v × (∑n

i=1 ui −1.
9 Update λ2 by λ2 = λ2 +v × (u −p).

10 Update v = ρv.
Output: u∗.

3.3 Experimental Study

3.3.1 Experimental Settings

Datasets

Four widely referred Re-ID benchmark datasets are utilized in the experiments.

1. The VIPeR [30] dataset collects camera shots of 632 persons from two non-
overlapping camera views. The total number of images are 1,264 and for each
person there are one image captured from each different camera. variations of
viewpoint and illumination condition appears frequently in the dataset.

2. The PRID [35] dataset captures camera shots of 385 individuals from two distinct
cameras. One of the cameras collects images of 749 persons and the other one
collects images of 385 person. There are 200 person being captured in both of
the cameras.

3. The i-LID [139] dataset contains camera shots of 119 individuals in an airport
terminal. There are 476 images images captured by three non-overlapping cameras.
Large occlusions are observed because of the carry-on luggages and viewpoint
variations.

4. The CAVIAR [14] dataset records images of 72 individuals in a shopping mall.
A total number of 1,220 images are captured by two different cameras. There
are 10 to 20 images for each individual. In the dataset, size of the camera shots
varies significantly from 39×17 to 141×72.
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Dataset CAVIAR VIPeR

Algorithm NFST KCCA XQDA kLFDA MFA NFST KCCA XQDA kLFDA MFA

Random 23.65 23.47 21.38 27.55 25.87 26.65 23.01 27.23 22.78 23.64

K-means 26.90 25.99 22.05 27.74 27.40 27.59 26.16 27.59 23.15 24.39

TED 29.78 28.70 29,42 27.94 28.08 27.45 28.53 28.43 25.75 26.09

QUIRE 30.66 30.87 31.56 28.18 26.16 28.39 27.43 28.54 26.25 25.13

RRSS 31.87 30.69 33.57 30.95 29.01 31.56 28.54 30.71 27.34 28.04

RRSS_K 31.69 33.03 35.56 31.41 31.13 31.61 28.73 31.46 28.51 29.40

EALPC 34.12 33.57 37.45 33.09 31.16 32.61 29.45 31.82 28.54 29.56

EALPC_K 35.00 35.20 38.75 33.29 31.91 33.66 30.44 34.29 29.18 30.03

EAL-PDM 36.29 37.13 39.55∗ 34.22 32.25 34.00 31.24 36.53∗ 30.02 30.53

Dataset PRID iLIDS

Algorithm NFST KCCA XQDA kLFDA MFA NFST KCCA XQDA kLFDA MFA

Random 24.49 25.47 24.00 23.50 20.00 25.96 23.40 25.00 23.35 25.00

K-means 26.16 27.54 27.01 24.70 21.20 27.02 23.94 27.00 25.57 25.20

TED 27.72 27.71 29.32 24.33 22.11 29.15 25.33 28.13 27.33 29.20

QUIRE 27.24 26.90 29.33 24.40 22.50 28.72 25.74 28.03 29.48 30.20

RRSS 29.21 28.44 30.00 25.09 23.97 28.11 27.66 30.82 30.08 30.55

RRSS_K 30.33 29.03 31.05 25.30 24.10 29.17 27.37 32.00 30.30 31.10

EALPC 32.22 30.63 31.03 25.90 25.60 29.26 27.66 32.34 30.43 31.60

EALPC_K 32.70 31.50 33.40 26.06 25.70 31.19 28.72 34.00 31.60 32.47

EAL-PDM 33.08 33.95 35.27∗ 27.10 25.91 35.39 29.25 36.22∗ 33.42 33.14

Table 3.1 Rank One Matching Accuracy(%) on the benchmark datasets. 20% of the
samples are selected for labeling. The rows are Re-ID algorithms. The columns are
active learning algorithms. For each Re-ID methods, the best result w.r.t active learning
algorithms is marked in bold. The best result in all the Re-ID methods is marked with
an asterisk(∗).
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In the pre-processing stage, Local Maximal Occurrence (LOMO) features for person
image representation [62] are implemented for person images as in previous works
[69, 89]. After rescaling all images to 128×48 pixels, we follow the default setting in
[62] to produce LOMO features.

Active Learning Algorithms

Six active learning algorithms are compared with the proposed algorithm (i.e., EAL-
PDM ) in the experiments.

1. Random: We randomly select samples for labeling as a baseline algorithm.

2. K-means: As suggested in [85], we apply the K-means algorithm as another
baseline. Rank of the samples are sorted by their distances to the nearest cluster
centers.

3. QUIRE: [40] Active learning by Querying Informative and Representative Ex-
amples (QUIRE) is an algorithm which use a min-max margin-based approach
to query the most informative and representative samples. However, it require a
set of pre-labeled samples to verify the importance of the unlabeled samples.

4. TED: [130] Active Learning via Transduction Experimental Design (TED) is an
algorithm is an early active learning method which select the most representative
subset of samples from the unlabeled dataset. It formulates the subset selection
task as a regularized linear regression problem.

5. RRSS: [85] Early active learning via Robust Representation and Structured
Sparsity (RRSS) is another early active learning algorithm. It introduces a �2,1-
norm regularization term to TED for robustness and structure sparsity. In their
work, authors also propose a kernelized algorithm RRSS_K with a Gaussian
kernel.

6. EALPC: [72] Early Active Learning with Pairwise Constraint (EALPC) is a
recently proposed algorithm. It introduces a pairwise constraint to EAL in order
to force the similar representations to be close to each other. It also provides a
kernelized version EALPC_K with a Gaussian kernel.

Person Re-identification Algorithms

Five supervised Re-ID methods are applied to evaluate the performance of the compared
active learning algorithms on the Re-ID task.
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1. NFST: [132] Null Foley-Sammon Transform space learning (NFST) is a Re-ID
method which learns a discriminative subspace, where samples belonging to the
same person are collapsed to a single point.

2. KCCA: [69] Kernel Canonical Correlation Analysis (KCCA)method aims to
learn a common subspace of the images of person from the non-overlapping
cameras.

3. XQDA: [62] Cross-view Quadratic Discriminant Analysis (XQDA)seeks a dis-
criminant low dimensional subspace by cross-view quadratic discriminant analysis
and applies metric learning in the space.

4. kLFDA: [122] Kernelized Local Fisher Discriminant Classifier (kLFDA) applies
a kernelized method with closed form solution to handle large dimensional feature
vectors by maximizing a Fischer optimization criterion.

5. MFA: [126] Marginal Fisher Analysis (MFA) learns graphs that characterize
the intra-class compactness and interclass separability and applies them for
dimensionality reduction.

Settings

In the experiments, as advised in previous works [72, 89], we randomly splits each
dataset into two subsets with equal number of samples for training and testing. There
are no overlapping of persons in the training and the testing sets. To generate the
probe and gallery sets for Re-ID task, images captured from one of the camera views
are chosen as the probe sets and the remaining images from the rest camera views
are assigned as gallery sets. Overall, we randomly and independently split each of the
datasets 10 times to generate 10 trails. The average performance of all the trails are
report as the final result.

The procedure of the experiments is as follows: first, we apply active learning
methods to select a certain number of samples and query human annotator to label
them. Then, the supervised Re-ID methods are applied to train the Re-ID models.
Finally, we evaluate the Re-ID performance on the testing sets. We measure the
performance of Re-ID models by Cumulative Matching Characteristic (CMC) curve,
which is commonly introduced in Re-ID works [47, 62, 68, 72]. Specifically, CMC
computes the cumulative probability that a image in the top k gallery set happens to
match the probe image. In the experimental study, we report the Rank One (CMC R1)
matching accuracy from CMC for simplicity. For each algorithms, we run a ten-fold
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cross validation strategy to grid search the optimal parameters (if any) in a region of
{10−4,10−3, · · · ,1, · · · ,103,104}.

3.3.2 Results Analysis

Performance of Active Learning for Re-id

To investigate the performance of active learning for Re-ID , we employ the active
learning methods to select 20% of total data for labeling on four benchmark datasets.
Then, the Re-ID methods are trained with the selected and labeled data. We illustrate
the testing result in Table 3.1 in rank one matching accuracy. In the table, active
learning algorithms are displayed by rows and supervised Re-ID methods are displayed
by columns. In Table 3.1, we observe that:

1) All of the active learning algorithms achieve higher performance compared to
the Random selection algorithm consistently on the four datasets. It verifies that the
active learning algorithms can select contributive samples to improve the performance
of the Re-ID methods.

2) For EAL algorithms, our algorithm EAL-PDM and EALPC, which is specified
for Re-ID , outperforms the former EAL algorithms RRSS and TED at around 5% to
7%. It implies that the EAL algorithm that consider the pairwise relationships will
enhance the active learning performance for the Re-ID task.

3) More over, our algorithm EAL-PDM consistently reports higher rank one match-
ing accuracy than EALPC at around 2% on all of the four datasets. It further indicates
that the pair-based early active learning can enhance the Re-ID task and get better
performance than the instance-based algorithms EALPC.

Influence of the Number of Selected Instances

In order to investigate the influence of the number of selected instances, we record
the rank one matching accuracy while increasing the number of selected instance. We
employ XQDA on behalf of the Re-ID methods as it reports the best performance
in Table 3.1. In Figure 3.1. Specifically, for the convenience of comparisons, for our
algorithm, we also record the number of instances rather than the number of pairs. In
the experiments, we observe that:

1) All of the active learning algorithms are outperform the baseline algorithm, i.e.,
Random selection. It confirms that even the number of selected samples are very small
(e.g.,5), the active learning algorithms can select contributive samples to enhance the
Re-ID methods.
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(a) i-LID (b) CAVIAR

(c) PRID (d) VIPeR

Figure 3.1 Rank One Matching Accuracy(%) w.r.t. Number of Selected Samples.
XQDA is chosen as the Re-ID algorithm and trained with samples determined by the
active learning methods with different amounts.
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2) All of the Re-ID algorithms are gradually improved when the number of selected
instance increases. It indicates that increasing the amount of useful labeled data will
improve the performance of the Re-ID task.

3) Our algorithm EAL-PDM consistently outperforms the rest of active learning
algorithms when the number of selected instance varies. More specifically, our algorithm
distinctly outperforms the rest algorithm since more than 50 instances are selected.
It implies our algorithm can efficiently select useful pairs of samples to enhance the
Re-ID tasks.

Convergence

In order to verify the convergence, we force our algorithm to run 50 iterations and
record the object values on the benchmark datasets. We illustrate the performance
of CAVIAR dataset in Figure 3.2 and the performance on the other three datasets
is very similar. We fix α = 0.1 and set the percentage of selected samples to 20% in
the experiment. It can be observed that the object values decrease very quickly in
around first 10 iterations and barely changes after that. It implies that our algorithm
converges very fast.

Figure 3.2 Convergence of the Proposed Algorithm on CAVIAR Dataset
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Diversity Analysis

We investigate the diversity of our algorithms compared to EALPC on dataset i-LID,
both of which aims to analyze pairwise relativeness in Re-ID active learning. We
evaluate the diversity via calculating the average pairwise similarity (APS) defined
as 1

2S

∑
xi,xj∈V,i�=j exp{−‖xi − xj‖/σ2} where σ = 2 is a scale parameter. S is the

number of pairs constructed by the samples V determined by the active learning
algorithms. Ideally, higher APS indicates the similarity of selected pairs are averagely
large. As shown in Figure 3.3, we can observe that the average pairwise similarity of

Figure 3.3 Diversity Analysis of the Proposed Algorithm.The leverage parameter is
α = 0.1 and 20% of the samples are selected for annotation.

our algorithm is consistently lower than EALPC. We number of selected instances are
lower than 30, the APS of EALPC is very high. It indicates that the instance-based
algorithm cannot select diverse samples. On the contrary, our algorithm consistently
report lower APS (around 0.8) in the experiments even when the number of selected
instances are very few. It indicates that our algorithms could select less similar pairs
which improves the diversity of the selected data.
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3.4 Summary

In this chapter, we have proposed a new early active learning algorithm with pairwise
diversity maximization for person re-identification, i.e., EAL-PDM. The proposed
algorithm considers both uncertainty and representativeness in EAL. Moreover, with
pairwise diversity maximization, it improve the diversity of the selected data by reducing
the chance of select similar instance pairs. Experimental study on four benchmark
datasets demonstrates the superior performance of our algorithm over several state-
of-the-art active learning algorithms in Re-ID tasks. For future works, we suggest
applying our algorithm to our works depended on the pairwise relatedness, such as
social network analysis, etc.



Chapter 4

Semi-supervised Bayesian
Attribute Learning

4.1 Background

Existing approaches to Re-ID have mainly focused on representation learning and/or
metric learning to overcome these challenges. In representation learning, many frame-
works learn a factor-based representation to enhance Re-ID task performance [50, 73].
Several recent works have turned to attribute learning methods for further improvement
[66]. In Re-ID, attributes are mid-level features shared by multiple instances, such
as hair color or wearing/not wearing a dress. Overall, the general idea behind these
methods is that there are only a certain number of feature subsets that contribute to
image matching performance. In metric learning, algorithms learn a suitable metric in
the given set of data, which is then used to measure similarity [36, 122].

Previous studies have demonstrated some exciting results, but there are still
challenges associated with each approach. Determining the number of latent factors in
factor-based representation models is a common problem. Typically, cross-validation
forms the solution, where the model evaluates various numbers of latent factors that are
manually pre-defined. However, this is a time-consuming task for large Re-ID datasets,
limiting the scalability of these methods. Another solution is to manually annotate the
attributes to enhance learning performance [66, 104]. However, on large-scale datasets,
this method has high human labor costs.

Metric learning Re-ID methods also have drawbacks. Because they rely on learning
a metric suitable to the Re-ID targets, the performance is sensitive to the given dataset.
Additionally, choosing the optimal method for calculating similarity distances, e.g.,
using �1 norm or �2 norm, can be problematic [114]. Moreover, metric learning methods
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rely on pair-wise label information, such that performance suffers when there are only
a few labels [127].

A few previous works have attempted to jointly apply both representation and metric
learning to Re-ID problems. Some use each technique independently to accomplish a
specific goal. For instance, in [62, 132], researchers use representation learning methods
in pre-processing stage to generate useful features that can then be used in metric
learning. Others combine both methods into a deep learning architecture. However,
these methods still rely on pre-annotated attributes [66, 104] or labeled data [1].

To overcome these limitations with Re-ID tasks, we propose a semi-supervised
Bayesian attribute learning algorithm (SBAL). SBAL combines an Indian buffet process
(IBP) [27] prior in an infinite latent factor model that enables adaptively learning
attributes for Re-ID [6]. Additionally, inspired by statistical relation learning, we also
propose Re-ID probability, which has been successfully used in knowledge graph learning
on large-scale datasets, such as social networks [83]. Wrapped within a Bayesian
framework, SBAL automatically determines the latent factors and simultaneously
estimates a re-identification probability. The contributions of our work are as follows:

• We introduce IBP as the prior of latent factors for learning binary representations.
A dictionary of attributes is adaptively determined using an efficient estimation
method. Thus, our algorithm does not require the dimensionality of latent factors
to be pre-defined, nor the attribute information to be pre-annotated for training,
which are two major limitations of the existing frameworks.

• We propose a re-identification probability for predicting pair-wise relations in
Re-ID . The Re-ID probability does not rely on distance computation and avoids
the problem of determining the optimal method for computing distances inherent
in traditional metric learning.

• We propose a Bayesian framework unifies representation learning and Re-ID
probability estimation and can simultaneously optimize both learning tasks.

• Our algorithm is also able to estimate unknown pair-wise labels using the proba-
bility distributions learned from known pair-wise labels, making our algorithm
robust in semi-supervised learning scenarios.
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4.2 The Proposed Method

4.2.1 Formulation

The following section formally describes each component of the proposed framework.
This section focuses on two-view Re-ID problems, where data is recorded from two
non-overlapping camera views. However, the schema is easy to extend to multi-view
Re-ID scenarios.

Let X = {X1;X2} be the training data, in which X1 ∈ R
d×n1 and X2 ∈ R

d×n2 are
image sets of people from two non-overlapping cameras, camera 1 and 2, that containing
n1 and n2 images respectively. We also have a matrix of pair-wise labels Y ∈ R

n1×n2 ,
where yij = 1 if xi and xj are the same person; otherwise, yij = −1. However, not all
the pairs have labels, i.e., Y is not fully observed. Let yij = 0 indicate the unknown
pair-wise labels for observations xi and xj . The set of pairs with known labels is
denoted as I = {(i, j)|yij ∈ {−1,1}} and the set of pairs without labels is denoted as
U = {(i, j)|yij = 0}.

The first step is to learn representations of the training data with a Bayesian
generative model. Let A ∈ R

d×k be a dictionary of basic patterns (attributes) on k

basis. Let Z ∈ R
k×n be a binary representation matrix of X where zik ∈ {0,1} and

zik = 1 indicates the presence of attribute ak for the image otherwise xi and zik = 0.
Given a set of images X we therefore have X ≈ AZ. After learning a dictionary
of attributes A, the binary representation of a new image x can be obtained by
z = argminẑ∈{0,1} ‖x −Aẑ‖2

2. The prior distributions of A and X are usually assumed
to be Gaussian [6]:

P(A|0,σ2
A) =

K∏
k=1

D∏
d=1

N (adk;0,σ2
A), (4.1)

and

P(X|Z,A,σ2
X) =

N∏
n=1

N (xi;Azi,σ
2
XI). (4.2)

The above formulations assume that the dimensionality K of the latent factor Z is
known as a priori. However, this assumption is often unrealistic in practice, particularly
with large-scale datasets, as the possible attributes in image data become more complex
when the size of the dataset increases. Conventional methods [50, 60] usually include a
model selection stage, such as cross-validation, to select an appropriate value for K by
retraining and evaluating the model. This is an expensive process when the training
data is large and may even miss the optimal value of K if it is outside the range of the
search.
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We overcome this problem by introducing Indian Buffet Process (IBP) as the prior
of Z. IBP is a nonparametric prior and has been widely used in infinite latent factor
models [6, 27]. These models are based on the assumption that an infinite number of
latent factors have a distribution using an IBP prior. Considering finite latent factor
models first, our model assumes there is a binary feature vector zi with K elements for
each instance xi, i.e., zi ∈ {0,1}K . Further, we assume Z has a prior distribution of:

P(Z|α) =
K∏

k=1

α
K Γ(mk + α

K )Γ(N −mk +1)
Γ(N +1+ α

K ) . (4.3)

The binary latent factor zik is drawn from a Bernoulli distribution, Bernoulli(πk),
and parameterized by πk. Furthermore, we assume πk is sampled from a Beta distribu-
tion Beta(α/K,1) where α is the hyper-parameter and K is the number of basis (i.e.
attributes). mk = ∑N

i=1 zk denotes the total number of times the kth attribute in the
N samples is found. Then, according to the infinite assumption, i.e. letting K → ∞,
we obtain the IBP prior of the binary representations [6]:

lim
K→∞

P(Z|α) = αK+ exp(−αHN )
K+!

K+∏
k=1

(N −mk)!(mk −1)!
N ! , (4.4)

where HN = ∑N
i=1 i−1 is the Nth harmonic number and K+ denotes the number of

determined attributes corresponding to the dataset X. Several methods for inferring
the prior in (4.4) have been proposed in previous works, such as sampling methods and
variational methods [27]. However, they can be computationally expensive when the
number of instances N becomes large. As a more efficient alternative, we propose learn-
ing the joint probability P(X,A,Z) = P(X)P(A)P(Z)P(X|Z,A) with an asymptotic
limitation as in [6]. The details of this approach are provided in the next section.

In the second step, with the binary representations of images, we formalize the
Re-ID task as a probabilistic relation learning schema. The re-identification probability
that the image representations zi and zj include the same person is calculated by

P(yij = 1|Z,W) = η(ziWzT
j ), (4.5)

where zi ∈ Z1 and zj ∈ Z2, η(v) = 1
1+exp(−v) is the sigmoid function. We assume the

real value matrix W ∈ R
K×K is drawn from a Gaussian prior:

P(W|Θ,σ2
W) =

∏
(k,k′)∈I

N (wkk′ ; , θkk′ ,σ2
W). (4.6)
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Figure 4.1 The plate notation of our model.

For simplicity, we let σ2
W = 1. When both zik = 1 and zjk′ = 1, the element wkk′ of W

indicates the joint weight of the kth attribute in zi and the k′th attribute in zj . Once W
is determined, the prediction rule for our binary classifier becomes ŷij = sign(ziWzT

j ).
The putative pair-wise labels y∗ for unknown pair-wise labels can also be generated
with this prediction rule for Re-ID probability learning. Thus, the joint probability of
the discriminative model becomes:

P(Y|Z,W) =
∏

(i,j)∈I
P(yij |Z,W)

∏
(i,j)∈U

P(y∗
ij |Z,W). (4.7)

In terms of representation learning, all the samples are combined and used for training,
whether or not they have a known pair-wise label. Given this learning schema handles
both labeled and unlabeled pairs, our algorithm can be considered for semi-supervised
Re-ID tasks. Overall, our model is formulated as

P(X,Y,Z,A,W) = P(X)P(A)P(Z)P(W)P(Y|Z,W)P(X|Z,A). (4.8)

The related parameters have been omitted from for simplicity. In (4.8), both the
representation learning and the re-identification learning models shared the same prior
of latent factors P(Z). A plate notation of our model is illustrated in Figure 4.1.
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4.2.2 Optimization

This section outlines the algorithms for efficiently learning the proposed Bayesian
model in (4.8). The generative model for attribute learning is considered first. Using
the priors from the last section, we have the joint distribution:

1
(2πσ2

A)(K+D)/2 exp{− 1
2σ2

A
Tr(AT A)}. (4.9)

Following [6], we let σX → 0 and α = exp(−λ2/2σ2X). Then

− logP(X,A,Z) ∼ ‖X−AZ‖2
F +λ2K+, (4.10)

where λ can be treated as a penalty parameter as K+ increases. It is easy to verify
that A has a closed formed solution when Z is fixed. Then, according to Bayesian
theory, the posterior distribution of the uncertain remainder in (4.8) is

P(Y,W|Z) = P(Y|Z,W)P(W). (4.11)

According to the definition of re-identification possibility in (4.5) we have

− logP(Y,W|Z) ∝
|I|+|U|∑

(i,j)∈I∪U
sign(Z1WZ2). (4.12)

The remaining subproblem is to infer the probability P(W) when the other parameters
are fixed. A straight forward method is to estimate a single value of W using P(W) ∝
β‖W‖2

F where β represents a leverage parameter as in previous works [22, 83]. However,
our framework exploits the maximum entropy discrimination (MED) method [41] to
learn the distribution of P(W). According to the MED theory, we can learn P(W) by
estimating the expectation of W and solving the optimization problem

min
P(W)∈P

KL(P(W)||P0(W))+CE�(E(W )), (4.13)

where C > 0 is a regularization parameter that leverages the influence of the prior and
the max-margin hinge loss. P denotes the space of distributions of P(W). KL(p||q)
denotes the Kullback–Leibler divergence, which is used to evaluate the distribution
divergence between the distributions p and q. E(W) is the expectation of W, and E(·)
is a loss function.
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Algorithm 3: Semi-supervised Bayesian Attribute Learning
1: Initialize K+ = 1,A = [∑i xi/N ].
2: while objective value in (4.18) deceasing do
3: for n = 1, · · · ,N do
4: for n = 1, · · · ,K+ do
5: Determine zij ∈ {0,1} to minimize the objective value in (4.18) greedily;
6: end for
7: end for
8: A ← XZT (ZZT )−1.
9: Sample a new basis aK+ with probability

P(aK+ = xi −Azi) ∝ ‖xi −Azi‖2
2.

10: update A ← [A,aK+ ];
11: update K+ ← K+ +1.
12: update Θ which is the expectation of W as in (4.17)
13: update y∗.
14: end while

Now, we turn to the error function. As a binary model, the training error of our
model would be Etr = ∑

(i,j)∈I∪U δ(yij �= ŷij) where δ(·) is an indicator function that
equals 1 if the predicate holds, and 0 otherwise. However, the non-convexity of this error
function makes it difficult to deal with, so instead we have used the well-studied convex
hinge loss in our model as a surrogate loss E�(E(W )) = ∑

(i,j)∈I∪U h�(yijf(xi,xj)),
where f(zi,zj) = ziE(W)zT

j denotes the latent discriminant function [124]. After
eliminating irrelevant terms, the subproblem can be written as

min
P(W)∈P

KL(P(W)||P0(W))+C
∑

(i,j)∈I
ξij

∀(i, j) ∈ I ∪U , s.t. yij(Tr(E(W)Z∗
ij) ≥ �− ξij ,

(4.14)

where Z∗
ij = zT

j zi and {ξij}(i,j)∈I∪U are slack variables. According to Lagrangian duality
theory, the optimal problem can be calculated by

P(W) ∝ P0(W)exp{
∑

(i,j∈I∪U)
ωijyijTr(WZ∗

ij)}, (4.15)
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where {ωij}(i,j)∈I∪U . Let Θ be the expectation of W, and the dual problem becomes

max
ω

�
∑

(i,j)∈I
ωij − 1

2(‖Θ‖2
2)

s.t.∀(i.j) ∈ I ∪U , 0 ≤ ωij ≤ C.

(4.16)

This optimization problem can be solved by solving the equivalent primal problem

min
Θ

1
2(‖Θ‖2

2)+C
∑

(i,j)∈I
ξij

∀(i, j) ∈ I ∪U , s.t. yij(Tr(ΘZ∗
ij)) ≥ �− ξij .

(4.17)

Eq. (4.17) can be efficiently solved as a standard binary SVM problem with a vectorized
matrix Z and Θ [90] using public SVM solvers.1 Once the optimal expectation of
W, i.e., Θ∗, has been derived and the distribution of W has been certified, Z can be
updated by greedily minimizing the following joint objective loss function:

‖X−AZ‖2
F +λ2K+ +E�(Θ∗)+ 1

2‖Θ‖2
2, (4.18)

where E�(E(W )) = ∑
(i,j)∈I∪U h�(yij(ziΘ∗xj)). As K+ → ∞, the algorithm alternately

updates A, Θ and Z, along with the putative pair-wise labels y∗. The overall algorithm
is provided as Algorithm. 3.

4.3 Experiments

4.3.1 Datasets

The following set of experiments compare the performance of various classical and
state-of-the-art algorithms on two small-scale datasets and one large-scale dataset that
are widely referred to in Re-ID studies. The VIPeR dataset [30] collects 1,264 images
of 632 people from two non-overlapping camera views. There are two images of each
person, each captured by a different camera. Variations in viewpoint and illumination
conditions are frequent in VIPeR. We randomly select 316 people as the testing set
for the experiment; the ramaining people were used as the training set. The PRID
dataset [35] contains images of individuals from two distinct cameras. Camera B has

1For large-scale datasets, the numbers of their pair-wise labels are huge, we use a Stochastic
Gradient SVM package SvmSgd : http://leon.bottou.org/projects/sgd.
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captured 749 persons and Camera A records 385 persons. In the dataset, 200 peoples
are captured by both cameras. We selected images of 100 people taken by both cameras
as the testing sets for the experiment and used the remaining images for the training
sat. The DukeMTMC-reID dataset [140] is a subset of the DukeMTMC dataset. It
collects 1,404 Re-ID targets and 408 distractors. The dataset comprises 17,661 gallery
images and 2,228 probe images captured by eight cameras , with 1404 individuals
appearing in more than two cameras. We split the dataset equally using 702 people for
the training set and 702 people for the testing set.

4.3.2 Evaluation Metrics and Preprocessing

We used a cumulative matching characteristic (CMC) curve and mean average precision
(mAP) as performance evaluation metrics. Both are widely used in the evaluation
of Re-ID models [138]. In mAP evaluation, average precision is calculated for each
probe, and the mAP is then calculated across all probe images. CMC calculates the
probability that an image in the first rank k gallery set matches the probe image.
Unlike previous works, such as [50, 122] that rank gallery images according to their
similarity with the probe image, our model ranks the gallery images according to their
Re-ID probability P(y = 1|Zprob,W,Zgallery). A higher probability implies the probe
and the gallery image are more likely to be the same person.

In the experiments that test two-view Re-ID models, we randomly selected a set of
images captured by one of the cameras to form the probe set. The images captured by
the other camera view(s) were used as gallery images. Following the pre-processing
procedure outlined in [66], all images were first rescaled to 224 × 224 pixels. Then,
we extracted 2048 dimensional feature vectors from the images using a pre-trained
ResNet-50 deep neural network [32]. We conducted experiments over ten splits and
report the average results.

4.3.3 Supervised Person Re-ID

In the experiments, we first compare our algorithms with several supervised Re-ID
models on the VIPeR and PRID datasets. As shown in Table 4.1, we compared
SBAL with various metric learning Re-ID , metric learning Re-ID algorithms, and joint
learning Re-ID methods. Some representative learning methods, such as LOMO [62],
were included as feature generation methods in joint learning algorithms. Overall, we
observed that most of the metric and representation learning Re-ID methods reported
lower performance than the joint learning methods. Direct joint representation learning
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Category Dataset VIPeR PRID

metric learning for Re-ID

PRML[36] 27.0 4.8
LMF[136] 29.1 12.5

KISSME[51] 25.4 10.2
kLFDA[122] 40.7 19.7
KCCA[69] 37.2 14.5

MLAPG[63] 40.7 16.6
Representation learning for Re-ID DLLR[50] 38.9 25.2

SSDAL[104] 37.9 20.1

Joint learning for Re-ID

LORAE[103] 42.3 18.0
LOMO+KISSME[132] 34.81 -
LOMO+kLFDA[132] 38.58 22.40
LOMO+XQDA[62] 40.0 26.70

LOMO+NullSpace[132] 42.28 29.80
SSDAL+XQDA[104] 43.5 22.6

ImprovedDeep[1] 34.81 -
SBAL(Ours) 45.2 32.4

Table 4.1 Supervised Re-ID result of Rank One Matching Accuracy(%) on two bench-
marks. Best result of each Re-ID algorithm is marked as bold numbers.
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(e.g., LOMO) to metric learning Re-ID methods, i.e., KISSME [51] and kLFDA [122],
enhanced the performance of metric learning Re-ID methods by 10% at most. In
terms of attribute learning methods, deep attribute driven Re-ID (SSDAL) [104] and
our algorithm delivered higher performance than the others. Moreover, our method
consistently reported the best performance of all the algorithms on both the VIPeR
and PRID datasets and surpassed SSDAL by at most 3%.

Category Dataset VIPeR PRID

metric learning for Re-ID

RankSVM[91] 20.7 -
KISSME[51] 18.5 5.1
kLFDA[122] 27.5 14.1
KCCA[69] 24.6 5.3
MFA[122] 25.3 -

Representation learning for Re-ID
SSCDL[73] 25.6 -
DLLR[50] 32.5 22.1

Joint learning for Re-ID SBAL(Ours) 33.6 24.4

Table 4.2 Semi-supervised Re-ID results in terms of rank-1 matching accuracy(%) for
VIPeR and PRID datasets. The best result from each Re-ID algorithm is shown in
bold.

4.3.4 Semi-supervised Person Re-ID

In comparing our algorithms with other semi-supervised Re-ID models on the VIPeR
and PRID datasets, we set two-thirds of the training data as unlabeled. As in previous
works [50, 73], we also introduced supervised metric learning methods RankSVM,
KISSME, kLFDA, KCCA and MFA as baselines. In the experiments, they are training
with only the labeled data. we introduced the semi-supervised version of DLLR [50] as
another baseline. As shown in Table 4.2, all semi-supervised methods demonstrated
lower performance than supervised learning in Table 4.1. More specifically, supervised
learning methods such as kLFDA, KCCA and KISSME We also observed that the
representation learning Re-ID methods showed better performance than the metric
learning methods. The reason for this could be that metric learning methods rely on
pair-wise labels. Overall, our method consistently reported the best performance on
both the VIPeR and PRID datasets, which implies that our algorithm is robust even
with few labeled pairs.
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Category Dataset mAP(%) CMC R1 (%)

(1)
Attributes+KISSME[98] 12.83 21.97

APR[66] 51.88 70.69
ACRN[98] 51.96 72.58∗

(2)

BoW+KISSME[137] 12.17 25.13
Basel.[138] 44.99 65.22

LOMO+XQDA[62] 17.04 30.75
SBAL(Ours) 52.42∗ 71.03

Table 4.3 Attribute learning results on DukeMTMC-reID dataset. (1) Learning with
predefined attributes (2) Learning with no pre-defined attributes. The best result for
each category is in bold. The overall best results are marked with an asterisk (*)

4.3.5 Attributes Learning in Re-ID

We further compared our algorithms with several state-of-the-art attribute learning
Re-ID methods on the large-scale dataset DukeMTMC-reID. We divide the comparison
algorithms into two category, learning methods with pre-defined attributes and those
without. The learning methods with pre-defined attributes included three algorithms.
APR [66] utilizes manually annotated attributes from DukeMTMC-reID to enhance
deep learning Re-ID . ACRN [98] trains an attribute classifier using separate Re-ID
data from PETA [18], which is then used in the training stage to learn the attributes
for DukeMTMC-reID and subsequently learn the Re-ID model. We also use attributes
generated by ACRN as pre-defined attributes and combined them with KISSME as
a baseline method, denoted as Attributes+KISSME. The learning methods without
pre-defined attributes assume that no attribute information has been provided in the
training stage. Following the settings in [137], we used BoW features and KISSME
(BoW+KISSME) and LOMO features and XQDA (LOMO+XQDA) as the baseline
methods for joint learning. We also included a recently presented method Basel.[138]
as a baseline.

The mAP and rank one accuracy for CMC performance is listed in Table 4.3. our
method delivered the best performance in the comparison between attribute learning
methods without pre-defined attributes. Comparing the learning methods with pre-
defined attributes, our method performed 2% worse than the state-of-the-art method,
ACRN, in terms of rank-1 accuracy. It implies our algorithm is very comparable as
our algorithm did not require any pre-defined attributes.
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Figure 4.2 Influence of K+ w.r.t. CMC Rank One accuracy. The automatically
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dataset(marked with asterisk symbol (*)).

4.3.6 The Influence of Latent Factor Dimensionality

To gauge the influence of automatically learned attributes, we used the settings specified
for supervised learning on the VIPeR and PRID datasets and forced our algorithm
to run after researching the optimal K+ and stopped at K+ = 2000. As Figure 4.2
shows, performance generally increased as K+ increased. However, at an optimal
K∗

+ = 1740 for the VIPeR dataset and an optimal K∗
+ = 1588 for PRID dataset,

performance slightly degraded on both datasets. This implies that our algorithm is
able to detect representative attributes with optimal numbers and can provide reliable
Re-ID performance.

4.4 Summary

In this chapter, we proposed a novel semi-supervised Bayesian attribute learning
framework, called SBAL, for person Re-ID . Through this framework, representation
learning and Re-ID probability estimation are simultaneously optimized. The algorithm
relies on semi-supervised learning to handle both labeled and unlabeled pairs of Re-ID
data. It is based on factor-based attribute learning and can, therefore, adaptively
learn binary latent factors that do not have pre-defined dimensionality. Through
extensive experiments on two small datasets, we show that our algorithm outperforms
various state-of-the-art methods. Further, the results reveal comparable performance
on large-scale datasets without the pre-defined attribute information required by
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existing methods. For future works, we suggest extending our algorithm for non-linear
applications by using deep generative models.



Chapter 5

Analogical Transfer learning

5.1 Background

Despite recent advances in machine learning applications, such as text and image
classification, most conventional supervised learning algorithms can not offer satisfactory
schema for learning new models from little data. Such challenge of learning from very
few samples is refereed as few-shot learning or one-shot learning, and has attracted
much attention in recent researches [11, 94, 102, 112, 119]. The main difficulty of
few-shot learning is how to optimize the model when there comes new classes of data but
few labeled training instances are provided for each class. Given sufficient pre-known
labeled data from related domains, such problem can be addressed by transfer learning
(TL) [88]. Transfer learning can benefit few-shot learning by transferring helpful prior
knowledge from some pre-known source domains. With the prior knowledge from the
source domains, the performance of the learning task in the target domain could be
improved even with few samples [16, 88].

A critical problem in transfer learning for few shot learning is the negative transfer.
A negative transfer is considered as an occurrence of the pernicious influence of
performance when transfer knowledge from the source domain to the target domain
[53, 88]. Previous TL methods attempt to relieve this problem mainly on the feature,
instance or model/parameter level. In this chapter, we focus on the last two kinds of
TL algorithms.

Instance transfer learning (ITL) assumes that negative transfers are caused by
some of the source data that miss-leading the target task. Therefore, it suggests
reweighing or selecting the source instances [88]. Typical ITL algorithms analyze the
relativeness based on the representation or distribution between the source and the
target domain. However, because there is few target instances, it is difficult to select
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source instances precisely. Moreover, the source data may not helpful or even may
weaken the performance in practice, due to variously representation and distributions
of real-world data [141].

Parameters transfer learning (PTL) (or model transfer learning) assumes that
related tasks should have shared parameters or hyperparameters of a common prior
distributions [88]. In the field, we refer a typical algorithms, Hypothesis Transfer
Learning (HTL). HTL considers that the source hypotheses, e.g., classifiers, have been
already well-trained and directly integrate them to the target hypothesis [53, 117].
The negative transfer in HTL is defined as a failure of satisfying the improvement
condition (IC) [53], which assumes that the negative transfer occurs when hypothesis
transfer cannot improve the performance of the target tasks. Since HTL treats the
source hypotheses as already well-trained, it ignores the negative transfer caused by
inconsistency of the source instances and the target instances, as analyzed in ITL
[26]. Consequently, it cannot avoid to faced with the dilemma that even some of the
source instances contribute to the source hypothesis, they may be harmful to the target
hypothesis.

To relieve the aforementioned problem, in this chapter, we propose a novel algorithm,
Analogical Transfer Learning (ATL). As in conventional transfer learning researches
[88], we assume the target domain and the source domain are related but not the same.
Therefore, only the source instances related the target instances can help the learning
process in the target domain. We introduce an analogy strategy to transfer learning
based on the cognitive theory of human beings [34, 110]. We propose the analogy
strategy as a two-stage learning schema:

(1) Revision. First, the learner finds out the source instances according to their
contributions directly to the target hypothesis. After that, the source hypotheses
are learned with the selected source instances. In this stage, learner revises the
source hypothesis (compared to the source hypothesis being learned from all of
the source instances). The inconsistent knowledge to the target hypothesis is
eliminated. Here, we borrow the term “revision” from the knowledge representa-
tion theory, in which such process is referred as belief revision [25]. In this stage,
we relive the potential negative transfer on the instance level.

(2) Transfer. Second, the learner transfers the revised source hypothesis with the
target hypothesis together to learn an analogical hypothesis. The analogical
hypothesis is suitable for both the revised source hypotheses and the target
hypothesis (trained with only the target instances). As a result, the source
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Figure 5.1 An example of our algorithm: ‘Learning Guava from other fruits’. First,
in the Revision stage, when a new (target) genus of fruit ‘guava’ comes, the learner
selects the source instances related to the target instances (i.e., fruits related to guava)
and learn the revised source hypotheses. Second, in the Transfer stage, an Analogical
Hypothesis is concluded based on the observations of guava and the revised source
hypotheses. Detailed discussion is in Chapter 2.1.
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and the target hypothesis are consistent with the analogical hypothesis, and we,
therefore, relive the potential negative transfer problem on the hypothesis level.

Generally, the proposed algorithm infers the properties of the target domain via learning
from the source domain. In the algorithm, it propose to learn via a compassion of
the structures and the features of the target and the source instances. Such that, we
denote the proposed algorithm as an ‘analogy strategy’.

An example. We provide a illustration example of ‘Learning guava from other
fruits’ via the analogy strategy in Fig. 5.1. First, in the Revision stage, when a new
genus of fruit (target data) ‘guava’ comes, the learner first selects the source instances
that are related to guava, such as ‘green apples’ and revises the source hypothesis ‘apple’
to ‘apples related to guava’. Second, in the Transfer stage, an analogical hypothesis
is concluded based on the source hypothesis (e.g.,‘apples related to guava’) and the
weak target hypothesis of "guava". Overall, on the target domain, the an analogical
hypothesis is suit to the hypothesis of ‘guava’; on the source domain, it applies to the
source hypothesis ‘apple related to guava.’

In the schema, we refer the final optimized hypothesis as the analogical hypothesis.
The reasons are in two folds: First, different from previous works in HTL, our algorithm
transfers knowledge from both the source hypothesis and the target hypothesis to
optimize our hypothesis, rather than transfer the source hypothesis to the target
hypothesis. Such that, the optimized hypothesis is different from the definition of
‘target hypothesis’ in HTL. Second, in the revision stage, useful knowledge contributes to
the target hypothesis are picked out, which implies that they are analogically transferred
to the target hypothesis. Notice that, rather than learning source hypothesis and
directly use it to target task we learning a analogy hypothesis which is applicable for
both source and target domain. The reason is that there only a few target data are
provided and therefore the target hypothesis is very weak and biased.

5.2 Problem Statement

In this section, we first revisit the transfer learning schema then introduce our analogical
transfer learning algorithm for few shot learning.
Notations. Let the superscript T denote the transpose of a vector/matrix, 0 be a vec-
tor/matrix with all zeros, and ‖v‖ be the �2-norm of a vector v. Let X = {x1, · · · ,xn}T ∈
R

n×d be the data set with d features and n instances. Let Y = {y1, · · · ,yn}T ∈ R
n×c

be the label matrix corresponding to X with c classes. More specifically, in transfer
learning, we denote a source domain data as S = {(xS1 ,yS1), · · · ,(xSn ,ySn)} and a
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Table 5.1 List of Important Notations and Descriptions

Notation Descriptions Notation Descriptions

h The hypothesis T ,S Target and Source domain data
X The instances θ Parameter of analogical hypothesis
Y The labels β The learning pace parameter
|A| Number of instances in A v The indicator vector of instances
t Parameters of hT λj Leverage parameter
s Parameters of hS Φ(v) Regularization term to v

target domain data as T = {(xT1 ,yT1), · · · ,(xTm ,yTm)}. We denote hS(·) and hT (·) are
hypotheses on the source domain and the target domain respectively. Here a hypothesis
can be a mapping from data space to label space, e.g. a classifier. In this chapter,
we focus on the convex hypotheses, i.e. the hypotheses target to minimizes a convex
combination of the empirical risks [53]. We denote |A| as the number of instances in A.
We denote hA �→ hB a hypothesis transfer from A to B. The symbol �→ is a map from
domain A to B on the hypothesis level. A list of important notations and descriptions
is stated in Table 5.1.

Hypothesis Transfer Learning Revisit. Generally, a machine Learning task could
be formed as an Empirical Risk Minimization (ERM) problem:

ET = min
θ

∑
(xi,yi)∈T

L(hT (xi, θ),yi), (5.1)

where hT (·) denotes a hypothesis leaned by domain data T and θ is the parameter. In
normal machine learning task, hT (·) is learned and used in the same domain. However,
there may be only a few data for training hT such that the learning performance is
hard to guarantee.

To relive this problem, one approach is transfer learning (TL). TL algorithms
transfer knowledge from a source domain with sufficient knowledge to the target
domain, in order to improve the performance of target task. Particularly, we could
consider transfer knowledge on the hypothesis level by Hypothesis transfer learning
(HTL) [53]. For simplicity, we first consider there is only one source domain, and will
expend to the multi-source scenario in the next section. We aim to find a transfer of
hypothesis from a source domain S to the target domain T , i.e. hS �→ hT , to optimize
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the ERM of hT . Thus, the ERM problem becomes to:

ET = min
θ

∑
(xi,yi)∈T

L(hT (xi, θ),yi),

s.t. hS �→ hT .

(5.2)

HTL assumes that hS is pre-trained and focus on pursuing an optimal transfer to
improve the performance of hS on parameter level. For the transfer of hypothesis,
the previous works propose hS �→ hT as hT (x,u) = u�x + hS(x,w). Theses works
consider the hypotheses are all in form of a linear function. For non-linear tasks, kernel
functions are used to project the data to high dimensional spaces.

5.3 The Proposed Method

5.3.1 Single-Source ATL

First, we start with the single-source ATL scenario. As discussed in former sections,
HTL treats the source hypothesis as well-trained and the source instances are unacces-
sible. However, some of the source instances that contributes to the source hypothesis
may harm the target hypothesis. Therefore, it is desired to eliminate the harmful
samples when training the source hypotheses. To solve this problem, we suggest to
learn a analogical hypothesis by a new transfer of hypothesis {hT ,hS′ } �→ hA, where
A = S ′ ∪T and S ′ ⊆ S is a revised subset of S that only helpful instances contributing
to the target hypothesis are selected. The analogical hypothesis is not only applicable
to the target hypothesis, but also applicable to revised source hypothesis. We state
the ERM problem of our algorithm as:

EA = min
θ

∑
(xi,yi)∈A

L(hA(xi, θ),yi),

s.t. {hT ,hS′ } �→ hA.

(5.3)

where we denote θ as the parameter of hA. Next we will discuss the two-stage algorithm
for ATL. As mentioned in former sections, the algorithms contains a revision stage for
select source instances for revising source hypothesis and a transfer stage for learning
the analogical hypothesis.
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Revision. First, we learn an initialized target hypothesis utilizing all of the target
instances. We determine the corresponding parameter t for T as follows:

t∗ = argmin
t

1
|T |

∑
(xi,yi)∈T

L(hT (xi,t),yi). (5.4)

where we denote t∗ as the optimal parameter of hT . Eq. (5.4) can be solved as standard
optimization problems depending on the base-learner hypothesis, e.g. SVM classifiers
[33]. The parameter t∗ will not be changed in the next stage. The base-learners can be
standard SVM, kernel SVM or Least Squared SVM. The discussions of base-learners
are in [53, 54].

In former works, source hypothesis is treated as unchangeable. It is trained by all
the source instances. In our algorithm, we propose to revise this source hypothesis
by selecting instance that contribute to the target hypothesis. To revised the source
hypothesis, we introduce a self-paced learning (SPL) schema [52] for selecting S ′ ⊂ S:

minv
1

|A|
∑

(xi,yi)∈A
viL(hT (xi,t),yi)+Φ(v), (5.5)

where vi is the leverage parameter for each instance in A = S ′ ⋃T from a leverage
vector v = {v1, · · · ,vN} and Φ(v) is the regularization term that controls the learning
rate. For the purpose of analogy, we aim to analyze the contribution of only the
source instances to the target hypothesis learning. Such that, we fix the indicator
vector vi = 1, ∀(xi,yi) ∈ T to keep all target instances and only tune the indicator
corresponding vector vj , ∀(xj ,yj) ∈ S. For simplicity, we denote li = L(hA(xi, θ

∗),yi),
let |A| = N , and obtain:

minv
1
N

N∑
i=1

livi +Φ(v). (5.6)

The classical regularization term in previous works [43, 44] are formed as hard/binary
weighted to select examples. For instance, the previous regularization term in [44] is

Φ(v) = − 1
β

N∑
j=1

vj , (5.7)

where β ∈ (0,1] is the learning pace parameter. In experiments β is gradually increased
for studying from helpful to harmful source examples according to their contribution
to target hypothesis.In SPL, it is also considered as “easy to complex” analysis. By
setting the gradient with respect to vj to zero in Eq. (5.6), the optimal weight for the
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j-th example is

v∗
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if li ≤ 1

β
;

0 if li >
1
β

.
(5.8)

However, in practice, since noise is usually non-homogeneously distributed in the data,
it is hard to determine whether one example is easy or complex with hard weights. As
shown in Fig. 5.2 (dash lines), when β becomes larger, when values of loss are small,
they cannot be divided. In this case the self-paced scheme will be invalid.

In this chapter, we specialize the regularization term as a continuous function. The
regularization form of Eq. (5.5) is

Φ(v) = −
N∑

j=1
f(vj). (5.9)

The regularization term of vj is defined as

f(vj) = vj ln(1−vj

vj
)+ ln( 1

1−vj
)+vj(

1
β

+2). (5.10)
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By setting the gradient with respect to vj to zero in Eq. (5.10), we obtain

vj = 1
1+ eli− 1

β −2
. (5.11)

where β > 0 is a sensitive controlling parameter. Soft weight can make our algorithm
more sensitive when loss is small. As shown in Fig. 5.2 (solid lines), when β becomes
larger, the weights are more sensitive to the loss value. Soft weighting is more effective
than the hard weighting and can faithfully reflect the true importance of examples
during training [43]. Moreover, by using a soft weighting, values of our function will
be more distinct when β is small.

After obtained the weights of source instance, we can then select a subset of S ′ ⊂ S.
The weights are directly related to the degree of the contribution of source instances
to the target hypothesis. The revised source hypothesis can be learned:

s = argmin
s

1
|S ′ |

∑
(xi,yi)∈S′

L(hS
′ (xi,s),yi). (5.12)

Transfer. In order to control the stability the transfer of hypothesis, we introduce a
hypotheses transfer regularization term [53, 55] to Eq. (5.3):

min
θ

1
|A|

∑
(xi,yi)∈A

L(hA(xi, θ),yi)+Ω(θ),

s.t. {hS′ ,hT } �→ hA.

(5.13)

where we define the hypotheses transfer regularization term Ω(θ) = ∑
wj∈{s,t} ‖θ −wj‖2

to control the hypotheses dissimilarity between the pre-trained hypothesis hS′ , hT
and the analogical hypothesis hA. Further, we formulate the transfer of hypothesis
{hT ,hS′ } �→ hA as a combination of an inner product and hypotheses hS′ and hT as
hA(x, θ) = θ�x +hS′ (x,s)+hT (x,t), where θ is the parameter. In this equation, the
parameter s and t are fixed after the revision stage. Further, for the loss function, we
use �2-regularization as suggested in [117] for improvement of the generalization ability.

Overall, we formulate the optimization function of ATL as follows:

min
θ

1
|A|

∑
(xi,yi)∈A

‖hA(xi, θ)−yi‖2vi +
∑

wj∈{s,t}
λj‖θ −wj‖2 +Φ(v),

s.t. hA(x, θ) = θ�x +hS′ (x,s)+hT (x,t),
(5.14)
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where λj > 0 are leverage parameters. Since �2-norm is convex and all the considered
hypothesis are either convex or linear combination of convex functions as we assumed,
the proposed problem in Eq. (5.14) is solvable.

5.3.2 Multi-Source ATL

It is easy to expand our algorithm to multi-source domain scenario. A multi-source
domain transfer learning is defined as that there are data from several different source
domains in transfer learning. We denote the multi-source version of our algorithm
as Multi-ATL (abbr. MtATL). For a k source domain scenario, we formulate the
optimization problem for Multi-ATL as:

min
θ

1
|A|

∑
(xi,yi)∈A

‖hA(xi, θ)−yi‖2vi +
∑

wj∈{S,t}
λj‖θ −wj‖2 +Φ(v),

s.t. hA(x, θ) = θ�x +
∑
s∈S

hS′ (x,s)+hT (x,t),
(5.15)

where S = {s
′
1, · · · ,s′

k} is a set of parameters that contains all k source hypotheses
and A = {⋃k

i=1 S ′
i} ∪ T . Each of s

′
k ∈ S is determined separately in revision stage in

the Multi-ATL algorithm. As already revised the source hypothesis for their best
contribution to the target hypothesis in the revision stage, our algorithm does not
require to determine a model selection parameter for each source hypothesis, which are
hard to be weighted in former works [110].

Algorithm 4: Algorithm of Analogical Transfer Learning
Input: Source domain data S, target domain data T .
1: Initialize v, β. Learn hT by determining t;
2: while not converge do
3: (Revision) Update S ′ ⊂ S by determining v∗, β from solving subproblem (5.6) via

Algorithm 5; Update hS′ by determining s on S ′ ;
4: (Transfer) Update θ∗ by solving subproblem (5.14) according to Eq. (5.16);
5: end while

Output: Analogical hypothesis hA with parameter θ∗.

5.3.3 Optimization

In this section, we discuss the optimization method for the ATL problem following the
two-stage learning algorithms.
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Algorithm 5: Optimization Algorithm for optimal v∗

Input: Training data X, hypothesis parameter θ learning pace parameter β, threshold
variable δ.

1: Sort samples xi ∈ X in ascending order by their loss li. Accordingly, denote the labels
and weights of xi as yi and vi.

2: for all xi ∈ X do
3: Calculate score v∗

i according to Eq. (5.11)
4: if v∗

i < δ then vi = si else vi = 0;
5: end for

Output: v∗.

Revision. We start with the revision of the source hypothesis. First, as mentioned
in last section, we first optimize t by utilizing all the target instances as in Eq. (5.4).
Then, with t fixed, the optimization problem of Eq. (5.5) is simplified to Eq. (5.6),
i.e., minv

1
N

∑N
i=1 livi +Φ(v). The regularization term of Φ(v) = f(vi) is derivable w.r.t

vi. Meanwhile, li is a convex loss function. Therefore, we could solve Eq. (5.6) by
determining as mentioned in [43]. Particularly, for each sample xi, its corresponding
optimal indicator value of v is determined as in Eq. (5.11). In practice, for computation
efficiency we truncate v∗

i to zero by a selection control parameter δ. We illustrate the
method in Algorithm 5. Finally, with v determined, we revise the source hypothesis
hS′ by optimize its parameter s as formulated in Eq. (5.12).

Transfer. With v determined, the problem is simplified to Eq. (5.14). First,
when s and t are determined, Eq. (5.14) has an closed form solution by calculating its
derivative at θ:

θ∗ = X(X�X+N
∑

λjI)−1(y −hS′ (X,s)−hT (X,t)−X�(s+ t)), (5.16)

where θ∗ is the optimal parameter of hA. Matrix X is a embedding matrix representing
all training instances x ∈ A and λj > 0 are leverage parameters for hS and hT . Solving
subproblem (5.14) is similar to conventional HTL. However, rather than transfer source
hypothesis to target hypothesis, ATL transfers revised source hypothesis and target
hypothesis to learn an analogical hypothesis. We illustrate the entire algorithm in
Algorithm. 4.

5.4 Experiments

In this section, we conduct extensive experiments to validate the performance of the
proposed algorithm on both synthetic and real-world datasets. On the synthetic dataset,



66 Analogical Transfer learning

we demonstrate the ability of the proposed algorithm to handle the negative transfer.
On the real-world datasets, we use traditional SVM as a baseline. Note that it does
not transfer any knowledge.

5.4.1 Baseline Algorithms

We compare the proposed algorithm with following transfer learning algorithms. We
select algorithms that transfer knowledge on the instance, feature and parameter level.
Joint transfer learning algorithms which attempt to joint transfer on multiple levels,
e.g., feature and parameter, are also investigated. Classical classification algorithms
SVM and TSVM are also compared in the experiments as baselines.

• Baseline algorithms: SVM: Support Vector Machine [33] is used as a baseline.
We implement SVM using libsvm package [10] with a Gaussian kernel. In the
experiments, it only uses source data for training and tests on the target domain.
TSVM [45]: Transductive Support Vector Machine is a classical baseline of
transfer learning.

• Instance transfer learning algorithms: HATL [46]: Hierarchical Active
Transfer Learning exploits cluster structure shared by domains to perform transfer
learning by leveraging source and a limited number of target domain data using
active learning.

• Feature transfer learning algorithms: KBTL [28]: Kernelized Bayesian
Transfer Learning finds a shared subspace of source and target domain by a
kernel-based Bayesian dimensionality reduction model.

• Parameter transfer learning algorithms: HTL [53]: Hypothesis Transfer
Learning transfer knowledge from source to target domain by optimizing target
hypothesis as a combination of source domain and an inner product term. A model
transfer regularization term is introduced to minimize the difference between
the source and the target hypotheses. PMT [3]: Projective Model Transfer
learning analyzes the angle between hyperplanes of source and target domain
hypotheses and adopts it as a regularization term to standard SVM. GreedyTL
(abbr. GdTL) [54]: It is a multi-source hypothesis transfer learning method
with non-negative smooth loss function and convex regularization term. Multi-
KT (abbr. MtKT) [110]: Multi-model Knowledge Transfer algorithm uses a
least square SVM adoptive method to operate a multi-source transfer learning
that can handle few training examples from multiple models.
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• Joint transfer learning algorithms: MMDT [37]: The Max-Margin Domain
Transforms algorithm jointly optimizes over a feature transformation mapping
target domain data and classifier weights to the source domain.

5.4.2 Datasets and Setting

We first conduct an evaluation experiment on synthetic data. Then we run comparison
experiments on real-world data.
1). Synthetic Data. Following the experiment in [7], synthetic source and target data
are independently drawn from a double-moon distribution by 1000 random sampled
instances. The source data is a distribution rotated 60◦ in a counterclockwise direction
from the target domain distribution. Due to the rotation, the source and target domain
results to exhibit different distributions. Indeed, the greater the rotation angle, the
larger the discrepancy of the domains [7]. Labeled training instances are sampled only
20 in each experiment. They are marked as magenta points in Fig. 5.3(a).
2). Text Data. We perform our algorithms on two real-world text data sets. (i) News-
group: The Newsgroup [57] dataset contains approximately 20,000 newsgroup docu-
ments partitioned across 20 different subtopics of newsgroups, around 2,000 documents
for each. For several subtopics, there is a high-level category, such as sci.crypt and
sci.electronics are all belong to category Sci (S), etc. [24]. As in [24], we divide the
data by their subtopics from three categories,i.e., Comp (C), Sci (S), Rec (R), and
Talk (T). The details of categories are presented in Table 5.2. (ii) Reuters: The
Reuters-21758 corpus dataset [59] contains news articles of Reuters website from three
categories, Orgs (O), People (Pe), Place (Pl). Each category contains a total number
of around 1,200 documents from different subtopics. Similar to on Newsgroup, single
source tests and multi-source tests are run as three binary classification tasks aiming
to divide different categories. Specifically, the classification tasks are run on ‘O vs. Pe’,
‘O vs. Pl’ and ‘Pe vs. Pl’. The source and the target data are drawn from different
subtopics under the same categories. We only sample 10 labeled training samples from
target domain data randomly without replacement. Details are omitted as in [24] as
there are much more subtopics.

Settings: For both of the text datasets, we perform single-source and multi-source
test. (i) Single-source Test: First, we run a single-source test. Binary classification
tasks are then performed aiming to classify different categories. (ii) Multi-source
Test: We conduct multi-source test for the purpose of exploring the performance
of multi-source transfer learning. In the test, the source and the target samples are
still drawn from the different subtopics under the same categories. Different from
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Table 5.2 Data Description of Newsgroup

Task Source Target

C vs S

comp.graphics comp.sys.ibm.pc.hardware
comp.os.ms-windows.misc comp.sys.mac.hardware

sci.crypt comp.windows.x
sci.electronics sci.med

sci.space

R vs T

rec.autos rec.sport.baseball
rec.motorcycles rec.sport.hockey

talk.politics.guns talk.politics.mideast
talk.politics.misc talk.religion.misc

R vs S

rec.autos rec.motorcycles
rec.sport.baseball rec.sport.hockey

sci.med sci.crypt
sci.space sci.electronics

S vs T

sci.electronics sci.crypt
sci.med sci.space

talk.politics.misc talk.politics.guns
talk.religion.misc talk.politics.mideast

C vs R

comp.graphics comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware comp.windows.x

comp.sys.mac.hardware rec.autos
rec.motorcycles rec.sport.baseball
rec.sport.hockey

C vs T

comp.graphics comp.os.ms-windows.misc
comp.sys.mac.hardware comp.sys.ibm.pc.hardware

comp.windows.x talk.politics.guns
talk.politics.mideast talk.politics.misc

talk.religion.misc
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the single-source test, the multi-source hypothesis is learned on multiple subtopics.
For example, in Newsgroup on ‘C vs. S’, comp.graphics and sci.crypt are treated as
positive and negative samples for one source data while comp.os.ms-windows.misc
and sci.electronics are treated as another source data. In the experiments, we only
sample 10 labeled training samples from the target domain data randomly without
replacement for both the single-source test and the multi-source test.
3). Image Data. We perform our algorithms on one real-world image data set. AwA:
Animals with Attributes (AwA) data set contains 30,475 images of 40 subclasses of
different animals. For each sample, 4,096 features are learned and extracted by a
VGG-19 deep neural network [101]. We collect six groups of animals as positive samples
according to their biological families, i.e., Cetacea (whale-like), Amphibian (beavers,
etc.), Felidae (cat-like), Canidae (dog-like), Muridae (mouse-like). On average, each
group contains approximately 2,000 images of 5 subclasses of animals. The rest images
of animals are used as negative samples. Similar to the experiment on text data, we
produce the source data and the target data by subclasses of animals.

Settings: We perform inner-family and cross-family test on image data. (i) Inner-
family Test. In the inner-family test, source and target samples are selected as what
we did in text data experiments. For each task, the source and the target samples are
drawn from different subclasses under the same families. (ii) Cross-family Test.To
test the abilities of generalization, we additionally operate a cross-family test on image
data. For each task, source and target samples are drawn from different families. It
brings a challenge that source and target domains are much more different than the
inner-family test. As a result, samples contribute to a well-trained source hypothesis
may not benefit learning of analogical hypothesis, i.e., it would bring more negative
transfers. In each experiment, we alter the number of positive target training data in a
range of {1,5,10,15} with the equal number of negative samples. The performances
are reported in terms of average results.

5.4.3 Performance Evaluation

1). Results on Synthetic Data
The performance of classification of our algorithm on synthetic data is shown in Fig. 5.3.

(1) Our algorithm can enhance the performance on the target domain with few train-
ing samples. As shown in Fig. 5.3(a), in the target domain, when labeled target
training data is insufficient (|T | = 20, marked as magenta points), hypothesis
learned only on these samples fails to divide target samples correctly (boundary
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Figure 5.3 Performances on synthetic data. Left: In the target domain. Given only
a few target samples (magenta points), the standard SVM classifier fails to classify
the two half circles distribution ( the decision boundary is marked as solid lines).
Middle: In the source domain. Given sufficient source samples (yellow and green
points), the standard SVM classifier can classify two half circles distribution (The
decision boundary is marked as dash line). Right: If use entire source samples as
in the Middle figure, it will fall to divide target examples that near to each other as
shown in the center of graph. (The decision boundary is marked as dash line). Given
selected source samples (dark blue points) and few target samples (magenta points), in
our algorithm, the classifier can classify two half circles by a decision boundary (The
decision boundary is marked as solid line).

marked as the solid line). Meanwhile, when labeled training data is sufficient
in the source domain, it is easy to divide two class with source hypothesis (a
kernel SVM base-learner in our experiments) in Fig. 5.3(b). Finally, as shown
in Fig. 5.3(c), our algorithm can solve the classification problem by learning an
analogical hypothesis (boundary marked as the solid line) even with only few
examples (|T | = 20, marked as magenta points).

(2) We also display that negative transfers are relieved by revision of source hypothesis.
First, use all samples to train the source hypothesis and use it in the target
domain will bring negative transfers. As shown in Fig. 5.3(c), the decision
boundary of source hypothesis (dash line) fails to divide the two classes, even
source data could be successfully classified in the source domain in Fig. 5.3(b).
On the other hand, in our algorithm, only the source samples that contributes to
the target hypothesis are picked up to revise the source hypothesis. Then, an
analogical hypothesis is learned not only improved the performance of the target
hypothesis but also the source hypothesis. It is shown in Fig. 5.3(c), the decision
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Table 5.3 Performance (ACC ± standard deviation) (%) of single-source test

Dataset Newsgroup Reuters

Task C vs S R vs T R vs S S vs T C vs R C vs T O vs Pe O vs Pl Pe vs Pl

SVM 62.82±0.1 60.56±0.2 61.34±0.2 60.12±0.3 61.94±0.2 61.81±0.2 61.79±0.2 60.84±0.2 61.66±0.1

TSVM 66.52±0.1 66.21±0.3 67.85±0.2 66.00±0.3 65.99±0.2 69.17±0.2 68.57±0.1 63.66±0.1 62.26±0.1

HATL 66.90±0.2 64.02±0.1 62.54±0.3 63.97±0.3 69.12±0.2 64.87±0.2 88.92±0.2 88.87±0.1 89.06±0.2

KBTL 65.83±0.3 67.43±0.2 62.77±0.2 67.86±0.1 69.02±0.2 63.00±0.2 79.47±0.2 74.44±0.2 75.34±0.1

PMT 63.73±0.1 60.25±0.1 64.25±0.3 61.33±0.3 65.17±0.2 56.65±0.2 67.96±0.1 67.68±0.1 62.26±0.2

HTL 67.81±0.2 66.69±0.1 65.70±0.3 66.56±0.3 66.71±0.2 66.58±0.2 75.81±0.2 74.51±0.2 74.94±0.1

ATL 67.99±0.2 67.96±0.1 69.07±0.2 67.67±0.2 69.66±0.1 67.14±0.2 77.20±0.1 76.01±0.1 78.00±0.2

boundary of the analogical hypothesis (solid line) successfully divides the two
classes.

2). Results on Text Data
Accuracy (ACC) is chosen as the evaluation measurement of the performances. Each
experiment is called ten times independently, and we report the average results with
corresponding standard deviations. In the experiments, we observe that:

(1) Overall, all transfer learning algorithms shows better performances than baseline
SVM, which runs with no transfer of knowledge. It implies that transfer knowledge
from the source domain can help improve classification task on the target domain.

(2) In single source test, as presented in Table 5.3, our algorithm (ATL) outperforms
all the compared algorithms. More specifically, our algorithm (ATL) consistently
shows around 3% better performances than its counterparts on both Newsgroup
and Reuters datasets. It implies that our algorithm is better in generalization in
single source transfer learning scenario. Meanwhile, our algorithm consistently
outperforms the HTL algorithm, which uses all source samples, on both News-
group and Reuters datasets. It implies that our algorithm can control negative
transfer through self-paced sample selection schema.

(3) In the multi-source test, as presented in Table 5.4, our algorithm (ATL) outper-
forms all the compared algorithms give multiple source domains. More specifically,
hypothesis transfer algorithms GreedyTL and Multi-ATL report a better perfor-
mance in all algorithms. However, our algorithm (Multi-ATL) shows a better
performance than its counterparts. It implies that our algorithm could control
negative transfer and is better in generalization in multi-source transfer learning
scenario.
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Table 5.4 Performance (ACC± standard deviation) (%) of multi-source test

Dataset Newsgroup Reuters

Task R vs T C vs S C vs T C vs R S vs T R vs S Pl vs Pe Pe vs Pl O vs Pl

SVM 62.93±0.1 63.15±0.1 61.89±0.2 62.81±0.2 61.84±0.2 61.81±0.2 67.86±0.2 63.27±0.2 61.42±0.1

MMDT 63.08±0.2 63.87±0.1 65.18±0.0 64.36±0.1 65.81±0.0 63.91±0.3 67.33±0.1 69.74±0.2 63.87±0.1

MtKT 64.93±0.2 65.08±0.1 65.23±0.3 63.97±0.3 64.71±0.2 64.87±0.2 73.14±0.3 72.36±0.2 73.87±0.1

GdTL 67.26±0.2 63.55±0.2 73.57±0.2 71.46±0.2 65.67±0.2 63.35±0.1 78.98±0.1 75.57±0.4 80.05±0.2

MtATL 70.85±0.1 70.36±0.1 77.67±0.1 73.92±0.2 71.54±0.1 73.14±0.1 81.79±0.1 80.74±0.1 81.35±0.1
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(b) Cross-family test

Figure 5.4 Performance on Image Data (1) Baseline algorithms SVM is not affected
much by the number of target training samples; (2) Overall, all algorithms perform
better in Inner-family test than Cross-family test; (3) Algorithms that use target
domain knowledge generally perform better when given more target training samples;
(4) Our algorithm outperform others early when given over 10 target training samples.

3). Results on Image Data
Mean Average Precision (mAP) is used as evaluation measurement of the performances.
Each experiment is called ten times independently, and we report the average results
with corresponding standard deviations. As Shown in Fig. 5.4, we can observe that:

(1) Overall, all experiments show that the performance is improved when the number
of target training data is increasing. It is reasonable as target domain information
contributes to the training of analogical hypothesis. Meanwhile, inner-family test
results are better than cross-family results. This is not surprising, as different
subclasses of animals in the same family may have similar features. On the other
hand, since animals from different family may not have similar features, the
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hypothesis trained with cross-family source will not perform as well as trained in
inner-family source.
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(b) γ w.r.t. ACC(%) on Newsgroup

Figure 5.5 Parameter Sensitivity of learning rate γ on Text Data. Our algorithm ATL
(in red lines) performs consistently better than baseline SVM (green lines) at about
10% in Accuracy. Global optimal γ differs on different data sets.

(2) Our algorithms (ATL) (solid red line) performs better when given more than
only ten target training samples. Moreover, it consistently performs better than
HTL algorithm around 5% when given more than ten target training samples.
It implies that our algorithm can control negative transfer through self-paced
sample selection schema and improve hypothesis transfer learning.

(3) Our algorithms (ATL) (solid red line) not only is the best in the inner-family
test but also significantly outperforms others in the cross-family test. It implies
our algorithm is better in generalization.

4). Parameter Sensitivity of Learning Rate
We also test the influence of learning rate on text datasets. The number of target
training samples is fixed at 10. As shown in Fig. 5.5, the learning rate γ is tuned
in region {5,10,15,30,50}. We observe that on Reuters the corresponding accuracies
are { 81.83, 86.04, 84.05, 82.24, 81.47} in which the peak result is reported when
β = 10. On Newsgroup, it outputs { 70.14, 68.35, 66.55, 64.71,6 3.31} in which β = 5
leads the performances. Overall, a small γ seems better than larger β. However, the
optimal choice is varied on different datasets. Overall, our algorithm is consistently
outperformed better than the baseline algorithms.
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5.5 Summary

In this chapter, in order to solve the problem of learning with few-shot text and
image classification, we have proposed a novel analogical transfer learning algorithm.
Rather than transferring knowledge from the source hypothesis to learn the target
hypothesis, ATL learns an analogical hypothesis from both source and target hypothesis.
Also, ATL was able to revise the source hypotheses by select helpful source instances
according to their contribution to the target hypothesis. As a result, the proposed
algorithm efficiently controls the occurrence of the negative transfer on both instance
and hypothesis level. Extensive Experiments on synthetic and real-world datasets
presented a consistent and reliable performance. Moreover, ATL can be easily expanded
to the multi-source scenario.

For the future work, we suggest to investigate how to expand our algorithm by
integrating non-linear hypotheses; Another attractive direction is to theoretically
analyze the stability of our algorithm. For other machine learning applications, given
the flexibility of our algorithm, we suggest to investigate the transfer between more
challenging domains such as from image to video space, etc.



Chapter 6

Domain-aware Unsupervised
Cross-dataset Transfer Learning

6.1 Background

Most existing Re-ID methods are supervised algorithms. They require labeling pairwise
images across camera views for training Re-ID model. However, manually labeled
Re-ID data is hard to produce. On the one hand, it is a tough task even for the
human to annotate the same person in different camera views among a huge number
of imposters [49, 89]. Meanwhile, camera numbers are increasingly large in today’s
world, e.g. over a hundred in an underground station. It makes the labeling cost
becoming prohibitively high because supervised Re-ID methods require sufficient label
information for each pair of camera views. As a result, the scalability of supervised
Re-ID methods is severely limited and hard to applied to practical Re-ID applications.

To overcome the limitation of supervised Re-ID methods, one solution is to perform
the identification with unsupervised learning algorithms, which utilizes only unlabeled
data. However, typical unsupervised methods often are proposed for a single dataset.
Without labels for matching information, unsupervised Re-ID methods sometimes are
unable to recognize persons across camera views because of the uncontrollable and/or
unpredictable variation of appearance changes across camera views, such as body pose,
view angle, occlusion and illumination conditions [47, 89, 120], etc. As a result, most of
the single-dataset unsupervised Re-ID methods report significantly worse performance
than supervised methods.

Few recent works are proposed to address unsupervised person re-identification
problem via cross-dataset transfer learning methods [77, 78, 89]. They intend to capture
dataset-invariant and discriminative representations across multiple datasets. Different
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Figure 6.1 Examples of common and unique appearances on four datasets. Better
being watched in color. Common appearances shared by four datasets: (a) wearing
dark coat and pants; (b) wearing red upper cloth; (c) walking forward; (d) wearing
dark cloth and light color pants. The images in (a) to (d) from different datasets and
they are belong to the different persons. Unique appearances: (e)VIPeR: carrying
backpack; (f)PRID: carrying bags in hand.

from single-dataset works, cross-dataset transfer learning brings an incredible challenge
in Re-ID . First, it requires completely different learning task under different domains,
i.e. identifying sets of non-overlapped persons under different camera networks. Second,
they are also required to learning discriminative presentations on the target dataset,
which may be heavily affected by the source datasets. In the research, we observe that
among the Re-ID datasets there are not only shared common appearances [89, 120]
but also domain-unique appearances.

As presented in Fig. 6.1, we illustrate some instances of Re-ID datasets VIPeR[30],
PRID[35], iLIDS[139] and CAVIAR[14]. First, as shown in Fig. 6.1, (a) to (d), there are
common appearances across domains, such as ‘wearing black cloth’ or similar pose such
as ‘walking forward’. Second, domain-unique appearances also be observed. As shown
in Fig. 6.1, (e) and (f), many individuals are carrying backpacks in VIPeR dataset while
many persons are captured carrying a handbag in PRID dataset. The reason is that
cameras are set up the different scenes, such as shopping mall, campus, and airport.
Therefore, simply ignoring or disregarding the importances of domain-unique features
definitely will degraded the Re-ID performance. As we will show in the experiments,
previous algorithms relying on the common appearance will mismatch the lady to other
person wear dark cloth even that they are clearly not carrying a pink handbags.

However, previous works do not value the importances of domain-unique appearances
[89].
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The best attempt is a recent work in [89], which proposes an unsupervised cross-
dataset dictionary learning methods. The algorithm learns a common dictionary across
multiple datasets. With the dictionary, it can encode samples of Re-ID observations
in a low dimensional space. Additionally, it also learns unique dictionaries for each
dataset but separates them with the shared dictionary. As a result, it fails to leverage
the importances of the common and the domain-unique representations. As we will
show in the experiments, such algorithm will rely on common appearances rather than
on domain-unique appearances, even such appearances are obviously distinct between
persons.

To overcome the mentioned limitations and improve the Re-ID performance, we
propose our algorithm. It is an domain-aware unsupervised cross-dataset multi-task
learning algorithm. Our algorithm not only can obtain shared appearances across
datasets via multi-task dictionary learning but also captures the domain-unique ap-
pearances. Rather than using Euclidean distances, we bring discriminative overlapping
support as the metric of inter-dataset similarity. The importance of common and
domain-unique appearances are valued simultaneously and jointly contribute to the
representation learning for Re-ID task. We illustrate the procedure of our algorithm in
Fig. 6.2. The main contributions of our algorithm are stated in three folds as following:

• We propose a novel unsupervised cross-dataset learning algorithm with support
discriminative regularization for person Re-ID . To our knowledge, it is the
first attempt to leverage the common and domain-unique representations across
datasets in the unsupervised Re-ID application.

• We introduce an iterative re-weights optimization scheme to solve our problem.
Our algorithm simultaneously optimizes the common representation and min-
imizes the overlapping supports across datasets to enrich the domain-unique
representations.

• Extensive experimental studies on benchmark datasets show superior perfor-
mances of our algorithm over state-of-the-art algorithms.

6.2 The Proposed Framework

6.2.1 Formulation

We focus on the cross-dataset person re-identification problem that the datasets are
collected from several different camera networks. In multi-task learning, we are able to
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Figure 6.2 Overview of our algorithm for person Re-ID . Source datasets are datasets
with labels, target dataset is a dataset with no label. A dictionary is learned with all
datasets. With the dictionary, all images are encoded in one low dimensional space.
The linked samples in the source dataset are labeled as the same person.
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learn and transfer knowledge of the labeled source datasets to the unlabeled target
dataset and therefore overcome the limitations of unsupervised Re-ID problem. Such
kind of algorithm is claimed as an unsupervised [78, 89] and asymmetric [133] multi-task
leaning algorithm.

Let X = {XS1 , · · · ,XSN
,XT } ∈ R

d×{n1,··· ,nN ,nT } be the T = N +1 datasets with N

source datasets and one target dataset. Each datasets has d features and nt instances.
We denote the dictionary shared by all datasets as D ∈ R

d×k . With the dictionary D,
every image with feature vector xt,i, i.e. person appearance in original datasets, can be
encoded as a sparse column atom in the coefficient matrix A = {AS1 , · · · ,ASN

,AT } ∈
R

k×{n1,··· ,nN ,nT } in one lower k-dimensional subspace. Notice these corresponded
representations are invariant to the camera view changes or camera network differences,
makes it suitable for person re-identification.

Generally, we formulate the person re-identification task as the following multi-task
dictionary learning problem:

min
D,A

T∑
t=1

R(Xt,D,At)+Ω(A), (6.1)

where T is the number of tasks. D is a dictionary shared by all tasks. We denote the
reconstruction loss R(Xt,D,At) as the Frobenius norm:

R(Xt,D,At) = ‖Xt −DAt‖2
F . (6.2)

We denote Ω(A) as is the regularization term of A. In our work, we specified the
regularization term of our algorithm as a combination function of three regularization
terms for person re-identification:

Ω(A) = αg(A)+βl(A)+γf(A), (6.3)

where α, β,γ are leverage parameters.
Structure sparsity. For the first regularization term, we bring in the structure

sparsity by defining

g(A) =
T∑

t=1
‖At‖2,1 =

T∑
t=1

nt∑
k=1

‖a(tk)‖2, (6.4)

where At is the coefficient matrix for the t-th task and a(tk) denotes the k-th row of
matrix At. We use a �2,1-norm rather than �1 norm in typical dictionary works [31, 50]
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to gain row sparse representations. Such that, the proposed algorithm can find the
shared nonzero supports shared all tasks automatically [74]. Moreover, as discussed
in [139], �2,1-norm can enhance the robustness and suppresses the affect of outliers.
Outliers are widely appeared in Re-ID [49].

Pairwise relationship preserving. The second regularization term is defined as
a Graph Laplacian term:

l(A) =
T∑

t=1

nt∑
i,j=1

wt(i, j)‖at,i −at,j‖2 = Tr(AtLtAT
t ). (6.5)

where at,i and at,j are column atoms of At and Lt = St −Wt is the Laplacian matrix
of Wt. In Wt, each element wt(i, j) is the indicator of relationship of samples in task
t. Specifically, in our task, we follow previous work in [89] to set wt(i, j) = 1 if xt,i

and xt,j are of the same person across views and wt(i, j) = 0 otherwise. For the target
task we initialize wt(i, j) as all zeros because the target dataset does not provide any
label information. The Graph Laplacian term preserves the pairwise relationships of
images across camera views. Minimization of l(A) will force the images of the same
person across views being closed to each other and therefore enhance the performance
of Re-ID .

Domain-aware representation learning. Furthermore, in order to learn the
domain-unique appearances in the schema, we aim to emphasize the dissimilarity of
representations across different datasets. We introduce a support discriminative term:

f(A) =
T∑

t=1

∑
p

∑
q

‖at,p ◦a/t,q‖0. (6.6)

where at,p and a/t,q are the p-th column vector of At and q-th column vector of A/t

receptively. Ai is the coefficient matrix for the t-th task and A/t is the sub-matrix of A
with columns of Ai removed. Here, we let a ◦b represent the Hadamard (element-wise)
product between two vectors a and b. Let a�2 = a ◦ a be the element-wise square
of a. The �0 norm ‖at,p ◦ a/t,q‖0 presents the number of shared supports of sparse
representation at,p and a/t,q of feature vectors xt,p and x/t,q [74]. In our task, they
represents the camera shots of persons between task t and other tasks. Therefore,
minimizing f(A) will decrease the overlapping supports between different datasets, such
that will enlarge the dissimilarity of representations between different tasks (datasets).
As a result, our algorithm can learn the domain-aware representations simultaneously
in dictionary learning.
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Finally, we propose our Re-ID algorithm as a unsupervised multi-task dictionary
learning optimization problem as following:

min
D,A

T∑
t=1

{‖Xt −DAt‖2
F +α‖At‖2,1

+βTr(AtLtAT
t )+γ

∑
p

∑
q

‖at,p ◦a/t,q‖0}.
(6.7)

Algorithm 6: Multi-task Dictionary Learning with support discrimination
term for Person Re-ID

Input: T training Data sets X = {X1, · · · ,XT }, regularization leverage parameters α, β and
γ.

1: Initialize dictionary D ∈ Rd×k, iteration index i = 0.
2: while not converge do
3: Update Ai+1 with Di according to Algorithm 7.
4: Update Di+1 with Ai+1 by solving (6.17).
5: Update i = i+1;
6: end while

Output: Dictionary D.

Algorithm 7: Sparse Code Learning using ADMM for (6.14)
Input: T training Data sets X = {X1, · · · ,XT }, regularization leverage parameters α, β and

γ, penalty parameter u, learning step size η,
1: Initialize dictionary D ∈ Rd×k with A0 = 0 and Λ0 = 0
2: for t = 1:T do
3: Initialize iteration index i = 0;
4: while not converge do
5: Compute Φi

t according to (6.10).
6: Update Zi+1 = Shrink(Ai

t,Λ
i,u,γ).

7: Update Ai+1 by each of its column ai+1
t according to (6.16).

8: Update Λi+1 = Λi −ηu(Zi+1
t −Ai+1

t ).
9: Update i = i+1;

10: end while
11: end for
Output: Estimated sparse code A.
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6.2.2 Optimization

We propose an iterative algorithm to optimize the objective function in (6.7). We
describe the optimization algorithm in Algorithm 6. The details of the proposed
algorithm are as following:

Optimize A. When fixed D and Lt, we optimize At by solving each task as a
subproblem of (6.7):

min
At

‖Xt −DAt‖2
F +α‖At‖2,1

+βTr(AtLtAT
t )+γ

∑
p

∑
q

‖at,p ◦a/t,q‖0.
(6.8)

However, minimizing the last term ‖at,p ◦ a/t,q‖0 is an NP-hard problem. Following
the iterative reweighting schemes in [8, 12, 74, 118], we use the iterative reweighted �2
minimization to approximate the �0 norm, which is able to produce more focal estimates
in optimization progresses [74]. Specifically, in each iteration i(i > 1) the objective value
of f(At)(i) is updated by the reweighted �2,1-norm f(At)(i) = ∑

p

∑
q

‖φ
(i)
t,p,qat,p ◦a/t,q‖2 ,

where φ
(i)
t,p,q is the weight calculated according to the previous iteration. When updating

f(At)(i) in each task t, the vector of other tasks A/t = {a/t,q}nt
q=1 are fixed. In our

algorithm, the pairwise weight is estimated as following:

φt,p,q = 1
(a′

t,p ◦a′
/t,q)�2 + ε

. (6.9)

where a
′
t,p and a

′
/t,q are coefficients from the previous iteration. ε is a regularization

factor decreasing to zero when iteration number increases. Notice computing each
pairwise weight is time consuming. Indeed, affected by �2,1 structure sparsity norm
g(A), coefficients in the same task will high probably present a similar sparse structure.
Therefore, we approximate the self-squared Hadamard product of each atom by the
average of all atoms in the task t as ∀p, (a′

t,p)�2 ≈ (ã′
t)�2 = ∑

p(a′
t,p)�2/nt . Thus the

approximated weight shared by all atoms in task t is rewritten as φ̃t,q = 1
(ã′

t)�2◦(a′
/t,q

)�2+ε
.

We can verify that ∑
φ̃t,p,q ◦ (at,p ◦ a/t,q)�2 = diag((φ̃t,p,q ◦ a/t,q)�2 · a�2

t,p ). Overall, we
define

Φt = diag(
√∑

q
(
√

(φ̃t,q)◦a/t,q)�2), (6.10)
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and thus f(A) can be rewritten as

f(A) =
T∑

t=1

∑
p

‖Φtat,p‖2,1 =
T∑

t=1
‖ΦtAt‖2

F . (6.11)

Finally (6.8) can be rewritten to

min
At

‖Xt −DAt‖2
F +α‖At‖2,1 +βTr(AtLtAt)+γ‖ΦtAt‖2

F . (6.12)

Alternating direction method of multipliers (ADMM) can be used to solve (6.12). First,
by introducing an auxiliary variable Zt = At ∈ R

k×nt , the problem can be reformulated
to

min
At,Zt

‖Xt −DAt‖2
F +α‖Zt‖2,1 +βTr(AtLtAt)+γ‖ΦtAt‖2

F ,

s.t. At −Zt = 0.
(6.13)

Then the augmented Lagrangian function w.r.t At and Zt can be formed as

Lu(At,Zt) = ‖Xt −DAt‖2
F +α‖Zt‖2,1 +βTr(AtLtAt)

+γ‖ΦtAt‖2
F −ΛT

t (Zt −At)+
ut

2
‖Zt −At‖2

2,
(6.14)

where Λt ∈ R
k×m is the Lagrangian multipliers and ut > 0 is a penalty parameter.

The objective function (6.14) can be minimized by alternately updating At and Zt.
We also use a row shrink function[89] when updating Zt which is represented as

zr = max{‖qr‖2 − wt

ut
,0} qr

‖qr‖2
, r = 1, · · · ,k, (6.15)

where qr = ar + λr
t

ut
and zr,ar,λr

t represent the r-th row of matrix Zt, At, Λt respectively.
When Zt is fixed, we can update Ai by each column ai. Optimal solution a	

t can be
obtained by setting derivative of Lu w.r.t at to zero, which is similar as in [31, 74, 89]:

a�
t,k =(DT D+βΦT

t Φt +2βliiI+u1I)−1

× (DT xt,k −2β
∑
k �=i

at,klki +u1Zk+1
i − 1

2
λt,k) (6.16)

where lii is the (i, i) element of L, at,k is the k-th column vector of At, xt,k is the k-th
column vector of Xt, λt,k is the k-th column vector of Λt. The Algorithm solve (6.8)
is detailed in Algorithm 7.
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Optimize Dt. When given fixed A and Lt, the optimization problem in (6.7) is
equal to

‖Xt −DA‖2
F , s.t. ‖di‖2

2 = 1, (6.17)

which is a standard dictionary learning task. We can solve it by updating di column
by column. When updating di, all the other columns dj , j �= i are fixed. Generally, it
is required that each column di of D is a unit vector. It is a quadratic programming
problem and it can be solved by using the K-SVD algorithm[97].

Update Wt. Following [89], we update the affinity matrix Wt the algorithm
obtains optimal A and D. Recall that in the initialization stage, Wt of source datasets
are constructed with labeled information, and WT of target dataset in set as zero
matrix. After operating Algorithm 7, Wt for all the source and the target datasets are
recomputed with At buy cosine similarity metric simcos(ai,aj) = ai·aj

‖ai‖·‖aj‖ where ai and
aj are atoms of coefficient matrix At corresponding to dataset Xt. Specifically, for each
ai, if aj is his k-nearest neighborer, the wi,j = simcos(ai,aj) otherwise wi,j = 0. In our
work we set k = 5. With the renewed Wt, we re-run Algorithm 7 in the next criterion.
The termination condition is set as an loose stopping criterion when |Luk+1−Luk|

|Lu0| ≤ ε.
In practice, ε is set to 0.1 and the total iteration number is typically under 5 in our
experiments.

Figure 6.3 Performances of UDML and Ours algorithm on PRID dataset. Probe images are
provided in the left column. Top-5 candidate images are sorted in descent order according
to their score. The ground truth images are marked with red bounding boxes. (a) Woman
with pink handbag and dark coat. (b) Man with dark coat and white pants (and without
handbag). (c) Woman with white handbag and dark coat.
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6.3 Experiments

6.3.1 Experimental Settings

Datasets. We compare our algorithm with the state-of-the-art algorithms on four
widely referred benchmark dataset of Peron Re-identification. The VIPeR [30] dataset
contains 1,264 images of 632 persons from two non-overlapping camera views. Two
images are taken for each person, each from a different camera. Viewpoint changes
and varying illumination conditions have occurred. The PRID [35] dataset contains
images of 385 individuals from two distinct cameras. Camera B records 749 persons
and Camera A records 385 persons, with 200 of them are same persons. The iLIDS
[139] dataset records 119 individuals captures by three different cameras in an airport
terminal. It contains 476 images with large occlusions caused by luggage and viewpoint
changes. The CAVIAR [14] dataset for Re-ID contains 72 individuals captured by
two cameras in a shopping mall. The amount of image is 1,220, with 10 to 20 images
for each individual. The size of images in the CAVIAR dataset vary significantly from
39 × 17 to 141 × 72. The CUHK03 [61] dataset contains images of 1360 different
individuals captured in a campus by six cameras. A total number of 13,164 images are
recorded and 4.8 images are recorded for each individual on everage.

As in [69, 89], we scaled all images to 128 × 48 pixel images and normalized to
color+HOG+LBP histogram-based 5138-D feature representations [67]. The size of
dictionaries is set to 150 for all experiments. Other parameters are tuned by four-fold
cross-validation method.

Algorithms. We first consider the single-task experiments as a baseline. In the
single-task experiments, there is no source data for transfer learning. Therefore, we
could invesgate wether the cross-data transfer learning (the multi-task methods) can
improve the performance of unsupervised Re-ID . (a) Single-task methods: SDALF: [21]
SDALF generates hand-crafted-feature for unsupervised Re-ID learning by exploiting
the property of symmetry in pedestrian images. eSDC: [135] eSDC method introduces
unsupervised saliency learning for Re-ID task. GTS: [113] GTS is proposed to solve Re-
ID problem by exploring generative probabilistic topic modeling. ISR: [68] ISR applies
sparse representation recognition model for Re-ID built on sparse basis expansions.
CAMEL: [129] CAMEL introduces a cross-view asymmetric metric learning for
unsupervised Re-ID . UMDL_S: We also involve unsupervised multi-task dictionary
method UMDL [89] method with no source data related term for single task test,
which is denoted as UMDL_S. Ours_S: For single-task experiment, there is only one
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dataset. Therefore, the support discriminative term and the Graph Laplacian term are
not activated and only the structure sparse term is used.

(b) Multi-task methods: There are few unsupervised cross-dataset multi-task learning
applied for person re-identification. As in former works [89], we additionally invite
several multi-task learning methods as baselines : AdaRSVM:[78] AdaRSVM is
a cross-domain unsupervised adaptive ranking SVM learning method designed for
person re-identification. It permit the information of negative pairs in target training.
SA_DA+kLFDA:(abbr. SA+kLFDA) In the framework, SA_DA is an unsupervised
domain adaptation algorithm that aligns the source and target domain through data
distributions. After domain adaptation, the supervised Re-ID algorithm kLFDA is
implemented on labeled source data and then applied to the aligned target dataset [89].
kLFDA_N: Furthermore, we provide a transfer learning method baseline. In the
framework, kLFDA algorithm is first trained on source datasets and applied directly
to target dataset with no model adaptation. We denoted this algorithm as kLFDA_N.
UMDL: In [89], the authors proposed a multi-task cross-dataset dictionary learning
algorithm with a Laplacian regularization term for person re-identification. Ours: In
the experiments, we denote our algorithm as Ours. For ablation study, we also perform
our algorithms without support discriminative term in the test, which is denoted as
Ours_nonsup.

Settings. In each experiment, one dataset is selected as the target dataset, the
other datasets are chosen as the source datasets. For the target dataset, no label
information is utilized in training stage; For the source datasets, label information is
utilized for initializing the corresponding Laplacian matrix as mentioned in (6.5).We
report the average performance of 20 independent trials. In each trial, we randomly
divide each dataset into two equal-sized subsets as training and testing sets, with no
overlapping on person identities. For datasets recording two camera views, e.g. VIPeR,
PRID, images from one view are selected randomly as probe sets, and images from
other views are chosen as gallery sets. For multi-view dataset, e.g. iLIDS, one view is
selected randomly as gallery images with others are chosen as probe sets.

6.3.2 Experimental Analysis

Performance of Person Re-identification

As Shown in Table. 6.1, we display the performance of the investigated algorithms by
rank one machining accuracy(%). We observe that: (1) In multi-task learning, our
algorithm consistently shown outstanding performance on all the datasets. Specifically,
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Table 6.1 Rank One Matching Accuracy(%) on Unsupervised Re-ID. (a) Single-task
methods. (b) Multi-task methods.

Dataset VIPeR PRID CAVIAR iLIDS CUHK03

(a)

SDALF 19.9 16.3 - 29.0 -
eSDC 26.7 - - 36.8 8.76
GTS 25.2 - - 42.4 -
ISR 27.0 17.0 29.0 39.5 11.46

CAMEL 30.9 - - - 31.9
UMDL_S 24.3 14.1 33.5 45.7 13.8
OURS_S 26.9 19.2 31.6 44.3 16.2

(b)

kLFDA_N 12.9 8.5 32.8 36.9 7.6
SA+kLFDA 11.6 8.1 32.1 35.8 6.8
AdaRSVM 10.9 4.9 5.8 - 5.8

UMDL 31.5 24.2 41.6 49.3 27.1
OURS_nonsup 24.7 22.52 40.1 48.1 26.8

OURS 31.9∗ 27.9∗ 42.5∗ 50.3∗ 35.2∗

our algorithm and UMDL algorithm performance much better than other algorithms.
It indicates that the cross-data dictionary learning can improve the performance of
Re-ID . Moreover, our algorithm presents better performance on all the datasets than
UMDL. Especially, our algorithm outperforms others by up to 5% in the experiments.
(2) Compared to single-task learning, UMDL and our algorithm report a much better
performance than UMDL_S and Ours_S. It indicates that utilizing the knowledge
from source domains can improve the Re-ID performance. (3) In multi-task learning,
the results of kLFDA_N reports weaker performance, which indicates directly transfer
knowledge from source datasets to target dataset do not help much in Re-ID . Meanwhile,
SA_DA+kLFDA does not report high performance, too. It indicates that unsupervised
domain adaptation methods may not be suitable to cross-datasets Re-ID . The reason is
domain adaptation methods assume that all domains have the same classification tasks
but in our Re-ID problem classes of persons are completely different as the persons are
non-overlapped.

Ablation Study

For the ablation sutudy, we analyze performances of our algorithms (Ours) and our
algorithm without the support discriminative term (Ours_nonsup). UMDL is also
invited as a baseline as it is also a cross-dataset algorithm repor the state-of-the-art
performance in previous works.
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Figure 6.4 Re-id performance for ablation study.

(1) Numerical analysis First, We run Ours, Ours_nonsup and UMDL on on
PRID and CAVIAR datasets. As shown in Fig.6.4(a) and Fig.6.4(b), the Ours algorithm
presents the best performance over UMDL and Ours_nonsup on matching accuracy
consistently on the two datasets. It outperforms others very early around 5% from
top-10 rank performance on PRID and 3% on CAVIAR until all algorithms meet
over 90% matching accuracy on top-50 rank performance. It implies that introducing
support discriminative term improves the Re-ID performance.

(2) Case analysis As we shown earlier in Fig. 6.1, common appearances and
domain-unique appearance are observed in Re-ID datasets. In this section, we aim
to test the ability of our algorithms in discovering these domain-unique appearances.
We pick up three persons with domain-unique appearances as probe images and select
top-5 ranked candidates from the gallery sets the tested algorithms. Candidates are
ranked according to their similarities to the probe in descending order. Ground truth
person images are marked with red bounding boxes.

As displayed in Fig. 6.3, UMDL prefers to rank candidates based on the common
appearances over the domain-unique appearances. For the person (a), UMDL weights
person with ’dark coat and pants’ over ’carrying pink handbag’; For the person (b),
it orders the person with ’dark color coat and white pants’ over ’carrying handbags
(or not)’, such that the imposters wearing the similar clothes but carrying handbags
are ranked over the ground truth person, which does not carrying bags at all. For the
person (c) who is taking white bags, because of a heavily viewpoint change, UMDL
mismatches the probe to imposters with white coats. Meanwhile,our algorithm can
learn the domain-unique appearances and thus successfully matches the probes to the
correct candidates. In the top-5 ranked candidates, we observe that our algorithm can
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select candidates with domain-unique appearances. For the person (a), it selects four
candidates carrying handbags; for the person (c), there are four candidates carrying
shoulder bags.

Moreover, we could verify that the support discriminative term emphasizes the
diversity of unique appearance. As shown in Fig. 6.1, if there is no support discriminative
term, our algorithm (denoted as Ours_nonsup) will not be able to recognize the domain-
unique feature. The performance of Ours_nonsup degrades dramatically as shown in
Table 6.1.

(3) Inter-dataset similarity analysis In order to verify the ability of our algo-
rithm on discriminative representation learning, we further calculate the similarity
index of samples inter-datasets. Idealy, higher similarity index indicates that the
features of samples between two datasets are more similar. In particular, we define the
similarity index of dataset Ai to dataset Aj as: Sij = ∑

p
∑

q ‖ai,p � aj,q‖0/ni where
ai,p is the p-th column of Ai and aj,q is the q-th column of Aj . Experiments are
re-run on PRID dataset with the best performed parameter α = 1, β = 10−3,γ = 3. We
display the inter-dataset similarity index in Table. 6.2. As shown in the table, UMDL
and Ours_nonsup algorithm performances distinctly higher similarity indexes cross
datasets w.r.t. PRID then Ours algorithm. It implies the support discriminative term
can enhance the discriminative capability of representations across-datasets.

Table 6.2 Inter-dataset Similarity Index with Target Dataset PRID (×102)

UMDL Ours_nonsup Ours

VIPeR w.r.t. PRID 12.50 8.24 0.29
CAVIAR w.r.t. PRID 13.01 7.59 0.27

iLID w.r.t. PRID 12.94 10.59 0.22
CUHK03 w.r.t. PRID 19.33 15.49 0.43

6.4 Summary

In this chapter, we proposed a novel domain-aware unsupervised cross-dataset approach
on person re-identification. It is able to characterize both the shared and domain-unique
representations cross different camera-view network domains. Experiments on four real-
world datasets consistently report outstanding performance of our algorithm. Analysis
on selected cases also support that our algorithm enhances the Re-ID performance
by utilizing domain-unique representations. Future works are suggested to extend
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the proposed algorithm to real-world Re-ID scenario with more source domains with
various domain-unique appearances.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This work addresses the problem of visual analysis with limit supervision. In the
work, the limitation supervision is categorized in three scenarios, based on the different
stages of experiments, the accessibility of labeled data and the limitation of annotation
resource. Multiple algorithms are proposed for each scenario:

Chapter 2 and Chapter 3 attempt to solve the problem when there is no labeled data
at the early stage of the experiments and annotation resource is limited. First, Early
Active Learning with Pairwise Constraint is proposed. It is the first instance-based
early active learning method that is applied to visual retrieval task for person Re-ID .
The pairwise constraint is introduced to capture the relativeness of instances of data
for annotation. Second, Pair-based Early Active Learning is proposed to select the
most informative pairs of samples to annotation. Meanwhile, the diversity of the
pairs are considered in the schema to enhance representativeness of labeled data. The
experimental results confirm the effectiveness of the proposed approach in comparison
to multiple active learning algorithms on several datasets.

In Chapter 4, we address the visual retrieval task with scarce labeled data and
abundant unlabeled data. A semi-supervised attribute learning algorithm is proposed.
It jointly learns the latent attributes with appropriate dimensions and estimates the
pairwise probability of the data simultaneously. The experimental results confirm the
effectiveness of the proposed approach.

In Chapter 5 and Chapter 6, transfer learning is studied to complete the visual
analysis task. Our methods utilize and learn prior knowledge from source domains with
sufficient labeled data and transfers such knowledge to the target domain. First, to
address the unsupervised visual retrieval task in person Re-ID , an Analogical Transfer
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Learning schema is proposed for this problem. It attempts to select only the helpful
source domain instances to enhance the models of the target task. Second, the few-shot
visual classification problem is addressed through a Domain-aware Unsupervised Cross-
dataset Transfer Learning algorithm. In the algorithm, the importance of common and
domain-unique appearances are estimated simultaneously and jointly contribute to the
representation learning in the visual classification task. The experimental results show
that our algorithms are effective on both person Re-ID and image classification tasks.

7.2 Future Work

In this work, we clarify that difficulties of visual analysis vary in the different stage of
experiments. For the future work, the improved approaches can be considered in the
same directions:

First, our early active learning algorithms can be applied to other applications
such as recommender systems [96]. Furthermore, our algorithms can improve the deep
active learning methods, such as in face recognition [65] and image classification [116].

Second, for the semi-supervised attribute learning, our algorithm only considers
the sample pairwise probabilities. In the future, it is highly suggested to be extended
to triplet and quadruplet relationship analysis [13], which is widely discussed in person
Re-ID . Moreover, deep relation learning framework [115] can be introduced to our
schema for further improvements.

Third, the proposed analogical transfer learning can be adopted to solve the deep
feature representation learning problem with deep neural network frameworks [120].
For the Domain-aware Unsupervised Cross-dataset Transfer Learning algorithm, future
works can extend and improve the algorithm in unsupervised domain adaption with
deep learning frameworks [76].
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