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Abstract

Error exponent analysis aims at evaluating the exponential behaviour of the performance of the
underlying system given a certain fixed coding rate. It is arguably a significant research topic in in-
formation theory because the analysis characterizes the trade-offs between the error probability of an
information task, the size of the coding scheme, and the coding rate that determines the efficiency
of the task. In this thesis, we give an exposition of error exponent analysis to two important quan-
tum information processing protocols—classical data compression with quantum side information, and
classical communications over quantum channels.

We first prove substantial properties of various exponent functions, which allow us to better charac-
terize the error behaviours of the tasks. Second, we establish accurate achievability and optimality finite
blocklength bounds for the optimal error probability, providing useful and measurable benchmarks for
future quantum information technology design. Finally, we extend the error exponent analysis to a
more general setting where the coding rate is not fixed anymore, a research topic known as mod-
erate deviation analysis. In other words, we show that the data recovery can be reliable when the
compression rate approaches the conditional entropy slowly, and the reliable communication over a
classical-quantum channel is possible as the transmission rate approaches channel capacity slowly.

This line of research lies in the intersection of statistical analysis, matrix analysis, and information
theory. Thus, the techniques employed in this studies could potentially be applicable to various areas
such as classical and quantum information community, detection and estimation theory, statistics, and

secrecy.

Keywords: error exponent analysis, moderate deviation analysis, quantum information theory, classical-
quantum channel, Slepian-Wolf coding, quantum side information, reliability function, large deviation

theory, matrix analysis.
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