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Abstract

Cross-source point cloud are 3D data coming from heterogeneous sensors.

The matching of cross-source point cloud is extremely difficult because they

contain mixture of different variations, such as missing data, noise and out-

liers, different viewpoint, density and spatial transformation. In this thesis,

cross-source point cloud matching is solved from three aspects, utilizing of

structure information, statistical model and learning representation. Chap-

ter 1 introduces the value of cross-source point cloud registration and sum-

marizes the key challenges of cross-source point cloud registration problem.

Chapter 2 reviews the existing registration methods and analyse their limi-

tation in solving the cross-source point cloud registration problem. Chapter

3 proposes two algorithms to discuss how to utilize structure information to

solve the cross-source point cloud registration problem. In the first part of

this chapter, macro and micro structures are extracted based on 3D point

cloud segmentation. Then, these macro and micro structure components

are integrated into a graph. With novel descriptors generated, the registra-

tion problem is successfully converted into graph matching problem. In the

second part, weak region affinity and pixel-wise refinement are proposed to

solve the cross-source point cloud. These two components are unified rep-

resented into a tensor space and the registration problem is converted into

tensor optimization problem. In this method, the tensor space is updated

when the transformation matrix is updated to get feedback from the recent

transformation estimation step. Chapter 4 discusses how to utilize the sta-

tistical distribution of cross-source point cloud to solve matching problem.

xv



ABSTRACT

The goal is to find the potential matching region and estimate the accurate

registration relationship. In this chapter, ensemble of shape functions (ESF)

is utilized to select potential regions and a novel registration is proposed to

solve the matching problem. For the registration, Gaussian mixture models

(GMM) is selected as our mathematical tool. However, different to previ-

ous GMM-based registration methods, which assume a GMM for each point

cloud, the proposed algorithm assumes a virtual GMM and the cross-source

point clouds are samples from the virtual GMM. Then, the transformation

is optimized to project the samples into a same virtual GMM. When the

optimization is convergence, both the parameters of GMM and the trans-

formation matrices are estimated. In Chapter 5, a deep learning method is

proposed to represent the local structure information. Because of arbitrary

rotation in cross-source point clouds, a rotation-invariant 3D representation

method is proposed to robust represent the 3D point cloud although there

are arbitrary rotation and translation. Also, there is no robust keypoints

in these cross-source point cloud because of they come from heterogenous

sensors, train the network is very difficult. A region-based method is pro-

posed to generate regions for each point cloud and synthetic labelled dataset

is constructed for training the network. All these algorithms are aimed to

solve the cross-source point cloud registration problem. The performance

of these algorithms is tested on many datasets, which shows the effective

and correctness. These algorithms also provide insightful knowledge for 3D

computer vision workers to process 3D point cloud.
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