

School of Electrical and Data Engineering Faculty of Engineering and Information Technology

A Dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

D2D Communications in 5G Mobile Cellular Networks

We propose and validate a novel approach to mobility management

Autumn 2018

by Shouman Barua

Supervisor

Professor Robin Braun

Professor of Telecommunications Engineering, School of Electrical and Data Engineering. Core Member, Global Big Data Technologiy Centre University of Technology Sydney

Co-supervisor

Associate Professor Mehran Abolhasan

Deputy Head of School, School of Electrical and Data Engineering Core Member, Global Big Data Technology Centre University of Technology Sydney To my lovely parents...

Declaration

To the best of my knowledge and belief this work was prepared without aid from any other sources except where indicated. Any reference to material previously published by any other person has been duly acknowledged.

Signature:

Production Note: Signature removed prior to publication.

Place: University of Technology Sydney

Date: 6th July, 2018

Acknowledgements

This work would have never been finished without the help of many great inspiring people around me.

Firstly, I would like to mention the most inspiring person of my PhD period, my great supervisor Professor Robin Braun. I would like to express my sincere gratitude to him. His scholastic guidance inspired me every moment to get the work done on time. He was my excellent source of motivation, encouragement and always made me go the extra mile even when I was feeling upset. He guided me in resolving my problems with his solid advice and extensive experience. His vast knowledge of mathematics, simulation and wireless theory helped me to get the topic so quickly. I learned many things from him apart from my research. I am again grateful to him and thank him for everything he has done for me. His trust and patience towards me will always be appreciated and acknowledged. I feel lucky, and it has been my privilege to be able to have him as my supervisor.

I would like to thank my co-supervisor Associate Professor Mehran Abolhasan for agreeing to supervise me and for supporting me throughout the research period.

I would like to thank the Australian Government and the University of Technology Sydney for selecting me for an Australian Post-Graduate Award (APA) Scholarship. I was sincerely honored to have been selected as a recipient of this prestigious scholarship

I was also pleased to have Dr Pakawat Pupatwibul as my research colleague as well as my friend at all times. He inspired me to keep pace and stay calm during the candidature confirmation and the later stages. Thank you, Dr Pakawat, for your great support.

I would like to acknowledge the support of the Graduate Research School (GRS), University of Technology Sydney throughout my UTS doctoral studies and express sincere gratitude to the members of the Centre of Real Time Information (CRIN) for all their support.

My sincere gratitude to the School of Electrical and Data Engineering and Faculty of Engineering and Information Technology for all kinds of support with funding to travel locally and abroad to present my papers. I am genuinely indebted to the UTS CISCO course co-ordinator Max Hendriks for giving me the scope to teach his course at UTS. Teaching is always an exciting undertaking and I gained valuable experience by teaching here.

I am grateful to all the people on Level Six of the Engineering Building for a lot of support, fun and memorable times. You are surely amazing guys who made my early days easier.

I would like to thank my friends Ashis, junior Pantha, Emon, Afaz and many others for their inspiration and co-operation at all times.

I would like to thank all my friends from school, college, the 01 EEE batch of Chittagong University of Engineering and Technology, Bangladesh and all the well-wishers from Germany during my Masters studies there.

Last but by no means the least, I would like to give credit to my lovely parents and family for loving, inspiring and trusting me that I could make this happen. It's been a long time and thank you for encouraging me at all times to attain the highest degree that one can achieve in life. Credit also goes to my relatives and my great well-wisher, my maternal uncle Ajay Kanti Barua and his family who give me and my family so much love and support at all times.

Thank you once again to all of my well-wishers who always trust me and love me beyond the limit.

Abstract

Fifth Generation (5G) stands for future fitness combined with flexible technical solutions that combine with the latest wireless technology. 5G is expected to multiply a thousand times (1000x) in data speed with 20.4 billion devices (IoT) connected to the network by 2020. This literally means everything connecting to everything. From the network point of view, lower latency along with high flexibility is not limited just to 5G. It is already being implemented in real networks. The number of wireless devices connected to networks has increased remarkably over the last couple of decades. Ubiquitous voice and data connections are the fundamental requirements for the next generation of wireless technology.

Device-to-Device communication is widely known as D2D. It is a new paradigm for cellular communication. It was initially proposed to boost network performance. It is considered to be an integral part of the next generation (5G) of telecommunications networks. It takes place when two devices communicate directly without significant help from the base station. In a cellular network, Device-to-Device communication has been viewed as a promising technology overcoming many existing problems. These include capacity, quality and scarce spectrum resources. However, this comes at the price of increased interference and complex mobility issues, even though it was proposed as a new paradigm to enhance network performance. Nevertheless, it is still a challenge to manage devices that are moving. Cellular devices without well-managed mobility are hardly acceptable. Considering in-band underlay D2D communication, a well-managed mobility system in cellular communication should have lower latency, lower power consumption and higher data rates. In this dissertation, we review existing mobility management systems for LTE-Advanced technology and propose an algorithm to be used over the current system so that lower signalling overheads and less delay, along with uninterrupted D2D communication, are guaranteed. We model and simulate our algorithm, comparing the results with mathematical models based on Markov theory.

As in other similar communication systems, mobility management for D2D communication is yet to be explored fully. There are few research papers published so far. What we can say is that the intention of such systems in cellular networks are to enable lower latency, lower power consumption, less complexity and, last but not least, uninterrupted data connections. Our simulation results validate our proposed model and highlight D2D communication and its mobility issues.

An essential element of our proposal is to estimate the user's location. We can say that a mobility management system for D2D communication is hardly workable if the location of the users is not realisable. This dissertation also shows some latest techniques for estimating the direction of arrival (DOA) with mathematical models and simulation results. Smart antenna systems are proposed. It is possible to determine the location of a user by considering the uplink transmission system. Estimating the channel and actual path delay is also an important task, which might be done by using 1D uniform linear array (ULA) or 2D Uniform Rectangular (URA) array antenna systems. In this chapter, 1D ULA is described utilising some well-known techniques. The channel characteristics largely determine the performance of an end-to-end communication system. It determines the signal transformation while propagating through the channel between receivers and transmitters. Accurate channel information is crucial for both the transmitter and receiver ends to perform at their best. The ultimate focus of this part is to estimate the channel based on 2D parameter estimation. Uniform Rectangular Array (URA) is used to perform the 2D parameter estimation. It is possible to estimate azimuth and elevation of a source by using the URA model.

The problem of mobility in this context has been investigated in few papers, with no reliable solutions as yet. We propose a unique algorithm for mobility management for D2D communications. In this dissertation, we highlight and explain the mobility model mathematically and analytically, along with the a simulation of the Markovian model. A Markov model is essentially a simplified approach to describing a system that occupies a discrete state at any point in time. We also make a bridge between our mobility algorithm and a Markovian model.

Research Structure

Figure 1: Stages and structure of the overall research

List of Publications

Most of the theories, technical discussions and contributions in this dissertation are based on the following publications written by the author in which others are the co-authors.

A. International Conference Publications:

[C1] S. Barua and R. Braun, "Mobility management of D2D communication for the 5G cellular network system: A study and result," 2017 17th International Symposium on Communications and Information Technologies (ISCIT), Cairns, QLD, 2017, pp. 1-6. doi: 10.1109/ISCIT.2017.8261187, IEEE.

[C2] S. Barua and R. Braun, "A novel approach of mobility management for the D2D communications in 5G mobile cellular network system," 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), Kanazawa, 2016, pp. 1-4. doi: 10.1109/APNOMS.2016.7737272, IEEE.

[C3] S. Barua and R. Braun, "A Markovian Approach to the Mobility Management for the D2D Communication in 5G Cellular Network System," 2017 5th Asia Pacific International Conference on Computer Assisted and System Engineering (APCASE 2017) ISBN 978-0-9924518-0-6.

[C4] S. Barua, Sinh Cong Lam, P. Ghosa, Shiqi Xing and K. Sandrasegaran, "A survey of Direction of Arrival estimation techniques and implementation of channel estimation based on SCME," 2015, 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, 2015, pp. 1-5. doi: 10.1109/ECTICon.2015.7206986, IEEE.

[C5] S. C. Lam, R. Subramanian, K. Sandrasegaran, P. Ghosal and S. Barua, "Performance of well-known frequency reuse algorithms in LTE downlink 3GPP LTE systems," 2015, 9th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, QLD, 2015, pp. 1-5. doi: 10.1109/ICSPCS.2015.7391766, IEEE.

[C6] Daeinabi, A., K. Sandrasegaran, and S. Barua. "A dynamic almost blank subframe scheme for video streaming traffic model in heterogeneous networks." 2015, 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE.

B. International Book Chapter Publications:

[B1] S. Barua and R. Braun, "Direction of Arrival (DOA) and Channel Estimation." Self-Organized Mobile Communication Technologies and Techniques for Network Optimization. IGI Global, 2016. 216-235.

C. International Journal Publications:

[J1] S. Barua, F. Afroz, S. S. Islam, A. U. Ahmed, P. Ghosal, and K. Sandrasegaran. "Comparative study on priority based QOS aware MAC protocols for WSN." International Journal of Wireless and Mobile Networks 6, no. 5 (2014): p175.

[J2] G, Pantha, S. Barua, R. Subramanian, S. Xing, and K. Sandrasegaran. "A novel approach for mobility management in LTE femtocells." International Journal of Wireless and Mobile Networks 6, no. 5 (2014): p45.

[J3] K. Haider Ali, S. Barua, P. Ghosal, and K. Sandrasegaran. "Macro with Pico Cells (HetNets) System Behavior Using Well-known scheduling Algorithms." arXiv preprint arXiv:1411.2140 (2014).

[J4] F. Afroz, S. Barua, and K. Sandrasegaran. "Performance analysis of FLS, EXP, LOG AND M-LWDF packet scheduling algorithms in downlink 3GPP LTE system." International Journal of Wireless and Mobile Networks 6, no. 5 (2014): p77.

[J5] X. Shiqi, P. Ghosal, S. Barua, R. Subramanian, and K. Sandrasegaran. "System level simulation for two tier macro-femto cellular networks." International Journal of Wireless and Mobile Networks 6, no. 6 (2014): p1.

[J6] D. Suman, S. Barua, and J. Sen. "Auto default gateway settings for virtual machines in servers using default gateway weight settings protocol (DGW)." International Journal of Wireless and Mobile Networks 6, no. 5 (2014): p133.

[J7] S. Ramprasad, S. Barua, S. C. Lam, P. Ghosal, and K. San-

drasegaran. "Group Based Algorithm to Manage Access Technique in the Vehicular Networking to Reduce Preamble ID Collision and Improve RACH allocation in ITS." International Journal of Wireless and Mobile Networks 6, no. 5 (2014): p1.

Contents

Ι	Int	troduction and Background	24
1	Intr	oduction	25
	1.1	Background of Mobility Management	25
	1.2	Research Motivation	25
		1.2.1 Motivation from the Mobility Management Process .	27
		1.2.2 Motivation from the Prospective 5G Cellular System	27
		1.2.3 Motivation From the D2D Communication System .	28
	1.3	Research Objectives and Scopes	28
		1.3.1 Research Objectives	28
		1.3.2 Research Scope	29
	1.4	Problem Statement	29
		1.4.1 Research Question	30
		1.4.2 Proposition Derived From the Research Question	30
	1.5	Approach and Methodology	31
	1.6	Statement of Contributions	31
	1.7	Overview and Outline of Dissertation Structure	33
	1.8	Mathematical Conventions	35
2	The	History of Telecommunication	36
	2.1	History of Mobile Cellular Communication	38
	2.2	First Generation System	38
	2.3	Second Generation System	40
		2.3.1 2.5G	41
		2.3.2 2.75G	41
	2.4	Third Generation System	42
		2.4.1 3.5G	44
		2.4.2 3.9G	44
	2.5	Forth Generation System	44
	2.6	Fifth Generation System	46

	Issu	les of t	the Fifth Generation Network System	48
	3.1	Archit	cectural Change, Extreme Densification	54
	3.2	Massir	ve MIMO	55
	3.3	mmW	, ave	57
	3.4	Cloud	RAN	60
	3.5	Cogni	tive Radio and Multi-band Operation	61
	3.6	Multi-	•RAT	62
	3.7	Device	e to Device Communications	63
	3.8	Some	Other Enhancement	64
		3.8.1	3-Dimentional Beamforming	65
		3.8.2	Enhancement for Co-ordinated Multipoint Communi-	
			cations (eCoMP) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	65
		3.8.3	FDD/TDD joint operation	65
		3.8.4	WiFi Interworking	65
		3.8.5	Enabling of New Services	66
	3.9	Design	n Issues of 5G Network	66
4	Dor	rica ta	Device Communications System in a Collular Not	
4	Dev		-Device Communications System in a Central 19et-	68
	4 1	r Types	of D2D Communication	70
	1.1	1 y p c s 4 1 1	Based on Cellular Awareness	10
		1.1.1		70
	42	412	Based on Spectrum Allocation	70 71
		4.1.2 Basics	Based on Spectrum Allocation	70 71 74
	1.2	4.1.2 Basics 4.2.1	Based on Spectrum Allocation	70 71 74 74
	1.2	4.1.2 Basics 4.2.1 4.2.2	Based on Spectrum Allocation	70 71 74 74 74
	1.2	 4.1.2 Basics 4.2.1 4.2.2 4.2.3 	Based on Spectrum Allocation	70 71 74 74 74 74
	1.2	 4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 	Based on Spectrum Allocation	70 71 74 74 74 74 74 74
	1.2	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 4.2.4 4.2.5	Based on Spectrum Allocation	70 71 74 74 74 74 74 76 76
	1.2	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.2.5 4.2.6	Based on Spectrum Allocation	70 71 74 74 74 74 74 76 76 77
	1.2	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	Based on Spectrum Allocation	$70 \\ 71 \\ 74 \\ 74 \\ 74 \\ 74 \\ 76 \\ 76 \\ 76 \\ 77 \\ 77$
	4.3	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 Challe	Based on Spectrum Allocation	70 71 74 74 74 74 76 76 76 77 77 77
	4.3	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 Challe 4.3.1	Based on Spectrum Allocation	70 71 74 74 74 74 74 76 76 76 77 77 77 77
	4.3	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 Challe 4.3.1 4.3.2	Based on Spectrum Allocation	70 71 74 74 74 74 74 76 76 76 77 77 77 77 77 78
	4.3	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 Challe 4.3.1 4.3.2 4.3.3	Based on Spectrum Allocation	70 71 74 74 74 74 74 76 76 76 77 77 77 77 78 8 78
	4.3	4.1.2 Basics 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 Challe 4.3.1 4.3.2 4.3.3 4.3.4	Based on Spectrum Allocation	70 71 74 74 74 74 74 76 76 77 77 77 77 77 77 78 8 78 78

Π	C	Our Proposition and Modeling	80
5	5 Direction of Arrival (DOA) and Channel Estimation for D2D		
	Cor	nmunication	81
	5.1	Techniques for Estimating DOA	83
		5.1.1 Conventional Beamformer Technique	84
		5.1.2 Capon Beamformer Technique	84
		5.1.3 Multiple Signal Classification (MUSIC) Method \ldots	84
		5.1.4 Estimation of Signal Parameters via Rotational Invari- ance Technique (ESPRIT)	85
	5.2	Multipath Channel Estimation using 2D Parameter Estima-	
		tion Method	85
6	Mo	bility Management of D2D Communication	87
	$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Mobility and Handover Management for the LTE-A Network Mobility and Handover Management for the D2D Communi-	87
		cation of a 5G Network	90
		6.2.1 D2D-Aware Handover Solution	90
		6.2.2 D2D-Triggered Handover Solution	90
	6.3	Proposed Model	94
		6.3.1 Mode Selection	101
		6.3.2 Mode Selection Algorithm	102
II	I	Validation and Simulation	106
7	AN	Aarkovian Approach to the Mobility Management for th	ne
	D2	D Communication	107
	7.1	D2D and the Markov Chain Model	107
	7.2	Markov Chain Analysis on Moving D2D Users	109
		7.2.1 Simple Random Walk on One Dimension \mathbb{Z}	113
		7.2.2 Simple Random Walk on Two Dimension \mathbb{Z}^2	114
		7.2.3 Simple Random Walk on Three Dimension \mathbb{Z}^3	115
8	\mathbf{Sim}	ulation Setup and Results for the Direction of Arrival	117
	8.1	Signal Calibration	117
	8.2	DOA Estimation Using Common Techniques	118
	8.3	DOA Estimation Using Estimated Channel	123
		8.3.1 Histogram Analysis of the DOA and Delays	125

9	Sim	ulation Setup and Results for the Mobility Management 1	.28
	9.1	Simulation Parameters and Results	128

10 Simulation Setup and Results for the Markov Chain Mode	1135
10.1 Simulation Parameters and Results	135
10.1.1 Case 1 \ldots	135
10.1.2 Case 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots	141
IV Conclusion and Appendices	149
11 Conclusion and Future Work	150
11.1 Summary of the Dissertation	150
11.2 Future Works	151
11.3 Limitations of the Dissertation	152
A Direction of Arrival (DOA) and Channel Estimation	153
A.1 Signal Model	153
A.2 Conventional Beamformer Technique	159
A.3 Capon Beamformer Technique	160
A.4 Multiple Signal Classification (MUSIC) Method	160
A.5 Estimation of Signal Parameters via Rotational Invariance	
Technique (ESPRIT)	161
A.6 Signal Model for URA	163
A.7 Covariance Matrix	167
A.8 Multipath Channel Estimation	168
A.8.1 Signal Model	168
B Unitary 2D ESPRIT	171
C LTE UE event Measurement Reporting-Even	ıt
A1, A2, A3, A4, A5, B1, B2	177

List of Figures

1	Stages and structure of the overall research	9
$1.1 \\ 1.2 \\ 1.3$	Basic handover model for the cellular network system Flowchart of approach and methodology	26 32 34
$2.1 \\ 2.2 \\ 2.3$	2G Technologies and features	41 43 45
3.1 3.2	A pictorial view of proposed 5G techonogies and features. A proposed 5G cellular archetecture [1]. [UCE (Unified Con- trol Entity), UDW (Unified Data Gateway), SGW-C (Ser- vice Gateway Control Plane), PGW-C (Packet Data Network Gateway Control Plane), GTP-U (GPRS Tunnelling Proto- col for User Plane), SGW-D (Integrates Service Gateway Data Plane), PGW-D (Packet Data Network Gateway Data Plane), SDN (Software Defined Network), RoF (Radio-over-Fiber), BBU (Baseband Unit), RAPs (Radio Access Points), LRAPs	49
	(Light RAPs)] Image Source: [1]	51
$3.3 \\ 3.4$	Seven technical direction of cellular network proposed in [2]. A concept of Massive MIMO [3]. Image credit: Linkoping	53
	University	56
3.5	Available millimeter wave spectrum proposed for 5G. [4]	58
3.6	Example of millimeter wave cellular mobile access [5]	59
3.7	Could RAN in the next generation network [6]. \ldots	60
3.8	Cognitive Radio Architecture [7, 8]	62
3.9	Example of Multi-RAT system [9].	63
3.10	Example of Multi-hop relay service and D2D proximity com- munication system [5]	64
4.1	D2D communication system in a multi-tier cellular network architecture [10].	68

 4.2 4.3 4.4 4.5 	Different roles of D2D communication [11] Overall classification of D2D communication	69 70 72 75
4.0 6.1	Procedure of inter-eNodeB and intra-MME/S-GW. Image	10
62	source: [13]	89
0.2	cellular handover execution. Image source: [14]	91
0.3	[14]	92
6.4	A signaling flow-chart of D2D-triggered handover solution during mobility. Image source: [14]	93
6.5	Possible channel gains within a cell	95
6.6	A D2D operation model proposed in $[15]$	97
6.7	Proposed mobility algorithm of D2D users	99
6.8	Line diagram of proposed model	100
6.9	Flowchart diagram of the proposed mode selection model	104
7.1	A model of D2D communication in a cellular system	108
$7.2 \\ 7.3$	Basic Markov state model of D2D communication devices Seven position Markov Chain model of D2D communication	109
	in a cellular system	111
7.4	N state model. \ldots	112
7.5	Simple random walk model in one dimension	113
7.6	Simple random walk model in two dimentions	114
8.1	Simulation of DOA estimation using Conventional, Capon, and MUSIC techniques for two sources at angles of 90° and	
	115°	120
8.2	Simulation of DOA estimation using Conventional, Capon, and MUSIC techniques for three sources at angles of 60°, 70°	
	and 120°.	121
8.3	Simulation of DOA estimation using Conventional, Capon and MUSIC techniques for three sources at angles of 40°, 80°,	
	and 120° .	122
8.4	Histogram for the estimation angles of 90° and 120°	125
8.5	Histogram for the estimation angles of 58° and 113° .	126
8.6	Histogram for the experimental delay and true delay for 15	
	time samples	126

8.7	Histogram for the experimental delay and true delay for five time samples	127
9.1	MATLAB animation of proposed model	130
9.2	Plot for the occurrences (percentage)	131
9.3	Mobility throughput of D2D users	133
9.4	Plot for path loss	134
10.1	Simulation results of the 2 state Markov Chain model	136
10.2	Simulation setup for the 6 state Markov Chain model (Case 1).	.137
10.3	MATLAB simulation output of transition matrix P, analytical	
	eigenvectors V and Probability matrix for Case 1	138
10.4	Probability of each step	139
10.5	Probability of each step	140
10.6	Simulation setup for the 6 state Markov Chain model (Case 2).	.141
10.7	MATLAB simulation output of transition matrix P, analytical	
	eigenvectors V and Probability matrix for Case 2	142
10.8	Probability of step A	143
10.9	Probability of step B	144
10.10	0Probability of step C	145
10.11	1Probability of step D	146
10.12	2Probability of step E	147
10.13	3Probability of step F	148
A.1	Concept of basic beamforming technique	154
A.2	Uniform Linear Array (ULA) geometry	154
A.3	Adding the weight vector to the received signal at each an-	
	tenna	158
A.4	Formation of $\bar{\mathbf{A}}$ and $\bar{\mathbf{A}}$ from \mathbf{A} steering matrix	162
A.5	Array geometry of the URA. Image source: [12]	164

List of Tables

2.1	Generations of Mobile Telephone Technologies	39
2.2	Examples of 1G standard technologies	40
2.3	Examples of 2G standard technologies	42
2.4	A comparison between 3G and 4G.	46
3.1	A paradigm shift of cellular architecture $[16]$	50
8.1	Simulation setup for DOA estimation using two/three sources	
	and four sensors.	119
8.2	Experimental setup for estimating channel	124
8.3	Experimental regults for true and estimated DOA and delays	194
	Experimental results for true and estimated DOA and delays.	124

Abbreviations and Acronyms

1G	First Generation System
$2\mathrm{G}$	Second Generation System
3G	Third Generation System
3GPP	3rd Generation Partnership Project.
3GPP2	3rd Generation Partnership Project 2
$4\mathrm{G}$	Fourth Generation System
$5\mathrm{G}$	Fifth Generation System
8PSK	8-Phase Shift Keying
AMPS	Advanced Mobile Phone System
BBU	Baseband Unit
BDMA	Beam Division Multiple Access
CA	Carrier Aggregation
CDMA	Code Division Multiple Access
CDMA2000	Code Division Multiple Access 2000
CoMP	Coordinated Multi-point Transmission
CUE	Cellular User's Equipment
D2D	Device-to-Device
DOA	Direction of Arrival
DUE	D2D User's Equipment
EDGE	Enhanced Data rates for GSM Evolution (EDGE)
eNodeB	Evolved NodeB
eNB	Evolved NodeB
EPC	Evolved Packet Core
ESPRIT	Estimation of Signal Parameters via Rotational Invariance Technique
EV-DO	Evolution-Data Optimised
FDD	Frequency Division Duplex
FDMA	Frequency Division Multiple Access
GFDM	Generalized Frequency Division Multiplexing
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global System for Mobile Communications
GTP-U	GPRS Tunnelling Protocol for User Plane

HDTV	High Definition TV
НО	Handover
HSDPA	High Speed Downlink Packet Access
HSPA+	Evolved High-Speed Packet Access
HSUPA	High Speed UplinkPacket Access
IMT-Advanced	International Mobile Telecommunications Advanced
IoT	Internet of Things
IPV6	Internet Protocol Version 6
ITU-R	International Telecommunications Union-Radio communications sector
KPI	Key Performance Indicator
LAS-CDMA	Large Area Synchronised Code Division Multiple Access
LOS	Line of Sight
LRAPs	Light RAPs
LTE	Long Term Evolution
LTE-A	LTE-Advanced
LTE-Hi	LTE Hotspot Improvement
MC-CDMA	Multi-Carrier Code Division Multiple Access
MDT	Minimisation of Drive Test
MIMO	Multiple Input, Multiple Output
MME	Mobility Management Entity
MMS	Multimedia Message System
MTC	Machine type communication
Multi-RAT	Multiple Radio Access Technology
MUSIC	Multiple Signal Classication
MVDR	Minimum Variance Distortionless Response
NFV	Network Function Virtualisation
NLOS	Non-Line of Sight
NMT	Nordic Mobile Telephone
NTT	Nippon Telegraph and Telephone
OFDM	Orthogonal Frequency Division Multiplexing
OFDMA	Orthogonal Frequency-Division Multiple Access
PAPR	Peak-to-Average Power Ratio
P-GW	Packet Data Network Gateway
PGW-C	Packet Data Network Gateway Control Plane
PGW-D	Packet Data Network Gateway Data Plane
PRBs	Physical Resource Blocks
PSTN	Public Switched Telephone Network
RACE	Random Access Channel
RAPs	Radio Access Points
RAT	Radio Access Technologies

RoF	Radio-over-Fiber
RSRP	Reference Signal Receive Power
RSRQ	Reference Signal Received Quality
RSSI	Received Signal Strength Indicator
SAS	Smart Antenna System
SCMA	Sparse Code Multiple Access
SDN	Software Defined Networking
S-GW	Serving Gateway
SMS	Short Message Services
SMTP	Simple Mail Transfer Protocol
SNR	Signal-to-Noise Ratio
TACS	Total Access Communication System
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
TD-SCDMA	Time Division Synchronous Code Division Multiple Access
UCA	Uniform Circular Array
UCE	Unified Control Entity
UDW	Unified Data Gateway
UE	User Equipment
ULA	Uniform Linear Array
UMTS	Universal Mobile Telecommunication System
URA	Uniform Rectangular Array
V2V	Vehicle-to-Vehicle
VoIP	Voice over Internet Protocol
W-CDMA	Wideband Code Division Multiple Access
WiFi	Wireless Fidelity
WiMAX	Worldwide Interoperability for Microwave Access
ZC	Zado-Chu Sequence.