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Abstract

In the era of big data, recommender systems (RSs) are a powerful engine
to promote intelligent life by helping humans to make decisions concerning
their daily necessities (e.g., food, clothes, and houses) much more efficiently
and effectively, selecting from a large number of choices. Of the various
types of recommender systems, session-based (SB) ones are of great value

and significance, but they are not well studied.

The value of session-based recommender systems comes from two fold.
From the research perspective, a SBRS takes a session as the basic unit
for data organization and thus keeps the intrinsic nature of the original
transaction-like data. As a result, the system effectively retains and models
the rich information (e.g., intra-session dependency) embedded in a session
structure to produce a more reliable recommendation. This modelling can-
not be achieved by other types of recommender systems because they usually
break down the original session data into multiple pair-wised user-item in-
teractions to fit the models. From the business perspective, session data
for session-based recommender systems is much more readily available than
either the rating data or the item attribute data required by other recom-
mender systems including content-based or collaborative filtering ones. This
actually makes session-based RSs much more applicable in real-world busi-

ness.

Though valuable, SBRSs are quite challenging. Generally, a hierarchical
architecture consisting of five levels (cf. Figure 1.1) is built from the low-level

feature values till to the high-level sessions in session data,as demonstrated
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ABSTRACT

in Chapter 1. The challenge arises mainly comes from three considerations:
the heterogeneity of the elements in each level (e.g., there are both categori-
cal and numerical features), the complex dependency within each level (e.g.,
the implicit inter-item relations), and the interactions between different lev-
els (e.g., the inter-session dependency may affect the item occurrence). From
my observation, the existing works mainly focus on the general item-level de-
pendency modelling for session-based recommendations while ignoring other

level relations as demonstrated in Chapter 3.

To bridge the huge gaps between the existing works and great challenges
mentioned above, I build a systematic framework consisting of dependency
modelling from the three core levels, i.e., feature-level, item-level and session-
level (cf. Figure 1.1), for session-based recommendations. To the best of
my knowledge, this is the first framework to systematically address various
levels of challenges in session-based recommendations. Particularly, due to
the limitations regarding space, I address one or two critical challenges in

each level, as shown below.

In Chapter 4, to capture the implicit inter-item relations ignored by ex-
isting rule-based approaches, I proposed an implicit rule-based RS that first
infers implicit rules and then applies the resultant rules for reliable rule-based

recommendations, a basic approach for session-based recommendations.

In Chapter 5, I continue to work on item-level dependency modelling and
focus on the issue of item heterogeneity, referring to different items with
different levels of relevance to the next choice of an item. To this end, I
build an attentive transaction-embedding model to discriminatively integrate
multiple items in a transaction context into a unified context-embedding for

next-item recommendations.

In Chapter 6, the feature-level dependency and feature-item interactions
are modelled by a shallow neural network which takes both contextual items
in a session and their corresponding features as the input. Accordingly, the

cold-start issue in SBRSs has been well addressed.

In Chapter 7, the session-level (i.e.,transaction-level) dependency and
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session-item interactions are modelled. A hierarchical attentive transaction
embedding model is built to jointly model the intra-session (item-level) and
inter-session (session-level) dependency. Accordingly, the influence from pre-
vious sessions on a current session is incorporated for more accurate next-item
recommendations.

All these models are applied to real-world transaction data, like Tmall and
Tafang and they clearly outperform other representative SBRSs. More im-
portantly, this thesis proposes a systematic framework to explore the driving
force behind SBRSs, which provides some insights into both the researchers

and engineers in this domain.
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