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Abstract

In the era of big data, recommender systems (RSs) are a powerful engine

to promote intelligent life by helping humans to make decisions concerning

their daily necessities (e.g., food, clothes, and houses) much more efficiently

and effectively, selecting from a large number of choices. Of the various

types of recommender systems, session-based (SB) ones are of great value

and significance, but they are not well studied.

The value of session-based recommender systems comes from two fold.

From the research perspective, a SBRS takes a session as the basic unit

for data organization and thus keeps the intrinsic nature of the original

transaction-like data. As a result, the system effectively retains and models

the rich information (e.g., intra-session dependency) embedded in a session

structure to produce a more reliable recommendation. This modelling can-

not be achieved by other types of recommender systems because they usually

break down the original session data into multiple pair-wised user-item in-

teractions to fit the models. From the business perspective, session data

for session-based recommender systems is much more readily available than

either the rating data or the item attribute data required by other recom-

mender systems including content-based or collaborative filtering ones. This

actually makes session-based RSs much more applicable in real-world busi-

ness.

Though valuable, SBRSs are quite challenging. Generally, a hierarchical

architecture consisting of five levels (cf. Figure 1.1) is built from the low-level

feature values till to the high-level sessions in session data,as demonstrated

xix



ABSTRACT

in Chapter 1. The challenge arises mainly comes from three considerations:

the heterogeneity of the elements in each level (e.g., there are both categori-

cal and numerical features), the complex dependency within each level (e.g.,

the implicit inter-item relations), and the interactions between different lev-

els (e.g., the inter-session dependency may affect the item occurrence). From

my observation, the existing works mainly focus on the general item-level de-

pendency modelling for session-based recommendations while ignoring other

level relations as demonstrated in Chapter 3.

To bridge the huge gaps between the existing works and great challenges

mentioned above, I build a systematic framework consisting of dependency

modelling from the three core levels, i.e., feature-level, item-level and session-

level (cf. Figure 1.1), for session-based recommendations. To the best of

my knowledge, this is the first framework to systematically address various

levels of challenges in session-based recommendations. Particularly, due to

the limitations regarding space, I address one or two critical challenges in

each level, as shown below.

In Chapter 4, to capture the implicit inter-item relations ignored by ex-

isting rule-based approaches, I proposed an implicit rule-based RS that first

infers implicit rules and then applies the resultant rules for reliable rule-based

recommendations, a basic approach for session-based recommendations.

In Chapter 5, I continue to work on item-level dependency modelling and

focus on the issue of item heterogeneity, referring to different items with

different levels of relevance to the next choice of an item. To this end, I

build an attentive transaction-embedding model to discriminatively integrate

multiple items in a transaction context into a unified context-embedding for

next-item recommendations.

In Chapter 6, the feature-level dependency and feature-item interactions

are modelled by a shallow neural network which takes both contextual items

in a session and their corresponding features as the input. Accordingly, the

cold-start issue in SBRSs has been well addressed.

In Chapter 7, the session-level (i.e.,transaction-level) dependency and

xx
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session-item interactions are modelled. A hierarchical attentive transaction

embedding model is built to jointly model the intra-session (item-level) and

inter-session (session-level) dependency. Accordingly, the influence from pre-

vious sessions on a current session is incorporated for more accurate next-item

recommendations.

All these models are applied to real-world transaction data, like Tmall and

Tafang and they clearly outperform other representative SBRSs. More im-

portantly, this thesis proposes a systematic framework to explore the driving

force behind SBRSs, which provides some insights into both the researchers

and engineers in this domain.

xxi
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Introduction
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CHAPTER 1. INTRODUCTION

1.1 Research Background

1.1.1 An Overview of Recommender Systems

In the era of big data, people’s daily living activities from eating, and deciding

on clothes to housing and traveling–are becoming more and more convenient

and intelligent. A prominent driver behind this trend is recommender sys-

tems (RSs): software tools and techniques that provide suggestions for prod-

ucts or services most likely to be of interest to a particular user (Resnick &

Varian 1997, Burke 2007). The suggestions relate to various decision-making

processes, such as what items to buy, what music to listen to, or what online

news to read (Ricci, Rokach & Shapira 2015). For instance, thanks to the

suggestions from recommender systems implanted in E-commerce websites

and smart phone apps, people now use much less time and effort browsing

and deciding upone what to eat or buy from the array of available outlets

(Hu, Cao, Wang, Xu, Cao & Gu 2017). In practice, RSs accumulate massive

profile and behaviour data from the end users to understand their habitats

(Shoujin, Ying & Kun 2013, Xiaoling & Qiaofeng 2012) and preferences, so

as to provide valuable and applicable suggestions to them.

There are various types of RSs, based on different work mechanisms; they

work on different kinds of datasets and are applicable to different scenarios.

For example, content-based recommender systems (CBRSs) work on item and

user description (content) data to build item representations and user profiles,

suggesting items similar to those a target user has liked in past (de Gemmis,

Lops, Musto, Narducci & Semeraro 2015). On the contrary, collaborative

filtering recommender systems (CFRSs) work mainly on user-item interac-

tion data, usually the users’ preference matrix on items, to predict those

missing preference values without need for exogenous information about ei-

ther items or users (Koren & Bell 2015). The hybrid recommender systems

are the combination of these two while context-aware recommender systems

(CARSs) incorporate the contextual information such as time, and place

into a recommender system to make recommendations under certain circum-
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CHAPTER 1. INTRODUCTION

stance (Adomavicius & Tuzhilin 2015). All these recommender systems have

achieved great success and have been applied in a large variety of areas, such

as item recommendations, music recommendations, movie recommendations,

point of interest (POI) recommendations, and news recommendations. Some

successful real-world applications include item-to-item collaborative filtering

for product recommendations in Amazon (Linden, Smith & York 2003) and

the various approaches for video recommendations that make up the Netflix

recommender system (Gomez-Uribe & Hunt 2016).

1.1.2 Values and Significance of Session-based Recom-

mender Systems

However, the success of the above RSs does not mean they are flawless. Some

issues still have not been well addressed in existing RSs. One of the most crit-

ical is how to model the intrinsic session structure of transaction data, which

is usually ignored in existing works. This blind spot exists because these

RSs, including collaborative filtering, usually first break down the inherent

session structure of the original transaction data into pair wised user-item

interactions and then put the interaction pairs from all sessions together

to form a global interaction pool. Note that in the shopping basket-based

transaction data, a session refers to a transaction consisting of multiple items

purchased in one supermarket visit (I will formally define the concept ses-

sion in Chapter 2). In practice, a session is a basic unit in transaction-like

data, one of the most essential characteristics of such data. The breaking

down of sessions may easily lead to local information loss and thus cause

problems. For example, the item co-occurrence information can be lost with-

out session structures (e.g., the well known combination of bread and milk

can be only observed in a session) , and the users’ short-term preferences,

usually indicated by the items occurrence in a session, are lost as well. Such

local transaction information is quite critical for reliable recommendations

in a specific transaction event. The reasons this information is important

are varied: (a) Without session information, it is easy to generate duplicated
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recommendations, namely to recommend items similar or identical to those

ones already in hand. (b) Without session information, the users’ shopping

behaviour patterns (e.g., some users may like to buy milk when they have got

bread, while others may like to pick up juice instead) are lost and thus it is

hard to generate personalized recommendations that match a user’s specific

behaviours well. (c) Without session information, the users’ preference shifts

are lost, and thus it is impossible to capture a users’ current preferences to

make timely recommendations; users’ preferences are often dynamic rather

than static. (d) Without session information, it is difficult to capture users’

local and short-term preferences, which is shown only in very recent sessions

rather than in all sessions, for reliable recommendations. In practice, the

aforementioned recommender systems usually capture only the users’ global

and long-term preferences.

To address these issues, session-based recommender systems (SBRSs) are

proposed. Different from other RSs, SBRSs remain the session structure of

the transaction data and take it as a basic data unit. In this case, all the

local information is kept that is ignored by other RSs, such as content-based

filtering and collaborative filtering approaches. As a result, SBRSs can easily

fix the defects of these RSs and thus provide more reliable recommendations

by focusing more on the dynamic and local aspects. To be specific, a SBRS

usually takes a part of session as the context for the prediction of the un-

known part of the session, for example, next-item(s) recommendations (Hu,

Cao, Wang, Xu, Cao & Gu 2017), or takes several recent sessions as the con-

text to predict the next session, for example, next-basket recommendations

(Rendle, Freudenthaler & Schmidt-Thieme 2010). As the items already cho-

sen in the current or recent sessions are considered, SBRSs more easily avoid

recommending items that are similar or identical to them; thus, the dupli-

cated recommendations are avoided. Also, as each user’s purchased items

are organized into sessions, it becomes easy to know his or her transaction

behaviour patterns within and between sessions by analysing item distribu-

tions in and across sessions. Furthermore, only the current or recent sessions,
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rather than the whole item pool from all sessions, are inputted into a SBRS,

which enables the possibility of paying attention to users’ short-term and

local preferences at specific time points rather than the long-term and gen-

eral preference. This approach actually makes the recommendations more

timely, focused and reliable. More importantly, it makes easier the observa-

tion of a user’s preference shifts by analysing the item changes in a sequence

of sessions in SBRSs. In practice, this treats a user’s preferences as dynamic

rather than static, more closely matching real-world cases.

From the business perspective, SBRSs are even more important than

other RSs. Essentially, the availability of session data is much stronger than

that of data (e.g., item features or ratings) required by other RSs. This

provides SBRSs a much wider application range. In practice, SBRSs can be

applied anywhere as long as transactions are recorded.

Noticing the necessity and significance of SBRSs in both the academy

and industry, some researchers have started to work in this area on various

of specific tasks, including next-song recommendations, next-item recom-

mendations and next-basket recommendations. The approaches are built

on different techniques including pattern/rule mining, Markov-chain mod-

els, factorization machines and neural networks. Although great progress

has been achieved, some obvious defects remain, promoting the work of this

thesis. A comprehensive review of these existing session-based recommender

systems will be given in Chapter 3. Next, I offer a brief summary and a gap

analysis, which triggered my thinking in this topic and motivate my ideas in

this thesis.

1.2 Research Motivations

To motivate my research, I first present an overview of the key challenges

and complexities in this area and then briefly summarize existing works.
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1.2.1 An Overview of Challenges and Issue Complex-

ity

Though extremely valuable and significant, session-based recommender sys-

tems are yet quite challenging and complex as shown in Figure 1.1. Clearly,

there is a hierarchical structure consisting of five main levels in session data,

from the feature value level till to the domain level. Out of these five, the

three levels in the middle are the core in most SBRSs. The logical relations

between different components of this structure are as follows: items are the

core concept and element in this structure because they are not only the

basic data unit in the source transaction dataset but are also the focus of the

final goal of the systems (e.g., to recommend the next item or items). Each

item may have multiple features, like category and price. Each feature usu-

ally contains multiple values, and some values may be more frequent, while

others may not. Furthermore, a collection of items typically forms a session

(e.g., a transaction consisting of multiple items). A dataset collected from

one domain (e.g., food) in a certain period often contains multiple sessions.

Generally, the challenges in such a complex structure are varied: (a)

the heterogeneity issue within each level (e.g., usually an item has both

categorical and numerical features, which are heterogeneous and cannot be

modelled in the same way); (b) the dependency or coupling issue within each

level (e.g., some items are dependent upon each other; for instance, bread and

milk are usually bought together); (c) other complexities within each level

(e.g., imbalance issue of items in a session data); and (d) the interactions

between different levels (e.g., items belonging to the same category are more

likely to occur together in transactions). To be more specific, a list of critical

challenges is presented for each level on the right side of Figure 1.1.

1.2.2 A Summary of Research Progress and Gaps

Certain existing works have focused on SBRSs, such as pattern/rule-based

recommendations and next-item recommendations; these works have achieved
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Figure 1.1: Key challenges in session-based recommender systems

some progress. However, from my observations, most of these works fell into

the same branch and focused on one typical issue in SBRSs: only on inter-

item dependency modelling at the item level for the recommendations. In

another words, these works are limited to solving only one critical challenge

of the more than 10 listed in Figure 1.1. To be specific, addressing the

challenge of inter-item dependency on item-level, they not only ignore other

issues, including implicit dependency (Wang & Cao 2017) and item hetero-

geneity on the same level, but also ignore challenges from other levels (e.g.,

feature dependency on feature level and inter-session dependency on session

level), and the interactions between different levels. Here, item heterogeneity

particularly refers to some items being relevant to subsequent items, while

others are not. For example, in a session {bread, orange, apple, milk}, bread
is relevant to the subsequent item milk while orange, apple are not. There-

fore, bread and orange (apple) are two heterogeneous items to milk. Such

ignorance in the modelling leads to information loss and thus degrades rec-

ommendation performance in most cases. For instance, the missing implicit
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relations between items in rule-based RSs leads to duplicated and unreliable

recommendations (Wang & Cao 2017). Furthermore, either feature-level or

session-level dependency can affect item occurrence significantly (Weng &

Liu 2004). A typical example is that items from the same category, sharing

similar features, often have the same function, and thus they tend not to

occur in one transaction event to avoid duplicated items during shopping. I

detail the gaps of related works in the following paragraphs.

The existing works focusing on item-level dependency modelling for SBRSs

can be divided into two branches: the pattern/rule-based type and modeling-

based type. Both branches focus mainly on the inter-item dependency mod-

elling and thus recommending next items given the session context, (e.g.,

those items chosen in hand). To be specific, pattern/rule-based recommender

systems discover association rules, correlation rules or sequential patterns

(Yap, Li & Philip 2012) from transaction data based on item co-occurrence

to guide recommendations (Wang & Cao 2017, Adda, Missaoui, Valtchev &

Djeraba 2005). Such approaches, on the one hand, treat all items equally

and thus ignore the item heterogeneity, on other hand, focus only on fre-

quent and explicitly co-occurring items while missing implicit relations over

items. Modelling-based approaches build models to learn the complex inter-

item dependencies and then employ these models for recommendations with-

out explicit rules or patterns (Hidasi, Karatzoglou, Baltrunas & Tikk 2015).

The Markov chain(MC) (Rendle et al. 2010) offers a straightforward way to

model transitions between items in sequential data. However, it captures

only first-order transitions while ignoring higher-order ones. A model based

on matrix factorization (MF) factorizes the matrix of transition probability

into latent factors (Chou, Yang, Jang & Lin 2016), but it commonly suffers

from sparsity issues. (Hidasi et al. 2015) have applied deep recurrent neu-

ral networks (RNN) to model sequential data but the high computational

cost caused by the complex structures prevents its application to large data.

Moreover, MC, MF and RNN were originally designed for time-series data

with a rigid natural order, hence they do not fit unordered session data (e.g.,
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it makes no difference whether milk or bread is put into the cart first (Wang,

Hu, Cao, Huang, Lian & Liu 2018)). More importantly, all these models do

not take into account item heterogeneity.

The significance of incorporating item features to improve recommenda-

tion performance has been substantially demonstrated by other recommender

systems like content-based filtering (Han & Karypis 2005, Karypis 2001) and

collaborative-filtering (Menon, Chitrapura, Garg, Agarwal & Kota 2011).

However, only quite few works in SBRSs involve item features and model

the feature level dependence and its interactions with item-level dependence.

One typical method is to calculate the similarity between items in terms

of their features and then connect new items or rarely occurring items to

popular ones to drive new rules or patterns, guiding cold start item recom-

mendations in pattern/rule-based RSs (Weng & Liu 2004). Such a method is

too adhoc and relies on a strong assumption that similar items with respect

to features have the alternative functions and thus appear similar. As a re-

sult, the recommendation results may not be so solid where the assumption

does not hold.

Studies have been done to model the session-level dependency. The inter-

transaction association rule (Tung, Lu, Han & Feng 2003, Berberidis, Angelis

& Vlahavas 2004) or pattern mining (Lee & Wang 2007) is a basic approach

to capture inter-transaction dependency. Such frequent co-occurrence-based

methods are limited to frequent items only and ignore infrequent ones or the

implicit relations. In addition, they have not been well applied to recom-

mender systems to the best of my knowledge. Another typical approach is

next-basket recommendations, in which the RSs try to predict what would

be possibly bought in the next transaction via modelling the dependency

between different transactions (Rendle et al. 2010, Yu, Liu, Wu, Wang &

Tan 2016). The success of such works has demonstrated the great impact of

session-level dependency on item choice. However, these works are limited

to next-basket recommendation task, different from my specific focus (next-

item recommendations). From my observations, nearly all existing works
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on next-item recommendations are limited to intra-transaction (item-level)

dependency modelling.

1.3 Research Issues

In this thesis, I aim to build a systematic and original framework for session-

based recommendation task based on my own understanding of the compre-

hensive challenges in this area and my observation of the current research

progress in the community. Due to limitations of space for this work, I build

a hierarchical framework consisting of the three core levels rather than all five

levels presented in Figure 1.1 for SBRSs. Specifically, I would like to build a

framework which contains the feature level, item level and session level and

will address one or two critical challenges in each level which have not yet

been well-studied in existing works. Particularly, I focus on the challenges

in red in Figure 1.1. Next, I demonstrate them one by one in the following

four subsections.

1.3.1 Implicit Rule-Based Recommender Systems

I aim to address implicit inter-item dependency at the item level in this

section. Specifically, the duplicated and unreliable recommendation issues

in existing pattern/rule-based recommender systems are fixed by inferring

implicit rules with much more implicit relations over items embedded.

Pattern/rule-based recommender systems are an intuitive and basic so-

lution to session-based recommendations and have been widely used due to

their simplicity (Lin, Alvarez & Ruiz 2002). However, one of the most signif-

icant drawbacks of such methods is that they are based only on the explicit

co-occurrence-based relations, such as association or correlation, while ignor-

ing the implicit relations between items. This leads to information loss and

thus results in unreliable recommendations. For instance, an existing rule-

based RS usually recommends coke to a user if he/she just bought pizza,

as these two are frequently bought together. However, if the user has just
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bought a sprite, the coke should not be recommended, as it likely would be a

duplicated recommendation. In this case, the implicit relation between coke

and sprite plays an important role to form a more reliable recommendation.

This example actually demonstrates the significance of incorporating implicit

relations into rule-based RSs. To this end, I would like to explore how to

effectively and efficiently discover implicit rules that are built on implicit

relations – more importantly, how to employ these implicit rules to help in-

crease recommendation reliability of rule-based recommender systems? Both

issues are comprehensively explored in Chapter 4.

1.3.2 Attention-Based Transaction Embedding for Het-

erogeneous Items

In this part, I focus on another critical challenge at the item level: the

item heterogeneity issue in the inter-item dependency modelling, as shown

in Figure 1.1. In practice, different items in a session usually have different

relevance scales and thus contribute differently to the occurrence of the suc-

cessive items; namely, the items are heterogeneous. Therefore, to identify

and emphasize those more relevant items in a session context is quite critical

to build an informative and discriminative session context. This will lead to

more reliable and accurate recommendations of the following items. How-

ever, such a challenge is ignored by most existing session-based recommender

systems. Motivated by this observation, I particularly focus on how to learn

the relevance scales of different items and how to integrate them to form a

unified session context for the later recommendations in Chapter 5.

1.3.3 Integrating Item Features for Cold Start Item

Recommendations

In this section, I switch to the feature level from the item level. Particularly, I

focus on feature level dependency and the interactions with item level depen-

dency modelling to address the cold start issue in session-based recommender
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systems. Cold start item is a common issue faced by recommender system

community. Although many existing works focus on this issue in other rec-

ommender systems including content-based and collaborative filtering ones,

it is not yet well studied in session-based recommender systems. To this end,

in Chapter 6, I explore how to incorporate item features when modelling

item dependency effectively to jointly model item level dependency, feature

level dependency and the interactions between them in an session-based rec-

ommender system.

1.3.4 Jointly Modelling Intra- and Inter-Session De-

pendency for Next-item Recommendations

In this section, I focus on the session level dependency (i.e., inter-session

dependency) and the interactions with item level dependency modelling to

improve the recommendation performance of session-based recommender sys-

tems. A session is a basic data unit in session-based recommender systems.

However, most existing session-based RSs recommend next items by model-

ing only the intra-session dependency at the item level within a single session

while ignoring the effect from other sessions. In Chapter 7, I explore how

to incorporate inter-session dependency into session-based RSs and how to

jointly model both intra- and inter-session dependency for next-item recom-

mendations.

1.4 Research Contributions

The contributions of this thesis come from multiple folds and are summarized

as below:

• A comprehensive and systemic framework (Figure 1.1) is built to reveal

the complexities in session data and to reveal the challenges in session-

based recommendations. It enables the in-depth understanding of the

working mechanism behind session-based recommender systems from
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different levels and perspectives. This provides a good reference to the

recommender system community (Chapters 1 and 2).

• An implicit rule discovery framework combing a corresponding imple-

mentation algorithm is proposed. The algorithm can effectively and

efficiently discover implicit rules on items based on the implicit rela-

tion analysis, which goes far beyond the traditional rule mining work

that focuses only on the explicit rule mining (Chapter 4).

• A basic session-based recommender system: an implicit rule-based re-

ceommneder system is built on the mined implicit rules; empirical anal-

ysis results show that it can provide more reliable recommendations

compared to existing rule-based recommender systems which are based

only on explicit rules (Chapter 4).

• I argue that items in a session are heterogeneous in terms of the contri-

butions to the next-item occurrence, namely different items contribute

differently to the next-item recommendations. Accordingly, a frame-

work is proposed to address the item heterogeneity issues in session-

based recommender systems (Chapter 5).

• An algorithm based on shallow neural network and attention mecha-

nism is proposed to implement the proposed framework. The exper-

imental results show its superiority over state-of-the-art session-based

recommender systems (Chapter 5).

• A framework to address the cold-start issue in session-based recom-

mender systems is proposed, in which, item IDs and their features are

mapped into a latent vectors simultaneously and are jointly learned.

In such a case, the feature level dependency and the interactions be-

tween item features and item occurrence are embedded into their latent

vectors for the following recommendation tasks (Chapter 6).

• A corresponding implementation algorithm is designed for cold-start

item recommendations. Empirical studies on real-word transaction
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data sets demonstrate the effectiveness of the designed algorithm (Chap-

ter 6).

• I argue that in addition to the item level intra-session dependency, the

session level inter-session dependency also contributes greatly to the

choices on items. In such a case, a framework is proposed for next-item

recommendations by jointly modelling intra- and inter-session depen-

dencies (Chapter 7).

• An algorithm is designed to implement the proposed framework and the

corresponding empirical studies demonstrate the significance of consid-

ering inter-session relations and the superiority of the designed algo-

rithm (Chapter 7).

To summarize, a unified hierarchical framework consisting three levels is pro-

posed for session-based recommender systems. On each level, one or two crit-

ical challenges are addressed by a corresponding original and well-designed

framework together with a corresponding algorithm. Particularly, the ad-

dressed issues include implicit relation modelling and the item heterogeneity

issues at the item level, feature level dependency modelling for the cold-start

issue, and the inter-session dependency modelling issue at the session level.

1.5 Thesis Structure

This thesis is structured as below:

Chapter 2 first formalizes the session-based recommendation problem

with a series of relevant definitions and notations, followed by a brief in-

troduction of some preliminaries which are used in this thesis. Finally, the

commonly used evaluation metrics and baseline methods are introduced.

Chapter 3 provides a comprehensive survey of session-based recommender

systems. I first give an introduction to demonstrate the necessity of session-

based recommender systems and its difference from other kinds of recom-

mender systems like collaborative filtering. Then I compare different scenario
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settings of session-based recommender systems, followed by a categorization

of session-based recommender system approaches. Following the categoriza-

tion, I review all categories one by one, from the pattern/rule-based methods

and sequential pattern-based methods to Markov chain-based ones, factor-

ization machine-based approaches, shallow neural network-based methods,

and deep neural network-based ones.

Chapter 4 emphasizes the significance of implicit relations over items in

pattern/rule-based approaches for session-based RSs. An implicit rule dis-

covery framework is built on the basis of implicit relation analysis over items

in a session or transaction. Accordingly, an effective and efficient implicit rule

mining algorithm is designed and implemented. An implicit rule-based rec-

ommender system for session-based recommendations is built on the mined

implicit rules. Empirical studies of the implicit-rule based recommender sys-

tem on two real-world transaction datasets show the significance of consider-

ing implicit relations over items and the superiority of my implicit rule-based

recommender systems over other rule-based recommender systems.

Chapter 5 identifies the item heterogeneity issue in session-based recom-

mender systems (SBRSs). The significance of taking item heterogeneity into

account is illustrated and a framework to solve this issue is proposed. A

corresponding algorithm based on shallow neural network is designed to im-

plement it. Experimental analysis on real-world transaction datasets demon-

strates my work’s advantage over state-of-art works in this area.

Chapter 6 focuses on another significant issue in session-based recom-

mender systems: the cold-start issue. A framework combing a correspond-

ing algorithm to embed both items and their corresponding features into

latent representations simultaneously for the following session recommen-

dation tasks is designed. Experimental analysis is conducted to show the

algorithm’s merit.

Chapter 7 targets another significant issue in session-based recommenda-

tions: inter-session modelling. A framework together with a corresponding

algorithm is proposed to consider both intra-session dependency and inter-
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session dependency simultaneously for one of session-based recommendation

tasks: next-item recommendation. Empirical analysis on real-world datasets

is done to show the algorithms advantages and the significance of considering

inter-session dependency.

Chapter 8 concludes this thesis by summarizing the aforementioned works.

Meanwhile, some possible future directions related to this thesis are given.

A thesis profile to show the overview of this thesis is given in Figure 1.2

below.
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CHAPTER 2. PRELIMINARIES AND FOUNDATIONS

2.1 Formalisations and Definitions

In this section, I firstly define the notion of a session and session-based recom-

mender systems, which are the core concepts in this thesis. Then, I formalise

the session-based recommender system task, and accordingly, give some vital

relevant definitions and notations that are commonly used in this thesis.

Session: The Oxford Dictionary defines this as ‘ A meeting of an official

body, especially a legislature, council, or court of law, to conduct its business’.

In this thesis, I have expanded the concept of session to garner a more general

meaning.

Definition 2.1 (Session). A session can be a set of objects that are collected

or consumed during one event or over a certain period of time, or a session

can be a collection of actions, or events that happen over a period of time.

For instance, both a set of items purchased in one transaction and a list

a songs that are listened to by a user in one hour can be interpreted as being

’sessions’. In addition, a user’s successive clicks on different web pages in

one hour can also be regarded as a ’session’. In this thesis, as I mainly work

on shopping basket-based transaction data, a ’session’ refers particularly to

a transaction consisting of all the items purchased in it.

Session-based Recommender Systems (SBRSs): As the name im-

plies, an SBRS is a recommender system that is built on the basis of sessions

and that takes a session as the basic organisational unit of the data. It is

the session which actually differentiates an SBRS from other representative

recommender system models such as content-based ones and collaborative

filtering ones. They usually split a session structure into a smaller granular-

ity, for example, user-item (song, or movie) interaction pairs, which actually

destroys the intrinsic structure of a session and thus leads to information

loss. Accordingly, I have formally defined the Session-based Recommender

Systems.

Definition 2.2 (Session-based Recommender Systems (SBRSs)). Recom-

mender systems that built on session data; usually given a part of known
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session information, such as a part of a transaction consisting of multiple

items, a SBRS then tries to predict those unknowns such as the left part of

that transaction, as the recommendation target.

Specifically, according to whether one recommends a part of the cur-

rent session or the whole next session, SBRSs are usually divided into two

branches: ’next-item(s) recommendations’ and ’next-session recommenda-

tions’ (which are also called ’next-basket recommendations’ in some litera-

tures’), which will be formally defined later. In this thesis, I only focus on

the first branch.

In following the general definitions of these two key concepts in this thesis,

I next specify and formalise the research issues in this work, and I then give

the specific definitions of some relevant concepts which are used in the follow-

ing chapters. It should be noted, however, that session-based recommender

systems are widely applied in various scenarios including shopping basket-

based transaction recommendations, next-song recommendations, and next-

POI recommendations, of which, the first of these is the most representative

and has attracted the most critical attention. To narrow the research scope

and achieve a more in-depth research, this thesis only works on shopping

basket-based transaction data for next-item recommendations. Other scenar-

ios can be transferred into this framework to some degree by manipulating

the source data.

Generally, in recommender systems, especially in shopping basket-based

transaction data, a user u and item i are two basic concepts, and all the users

and items constitute, the user set U = {u1, u2...u|U |} and the item set I =

{i1, i2...i|I|} respectively. The interactions between users and items, such as

‘click’ or ‘buy’, form the other impotent component in recommender systems,

and they are usually presented in the form of a session. For instance, the

clicks of one user on all items in one online shopping create a ’click session’.

More generally, the items purchased by one user during a certain shopping

event form a transaction session, which is simplified as a ’transaction’ in

this thesis. Accordingly, a transaction of user u(u ∈ U) is formalised as
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tu = {i1, i2...itk...i|tu|}(itk ∈ I, tu ⊂ I), and all transactions in a transaction

dataset constitute the transaction set T = {t1, t2...t|T |}. In the next-item

recommendations, a session s often refers particularly to a transaction t(t ∈
T ). It should be noted that a user u may have multiple sessions to form

a session set Su = {s1, s2...suk...s|Su|} since a user can often have multiple

transaction events over a certain period of time, such as a week or a month.

Here a session suk = {i1, i2...isk...i|suk|}(isk ∈ I, suk ⊂ I) consists of multiple

items purchased in user u′s kth transaction.

Generally, a session-based recommender system tries to make predictions

on unknown session information as the recommendation target t such as

next item(s) or the next session by taking the prior session information as

the context and condition. The prior session information is then unified as

a session context c in this work. In this thesis, I mainly focus on making

recommendations on the next item(s) on the basis of a certain session context.

According to whether the session context only comes from one session or

whether it crosses multiple sessions, the session context is usually divided

into the intra-session context cIa and the inter-session context cIe. They are

defined respectively as below.

Definition 2.3 (Intra-Session Context). In taking the session sn as the cur-

rent session for recommendations (recommend unknown items in sn), the

intra-session context cIa is the set of items that are already known in sn:

namely, cIa = {i|i ∈ sn, i �= it}.
Definition 2.4 (Inter-Session Context). In taking session the sn as the cur-

rent session for recommendations, the inter-session context cIe is the set of

recent sessions that have happened before sn: namely, cIe = {sn−1, sn−2...s|cIe|}.
I wanted to differentiate between two kinds of session contexts because

they actually deliver different kinds of relations for the recommendation task:

intra-session contexts embed intra-session dependency, while inter-session

contexts convey inter-session dependency for item recommendations.

Now I can specify and and formulate a session-based recommendation

task as below:
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Definition 2.5 (Session-based Recommendation Task). Given a session con-

text c, to learn a function f which maps c to the recommendation target t:

t ⇐ f(c). Note that, the session context is the main but not the only in-

formation for session-based recommendations; sometimes, other information

such as items’ and users’ attribute information can also be incorporated into

session-based recommendations as a complement.

According to the task difference, session-based recommender systems are

generally categorized into two main branches: next-item(s) recommender

systems and next-session (basket) recommender systems. I have defined these

separately.

Definition 2.6 (Next-Item Recommendations). Given a session context c

from the current session sn, a next-item recommendation tries to predict the

next item it in sn. It should be noted that most next-item(s) recommendations

only take the current session (Hidasi et al. 2015, Chou et al. 2016) to form an

intra-session context; minority ones incorporate recent previous sessions into

the context (Quadrana, Karatzoglou, Hidasi & Cremonesi 2017). In such a

case, the context c comes from multiple sessions, and it is actually a mixture

of intra- and inter-session contexts.

Definition 2.7 (Next-Session (Basket) Recommendations). Given a context

c, a next-session (basket) recommendation tries to predict the items possibly

occurring in the next session sn+1. In this case, the context c is a collection of

recent sessions {sn, sn−1, ...} prior to the next one, namely, the inter-session

context.

As I mentioned above, this thesis only focuses on session-based next-

item(s) recommendation tasks.

To help the readers to better understand the contents in this thesis, es-

pecially the notations in each chapter, I list the commonly used notations

below.
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Table 2.1: Notation list

Notation Meaning

f a feature value of a feature (e.g., food)

F a feature of an item (e.g., category of items)

i an item (e.g., bread)

I an itemset consisting of multiple items

t a transaction consisting of all items purchased in one transaction event

T a transaction set

s a session consisting of multiple items consumed in a duration

S a session set

q a sequence consisting of a set of ordered itemsets

Q a sequence set

u an user

U an user set

c a context consisting of one or multiple sessions

p a pattern

P a pattern set

X a antecedent (i.e., an item or itemset)

Y a consequent (i.e., an item or itemset)

r a rule

R a rule set

R a recommendation list

h a hidden state

h a latent vector

e a latent vector

E a latent vector

W a weight matrix in a neural network
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2.2 Preliminaries

In this thesis, various data mining and machine learning techniques are em-

ployed to address the challenges in session-based recommender systems and,

therefore, to build my own mansion for session-based RSs. To help readers

to have a better understanding of the following chapters, I introduce some

preliminaries of data mining and machine learning models in this section.

Particularly, I present association rule mining methods, embedding models

and attention mechanism.

2.2.1 The Association Rule Mining

An association rule is an implication in the form of X ⇒ Y,X ∩ Y �= ∅,
where X and Y are itemsets. X is called the antecedent, while Y is called

consequent; the rule means that X implies Y (Zhao & Bhowmick 2003). Sup-

port and confidence are two important basic measures for association rules.

Accordingly, two thresholds ‘minimal support’ and ‘minimal confidence’ are

two commonly used constraints in association rule mining to filter out those

uninteresting rules from a large number of candidates.

The support of an association rule X ⇒ Y is defined as the fraction of

transactions containing X and Y to all the transactions in the database. The

confidence is defined as the percentage of the transactions that contain both

X and Y with respect to the transactions that contain just X, and it can be

calculated from the support values.

Support(X ⇒ Y ) =
|{t|X ∈ t ∩ Y ∈ t}|

|T | (2.1)

Confidence(X ⇒ Y ) =
Support(X ∩ Y )

Support(X)
(2.2)

In the above two equations, t is a transaction consisting of all items

purchased in the corresponding transaction event, and T is the collection of

all transactions in a dataset.
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‘Association rule mining’ aims to discover association rules which satisfy

the predefined constraints of ‘minimum support’ and ‘minimum confidence’

from a given dataset. The process is usually divided into two stages (Agrawal,

Srikant et al. 1994). The first stage is to find frequent itemsets whose support

exceeds the predefined threshold, while the second stage is to generate rules

from the resultant frequent itemsets by using minimum confidence as the

constraint.

2.2.2 Embedding Models

Embedding models were originally used in natural language process domain

so as to embed words to latent vectors which have richer semantic meaning

(Mnih & Kavukcuoglu 2013). Later, they were applied to other domains in-

cluding node embedding, network embedding, and item embedding. Here I

introduce two representative word-embedding models: Skip-gram and Con-

tinuous Bag-of-Words (CBOW).

Skip-gram predicts surrounding words given the current word, while the

CBOW model predicts the current word based on the surrounding context.

To be specific, Skip-gram builds a log-linear classifier by ussing each current

word as its input to predict words within a certain range before and after

the current word; CBOW takes the identify number of both future and past

words as the input to the log-linear classifier so as to correctly classify the

current (middle) word (Mikolov, Chen, Corrado & Dean 2013). Each of the

input words in both models should be first projected onto a continuous valued

vector. The architectures of both models are shown in Figure 2.1.
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Figure 2.1: The architectures of Skip-gram and CBOW models 1

The training objective of the Skip-gram model is to learn word represen-

tations for predicting the surrounding words in a sentence or a document.

More formally, given a sequence of training words w1, w2, w3, ..., wL, the ob-

jective of the model is to maximise the average log probability (Mikolov,

Sutskever, Chen, Corrado & Dean 2013)

1

L

L∑
l=1

∑
−c≤j≤c, j �=0

logp(wl+j |wl) (2.3)

where c is the size of the training context (which can be a function of the

centre word wt). The basic Skip-gram formulation defines p(wl+j|wl) by using

a softmax function as below:

p(wO|wI) =
exp(v′wO

TvwI )∑W
w=1 exp(v

′
w
TvwI )

(2.4)

where wi and wo are the input words and output words, respectively. vw and

v′w are the input and output vector representations of the word w, and W is

the total number of words.

1from (Mikolov, Chen, Corrado & Dean 2013)
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In contrast to Skip-gram, CBOW reverses the training process. Accord-

ingly, its training objective is to learn word representations for predicting the

current word by using the surrounding words as the input. Therefore, the

objective is changed to maximise the following average log probability:

1

L

L∑
l=1

∑
−c≤j≤c, j �=0

logp(wl|{wl+j}) (2.5)

2.2.3 Attention Mechanism

An attention mechanism is designed to model one of the basic work mecha-

nisms of a human brain, especially our visual mechanism. For instance, when

we look at a picture, we may see the whole picture at the beginning, however,

when we would like to have an in-depth observation, our eyes must focus on

a small region within the whole picture. Accordingly, our brains need to pay

much more attention to this small region while less to the left. This indicates

that our brains do not treat all regions in a picture equally; instead, they

weight them with respect to their importance. An attention mechanism is

designed to model this process and thus to capture more discriminating in-

formation from the input data so as to better cater for the subsequent tasks.

Initially, they were widely applied in computer vision (Lu, Xiong, Parikh

& Socher 2017, Pedersoli, Lucas, Schmid & Verbeek 2016) and natural lan-

guage processing (NLP) (Luong, Pham & Manning 2015, Vaswani, Shazeer,

Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin 2017) areas and have

achieved great success. Later, they were more broadly introduced into other

domains including sequence modelling and recommender systems.

In this thesis, I use a representative model (Bahdanau, Cho & Bengio

2014) which was built for machine translation in NLP as an example to

introduce attention mechanism. Suppose x = {x1, ..., xTx} denotes the source
language while y = {y1, ..., yTy} denotes the target language in a translation

scenario. Usually, a machine translator predicts the next word in the target

language by maximising the conditional probability based on the current
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word and the input from the source language.

p(yi|y1, ..., yi−1,x) = g(yi−1, hi, ci) (2.6)

where hi is a hidden state for time point i:

hi = f(hi−1, yi−1, ci) (2.7)

where ci is a context vector which has been built on the input words from

source language for a target word yi. Particularly, ci is based on a sequence

of annotations (e1, ..., eTx) onto which the input words are mapped.

ci is then computed as a weighted sum of these annotations:

ci =

Tx∑
j=1

αijej (2.8)

The weight αij of ej is computed by the following formula:

αij =
exp(aij)∑Tx
k=1 exp(aik)

, (2.9)

where

aij = b(hi−1, ej) (2.10)

where b is parametrized as the weights to connect two layers in a feed-forward

neural network and is jointly trained.

The attention model here learns the weights of the input vectors so as to

indicate their relevance scales w.r.t the current word.

2.3 Evaluation Metrics

For the implicit rule-based recommender system in Chapter 4, I focus on the

improvement of recommendation reliability, therefore I employ the reliability

defined in section 4.4 as the metrics to evaluate the proposed methods. In

addition, I evaluate the efficiency of the proposed algorithm, as most rule

mining works do.

For the session-based recommender systems that I built in Chapters 5, 6,

and 7, I focus on the improvement of recommendation accuracy and novelty,
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just as other SBRSs do. Therefore, I evaluate the performance of these three

recommender systems in terms of shared accuracy and novelty metrics, which

will be introduced below.

2.3.1 Accuracy Metrics

The most common way to assess the performance of a session-based recom-

mender system is to measure whether the truly relevant items are ranked at

the top in the resultant recommendation list. Therefore, information retrieval

metrics are often used to evaluate the ranking performance of a session-based

RS. In this thesis, I denote rel(k) = 1 if the item at position k is relevant,

and rel(k) = 0 if it is not. I have introduced and defined the following two

measures to evaluate the ranking performance.

• REC@K : This measures the recall of the top-K ranked items in the

recommendation list over all the N testing instances (Yuan, Cong, Ma,

Sun & Thalmann 2013).

REC@K =

∑K
k=1 rel(k)

N
(2.11)

• MRR: This measures the mean reciprocal rank of the predictive po-

sition of the true target item in the top-K recommendation list on all

the N testing instances (Chou et al. 2016).

REC@K =
1

N

K∑
k=1

1

k
rel(k) (2.12)

It should be recalled that in the real world most customers are only

interested in the items recommended on the first few web pages, thus I choose

K ∈ {10, 50} in this thesis. In practice, it is a significant challenge to find

exactly the one true item from thousands of candidates.
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2.3.2 Novelty Metrics

Since more and more users not only care about the recommendation accuracy

but also the novelty of the recommended items, in practice, novel items can

bring users unexpected exciting experiences and, thus, can leverage their

satisfaction. In this thesis, novelty metrics were designed to evaluate the

recommendation performance as well.

• Global novelty : Intuitively, the novelty of an item from the global

perspective can be defined as the opposite of the item’s popularity with

respect to the whole population. The item is novel if it only occurs over a few

transactions, in another words, the item is far in the long tail of the popularity

distribution (Park & Tuzhilin 2008). Having drawn inspiration from the

inverse user frequency (IUF) which has been proposed in (Breese, Heckerman

& Kadie 1998) and (Francesco Ricci 2015), I have defined the concept of

inverse transaction frequency (ITF) as ITF = −log2|Ti|/|T |, where Ti =

{t ∈ T |i ∈ t} denotes the set of transactions containing item i. Similar to

the novelty metric MIUF defined in (Park & Tuzhilin 2008), I here use the

average of the ITF (MITF) of the recommended items to measure the global

novelty of a recommendation:

MITF = − 1

|R|
∑
i∈R

log2
|Ti|
|T | (2.13)

where R is the set of recommended items in one recommendation and T is

the whole set of transactions. For all the N recommendations on a certain

testing dataset, the global recommendation novelty is defined as the mean of

MITF for each recommendation:

M2ITF =
1

N

∑
MITF (2.14)

• Local novelty : Local novelty refers to the difference of recommended

items with respect to the previous experience of the users. Generally, if the

recommended items are more different from the already-bought items, the

more novel these items are. In my model, the already-bought items corre-
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spond to the context c used for recommendation R. Given a recommendation

list R, the more items there are in R having been seen in the context c, the

less novel the recommendation is. Based on this observation, the context-

aware novelty (CAN) of recommendation R can be defined as:

CAN = 1− |R ∩ c|
|R| (2.15)

Similarly, for all the N recommendations on a certain testing set, the local

recommendation novelty is defined as the mean of CAN (MCAN) of all

recommendations:

MCAN =
1

N

∑
CAN (2.16)

2.4 Baseline Methods for Experiments

Several existing representative methods for session-based recommendations

were used as the baselines to compare with my proposed methods in the

experiment part in most of the following chapters. I list them in this section

as below.

• PBRS : This is a typical pattern-based recommender system which

uses mined frequent patterns to guide the recommendations (Li, Wang,

Zhang, Zhang & Chang 2008).

• FPMC : This is a model that combines matrix factorisation and first-

order Markov chains for next-basket recommendations. The model fac-

torizes the personalized transition matrix between items with a pairwise

interaction model (Rendle et al. 2010).

• PRME : A personalized ranking metric embedding method (PRME)

to model personalized check-in sequences in a Markov chain framework.

The learned PRME is used to recommend the next POI of users (Feng,

Li, Zeng, Cong, Chee & Yuan 2015).
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• GRU4Rec: An RNN-based approach for session-based recommenda-

tions by modelling the session through using a deep RNN which consists

of GRU units (Hidasi et al. 2015).
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3.1 Introduction

Recommender systems (RSs) have evolved into a fundamental tool for helping

users to make informed decisions and choices, especially in the big data era in

which customers have to make choices from a large number of products and

services. A good deal of recommender system techniques and models have

been proposed and most of them have achieved good performance. Out of

these, the content-based recommender systems (Aggarwal 2016, Pazzani &

Billsus 2007) and the collaborative filtering recommender systems (Schafer,

Frankowski, Herlocker & Sen 2007, Ekstrand, Riedl, Konstan et al. 2011)

are two representative recommender systems. Their effectiveness has been

demonstrated in both the research and industry community.

However, these aforementioned conventional recommender systems still

have had some drawbacks. One critical disadvantage is that they only focus

on the long-term static preference of users, while they ignore the short-term

transaction behaviour patterns and users’ preference shifts over time. In this

case, the users’ intent at one point may be easily submerged by his or her

historical behaviours, and this leads to unreliable recommendations. This

is usually because these recommender systems have mixed together all the

transactions of a user and have, thus, broken down the intrinsic transaction

structure. For example, in the matrix factorization (Koren, Bell & Volinsky

2009, He, Zhang, Kan & Chua 2016), which is a representative model in

collaborative filtering recommender systems, the items a user buys in all

transactions are put into one row of a matrix as shown in the top half of

Figure 3.1. In another case, the users’ IDs are not always available due

to privacy issues, and the conventional recommender systems which require

user information are not applicable. To this end, the recommendations can

be only based on the transaction events.

All these issues have triggered the necessity to take transaction struc-

ture into account when developing recommender systems. In other words,

it is necessary to learn users’ transaction behaviour patterns and preference

shifts according to the relationship between one transaction and another. To
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Figure 3.1: A comparison between collaborative filtering RS and SBRS

this end, session-based recommender systems have been proposed in recent

years. In this research, a session can be regarded as a transaction with multi-

ple purchased items in one shopping event. Different from content-based and

collaborative-filtering recommender systems, session-based recommender sys-

tems comprehensively consider the information embedded from one session

to another, and they take a session as the basic unit for recommendations

as shown in the bottom half of Figure 3.1. Therefore, session-based recom-

mender systems can prevent the information loss caused by breaking down

the session structures in other approaches to the maximum extent.

Besides transaction domain, session-based recommendations are widely

applied in other domains such as the next web page recommendations, the

next POI recommendations, the tourism recommendations, the next song

recommendations, and the next movie recommendations. To cover these

various domains, the concept of ‘session’ is not limited to a transaction in

this work; instead, a session refers to a collection of consumed or visited

elements at one time or over a certain period of time. For instance, the web

pages visited by a user during one Internet surf can be gathered as a session,

and the songs listened by a user over an hour or a day can form a session as

well.

Although session-based recommendations have been conducted in differ-
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ent domains, the sense of ’session’ may not be identical for these domains.

In some domains, the sense of a session is stronger as one session is per-

formed to combine a coherent collection of items that work together to cater

for a certain purpose. For example, bread, egg and milk are usually bought

together to form a session for the purpose of breakfast. In other domains,

like watching movies, the watching actions may be somehow random in most

cases, so the movies watched in a session may not be some dependent and

thus the sense of session may not be so strong. The sense of session in differ-

ent domains is a critical issues and need to be further explored, which goes

out of the scope of this thesis.

Except for the key difference illustrated in Paragraphs 2 and 3, session-

based recommender systems are different from other ones in multiple ways.

To have a substantial understanding of such differences, I conducted a com-

prehensive comparison between session-based recommender systems and other

typical ones in Table 3.1.
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Table 3.1: Comparisons between session-based recommender systems and other ones
Recommender

systems

Input Task Time

span

Status Core as-

sumption

Work mecha-

nism

Pros Cons

Content-

based filter-

ing (CBF)

Rss (Tang &

Wang 2018)

User, Item

content

information

Predict users

preference

on items

The

whole

shopping

history

Staic, does

not consider

preference-

shift along

time

User likes

what he/she

used to likes

Matching up

users profile

against item

content

Simple and

straight-

forward,

can handle

cold-start

issues

The assump-

tion may not

fit real cases

well

Collaborative

filtering

(Schafer

et al. 2007)

(CF) RSs

Uer-item (U-

I) interaction

data

Predict users

preference

on items

The

whole

shopping

history

Static, does

not consider

preference-

shift along

time

User likes

what he/she

used to likes

Model user-

item interac-

tions

Effective and

relative sim-

ple

Easy to

face sparsity

issues and

cold-start

issues

Context-

aware RSs

(Adomavicius

& Tuzhilin

2015)

User, items,

context and

user-item

interaction

data

Predict

users prefer-

ence under

particular

context

The

whole

shopping

history

Static A user

may have

different

preferences

under differ-

ent contexts

Model user-

item-context

interactions

Incorporate

more in-

formation

and fit the

real-world

cases better

less data

availability

and sparsity

issues

Session-

based RSs

(Tang &

Wang 2018)

Users trans-

action

records

(item-item

interaction)

Predict fol-

lowing items

directly

One

transac-

tion or

a short

period

Dynamic,

consider the

preference-

shift along

time

Users pref-

erence is

changed

according

to different

session-

context

Recommend

items that

have oc-

curred in

a similar

context

Consider

the users’

preference

changes,

which fit the

real cases

better

Ignore users’

general and

long-term

preference
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In this literature review, I give a comprehensive and systematic overview

of the session-based recommendation scenario that regards a session as the

basic unit for recommendations, and the corresponding techniques: session-

based recommender systems. This is actually a relative novel recommenda-

tion paradigm which has been proposed in recent years. By doing this review,

I hope to provide a comprehensive vision and a basic foundation for the re-

search topic in this thesis as well as a useful resource for the recommender

system community.

The rest of the survey is organised as follows. In the next four sub-

sections, I first provide an overview of session-based recommender systems;

particularly, I summarize the evolution of session-based RSs, give a compari-

son for some typical scenarios in session-based recommendations, and I cate-

gorize of the existing works into two main folds in terms of their techniques.

Then for each main fold, I review and compare different representative ap-

proaches in the following two subsections respectively. Finally, I give a brief

summary for this chapter.

3.2 Overview of Session-Based Recommender

Systems

In this section, a comprehensive overview of session-based recommender sys-

tems is given. Specifically, an evolutionary history of session-based RSs,

a comparison between different scenarios in session-based RSs, and a cat-

egorization on various session-based recommendation approaches from the

technique perspective are provided.

3.2.1 A Brief History of Session-Based RSs

Traditional recommender systems have usually been divided into three cat-

egories: content-based recommender systems, collaborative-filtering recom-

mender systems, and hybrid approaches (Adomavicius & Tuzhilin 2005, Basil-
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ico & Hofmann 2004). Content-based recommendation systems try to recom-

mend items similar to those that a given user has liked in the past in terms of

item attributes (Lops, De Gemmis & Semeraro 2011). Collaborative-filtering

is the process of filtering or evaluating items by using the opinions of other

people (Schafer et al. 2007). The hybrid approach combines the previous

two to pluck out the advantages of both. Although different mechanisms

have been behind these different approaches, essentially their settings and

tasks are the same, that is, to predict users’ unknown preferences based

on their known preferences. These approaches usually break all transaction

data down and then put all user-item pairs into a unified user-item inter-

action matrix and, finally, the models work on such matrix. As a result,

they do not have the transaction concept, and the transaction structure is

destroyed. Such a process would lose the essential information for shopping

basket-based transaction data. Subsequently, this information loss leads to

unreliable recommendation results. One of the obvious deficiencies is that it

is easy to recommend duplicate items that are identical or similar to what a

user has bought in recent transactions or has chosen in the current transaction

without considering the items in a transaction as a whole (Hu, Cao, Wang,

Xu, Cao & Gu 2017). Session-based, also sometimes called ’transaction-

based recommender systems’ (Wang, Hu & Cao 2017), in contrast, retain

the transaction data structure well and treat all the items in a transaction

as a set. More importantly, they emphasize the co-occurence -based depen-

dency over items for recommendations. In this case, session-based RSs are

much closer to the real-world transaction scenes. On the other hand, either

the item(user) attribute data for content-based RSs or user-item rating data

for collaborative-filtering-based RSs may not always be available. However,

the shopping-basket-based transaction data for session-based RSs is always

there as long as the basic transactions are recorded. Therefore, session-based

RSs are much more applicable than traditional ones.

Research on session-based recommender systems has attracted much at-

tention since the 1990s (Ahmad Wasfi 1998), though under different names:
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Figure 3.2: The development roadmap of session-based RSs

for example, pattern-based recommender systems, using patterns for recom-

mendations, rule-based recommender systems, sequence-based recommender

systems, transaction-based recommender systems, session-aware recommender

systems, next-item recommendations, and next-basket recommendations.

Generally speaking, works on session-based recommender system can be

divided into two clearly different stages: the model-free stage from the late

1990s to the early 2010s and the model-based stage from the early 2010s

up until now. The first stage was driven by the development of data min-

ing techniques, especially pattern mining, association rule discovery, and

sequence mining, and, subsequently, it was dominated by pattern/rule-based

and sequence-based recommender systems. According to the literature re-

view, I ascertained that the middle of 2000s witnessed the peak of this stage,

and many relevant works were published during this period. The second

stage has been driven by the development of machine learning techniques,

especially some time series-related models such as Markov chain models, and

RNN models. On account of the fast developments of deep learning tech-

niques in recent years, model-based RSs have reached their peak since 2017.

Many researchers have rushed into this area and have developed various neu-

ral models for next-item or next-basket recommendations over the past two

years. A development road-map of session-based recommender systems is

given in Figure 3.2.

Currently, works related to session-based RSs have appeared in several
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top conferences in data mining such as KDD, CIKM, machine learning like

ECML, AAAI and IJCAI and their applications such as Recsys, WWW, and

SIGIR.

3.2.2 Comparisons of Session-Based RSs

There are different scenario settings in session-based recommendations. In

this section, I discuss some typical scenario settings in session recommender

systems.

Next-Item Recommendations versus Next-Basket Recommenda-

tions

According to whether one recommends items for the current transaction or

for the next transaction, session-based recommender systems are divided

into next-item recommendations and next-basket recommendations. Next-

item recommender systems recommend items that are likely to be bought in

a current transaction based on those chosen items in that very transaction,

while next-basket recommender systems recommend items that are possibly

to be bought in the next basket. Obviously, the former one is mainly based

on intra-session relation modelling, while the latter is mainly based on inter-

session relation modelling.

There are quite a few works focusing on next-item recommendations,

while just a few focus on next-basket recommendations. Except for these

two scenarios in the shopping area where the explicit sessions naturally exist

(one transaction or one shopping basket naturally form a session), there are

some other cases in which it is hard to divide the recommender systems into

next-item or next-basket recommendations since there are no explicit natural

sessions. Such cases include next-song recommendations, next-movie recom-

mendation, and next-POI reocmmendation. In these areas, the transaction

data is actually different from the shopping basket data seeing that no ex-

plicit natural session exists. For example, for a movie, which is different from

shopping in which a user usually puts multiple items into a cart, usually a
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user only watches one each time. In cases such as movie data, the session

is usually constructed manually by put several movies watched in a certain

period together.

Unorderly Modelling versus Orderly Modelling

Based on whether one assumes an order over items within sessions, session-

based recommender systems are divided into order assumption-based and

unorder assumption-based ones. From my observations, most existing works

have been order assumption-based. However, in real-word session data, es-

pecially the transaction data, there is usually no meaningful order for items

within sessions. Taking the transaction data as an example, the reason for

this comes from two folds: on the one hand the time-stamp for each item

bought in a transaction are usually not recorded in the real world; on the

other hand, even if the order of items in a transaction is available, it may

not be so meaningful since a user may pick up some items randomly. There-

fore, the order over items cannot really reflect the relations between them.

However, in other session data, such as the song and movie data, the order

over songs and movies usually follows some kind of pattern and can reflect

the dependency between songs or movies to some degree.

Intra-Session Modelling versus Inter-Session Modelling

Intra-session modelling means one models the relations between items within

sessions for the recommendation tasks, while inter-session modelling means

that one models the relations between sessions. Most existing next-item rec-

ommendations are based on intra-session modelling without considering for

inter-session relations. Quite few next-item recommendation works (Quadrana

et al. 2017) take both intra- and inter-session relations into account to predict

the next item in current sessions. On the contrary, next-basket recommen-

dations mainly focus on inter-session modelling so as to capture cross-basket

dependency; it should be noted, however, that here each basket is actually

treated as a session.
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Figure 3.3: The categorisation of session-based recommender systems

3.2.3 Categorisation of Session-Based RSs

In this section, I categorise session-based recommender systems from the

perspective of technique. Specifically, the existing works are divided into

two branches: model-free approaches and model-based approaches. Each

branch contains several types of approaches.

Model-Free Approaches

Model-free approaches have been mainly built on data mining techniques, and

they usually do not involve mathematical models. Two typical approaches in

this branch are pattern/rule-based RSs for unordinary data and sequential

pattern-based RSs for ordinary data.

•Pattern/Rule-Based Recommender Systems : Pattern/rule-based

recommender systems firstly mine frequent patterns or association rules and

then use these patterns and rules to guide the subsequent recommenda-

tions. This is based on the assumption that most customers would follow

the common shopping patterns (Mobasher, Dai, Luo & Nakagawa 2001, Lin
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et al. 2002, Abel, Bittencourt, Henze, Krause & Vassileva 2008). For in-

stance, customers usually buy milk and bread together when they go shop-

ping. Thus {milk, bread} can be identified as a frequent pattern and once a

user has bought milk, bread can be recommended to him or her. It should be

noticed that pattern/rule-based Recommender systems are applied in unor-

dinary data, like the items are usually picked up into a basket without strict

order.

• Sequential Pattern-Based Recommender Systems : For han-

dling data having strict order over items or involving time factor-based ef-

fects, sequential pattern-based recommender systems have been proposed.

Similar to pattern-based recommender systems, they firstly mine a collection

of sequential patterns and then recommend the following items based on prior

items and these patterns (Morales, Pérez, Soto, Martınez & Zafra 2006, Ni-

ranjan, Subramanyam & Khanaa 2010, Yap et al. 2012).

Model-Based Approaches

Different from model-free approaches, model-based recommenders are usu-

ally built on strict assumptions: for example, like order over items and solid

models such as Markov chain models. To the best of my knowledge, existing

model-based approaches can be mainly categorized into three branches ac-

cording to the model they involve: Markov chain-based approaches, factorization-

based approaches, and neural model-based approaches.

• Markov Chain-Based Approaches : Markov chain-based recom-

mender systems model the first-order or higher-order dependency over a se-

quence of items by using transitional probabilities, and they then generate

the recommendations for the following items guided by such dependency

(Shani, Heckerman & Brafman 2005, Eirinaki, Vazirgiannis & Kapogiannis

2005, Rendle et al. 2010). Different from sequential pattern-based approaches

which are easy to filter out those infrequent items and to patterns and only

take the frequent ones into account, Markov chain-based recommender sys-

tems take all items into consideration and, thus, they decrease the informa-
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tion loss greatly.

• Factorization-Based Approaches : These approaches firstly factor-

ize the item co-occurrence matrix or item-to-item transitional matrix into

a latent representation vector for each item, and they then predict the fol-

lowing items by using these latent representations (Liang, Altosaar, Charlin

& Blei 2016, Rendle et al. 2010). This approach should be distinguished

from the commonly used factorization machine (such as the matrix factor-

ization) in collaborative filtering-based recommender systems, which usually

factorize the user-item interaction matrix (like a rating matrix) into user-

and item-latent factors (Linden et al. 2003, Su & Khoshgoftaar 2009).

•Neural Model-Based Approaches: Neural model-based approaches

take advantage of the neural network to learn the complex relationships

and interactions over items within or between sessions and then to gen-

erate recommendations based on such interactions. From the perspective

of neural model structures, these approaches can be divided into a shal-

low neural model like shallow wide-in-wide-out network (Krishnamurthy,

Puri & Goel 2016, Greenstein-Messica, Rokach & Friedman 2017, Wang

et al. 2018) and a deep neural model such as a recurrent neural network

(Hidasi et al. 2015, Song, Elkahky & He 2016).

3.3 Model-Free Approaches

Model-free recommender systems are mainly based on data mining, espe-

cially pattern mining techniques. The general idea of these is to find out the

common and explicit regularities related to transactions by mining the pat-

terns from transaction data and then to generate recommendations guided

by these regularities. Two typical approaches are pattern/rule-based ones

and sequential pattern-based ones.
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3.3.1 Pattern/Rule-Based Approaches

Pattern/rule-based recommender systems mainly contain two stages: fre-

quent pattern mining, session matching and item recommendation. To be

specific, given a transaction set T = {t1, t2, ...} and a whole item set I =

{i1, i2, ...} over T , a set of frequent itemsets (or patterns) P = {p1, p2, ...}
are mined by using pattern mining algorithms like Apriori (Aggarwal &

Han 2014) and FP-Tree (Han, Pei & Yin 2000). For a given active par-

tial session s (a collection of chosen items in one transaction), if an item i′

exists so that s ∪ i′(i′ ∈ I \ s) is a frequent pattern, namely {s ∪ i′} ∈ P ,

then item i′ is a candidate for recommendation. Furthermore, if the con-

ditional probability p(i′|s) is greater than a confidence threshold β, then i′

is added into the recommendation list. It should be noted that p(i′|s) is

actually the confidence of association rule s ⇒ i′, and it is also used as the

recommendation score for item i′ (Mobasher et al. 2001).

I use an example derived from (Mobasher et al. 2001) to illustrate the

whole process of pattern/rule-based recommender systems. Given the trans-

action data illustrated in Table 3.2, where each row indicates a transaction,

frequent itemsets of different sizes are mined with the Aprioi algorithm with

a minimum support value of 4 as shown in Table 3.3. For a user-active partial

session < B,E >, the system matches it with two frequent itemsets of Size

3, namely {A,B,E} and {B,C,E}, accordingly, the recommendation gener-

ation process find items A and C as the recommendation candidates. Their

recommendation scores were 1 and 0.8, which correspond to the confidences

of association rules {B,E} ⇒ A and {B,E} ⇒ C, respectively.

Besides the basic pattern/rule-based framework, there are many different

variants. Lin etc. (Lin et al. 2002) have utilised association rule mining

techniques for collaborative filtering. Specifically, they did not require a

minimum support in advance; instead, a range was given for the number of

rules and algorithm adjust the minimum support for each user to obtain the

desired number of rules. In this way, the algorithm can be more efficient

to avoid mining too many rules that are irrelevant to a specific end user,
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Table 3.2: Sample transactions involving items A, B, C, D and E (Mobasher

et al. 2001)

T1 A,B,D,E

T2 A,B,E,C,D

T3 A,B,E,C

T4 B,E,B,A,C

T5 D,A,B,E,C

Table 3.3: Frequent patterns mined from Table 3.2 and their corresponding

frequency (Mobasher et al. 2001)

Size 1 Size 2 Size 3 Size 4

{A}(5) {A,B}(5) {A,B,C}(4) {A,B,C,E}(4)
{B}(6) {A,C}(4) {A,B,E}(5)
{C}(4) {A,E}(5) {A,C,E}(4)
{E}(5) {B,C}(4) {B,C,E}(4)

{B,E}(5)
{C,E}(4)
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which is quite different from traditional association rule mining, in which the

minimum support is given in advance without considering any user. To con-

sidering the different significance of different items and thus to recommend

more useful items, (Yan & Li 2006) and (Forsati, Meybodi & Neiat 2009)

have used page-view duration to weight the significance of each page, and

they have then incorporated such weights into the association rule model so

as to develop weighted association rule-based web recommender systems. By

mining users’ behaviour patterns, e.g., web navigation patterns, the asso-

ciation rule mining technique is applied to capture the needs or preference

of a specific user or a group of users and thus to help to generate person-

alized recommendations (Forsati et al. 2009, Lee, Kim & Rhee 2001, Ado-

mavicius & Tuzhilin 2001, Zhang 2007). Some other works have combined

pattern mining into traditional collaborative filtering methods so as to help

address some issues such as sparsity, robustness, and personalizition (Lee

et al. 2001, Huang, Chen & Zeng 2004, Sandvig, Mobasher & Burke 2007).

For the application domains, except for the traditional shopping basket-based

recommendations, pattern-based recommender systems have been commonly

applied in web recommendations (Moreno, Garćıa, Polo & López 2004) and

music recommendations (Shao, Wang, Li & Ogihara 2009).

3.3.2 Sequential Pattern-Based Approaches

Sequential pattern mining (SPM) (Han, Pei, Mortazavi-Asl, Chen, Dayal

& Hsu 2000) is different from the aforementioned frequent pattern min-

ing (FPM) or association rule mining in two regards: firstly, SPM takes

the order or time series factor into account; in other words, it requires a

strict order over itemsets. Secondly, SPM mainly captures the inter-session

dependency, namely, the association between items from different itemsets

while FPM mainly focuses on the intra-session dependency, namely the as-

sociation over items within transactions. In this way, the mined sequential

patterns incorporate more factors and thus are more informative compared

to frequent patterns. Therefore, the sequential pattern-based recommender
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systems are more suitable for time-aware session-based RSs or inter-session-

based RSs, like next-basket recommendations. Similar to the aforementioned

pattern/rule based recommender systems, sequential pattern-based recom-

mender systems also contain three main stages: sequential pattern mining,

sequence matching and recommendation generation. In the next paragraph,

I give a formulation of sequential pattern-based recommender systems.

Given a sequence database Q, which is a collection of sequences, i.e.,

Q = {q1, q2, ..., qn}, where n = |Q| denotes the number of sequence in Q. A

sequence q ∈ Q is a collection of ordered itemsets, i.e., q = {I1, I2, ..., Im}
associated with a user, namely the collection of transactions collected from

one user over a certain period, where m = |q| is the number of itemsets or

transactions. It should be noted that each transaction happens in a unique

timestamp, and all the itemsets in one sequence are ordered in terms of their

happening time. An itemset I ∈ q is a set of multiple items transacted in one

transaction, i.e., I = {i1, i2, ..., ik} where k = |I| is the size of I. A sequence

qx = {qx1, qx2, ..., qx|qx|} contains another sequence qy = {qy1, qy2, ..., qy|qy |}, or
qy is a subsequence of qx if there exists a series of integers d1 < d2 < ...d|qy |
such that qy1 ⊂ qxd1 , qy2 ⊂ qxd2 , ..., qy|qy | ⊂ qxd|qx| (Agrawal & Srikant 1995).

For any subsequence q′, its frequency is the number of sequences containing

q′ in the sequence database Q, i.e., freq(q′) = |Q′|, q′ = {q′′|q′ ⊂ q′′, q′′ ∈
Q}. The support of subsequent q′ is defined as supp(q′) = freq(q′)/|Q|. A

sequence is defined as a sequential pattern p if its support is not less than a

minimum threshold δ.

Given a user u’s past sequence qu and the sequence database Q, the se-

quential pattern-based recommendation task is to predict the items that

the user is most probably to buy in the near future by matching qu to

the mined sequential patterns from Q (Yap et al. 2012). Specifically, let

qu = {I1, I2, ..., Ih} where Iuj is the set of items bought by user u at times-

tamp j and QP = {p1, p2, ..., p|QP |} is the set of mined sequential pat-

terns on Q. For any pattern p ∈ QP , if the last itemset Ih ∈ p, namely

p = {I1, I2, ..., Ih, Il...}, then the pattern p is a relevant pattern for this

specific recommendation and the items in itemsets after Ih in p like Il are
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candidate items for recommendations. For each candidate item ic, the sup-

port is the sum of the support of all mined relevant patterns. This can be

formally represented as follows:

supp(ic) =
∑

Ih∈qu,Ih∈p,ic∈Il,Il∈p,p∈QP

supp(p) (3.1)

Finally, those candidate items with top support values are recommended to

user u.

The above definition and formulation illustrate the basic framework of

sequential pattern-based recommender systems. Actually, there are various

variants and extensions to make a more reliable recommender system. A typi-

cal extension is to utilize user-related weighted sequential pattern mining for

personalized recommendations. To be specific, each sequence is no longer

treated equally contributed to the target user’s recommendations, as the

aforementioned basic framework, ; instead, all the sequences are assigned a

weight based on the similarity between them and the past sequence of the tar-

get user (Song & Yang 2014, Zhang & Cao 2013, Yap et al. 2012). In this way,

the recommender system can generate more reliable and precise recommen-

dations for different users by incorporating more user-relevant information.

Another extention is to build a hybrid recommender system by combining

sequential pattern-based recommender systems and traditional collaborative

filtering methods (Zhang & Cao 2013, Choi, Yoo, Kim & Suh 2012, Huang &

Huang 2009, Liu, Lai & Lee 2009). Because of this combination, both the dy-

namic individual behaviour pattern reflected by the sequential patterns and

the general preference modelled by the collaborative filtering approaches are

considered. As a result, the recommendation would be more accurate. From

the application perspective, item recommendations in shopping-basket-based

transaction data and web page recommendations in web access log data are

two typical application domains, which are built on customer shopping be-

haviour sequential patterns and user access sequential patterns (Zhou, Hui

& Fong 2006, Niranjan et al. 2010) respectively.
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3.4 Model-Based Approaches

Different from model-free approaches, model-based ones are mainly based on

special mathematical models such as the Markov chain and matrix factor-

ization etc. In this section, the three representative types of model-based

approaches are introduced and discussed, i.e, Markov chain-based ones, ma-

trix factorization-based ones, and neural model-based ones.

3.4.1 Markov Chain Model-Based Approaches

Markov chain Model-based recommender systems adopt the Markov chain

model to model the transition of items on the transaction sequence data so as

to predict the probable next item given a sequence of prior items. According

to the number of states taken into account when computing the transition

probability, the model can be either a first-order or higher-order Markov chain

model. To decrease the model’s complexity, most recommender systems have

been built on first-order Markov chains, like (Shani et al. 2005, Wu, Liu,

Chen, He, Lv, Cao & Hu 2013, Feng et al. 2015, Bonchi, Perego, Silvestri,

Vahabi & Venturini 2011). In the next section, I give the formulation for a

basic Markov chain-based recommender system as well as some variants and

extensions.

Basic Markov chain-based RSs

Generally speaking, the process of a basic Markov chain-based recommender

system is simple: firstly to calculate the transition probability over a se-

quence of items from the training data and then to match a user’s shopping

sequence to the sequence with calculated transition probability for predic-

tion and recommendations; subsequently, those candidate items with high

probability are put into the recommendation list (Eirinaki et al. 2005).

Usually, a set of user transaction sessions S = {s1, s2, ..., s|S|} are given,

where each session s = {i1, i2, ..., i|s|}(s ∈ S) corresponds to a sequence of

items bought consecutively in a transaction. It should be noted that the
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strict order assumed over items in a session, which is quite different from the

case in pattern/rule -based RSs as illustrated in Section 3.3.1. A Markov

chain synopsis was built to encode all the transaction sessions into a directed

graph G. Each item in S corresponds to a node in the graph; in addition, an

external start node and an end node were added into the graph. Therefore,

each session is described by a path in the graph from the start to the end

node. The frequency of each item and the co-occurrence times of each pair of

successive items correspond to the node weight and edge weight respectively.

The Markov chain model is defined as a set of tuples {S, Pt, P0}, where S
is state space including all all distinct nodes in G, Pt is the m ∗m one-step

transition probability matrix between m distinct items and P0 is the initial

probability of each state in S. The first-order transitional probability from

item ij to ik is defined as follows:

Pt(j, k) = P (ij → ik) =
freq(ij → ik)∑
it∈I freq(ij → it)

(3.2)

where I = {i1, i2, ..., i|I|} is the whole set of all items.In the case of higher-

order Markov model, the transition probability of an item should be com-

puted given the past multiple items. For the nth-order model, the transition

probability is calculated given the past n items and result in a mn ∗m tran-

sition probability matrix.

For the initial probability of each state, there are mainly two basic cal-

culation methods: The first one is to assign equal probabilities to all nodes,

namely use uniform distribution. The second one is to estimate the initial

probability of a node proportionally to its frequency. (the ratio of its fre-

quency to the total frequency of all nodes). In addition, there are some more

calculation methods that can be related to specific scenarios, like treating the

first visited page more important than others in web page recommendations

or taking the link structure into account (Eirinaki et al. 2005).

After the transition and initial probability is ascertained, the chain rule

is applied to compute the probability P (i1 → i2 → ... → il) of each path

indicating a sequence of items {i1, i2, ..., il}. For instance, if we want to

build an nth-order Markov model, the path probability can be ascertained as
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follows:

P (i1 → i2 → ...→ il) = P (i1) ∗
l∏

j=2

P (ij |ij−n...ij−1) (3.3)

For example, if we want to estimate the probability of a shopping path

{i1, i2, i3} using the first-order Markov Chain, the above equation can be

reduced to the following equation:

P (i1 → i2 → i3) = P (i1) ∗ P (i2|i1) ∗ P (i3|i2) (3.4)

With regard to the recommendation task, given a sequence of chosen or

bought items, I chose the shopping paths in this research with high proba-

bilities, and I took the given sequence as the prefix as the guidance. Those

items occurred in these paths and after the given sequence they were put

into the recommendation list.

Except for the basic process of Markov chain-based RSs, as defined above,

there are many variants and extensions like (He & McAuley 2016a) . For

example, Zhang etc. combined first and second-order Markov model together

to make more accurate web recommendations(Zhang & Nasraoui 2007) while

Le etc. developed a hidden Markov model-based probabilistic model for

sequence modelling and next item recommendations. Besides the sequences

of the items themselves, they have also incorporated other factors such as

context features which may dynamically influence the state transition into

the model leverage the recommendation accuracy (Le, Fang & Lauw 2016).

Another important variant has been to adopt factorization method over the

transition probability of the Markov model so as to estimate those unobserved

transitions (Rendle et al. 2010).

Latent Markov Embedding (LME)-based RSs

Different from the basic Markov chain-based recommender systems which

calculate the transition probability based on the explicit observations di-

rectly, latent Markov Embedding (LME)-based RSs first embed the Markov

chains into a Euclidean space and then calculate the transition probability

between items based on their Euclidean distance in this latent space (Chen,
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Moore, Turnbull & Joachims 2012). In this way, it can drive the unobserved

transitions and thus solve the sparsity issue in the case of limited observed

data. Formally, each item i is represented as a vector Vi in a d-dimensional

Euclidean space M , and the transition probability p(i(j−1) → ij) is assumed

to be negatively related to the Euclidean distance ||Vij − Vij−1
||2 between

items ij and ij−1 via the following logistic function:

P (ij−1 → ij) ∝ e−||Vij
−Vij−1

||22 (3.5)

It should be noted
∑

iK
P (ij−1 → ik) = 1, thus the transition probability is

normalized as:

P (ij−1 → ij) =
e
−||Vij

−Vij−1
||22∑

ik∈I e
−||Vik

−Vij−1
||22

(3.6)

where I is the whole set of all items.

As a result, given this transition probability, the probability of an shop-

ping sequence p = {i1 → i2 →, ..., il} can be defined as follows, based on the

Markov model:

P (p) =

l∏
j=2

P (ij−1 → ij) =

l∏
j=2

e−||Vij
−Vij−1

||22∑
ik∈I e

−||Vik
−Vij−1

||22
(3.7)

As this definition only focuses on the transitions over items, while it

ignores the user factors, it cannot generate personalized recommendations.

Wu etc. (Wu et al. 2013) proposed personalized Markov embedding (PME)

which maps both users and items into a Euclidean space where the distance

between user and item reflects their relationship, while the distance between

a pair of items also reflects the relation of them as (Chen et al. 2012). In

this way, a personalized transition probability P (ij−1 → ij, u) from item ij−1

to ij by user u is negatively related to both ||Vij −Vij−1
||2 and ||Vu−Vij−1

||2.
This can be also explained as both the short-term sequential behaviours

modelled by the item pairwise relations and the long-term general preference

modelled by the user-item relations are both taken into account. Therefore

the Equation (3.6) is changed into the following:

P (ij−1 → ij , u) =
e
−||Vij

−Vij−1
||22−||Vu−Vij−1

||22∑
ik∈I e

−||Vik
−Vij−1

||22−||Vu−Vij−1
||22

(3.8)
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Both the above approaches learn the latent embeddings of items and

users by only exploiting the observed data, however, such data is usually

quite sparse and leads to poor performance. Personalized ranking metric

embedding has been proposed in (Feng et al. 2015) to learn the embeddings

by fitting the ranking of the POI transition. In such a case, the unobserved

data can also be used for the learning task. Specifically, it assumes the

observed next POI is more related to the current one than those unobserved.

If the transition ij → ik is observed while ij → it is not, ik should be

ranked higher than it in terms of ij, this is modeled as a ranking > over

POIs. Instead of utilizing the transition probability, it models the ranking

of it. In this regard, one should recall that transition probability is related

to the Euclidean distance in the item embedding space, so the whole model

is transferred into the following formula:

P (ij → ik) > P (ij → it)⇒ dij ,ik − dij ,it > 0 (3.9)

where dij ,ik is the Euclidean distance between items ij and it in the embedding

space.

3.4.2 Factorization Machine-Based Approaches

It is well known that factorization machine is commonly used in collaborative

filtering recommender systems to factorize the user-item preference matrix

(e.g., the rating matrix) into user and item latent factor vectors, and it

has achieved great success. Inspired by this, researchers have applied it

into session-based recommender systems recently so as to model short-term

sequential shopping patterns (Shani et al. 2005, Lian, Zheng & Xie 2013,

Hidasi & Tikk 2016). Specifically, factorization machines have been adopted

to factorize the observed preference or item transitions from the current time

point or transaction to the next one into latent representations of items

or users. Subsequently, the resultant latent representations have been used

to estimate the unobserved transitions for prediction and recommendation

tasks. In the next section, I formalize the basic process of factorization
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machine-based session-based recommender systems, and I then review some

variants and extensions.

For a next-basket recommendation issue as demonstrated in (Rendle

et al. 2010), the transitions exist between items bought in two successive

transactions (basket). Given a set of successive transactions, the recom-

mender system aims to predict what may be bought in the next transaction.

Similarly, let U = {u1, u2, ..., u|U |} and I = {i1, i2, ..., i|I|} be a set of users

and items respectively. For each user u, a collection of baskets recording his

purchase history is known as Bu = {Bu
1 , B

u
2 ...B

u
t }. Therefore an unpersonal-

ized first-order Markov chain for the next-basket recommendation problem

is as follows:

P (Bt|Bt−1) (3.10)

To reduce the model complexity of Markov chain for set/basket, the model

can be transferred to model the transitions over |I| binary variables that

describe a basket:

aij ,ik = P (ik ∈ Bt|ij ∈ Bt−1) (3.11)

Given the historical transaction data, the transition probability can be es-

timated by the frequency:

aij ,ik = P (ik ∈ Bt|ij ∈ Bt−1) =
P (ij ∈ Bt−1 ∧ ik ∈ Bt)

P (ij ∈ Bt−1)

=
|(Bt−1, Bt) : ij ∈ Bt−1 ∧ ik ∈ Bt|

|(Bt−1, Bt) : ij ∈ Bt−1|
(3.12)

Further more, the user u can be taken into account for estimating per-

sonalized transitions, as the equation below shows:

au,ij ,ik = P (ik ∈ Bu
t |ij ∈ Bu

t−1) =
P (ij ∈ Bu

t−1 ∧ ik ∈ Bu
t )

P (ij ∈ Bu
t−1)

(3.13)

Once the personalized transition probability is achieved from the observed

data, a transition matrix Au is built for each user u. Therefore, for all users,

a transition tensor A is built like A|U |×|I|×|I|. A general linear factorization

model, the Tucker decomposition is used to factorize the transition cube and

to estimate the unobserved transitions:

Â = C × V U × V Ij × V Ik (3.14)
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where C is a core tensor, V U is the feature matrix for users while V Ij and

V Ik are the feature matrix for last items and the following items respectively.

The Tucker Decomposition subsumes factorization models like the Canonical

Decomposition (Bandelt & Dress 1992), also known as the parallel factor

analysis (PARAFAC). The parallel factor model assumes a diagonal core

tensor with equal factorization dimensionality. As the observed transitions

for A are extremely sparse, a special case of Canonical Decomposition is used

to model the pairwise interactions:

âu,ij ,ik =< v
u,ij
u , v

u,ij
ij

> + < v
ij ,ik
ij

, v
ij ,ik
ik

> + < vu,iku , vu,ikik
> (3.15)

where v
u,ij
u and v

u,ij
i are the latent factor vector of user u and the current

item ij respectively. To this end, a factorizing personalized Markov chain

(FPMC) model was built for next-basket recommendations.

Cheng etc. (Cheng, Yang, Lyu & King 2013) have applied FPMC into

next-POI recommendations and added the user’s movement constraints to

limit the users’ movements into a localized region, which is claimed to be

more consistent with the real-world tourism cases. In this case, the FPMC

is extended into FPMC-LR model.

The factorization models which are only built on item co-occurrence tran-

sition matrix actually only captures the sequential shopping patterns over

items, while they ignore the users’ individual preferences. These preferences

can be captured by the traditional reocmmender systems like collaborative

filtering. In (Liang et al. 2016), the authors combined the traditional matrix

factorization used in collaborative filtering and that used in session-based rec-

ommender systems together to capture both the individual preferences and

the item transition patterns. Specifically, a co-factorization model, CoFactor,

was proposed to jointly decompose the user-item interaction matrix and the

item-item co-occurrence matrix with shared item latent factors. Based on

the unordinary assumption over items within transactions, they used point

wise mutual information (PMI) (Bouma 2009) to measure the relationship

between a pair of items, and then integrated all PMI values into a PMI

matrix and then transferred it into a shifted positive PMI (SPPMI) matrix:

SPPMI(ij , ik) = max{PMI(ij , ik)− log(K), 0} (3.16)
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where K is a hyper-parameter to control the sparsity of the SPPMI matrix.

Once the item co-occurrence matrix SPPMI matrix is achieved and, com-

bined with the user-item interaction matrix, the CoFactor model is formalized

as:

L =
∑
u,ij

αu,ij (ru,ij − θTu βij )
2 +

∑
ij ,ik

(pmij ,ik − βT
ijγik)

2

+λθ

∑
u

||θu||22 + λβ

∑
ij

||βij ||22 + λγ

∑
ik

||γik ||22
(3.17)

where θu, βij and γik are the latent factor vectors of user u, current item ij

and the next item iK respectively. ru,ij and pmij ,ik are the interaction value

(e.g., the rating) between user u and item ij and SPPMI value between items

ij and ik respectively. αu,ij is a sacling parameter to balance the observed

interactions and unobserved interactions between users and items.This ob-

jective can also be seen as a means of regularizing the traditional matrix

factorization in collaborative filtering with the item co-occurrence term.

Other similar works include (Liu, Liu, Aberer & Miao 2013) which utilized

the matrix factorization model to learn the preference transitions from one

location category to another and thus to provide location recommendations.

3.4.3 Neural Model-Based Approaches

Having been derived from the powerful generative and representative capa-

bility of neural networks, a series of neural model-based approaches have

been developed to model the comprehensive relations between item features,

items and transactions and thus to generate recommendations. Generally,

session-based recommender systems based on neural models can be divided

into two groups: shallow neural models and deep neural models, according

to the number of layers incorporated into the neural networks. In the next

section, I introduce these two kinds of recommendation models respectively.
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Shallow Neural Network-Based Models

Shallow neural models usually contain a shallow network structure (Goth

2016) which maps the items or sessions into a latent space and then conducts

operations in this latent space more easily. The mechanism behind this

is that, when mapping items onto a multi-dimensional latent space, their

positions in such a space reflect their relations, for instance, the items within

a short distance have a higher similarity and are more relevant to each other.

To the end, the latent numerical vector representation of each item contains

much more information than the original item ID. As a result, the operations

conducted on these latent representations are much more effective than the

original representations, such as the ID.

Generally speaking, these types of recommender systems have been mainly

developed in the past three to four years, and they have been inspired by the

great success of word-embedding techniques, which were proposed in 2013 for

natural language processing (Mikolov, Chen, Corrado & Dean 2013, Mikolov,

Sutskever, Chen, Corrado & Dean 2013). Word embedding learns a latent

vector representation of each word in a sentence by considering the interaction

between the given word and its corresponding context in the sentence. Two

typical neural word embedding models are Skip-gram (Pennington, Socher

& Manning 2014) and CBOW model (Mikolov, Le & Sutskever 2013).

A representative shallow neural model for session-based recommendations

has been given by (Hu, Cao, Wang, Xu, Cao & Gu 2017). It has designed a

shallow network with wide-in-wide-out structure so as to first map user ID

and its corresponding item IDs into latent vector representations and then

combine them together as the given context representation, which is finally

fed into the output layer (a softmax layer) to predict the corresponding next

item. In the next section, I define the main process of this model, which is

a basic framework for shallow neural model for session-based recommender

systems.

Similarly, U = {u1, u2, ..., u|U |} and I = {i1, i2, ..., iI} denote a set of

users and items, respectively. S = {s1, s2, ..., s|S|} denotes the collection of
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all the observed shopping sessions (transactions), while each session contains

a subset of items s ⊂ I. The shallow network-based recommender system

is trained as a probabilistic classifier which learns a conditional probability

P (it|c) w.r.t the target item it to predict where c = s \ it is the session

context for item it, similar to the context in word embedding models. To

generate personalized recommendations, the corresponding user u is added

as user context. Accordingly, the the shallow network is refined and trained

as a classifier over the conditional distribution P (it|u, c), while the session-

based recommendation problem is reduced to generate rankings over all can-

didate items according to the conditional probability P (i
′
t|u′, c′) , given a

user-session context < u′, c′ >.

The shallow network first embeds a user u and an item i into a latent

vector by using the following equations:

eu = δ(W1 :, u) (3.18)

ei = δ(W2 :, i) (3.19)

where W1 ∈ R
K×|U | is the weight matrix to connect the user input to the

hidden layer while W2 ∈ R
L×|I| is the weight matrix to connect session input

to the hidden layer. In this way, each user and item are represented by a

numerical vector eu ∈ [0, 1]K and ei ∈ [0, 1]L respectively, which is similar

to the vector representation of each word in word2vec model (Goldberg &

Levy 2014), just as the aforementioned Sikp-gram or CBOW.

ec =
∑
i∈c

ωiei (3.20)

where ωi is a weight to measure the importance scale of contextual item i

and
∑

i∈c ωi = 1.

From the hidden layer to the output layer, two weight matrices W3 ∈
R

|I|×K and W4 ∈ R
|I|×L are used to fully connect the user embedding layer

and the item embedding layer to the output layer, in turn. Then the score

Sit of a target item it w.r.t the user-session context < u, c > in terms of the

embeddings < eu, ec >:

Sit(u, c) = W3
t,:eu +W4

t,:ec (3.21)
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Finally, the conditional distribution is defined in terms of the softmax func-

tion:

Pθ(it|(u, c)) = exp(Sit(u, c))

Z(u, c)
(3.22)

where Z(u, c) =
∑

i∈I exp(Si(u, c)) is the normalisation constant, and θ =

{W1,W2,W3,W4} defines the model parameter set.

With regard to further improvement, one might incorporate item fea-

tures into the network to embed an item’s ID and its feature simultaneously

to tackle cold-start recommendation issues (Wang, Hu & Cao 2017);(Vasile,

Smirnova & Conneau 2016, Wang, Deng, Zhang & Xu 2016) have also in-

corporated side information to help with building a more informative item

embedding. To attentively learn the real relevance scale of different contex-

tual items to the target item, the attention mechanism has been adapted into

the embedding process of items (Wang et al. 2018). (Wang, Guo, Lan, Xu,

Wan & Cheng 2015) have learned hierarchical representation for the next-

basket representation (Wan, Lan, Wang, Guo, Xu & Cheng 2015). In ad-

dition, there are more similar session-based recommender systems that have

been built on item embedding inspired by word2vec models, such as that of

(Greenstein-Messica et al. 2017, Wang, Deng & Xu 2017, Barkan, Brumer &

Koenigstein 2016, Krishnamurthy et al. 2016, Li, Chen & Yan 2017, Zhao,

Huang & Wen 2016, Ozsoy 2016).

Deep Neural Network-Based Models

Deep neural networks have become popular since 2006 when Hinton proposed

an unsupervised layer-wise pre-training approach to train a deep neural net-

work (Hinton, Osindero & Teh 2006). Deep neural networks have been widely

employed into recommender systems in recent years; for instance, some re-

searchers have incorporated them into collaborative-filtering recommender

systems to better model the user-item interactions, like (Salakhutdinov, Mnih

& Hinton 2007, Wang, Wang & Yeung 2015) and (Li, Kawale & Fu 2015).

In 2016, a workshop focused on deep learning for recommender systems

(Karatzoglou, Hidasi, Tikk, Sar-Shalom, Roitman, Shapira & Rokach 2016)
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was held in the prestigious flagship conference for recommender systems -

Recs2016, followed by another workshop (Hidasi, Karatzoglou, Sar-Shalom,

Dieleman, Shapira & Tikk 2017) and a tutorial(Karatzoglou & Hidasi 2017)

on the same topic at the same conference in 2017. It is generally believed that

the deep neural network-based models for session-based recommendations

started in 2016 when a GRU-based recurrent neural network (GRU4Rec)

was designed for session-based recommender systems by (Karatzoglou et al.

2016). Following this work, a series of deep neural models have been pro-

posed for session-based recommendations, like (Tan, Xu & Liu 2016, Hi-

dasi, Quadrana, Karatzoglou & Tikk 2016, Quadrana et al. 2017, Hidasi &

Karatzoglou 2017). Out of these, recurrent neural network (RNN) -based

models have dominated this area due to their intrinsic natures and advan-

tages for modelling sequential data in a session since the elements such as

items, songs in a session are usually regarded as ordered data points. In

addition, to explore the other characteristics of session-based data, naive

deep neural networks (DNN) and convolutional neural networks (CNN) have

also been employed in this area -but much less when compared to RNN. In

the next section, I introduce the representative deep neural session-based

recommender systems based on different network architectures.

•RNN-Based Models: As mentioned before, the first representative

deep neural model for session-based recommendations was the GRU-based

RNN model (GRU4Rec) proposed in 2016 (Hidasi et al. 2015). In addition,

this model is also the most representative RNN-based session-based recom-

mender system. In the following section, I first introduce this model, then

give some improved versions of this model, and finally show some variants of

RNN-based models for session-based recommendations.

Similar to the scenario setting in Markov chain-based recommender sys-

tems, usually a set of user transaction sessions S = {s1, s2, ..., s|S|} are given,
where each session s = {i1, i2, ..., i|s|}(s ∈ S) corresponds to a sequence of

items bought consecutively in a transaction. GRU4Rec models each session

as a sequence, particularly, it predicts a probability distribution over the next
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element of the sequence when given the current hidden state.

Usually, a standard RNN update the hidden state h using the following

update function:

ht = f(Wxt + Uht−1) (3.23)

Where f is a activation function such as a logistic sigmoid function and xt

is the input of the unit at time t, a probability distribution over the next

element of the sequence is outputted given the current hidden state ht (Hidasi

et al. 2015). Essentially, RNN uses all the given items in a sequence as the

condition to predict the next possible item when it is employed into session-

based recommendations.

A gated recurrent unit (GRU) is a more elaborate RNN unit and aims

at handling gradient vanishing problems by learning when and by how much

to update the hidden state of the unit (Cho, Van Merriënboer, Bahdanau &

Bengio 2014). To this end, the hidden state ht is updated in the following

form:

ht = (1− zt)ht−1 + ztĥt (3.24)

where the update gate zt and the candidate hidden state ĥt are computed by

the following equations respectively. zt actually decides how much the unit

updates its hidden state from the last state.

zt = σ(Wzxt + Uzht−1) (3.25)

ĥt = tanh(Wxt + U(rt � ht−1)) (3.26)

where σ is the logistic sigmoid function and the reset gate rt is given by:

rt = σ(Wrxt + Urht−1) (3.27)

Each GRU unit stands for one hidden state and thus a GRU layer consisting

of a sequence of connected GRU units forms a hidden layer of an RNN. In

this case, a l-length sequence can be modeled by a hidden layer with l GRU

units. The whole model built in (Hidasi et al. 2015) tarts from the input

layer to input the one-hot item encoding into the model and then followed
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by an embedding layer to map each ont-hot encoding into a K-dimensional

numerical vector representation. This vector representation is the input of

subsequent multiple GRU layers. Finally, a feed-forward layer is used to

connect the last GRU layer and the output layer.

Now it is necessary to go back to my session-based recommender system.

In (Hidasi et al. 2015) a session-parallel mini-batches technique was adopted

to feed the session data into the GRU-based RNN model. At each state t, the

input xt is the embedding of item it in a session s. In this way, given the past

t items in session s, GRU4Rec is built to model the intra-session dependency

over sequential items and, thus, to predict the probability distribution on the

next item.

To further improve the recommendation performance, Tan et al. have ex-

ploited and adopted some techniques into the training and test processes of

the GRU4Rec model to generate an improved version of the GRU4Rec (Tan

et al. 2016). To be specific, data augmentation via sequence preprocessing

and embedding dropout were applied to enhance training and to reduce over-

fitting of the model. In addition, a model pre-training approach was proposed

to consider the possible temporal shifts in the input data distribution. The

recommendation accuracy was claimed to be improved by over 10% due to

the application of these techniques. To build a personalized user profile based

on a user’s shopping history and, thus, to generate personalized recommen-

dations, Quadrana et al.(Quadrana et al. 2017) have further improved the

GRU4Rec by proposing a hierarchical recurrent neural networks model to in-

corporate cross-session information for recommendation tasks. Specifically, a

two-level GRU-based RNN was designed: the session-level GRU models the

user shopping activity within sessions and generates recommendations for

the next items while the user-level GRU models the cross-session information

transfer and provides personalization to the session-level GRU by initializ-

ing its hidden state. To this end, both the intra-session dependency and

the inter-session dependency were captured to generate more reliable next

item recommendations compared to those session-only methods in which only
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intra-session dependency was captured. Another quite similar work to apply

two-level RNN structure to model both intra- and inter-session dependency

for next item recommendations was II-RNN (Inter-Intra RNN) proposed in

(Ruocco, Skrede & Langseth 2017). In (Donkers, Loepp & Ziegler 2017), the

authors have designed a unique user-based GRU model to incorporate users’

characteristics into the model for personalized next-item recommendations.

Except for the main representative GRU like the RNN-based recom-

mender systems mentioned above, there are many other variants and ex-

tensions for RNN-based next-item recommendation models. An interesting

one is the Dynamic RRcurrent bAsket Model (DREAM) proposed by Yu et

al. in 2016 (Yu et al. 2016). DREAM both learns a dynamic representation

of a user and captures global sequential features among baskets by model-

ing all sequential historical shopping baskets with a recurrent architecture.

Specifically, DREAM utilizes the hidden state hu
t of user u at time point t

of the RNN as the representation of the corresponding user at time t while

the input for each state is the embedding of each basket aggregated from the

embeddings of all the items contained in it. In this case, the user representa-

tion is different at each time point as new baskets are added into the model

as time progresses. Formally, this can be formulated as follows:

hut = f(Xbut +Rhut−1) (3.28)

where but is a latent vector representation of the user u’s basket purchased at

time t, and hu
t−1 is the dynamic representation of u’s last time point t− 1. f

is an activation function and sigmoid function (Yu et al. 2016).

Other extensions include the incorporation of variational inference into

the RNN architecture to handle the uncertainty in sparse transaction data

and to simultaneously leverage the model’s scalability with large real-world

datasets (Chatzis, Christodoulou & Andreou 2017, Christodoulou, Chatzis

& Andreou 2017), incorporating other additional information like the item

features and other contextual factors like time, location, and interfaces into

RNN-based models to enhance the recommendations (Hidasi et al. 2016, Beu-

tel, Covington, Jain, Xu, Li, Gatto & Chi 2018), introducing time decay or at-

tention mechanisms into RNN-based models to discriminate the intra-session
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dependency over items and, thus, to achieve more precise recommendations

(Bogina & Kuflik 2017, Pei, Yang, Sun, Zhang, Bozzon & Tax 2017) and

combining RNN with transitional approaches like factorization machines or

neighbourhood-based methods to make up the drawbacks of RNN-only mod-

els (Twardowski 2016, Jannach & Ludewig 2017b). Other similar RNN-based

models include (Jing & Smola 2017, Hidasi & Karatzoglou 2017, Wu, Ahmed,

Beutel, Smola & Jing 2017).

•DNN-Based Models: Except for the RNN, the deep neural network

(DNN) is an alternative solution for session-based recommendation tasks,

especially when no strict order exist over items within sessions. Here DNN

actually refers to the naive deep neural network structure consisting of multi-

layer perceptron (MLP). In the next section, I introduce a typical DNN-based

session recommender system in detail, and I then talk about some other

variants.

In (Wu & Yan 2017), a DNN has been applied to learn a session’s rep-

resentation for recommendations. Specifically, a user u’s online shopping

session su = {sc, sv, it} contains a set of click items sc = {ic1, ic2, ..., ic|sc|}
and a set of view items sv = {iv1, iv2, ..., iv|sv |} and then the target item it.

The proposed list-wise DNN-based model firstly maped each item i contained

in a session s to a numerical-valued embedding vector ei and then applied

max pooling on the corresponding items to obtain the click sub-session em-

bedding vector esc and the view sub-session embedding vector esv . Once the

sub-session embedding vector, target item and corresponding user’s embed-

ding vectors are ready, a DNN was applied to learn an optimized combination

of all these embeddings and, finally, export a representation esu of the whole

session su as the input of the final classification layer. Formally, this can be

represented as follows:

esc = max(eic1 , eic2 , ..., eic|sc|) (3.29)

where eic1 is the embedding of item ic1 in sc learned from the lower embed-

ding layer. max is to get the maximum value of each dimension from the

embeddings of all items in esc .
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Similarly, the sub-session embedding esv is achieved as below:

esv = max(eiv1 , eiv2 , ..., eiv|sv |) (3.30)

The output of the first hidden layer of DNN is calculated as below:

h1 = σ(Wcesc +Wvesv +Wteit +Wueu) (3.31)

where eit and eu are the embedding of target item and of the corresponding

user, respectively; Wc, Wv, Wt and Wu are the corresponding weight ma-

trixes to fully connect each of the embedding vector to the first hidden layer

of the DNN.

Then, the output of the nth hidden layer hn is calculated from the previous

layer’s output:

hn = σ(Wn
n−1hn−1) (3.32)

where Wn
n−1 is the weight matrix to fully connect the (n− 1)th hidden layer

to the nth hidden layer in the DNN.

The output of the last hidden layer is taken as the latent representation

of the original session su and it is then inputted into the output layer for

classification tasks.

Similar to the above approach, Jannach et al. have applied DNN to

learn the optimized combination of different factors like ‘reminders’, ‘item

popularity’ and ‘discount’ as compound session-based features for next item

predictions (Jannach, Ludewig & Lerche 2017). Another example is the

implementation of DNN to transfer and generalize the sparse user-item in-

teractions to dense and informative session features for prediction. A wide

liner model combined with a DNN was applied to a mobile phone app store

-‘Goole play’, to improve the app’s recommendation performance (Cheng,

Koc, Harmsen, Shaked, Chandra, Aradhye, Anderson, Corrado, Chai, Ispir

et al. 2016). In (Song et al. 2016), a DNN-based architecture has been pro-

posed to model the combination of long-term static and short-term temporal

user preferences to improve the recommendation performance.
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•CNN-Based Models: To relax the rigid order assumption over items

within sessions, a convolutional neural network (CNN) is another choice for

session-based recommendations. It is quite common that not all adjacent

items in a session have dependent relationships since a given person may

buy an irrelevant item (e.g., pizza) between two relevant items (e.g. bread

and milk) to form a sub-session (〈bread, pizza,milk〉). Such a kind of de-

pendency cannot be well modelled by RNN-based approaches as they only

capture adjacent-item-based sequential dependency. In addition, RNN takes

each single item as a state, and, thus, it can only capture the item-level

dependency, while it cannot capture the union-level dependency. This may

ignore the case where several previous items may co-influence the occurrence

of the next item. For instance, buying both milk and butter together leads to

a higher probability of buying flour. Due to the relaxed assumption on data

order and the high capacity in learning local features from a certain area and

the relationships between different areas, CNN can effectively mitigate the

aforementioned drawbacks of RNN in session-based recommender systems.

In the next section, I specifically introduce a representative CNN-based ses-

sion recommender system (Tang &Wang 2018), and I then demonstrate some

other similar works.

Similarly, let a user u’s session Su = {i1, i2, ...il, il+1, ..., il+m} contains

l + m items, in which the first l items are used as the input to predict the

following m items. The model proposed in (Tang & Wang 2018) mainly

contains embedding layers, convolutional layers and fully-connected layers.

Once the training instances are ready, first the embedding layer maps each

input item i to an embedding vector ei ∈ R
d. Therefore, an embedding

matrix E(u,t) is achieved by putting together of the embeddings of all l input

items purchased until time step t:

E(u,t) =

⎡
⎢⎢⎢⎢⎢⎣
e1

e2

...

el

⎤
⎥⎥⎥⎥⎥⎦ (3.33)

The convolutional layers include a horizontal convolutional layer and a ver-
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tical convolutional layer, respectively. Specifically, a filtering and a pooling

operation are conducted in the horizontal convolutional layer in succession.

Suppose the horizontal convolutional layer has n horizontal filters F k ∈
R

h×d, 1 ≤ k ≤ n. h ∈ 1, ..., l is the height of a filter. F k slides from top to

bottom on E and interacts with all the horizontal dimensions of the item i,

1 ≤ i ≤ l+h−1. Therefore, the ith convolution value is computed as follows:

cki = φc(Ei:i+h−1 � F k) (3.34)

where φc is the activation function for the convolutional layer. The final

convolution result of F k is a vector:

ck = [ck1 ck2...c
k
l−h+1] (3.35)

After a max pooling is applied on ck, the final output value from the n filters

in this layer is a vector o ∈ R
n, which captures the most significant features

extracted by the filters.

o = max{max(c1),max(c2), ...,max(cn)} (3.36)

A significant signal is picked up w.r.t an area by sliding filters of various

heights. Therefore, horizontal filters can be trained to capture union-level

patterns with multiple union sizes.

Similarly, suppose the vertical convolutional layer has ñ filters F̃ k ∈
R

l, 1 ≤ k ≤ ñ. Each filter interacts with columns of E by sliding d times

from left to right on E to get the vertical convolutional output:

c̃k =

l∑
v=1

F̃ k
v Ev,: (3.37)

Essentially, vertical filter is trained to learn to aggregate the embeddings of

the l previous items. Therefore, it can capture the point(item)-level relations.

Finally, the output of ñ vertical filters is a matrix õ ∈ R
d×ñ:

õ = [c̃1 c̃2...c̃ñ] (3.38)
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In the fully-connected layers, the outputs of the two convolutional filters

are concatenated together as the input to get higher-level features through

the fully-connected layers.

z = φa(W

[
o

õ

]
+ b) (3.39)

where W is the weight matrix to project the concatenated layer to a hidden

layer, b is the bias term while φa is the activation function for the fully-

connected layers.

Finally, the embedding eu of user u is concatenated with the output z′

of the final fully-connected layer as the input of the final output layer for

prediction:

y(u,t) = φo(W
′
[
z′

eu

]
+ b′) (3.40)

where φo is the softmax function and y is the probability of user u at time

step t to interact with each of the candidate items.

Until recently, the session-based recommendation tasks have been ad-

dressed by this CNN-based models, which actually learn a comprehensive

representation of a session with the complex relations over items encoded.

Another similar work is a 3D convolutional network which has been built for

session-based recommendations (Tuan & Phuong 2017). Specifically, a 3D

CNN model was built to jointly model the sequential patterns in session click

data and the item characteristics from item content features for the predic-

tion and recommendation tasks. Furthermore, in (Park, Lee & Choi 2017),

a convolutional neural network (CNN) model has been proposed to capture

user preferences and to personalise recommendation results.

In summary, different deep network architectures have different strengths

and, thus, usually focus on different aspects of session-based recommenda-

tions. RNN-based models dominate session recommender systems by captur-

ing the sequential patterns within sessions through utilizing their strong ca-

pability for sequence modeling. While DNN-based models are usually applied

to learn optimized combinations of the representations of different aspects,
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and they result in a comprehensive representation of the session-context for

the ensuing prediction and recommendation tasks. CNN-based models are

usually adopted to extract more informative feature representations from the

sessions and other contents for better predictions and recommendations.

3.5 Summary

In this chapter, I have conducted a systematic review on the session-based

recommender system. The main trends and approaches were discussed: from

the quite naive pattern/rule-based recommender systems used in the very

early stages to the currently popular and advanced approaches such as the

deep learning-based ones. All these session-based recommender systems can

be classified into two main branches: model-free approaches and model-based

approaches. Furthermore, the model-free approaches include pattern/rule-

based and sequential pattern-based recommender systems, while the model-

based ones include Markov chain-based ones, factorization-based ones, and

neural model-based ones. In recent years, neural model-based session recom-

mender systems have attracted a substantial amount of attention from the

research community, especially the deep learning-based approaches.

In addition, I discussed some different scenario settings in session-based

recommender systems in Section 3.2.2. Particularly, three typical scenario

pairs were discussed: next-item versus next basket recommendations, ordi-

nary versus unordinary assumptions, and intra- versus inter-session depen-

dency modelling. In practice, I found the works focusing on next-item recom-

mendations to be much more than the next-basket ones. In addition, most

works have been based on the ordinary assumption for intra-session depen-

dency modelling. Quite few works have been unorder-based or have taken

into account the inter-session dependency for next-item recommendations,

which may need more explorations in the future work.

Moreover, most existing session-based recommender systems from various

categories have only focused on those most typical issues, while quite few
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scholars have worked on some more specific issues in this area, such as the

implicit relation learning in pattern/rule-based recommender systems, the

item heterogeneity issue, the cold start item issue in session-based RSs, and

the inter-session dependency issue in next-item recommendations. These

gaps certainly motivated me to take a step forward to solve some more specific

issues in session-based recommender systems in this thesis.
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4.1 Introduction

In this chapter, I focus on one of the critical challenges on item level in

session-based recommender systems: the inter-item dependency, especially

the implicit dependency as shown in Figure 1.1 in Chapter 1. This is also

the first challenge I addressed in this thesis as demonstrated in the thesis

structure Figure 1.2 in the first chapter.

4.1.1 Target Problem and Motivation

As discussed in Chapter 3, especially in Section 3.3.1, rule-based recom-

mender systems are one of the most basic and straightforward approaches for

session-based recommendation tasks. Generally, rule-based RSs first mine a

set of rules like correlation rules or association rules from the shopping-basket

transaction data and then take them as the guidance for the following rec-

ommendations. For example, if an association rule pizza⇒ coke indicating

that customers who bought a pizza always like to buy a coke is mined from

the historical transaction record data of a shopping center, once a customers

bought a pizza, the shopping center can recommend a coke to him or her for

cross-sale promotion purpose. Note that a rule-based recommender system

belongs to the session-based recommender systems because it takes a trans-

action as the basic unit for data organization in the rule mining process and

thus it remains the session structure of the original data in the recommender

systems. This is the essential feature of a session-based recommender sys-

tem as discussed in Section 2.1. Rule-based recommender systems have been

proposed for decades and have achieved great success in various application

domains including product recommendations(Kim & Yum 2011), discussion

forum recommendations (Abel et al. 2008), Web information recommenda-

tions (Moreno et al. 2004), music recommendtaions (Shao et al. 2009) and

so on.

Although simple and effective, rule-based recommender systems are not

flawless, instead, their drawbacks are obvious. For instance, many association
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rule-based recommender systems usually just recommend those co-occurred

items according to their explicit pairwise-like co-occurrence relations while

ignoring more complex implicit relations between items like the influence

from the third-party items (items except the co-occurred items themselves )

(Lin et al. 2002, Kumar & Kumar 2013). The accordingly resultant recom-

mendations based on such simple and straightforward relations may not be

so reliable. In addition, without the consideration of effect from the other

third-party items, the existing rule-based recommender systems are built on

the pairwise-like relations between items or itemsets. As a result, they are

easy to recommend similar items duplicately to a user who just bought a cer-

tain item as such item may have multiple co-occurred but similar items. For

instance, suppose both coke and sprite are highly associated or correlated to

pizza according to the transaction data, for a user who bought pizza, both

coke and sprite may be recommended to him or her simultaneously. But coke

and sprite actually are quite similar and share the same function.

If we go one step deeper, it is clear that all the above mentioned drawbacks

originate from the foundation of rule-based recommender systems: the rule

they used for recommendations. If a rule-based recommender systems are

based on more complex rules with more complicate relations embedded, they

are essentially can generate more reliable recommendations. To this end, I

first analyze the defects of the existing rule mining works from the rule-based

recommender system perspective and then accordingly propose an implicit

rule mining framework with the purpose of making up these defects and thus

build more reliable implicit rule-based recommender systems.

Rule mining is the foundation and the core challenge of rule-based recom-

mender systems. Classic rule mining methods, e.g., association rule mining

(Sahoo, Das & Goswami 2015) and causal rule mining (Sokolova, Groot,

Claassen, von Rhein, Buitelaar & Heskes 2015), are essentially based on

explicit co-occurrences only, and focus on explicit and dependent relations

(e.g., associations, causal relationships) while ignoring more implicit rela-

tions (Singh & Jain 2005, Beg & Butt 2009, Cao 2013). Such information
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loss usually reduces the rules’ actionability and the forthcoming recommen-

dation reliability. Next I briefly review and summarize some representative

rule mining algorithms which are broadly applied in rule-based recommender

systems, like association rule mining, indirect association rule mining, corre-

lation rule mining and casual rule mining.

Well-known algorithms focusing on association rule mining include AIS

(Agrawal, Imieliński & Swami 1993), Apriori (Agrawal et al. 1994), FP-Tree

(Han, Pei & Yin 2000) and the linear prefix tree-based algorithm (Pyun,

Yun & Ryu 2014). All these methods focus on the improvement of algo-

rithm efficiency and much progress has been achieved by utilizing more ef-

fective candidate generation methods and pruning strategies. However, they

are all based on the support-confidence framework and target explicit ‘co-

occurrence’ based associations. As a result, they only capture the explicit

and straightforward relations while ignoring implicit relations. They filter out

infrequent items which may be of significance and simply focus on the main

aspects (antecedent and consequent) while ignoring the influence of other

related aspects (e.g., link items). Affected by these defects, the correspond-

ing association rule-based recommender systems are easy to only recommend

those frequently co-occurred items while ignoring other ones. Moreover, the

neglect of effects from other items reduces the recommendation reliability.

Correlation rule mining is another important branch in the rule mining

area. It tries to mine those statistically correlated items driven by frameworks

different from the ‘support-confidence’ one. Specifically, some measures like

lift, χ2 correlation (Brin, Motwani & Silverstein 1997), all confidence and

bond (Omiecinski 2003) to describe the correlations between distinct items

are used as the selection criteria. The progress achieved in correlation rule

mining can leverage some of the drawbacks of association rule mining illus-

trated above by including infrequent items. However, correlation rules still

only focus on explicit relations while ignoring implicit ones. In addition, sim-

ilar to association rules, correlation rules do not take the influence of related

aspects (e.g. link items) into account when capturing the relations between
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the main aspects. Therefore, the corresponding correlation rule-based rec-

ommender systems suffer from these drawbacks.

Identifying implicit rules has rarely been explored to the best of my knowl-

edge. The most related work is indirect association rule mining. The concept

of indirect association rules infers the relation between two items which are

not associated with each other directly but both of them are associated with

identical third-party itemsets, called mediators. Hamano and Sato (Hamano

& Sato 2004) proposed a framework to mine indirect association rules to

analyze targeting consumers and competitors. Specifically, given an item

pair which co-occurs infrequently and a mediator itemset, a dependency

constraint μ is used to ensure the strong direct associations between each

item from the item pair and the mediator itemset, and then the indirect

association between the pair of items is derived based on the strong direct

associations. Other similar works include the IPMA (Herawan, Noraziah,

Abdullah, Deris & Abawajy 2013) framework, mining indirect association

mining in web data (Kazienko 2009). All of these algorithms take a step

forward in capturing implicit relations; however, they basically extend the

association rule mining framework by simply putting two association rules

together to derive an indirect one (Wan & An 2003), which limits them to

frequent items while filtering out infrequent ones. As a result, they can only

discover the indirect associations between two frequent items. However, im-

plicit relations may also exist between several infrequent items and between

some infrequent items and frequent ones. Such two kinds of implicit relations

involving infrequent items are ignored by all the existing methods. Another

drawback of existing broadly used frameworks is that they only focus on the

relations between two items (e.g., i1, i2), which makes them inapplicable for

itemsets with more than two items (e.g.,i1, i2, i3...). In addition, most of the

existing work in this area only focus on rule mining algorithm development

while ignoring the application mechanisms (Wu, Zhu, Wu & Ding 2014) of

the resultant rules.

However, it is not trivial to capture implicit relations (Yang, Tang, Dai,

77



CHAPTER 4. AN IMPLICIT RULE-BASED RS

Yang & Jiang 2013, Peska & Vojtas 2016) by analyzing rule relations (also

called pattern relation analysis) (Cao 2013) to make the identified rules ac-

tionable (Cao 2012) and informative for better recommendations. In this

paper, implicit relations (Cao 2013, Chen, Hu, Xu, Liu & Cao 2015) refer to

the connections between several items which do not co-occur frequently but

have a high probability of co-occurring with the third-party identical items.

Here the third-party items are called link itemset as they serve as bridges to

connect those rarely or never co-occurring items. Such implicit relations can-

not be identified by association rule mining or causal rule discovery without

pattern relation analysis. In some cases, implicit relations are even more valu-

able for discovering novel and unexpected rules to support business events

like product recommendations, compared to straightforward associations or

causal relations. By taking the third-party items (i.e., link items) into ac-

count, implicit rules are also more informative than explicit ones, which only

focus on their main aspects (e.g., antecedent and consequent).

Researchers have realized the significance of implicit relations between

items and have proposed indirect association mining (Hamano & Sato 2004,

Herawan et al. 2013). However, it is built on association rule mining (Wan &

An 2003), which only makes it applicable for frequent items while ignoring in-

frequent ones. Furthermore, existing indirect association mining only focuses

on pairwise relations (e.g., the relation between sprite and coke) while ignor-

ing the complex relations among multiple items (e.g., the relation among

sprite, coke and pepsi). More significantly, they have not been applied in

recommender systems and thus there is no implicit or indirect rule-based

recommender systems till now to the best of my knowledge.

Taking the ERD data1 as an example (Table 4.1), the values 0 and 1 in

the first and second rows of Column 1 indicate that pizza is not bought in

transaction t1 but in t2. It is easy to infer the implicit rule coke⊕sprite|pizza,
which indicates that either coke or sprite, but not both, is quite likely to be

bought with pizza. This rule reveals the shopping preferences that coke and

1An electronic retail transaction dataset from a Chinese E-commerce platform.
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Table 4.1: An instance of the ERD dataset
�����������Transactions

Items
pizza napkins coke sprite

t1 0 1 0 1

t2 1 1 1 0

t3 0 1 0 0

t4 0 1 1 0

t5 1 1 0 1

t6 1 1 1 1

spritemay not be usually bought together since they share the same function,

whereas they are quite likely to be bought together with the same third-party

goods like pizza. This kind of implicit connection between coke and sprite

is conditional on the link itemset pizza. It can not only help with increasing

profit through competitive product analysis (Fleisher & Bensoussan 2015)

(coke and sprite are competitive products) but can also contribute to reliable

recommendations by reducing redundant items (coke and sprite are likely to

be redundant if recommended to one consumer at the same time). Such

implicit relations cannot be identified by traditional explicit co-occurrence-

based rule mining approaches like association rule mining (Agrawal et al.

1994) or causal rule discovery (Pearl, Glymour & Jewell 2016) because of

their extremely low co-occurrences and hidden relations between the items

involved.

In fact, although some items are implicitly related, it is possible to iden-

tify such relationships. For example, a person may buy pizza and coke for

a lunch, but try pizza and sprite next time. In reality, such partial replace-

ment in product combinations is quite popular in areas such as commerce and

medical services. Capturing such implicit and complex relations and then in-

ferring implicit rules helps businesses to deeply understand customer consum-

ing behaviors, which provides more solid support for business optimization

and product recommendations (Garcia-Nunes, Souza & da Silva 2017, Leng
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& Jiang 2017). Therefore, the rule-based recommender systems could be

enhanced by taking those more informative implicit rules rather than those

simple and explicit rules as the basis.

4.1.2 My Design and Main Contributions

The above observation shows the importance of counting implicit relations

between items in rule-based recommendations and the feasibility of identify-

ing implicit rules composed of infrequently or even never co-occurring items.

Here I propose a novel framework to mine implicit rules and then derive

implicit rule-based recommender systems.

A ‘three-step’ framework is proposed to mine implicit rule x⊕y|Z (mean-

ing items x and y are implicitly related with Z as the link itemset), which is

illustrated in Figure 4.1 and explained as follows:

(1) Identify all dependent itemsets of each item in the transactional

dataset.

(2) For given items x and y, if they share at least one identical dependent

itemset Z, itemset {x, y} is chosen as a hidden dependent itemset.

(3) Compute the implicit relation strength (IRS) between x and y; if it is

larger than a predefined threshold, itemset {x, y} is selected as an implicitly

related itemset. Based on this, an implicit rule x⊕ y|Z is inferred.

Once an implicit rule x⊕ y|Z is achieved, it is immediately to be used to

derive an implicit rule-based recommendation rule which is indicated in the

form of Z∧¬y → x (Z∧y �→ x). It means based on the complex information

revealed by x⊕y|Z, we follow the following recommendation strategy: item x

will be recommended to those customers who bought itemset Z but not y due

to the strong relevance between Z and x and the implicit duplicate relation

between x and y. Simultaneously, if the customers have already bought Z

and y, item x will not be recommended to them. It should be noticed that

in order to differentiate our implicit rules from the existing association rules,

we use ‘→′ as the inference symbol instead of using ‘⇒′.

The main contributions of this work are as follows:
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Transactions

Dependent itemset group of items i1, i2, i3

Explicit dependency discovery

Hidden dependent itemset {i1, i2} based on 
link itemsets I2, I3

Implicit rules i1 i2|I2, i1 i2|I3

Data source Hidden dependency derivation Implicit rule inference

Database Item Itemset Itemset group Explicit dependency
(bolder for stronger)

Hidden dependency
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Figure 4.1: The implicit rule inference framework which combines both ex-

plicit and hidden dependency

(1) I emphasize the importance of implicit relations in rule-based recom-

mender systems and thus proposed a implicit rule-based recommender system

which first inferring implicit rules and then generate recommendations based

on them.

(2) A novel implicit rule inference framework is proposed to infer implicit

relation-based rules (IRR), which follows a three-step strategy. I call the

implicit relation-based rules implicit rules for simplification in this chapter.

(3) An implicit rule inference algorithm, IRRMiner, is proposed, by which

those items which rarely or never co-occur but are implicitly closely related

to each other are detected.

(4) An implicit rule-based recommender system is built on IRRMiner,

which effectively enhances the existing rule-based recommender systems by

enabling the resultant recommendations to be more reliable and precise in

real-world business.
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4.2 A Framework for Implicit Rule Inference

I first give the precondition and then illustrate the ‘three-step’ framework

discussed in the introduction. The three steps refer to explicit dependency

discovery, hidden dependency derivation, and implicit rule inference by inte-

grating both explicit and hidden item dependency.

4.2.1 Precondition

To identify the implicit rules in which items infrequently or never co-occur,

the first step is to remove those item combinations of frequently co-occurring

items like {pizza, coke}, i.e., itemsets with high frequency (e.g., {pizza, coke}).
This is because these items are explicitly associated and can be easily and

efficiently mined using frequent pattern mining techniques like Apriori, which

is out of the scope of this work. Note that frequent items are still kept to

form implicit rules. For example, both coke and sprite are frequent, but they

rarely co-occur within one transaction, i.e., Sup(coke, sprite) is low, and they

constitute a typical implicit rule. The precondition for a given itemset to be

implicitly related is that its support is not larger than a minimum threshold.

This precondition greatly benefits my proposed algorithm by pruning those

frequently co-occurring items thus reducing the search space.

Precondition 1: It is possible for a given itemset I={i1 · · · ij} to be an im-

plicitly related itemset only if it meets the following precondition:

Sup(I) ≤ minsup (4.1)

where Sup(I) is the support of itemset I and minsup is the predefined min-

imal support.

4.2.2 Explicit Item Dependency Discovery

Given a transactional dataset as shown in Table 4.1, each row indicates a

transaction, such as t1, t2, and all the transactions constitute the transac-

tional set T , T = {t1, t2 · · · t|T |}. Each column indicates an item like pizza

and coke while the value 1 means that an item occurs in the corresponding
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transaction, otherwise the value is 0. All the items in the transactional ta-

ble constitute the full itemset U,U = {i1, i2 · · · i|U |}. Each transaction t is a

subset of U, t ⊆ U. For example, the first transaction t1 includes two distinct

items: napkins and sprite.

With the transactional information, the explicit dependency between an

item and itemsets is identified using point-wise mutual information (PMI)

(Church & Hanks 1990) for its strong ability to capture both non-linear

and linear dependencies (Bouma 2009, Role & Nadif 2011). The point-wise

mutual information between item i and itemset I is calculated as:

PMI(i, I) = log
p(i, I)

p(i)p(I)
(4.2)

where p(i) and p(I) are the marginal probabilities of i and I respectively,

while p(i, I) is their joint probability.

Definition 4.1 (Dependent itemset). An itemset I is defined as a dependent

itemset of a given item i(i /∈ I) (denoted as Si = I) if the PMI between them

is positive, that is, PMI(i, I) > 0.

It is denoted as Si1, Si2, · · · if item i has more than one dependent item-

set. Note that generally PMI(i, I) ∈ (−∞,min[−logp(i),−logp(I)]], how-
ever PMI(i, I) ∈ (0,min[−logp(i),−logp(I)]] in my algorithm to ensure the

positive dependency between i and I.

Based on the dependent itemset concept, the dependent itemset group is

defined as follows.

Definition 4.2 (Dependent itemset group). For a given item i, all its de-

pendent itemsets (Si1, Si2 . . . ) constitute its dependent itemset group, denoted

as Ai:

Ai = {Si1, Si2 · · · } (4.3)

Example 4.1. Taking item coke in Table 4.1 as an example, its dependent

itemset group Acoke = {Scoke1, Scoke2} = {{pizza}, {pizza, napkins}}.

83



CHAPTER 4. AN IMPLICIT RULE-BASED RS

4.2.3 Hidden Item Dependency Derivation

Given an itemset I = {i1, i2 · · · ij}, the dependent itemset groupAi1 ,Ai2 · · ·Aij

of each item from I is respectively identified. Aij = {Sij1, Sij2 · · ·Sijk}, where
Sijk is the kth dependent itemset of ij.

Definition 4.3 (Link itemset and link itemset group). Given an itemset

I = {i1, i2 . . . ij} and the dependent itemset group Aij of each item ij from I,

the link itemset group of I is defined as the intersection set of all dependent

itemset groups of items within I, denoted as GI . Each element of GI is

defined as a link itemset of I, denoted as HI . It is denoted as HI1, HI2 . . .

when itemset I has more than one link itemset. Formally,

GI = Ai1 ∩Ai2 . . .Aij = {HI1, HI2 . . . HI|GI |} (4.4)

Definition 4.4 (Hidden dependent itemset). Given an itemset I, it is defined

as hidden dependent if its link itemset group is not empty. Formally,

GI �= ∅ (4.5)

Example 4.2. Let us take itemset {coke, sprite} from Table 4.1 as an ex-

ample. The dependent itemset groups of items coke and sprite are Acoke =

{{pizza}, {pizza, napkins}} and Asprite = {{pizza}, {pizza, napkins}}, re-
spectively. Hence, the link itemset group of {coke, sprite} is G{coke,sprite} =

Acoke

⋂
Asprite = {{pizza}, {pizza, napkins}} �= ∅. Accordingly, {coke, sprite}

is a hidden dependent itemset with two link itemsets {pizza} and {pizza, napkins}.

4.2.4 Implicit Rule Inference

Given a hidden dependent itemset, I first compute its IRS and then select

those itemsets whose IRS is larger than a minimum threshold as implicitly

related itemsets. Lastly, I infer implicit rules based on these itemsets.

Given a hidden dependent itemset I = {i1, i2 · · · ij} together with its link

itemset group GI(GI �= ∅), its IRS is calculated under the intuition that if

I has more link itemsets and the items (i1, i2 · · · ij) within I have stronger
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dependencies on them, these items are more strongly implicitly connected.

As a result, the IRS of I is larger.

Definition 4.5 (Conditional implicit relation strength (CIRS)). Given a

hidden dependent itemset I = {i1, i2 · · · ij} and a link itemset HI , its implicit

relation strength conditional on HI is computed as:

CIRS(I|HI) = min(PMI(i1, HI) · · ·PMI(ij , HI)) (4.6)

where CIRS(I|HI) ∈ (0,min(−logp(i1), ...− logp(ij),−log(HI)).

Definition 4.6 (Implicit relation strength (IRS)). Given an hidden depen-

dent itemset I = {i1, i2 · · · ij} and its link itemset group GI , its implicit

relation strength is computed by summing its CIRS on all link itemsets. For-

mally,

IRS(I) =
∑

HI∈GI

CIRS(I|HI) (4.7)

where IRS(I) ∈ (0,
∑

HI∈GI
min(−logp(i1), ...− logp(ij),−log(HI)). The larger

IRS(I) is, the stronger the implicit relation that exists between the items

within I.

Definition 4.7 (Implicitly related itemset). An implicitly related itemset

candidate is implicitly related if its IRS is larger than the minimum threshold.

Formally,

IRS(I) ≥ minIRS (4.8)

where minIRS is a predefined threshold to ensure that strong enough implicit

relations exist between the items within I.

Definition 4.8 (Implicit rules). Given an implicitly related itemset I =

{i1, i2 · · · ij} and its link itemset group GI = {HI1 · · ·HIn}(n = |GI |), n

implicit rules are inferred, which constitute an implicit rule cluster R0.

R0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r01 : i1 ⊕ i2 ⊕ · · · ij |HI1

r02 : i1 ⊕ i2 ⊕ · · · ij |HI2

· · ·
r0n : i1 ⊕ i2 ⊕ · · · ij |HIn

(4.9)
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All the rules fromR0 share the same implicitly related itemset ({i1, i2...ij})
but take different link itemsets (e.g., HI1 or HI2) as their conditions. The

first rule i1 ⊕ i2 ⊕ · · · ⊕ ij|HI1 implies that once HI1 has been bought, there

is great probability that one out of i1, i2 · · · ij will be bought.

Example 4.3. Following the implicitly related itemset candidate {coke,
sprite} in Example 4.2, its conditional implicit relation strength (CIRS) con-

ditional on its link itemset {pizza} is CIRS({coke, sprite}|{pizza}) = min

(PMI(coke, {pizza}), PMI(sprite, {pizza})) = 0.12. Similarly, CIRS({co
ke, sprite}|{pizza, napkins}) = 0.12. Accordingly, IRS({coke, sprite}) =

0.24. If we set minIRS = 0.1, {coke, sprite} is an implicitly related itemset.

Based on this, two implicit rules coke⊕sprite|pizza and coke⊕sprite|{pizza,
napkins} are derived. In reality, such rules indicate that coke and sprite are

rarely bought together whereas they are much more likely to be bought together

with other itemsets {pizza} or {pizza, napkins}. This can be seen from the

transactions in Table 4.1. These observations are consistent with customer

shopping behaviors whereby one may prefer to buy a basket of products with

different functions rather than the same function.

4.3 The IRRMiner Algorithm

Following the framework illustrated in the previous section, the IRRMiner

algorithm is developed to mine implicit rules as shown in Algorithms 4.1 and

4.2. The following anti-monotonous Property 4.1 is used to generate size-L

implicit itemset candidates from size-(L-1) ones directly to reduce the search

space. The size of an implicit rule is defined in Equation (4.10) in Section

4.4. Applying this property from Lines 2 to 5 in Algorithm 4.2 guarantees

to find all rules satisfying the given constraints efficiently. Next, I first give

and prove such a property theoretically and then describe the implicit rule

inference algorithm below.

Property 4.1. Given a candidate itemset I = {i1 · · · ij} and its implicit

relation strength (IRS(I)), any subset I
′
(I

′ ⊆ I, |I ′ | ≥ 2) must not have a
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lower implicit relation strength, namely IRS(I
′
) ≥ IRS(I).

Proof. Given a candidate itemset I = {i1, i2 · · · il · · · ij}(|I| ≥ 3) and one

of its subset I
′
= {i1, i2 · · · il}(l<j, |I ′ | ≥ 2), according to Definition 4.3,

their link itemset groups are GI = Ai1 ∩Ai2 . . .Ail . . .Aij and G
′
I = Ai1 ∩

Ai2 . . .Ail respectively. So GI = G
′
I ∩ Ail+1

. . .Aij ⊆ G
′
I . Assume GI =

{H1, H2...Hk} while G
′
I = {H1, H2...Hk...Hm}(m>k), based on Definitions

4.5 and 4.8, IRS(I) = CIRS(I|H1) + CIRS(I|H2) + ...CIRS(I|Hk) while

IRS(I
′
) = CIRS(I

′ |H1)+CIRS(I
′ |H2)+...CIRS(I

′ |Hk)+...+CIRS(I
′ |Hm).

Now we compare CIRS(I|H1) and CIRS(I
′ |H1), CIRS(I|H1) = min{PMI

(i1, H1), PMI(i2, H1)...PMI(il, H1), PMI(il+1, H1)...PMI(ij, H1)} and

CIRS(I
′ |H1) = min{PMI(i1, H1), PMI(i2, H1)...PMI(il, H1)}, it’s clear

that CIRS(I|H1) = min{min{PMI(i1, H1), PMI(i2, H1)...PMI(il, H1)},
min{PMI(i1+1, H1)...PMI(ij, H1)}} = min{CIRS(I

′ |H1),min{PMI(i1+1,

H1)...PMI(ij, H1)}} ≤ CIRS(I
′ |H1). Similarly, CIRS(I|H2) ≤ CIRS(I

′ |
H2), ...CIRS(I|Hk) ≤ CIRS(I

′ |Hk), hence IRS(I) ≤ CIRS(I
′ |H1)+CIRS

(I
′ |H2)+...CIRS(I

′ |Hk). Recall that CIRS(I|HI)>0 as illustrated in Defini-

tion 4.5, it is easy to conclude that IRS(I) ≤ CIRS(I
′ |H1)+CIRS(I

′ |H2)+

...CIRS(I
′ |Hk) + ... + CIRS(I

′ |Hm) = IRS(I
′
). Hence, Property 4.1 is

proved.

Combining Property 4.1 and Definition 4.7, it is easy to conclude that

any subset I
′
(I

′ ⊆ I, |I ′ | ≥ 2) of an implicitly related itemset I is also an im-

plicitly related itemset if I
′
meets the precondition Sup(I

′
) ≤ minsup. Such

conclusion not only reduces the search space in the candidate generation pro-

cess but also helps to identify whether a size-L candidate itemset is implicitly

related or not by checking all its size-(L-1) subsets. This contributes a lot to

the space and time efficiency of the whole IRRMiner algorithm.

Overall, the implicit rule inference algorithm is divided into two stages,

which are described in Algorithms 4.1 and 4.2 respectively. Algorithm 4.1

is used to mine Size-2 implicitly related rules and has been divided into

two parts: (1) Discover dependent itemset groups (Line 1); (2) Mine size-2

implicit rules and prepare to mine implicit rules of larger sizes (Lines 2 to
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Algorithm 4.1 Mine Size-2 Implicit Rules
Require: T : binary transaction matrix; minsup : support threshold; minIRS : IRS

threshold;

Ensure: P : implicitly related itemsets; H : link itemsets;

1: Mine dependent itemset group Ai of each item i according to Definition 4.2 and store

items with non-empty Ai in D;

2: while L=2 do

3: Generate all possible size-L itemsets on D and store them in Q{L};
4: for each itemset I ∈ Q{L} do

5: if GI �= ∅ then

6: Select I as size-L hidden dependent itemset and store it in C{L};
7: end if

8: end for

9: for each itemset Ic in C{L} do

10: if IRS(Ic) ≥ minIRS then

11: Store Ic in CC{L};
12: if Sup(Ic) ≤ minsup then

13: Select Ic as implicitly related itemset and store it in P{L}, and store all its

link itemsets in H{L};
14: end if

15: end if

16: end for

17: end while

17). Specifically, all dependent itemsets are identified and possible size-2

itemsets are generated on those items whose dependent itemset group is not

empty (Lines 1 to 3). Then the link itemset group, implicit relation strength

(IRS) and support of these generated itemsets are checked one by one to

filter out those non-potential implicitly related itemsets step by step while

keeping implicitly related itemsets together with their corresponding link

itemsets as the output (Lines 4 to 17). When the size of an itemset grows

larger than 2, Algorithm 4.2 is utilized. The anti-monotonous Property 4.1

is used to generate larger candidate itemsets more efficiently based on the

pattern growth method (Lines 2 to 5) and to conduct pre-filtering on these

itemsets (Lines 9 to 10). Finally, the implicitly related itemsets and their

88



CHAPTER 4. AN IMPLICIT RULE-BASED RS

Algorithm 4.2 Mine Implicit Rules Larger Than 2
Require: CC2 : Size-2 implicitly related itemset candidates; minsup : support thresh-

old; minIRS : IRS threshold; MaxSize: the maximum size of implicitly related

itemsets;

Ensure: P : implicitly related itemsets; H : link itemsets;

1: while L=3:MaxSize do

2: for m = 1 : Size(CC{L− 1}) do
3: for n = m+ 1 : Size(CC{L− 1}) do

4: if CC{L − 1}(m)([1 : L − 2]) == CC{L − 1}(n)([1 : L − 2]) and CC{L −
1}(m)(L− 1) �= CCL− 1(n)(L− 1) then

5: Store [CC{L− 1}(m), CC{L− 1}(n)(L− 1)] into Q{L} as size-L itemset ;

6: end if

7: end for

8: end for

9: for each size-L itemset I in Q{L} do

10: if all size-(L-1) sub-itemsets of I are in CC{L− 1} then

11: Execute the same operations from Lines 4 to 16 in Algorithm 4.1 ;

12: end if

13: end for

14: end while

link itemsets are achieved by undertaking the same filtering operations (Line

11) as those used in the mining of size-2 implicit rules.

4.4 Experimental Evaluation of IRRMiner

4.4.1 Experiment Set Up

No existing work can exactly mine my proposed implicit rules, to the best of

my knowledge, and only a typical indirect association rule mining algorithm

(IARMiner) (Hamano & Sato 2004) can partially discover rules similar to

mine. The rules mined by IARMiner are in the form of (M ; {x, y}) where

itemset M is the mediator itemset for connecting items x and y. These rules

can be transferred to my implicit rules, such as x ⊕ y|M . To evaluate my

proposed algorithm, I compare my proposed IRRMiner with the representa-
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Table 4.2: Statistics of experimental datasets

Statistics ERD Bookcross MovieLens 1 MovieLens 2

No. of Transactions 4626 10938 69878 69878

No. of Items 72 162 200 200

Avg. Items per Transaction 12.78 3.58 34.05 3.43

Avg. Frequency per Item 820.81 241.3 11895 1199

Density 20.56% 2.21% 17.02% 1.72%

tive indirect association rule mining algorithm IARMiner on four real-world

transactional datasets: ERD, Bookcross2, MovieLens 1 and MovieLens 2.

Such comparison has some limitations due to the non-exactly identical goals

of the compared algorithms. Specifically, I can only make a comparison on

the capability of mining size-2 rules instead of larger ones (Rules of size-3

and size-4) between IRRMiner and IARMiner as IARMiner can only mine

size-2 rules; the mined rules may not always be completely identical as the

constraints used in IARMiner and IRRMiner are not completely the same.

However, empirical results show that most of the resultant size-2 rules from

both algorithms are the same. MovieLens 1 and MovieLens 2 are extracted

from the MovieLens 10M3 dataset by including different parts of transactions.

A detailed description of these datasets is given in Table 4.2. Items, books

and movies in the experimental datasets are called items uniformly in this

work to simplify the terms. Note that all the four transactional datasets are

transferred into 0-1 encodings as Table 4.1 and the density shown in Table

4.2 is quantified by Density = #entries valued 1
#entries

, for instance, the density of

transaction Table 4.1 is 15
24
=62.5%.

Both IRRMiner and IARMiner have two key parameters: minsup (called

t r in (Hamano & Sato 2004)) is shared by the two algorithms while minIRS

and t μ are used in IRRMiner and IARMiner respectively. To be specific,

minsup is a frequency-constraint to ensure the implicitly related or indi-

2Available on http://grouplens.org/datasets/book-crossing/
3Available on http://grouplens.org/datasets/movielens/
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rect associated items do not co-occur frequently (e.g., sup(x, y) ≤ minsup).

minIRS is used to guarantee strong implicit relation strength (IRS) between

implicitly related items (e.g., IRS(x, y) ≥ minIRS) in IRRMiner while t μ is

to ensure strong dependency between each of the indirectly associated items

and the corresponding mediate itemset M (e.g., μ(x,M) ≥ t μ ). In addition,

two extra parameters t f and t m are also used in IARMiner, where t f is

to make sure each item in an indirectly associated item pair is frequent (e.g.,

sup(x) ≥ t f) and t m is to guarantee that it co-occurs with the mediate

itemset frequently (e.g., sup(x,M) ≥ t m). In all the experiments, I keep

the common parameter minsup(t r) identical for both algorithms to ensure

fair comparisons while empirically tuning other non-common parameters.

In order to show the capacity of IRRMiner to cover infrequent items

and to mine implicit rules larger than size-2, I conduct comparisons between

IARMiner and IRRMiner in terms of rule coverage, rule size and rule number

in the following Sections 4.4.2 and 4.4.3, respectively. To test the efficiency

of my proposed IRRMiner, I compare the run time of IRRMiner and that

of IARMiner in the following Section 4.4.4. A data factor test is conducted

in Section 4.4.5 to test the outcome difference of my proposed IRAMiner on

datasets with different characteristics.

4.4.2 Rule Coverage Comparison

Nearly all the indirect rule mining approaches including IARMiner can only

mine size-2 rules, to make a fair comparison, I also limit the size of rules

from IRRMiner to 2 when comparing rule coverage. The coverage of the size-

2 rules resulting from IARMiner and IRRMiner together with the average

frequency of their covered items are given in the two sub-figures in Figure

4.2 respectively. Here coverage is defined as the ratio of items covered by

all the mined rules w.r.t the whole item population, while the frequency

of a certain item is its occurrence times divided by the total number of

transactions in a dataset. On one hand, the left hand side sub-figure in

Figure 4.2 shows that the coverage of IRRMiner is obviously larger than
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Figure 4.2: Rule coverage and average covered item frequency on different

datasets

IARMiner on all the four datasets, which means my proposed algorithm can

discover implicit relations between more items than IARMiner. On the other

hand, the right hand side sub-figure in Figure 4.2 illustrates that the average

frequency of the covered items by IRRMiner is clearly lower than that by

IARMiner, which means my algorithm can discover implicit relations between

more infrequent items. Combining these two figures, it is easy to conclude

that IRRMiner discovers not only the implicit rules between frequent items as

the existing indirect association mining approaches do, but also implicit rules

between infrequent items. The reason behind this is easy to find by looking

at the algorithm design, which is different from most indirect association

mining algorithms, which are limited to frequent items only, due to their

base (frequent association mining). However, my algorithm goes beyond

such a base, and it is not necessary for the items to be frequent.

4.4.3 Rule Size and Number Comparison

To make a fair comparison, the corresponding constraints in IARMiner and

IRRMiner are set to be equivalent to each other. Specifically, the common

parameterminsup(t r) is set to 10%, 1%, 15% and 1.5% empirically on ERD,

Bookcross, MovieLens 1 and MovieLens 2 respectively both in IARMiner and

IRRMiner algorithms. Both minIRS and t μ are set to 0 as it is only in this
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case that these two constraints are essentially equivalent to each other as

proved below.

Proof. Suppose implicitly related itemset I = {x, y}, itemset M is a link

itemset to connect x and y. According to Equations (4.2), (4.6), (4.7)

and (4.8), minIRS = 0 indicates IRS(x, y) ≥ 0, which means there ex-

ists at least one link itemset HI which makes CIRS(I|HI) ≥ 0. Sup-

pose CIRS(I|M) ≥ 0, according to Equation (4.6), PMI(x,M) ≥ 0 and

PMI(y,M) ≥ 0, namely p(x,M) ≥ p(x)p(M) and p(y,M) ≥ p(y)p(M).

On the other hand, according to the definition of μ(x,M) in (Hamano &

Sato 2004), t μ = 0 means μ(x,M) = p(Mx) − p(M)p(x)
p(Mx)(1−p(x))

≥ 0, which also in-

dicates p(x,M) ≥ p(x)p(M), for the same reason, p(y,M) ≥ p(y)p(M). So

the key constraints IRS(x, y) ≥ minIRS in IRRMiner and μ(x,M) ≥ t μ

in IARMiner are actually the same when their thresholds are set to 0.

The size of an implicit rule ‘r: i1 ⊕ i2 ⊕ · · · ij|HI(I = {i1, i2 · · · ij})’ is
defined as the size of itemset I, which measures how many items are implicitly

related conditioned on H I. Formally,

Size(r) = |{i1, i2 · · · ij}| (4.10)

Table 4.3 shows the number of indirect association rules mined by IARMiner

(IAR. for short) and implicit rules mined by IRRMiner (IRR.). Two main

conclusions can be drawn from this: (a) IRRMiner can mine more size-2 rules

than IARMiner (i.e., 4,243 vs. 2,226 on the ERD dataset). By checking

the rules more deeply, I find the rules mined by IARMiner are a subset

of rules from IRRMiner. This is because IRRMiner targets not only the

implicit rules between frequent items but also the infrequent ones, as stated

in the introduction. Therefore, IRRMiner can cover more items and generate

more rules, which is consistent with the results of the coverage comparison

in Section 4.4.2. (b) IRRMiner can mine implicit rules with a size larger

than 2 while IARMiner cannot. Theoretically, IRRMiner can output rules

as large as the number of items in the transaction as long as the dataset

supports such rules. Note that rules with a size larger than 4 are not shown
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due to space limitations. Thanks to the design behind IRRMiner, which

considers the implicit relations among all possible items rather than just the

indirect association between a pair of frequent items as IARMiner does, the

complex implicit relations among multiple items discovered by IRRMiner are

more general and more consistent with the real-world cases compared to the

indirect association rules of size-2. In summary, IRRMiner goes far beyond

IARMiner by returning more rules of larger sizes. Implicit rules of a large

size reveal much more hidden information between multiple items than size-2

rules which only reflect pairwise relations between every two items. Taking

a sample from the ERD dataset as an example, the triad implicit relation

among three books ‘An Introduction to Secondary Data Analysis’, ‘Python

Data Science Handbook’ and ‘Microsoft Excel 2013 Data Analysis’ is richer

than the pair-wised indirect association between any two of them.

Essentially, the indirect association rule mining framework is a special

case of my proposed framework. When I only focus on the implicit relations

between frequent items and limit the rule size to 2, my framework is simplified

to the existing indirect association mining one, and can mine the same rules

as indirect association mining does.

Table 4.3: Number of mined rules by IARMiner (IAR.) and IRRMiner

(IAR.)

Size 2 Size 3 Size 4

ERD IAR. 2226 - -

IRR. 4243 50405 336216

Bookcross IAR. 82 - -

IRR. 156 221 342

MovieLens 1 IAR. 8495 - -

IRR. 15219 203656 1926018

MovieLens 2 IAR. 908 - -

IRR. 1689 20792 109800
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4.4.4 Run Time Comparison

To evaluate the efficiency of the developed IRRMiner algorithm, two sets of

experiments are organized. One is to compare the run time of IARMiner and

IRRMiner to mine the same size-2 rules, in which both the rules and rule

numbers resultant from both algorithms are exactly the same. The other

is to compare the run time of both algorithms to mine the same number of

size-2 rules, where the rules may not be completely identical.

Recall that IRRMiner can be simplified to indirect association mining al-

gorithms and can mine the same rules as them, as discussed in the last para-

graph in Section 4.4.3. I add an extra frequency constraint on IRRMiner and

limit the rule size to 2 to make sure it only discovers the same rules or the

same number of rules as IARMiner. I keep the values of corresponding param-

eters the same in both algorithms for a fair comparison, namely minIRS and

minsup in IRRMiner are equal to t μ and minsup in IARMiner respectively.

In addition, I keep both minIRS and t μ unchanged (minIRS = t μ = 0,

according to the proof in Section 4.4.3) while change minsup in two algo-

rithms synchronously in the first set of experiments; in the second set of

experiments, the minsup in IARMiner and IRRMiner are kept equal and

unchanged (empirically 10% in ERD, 1% in Bookcross, 15% in MovieLens 1

and 1.5% in MovieLens 2 for both algorithms) while minIRS in IRRMiner

and t μ in IARMiner are adjusted accordingly to mine the same number of

rules. The results of these two sets of experiments are given in Tables 4.4

and 4.5 respectively, in which the symbol ‘*’ represents the time spent by

IARMiner under certain t μ values. Note that in the second set of experi-

ments, to achieve the identical number of rules, t μ in IARMiner does not

necessarily need to be equal to minIRS in IRRMiner.

It is clear that, in mining either the same implicit size-2 rules in Table

4.4 or the identical number of size-2 implicit rules in Table 4.5, my proposed

IRRMiner is much more efficient than IARMiner. The run time is reduced by

around 80% on the ERD dataset and around 90% on the other three datasets

by IRRMiner, compared to IARMiner.
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Table 4.4: Run time (in second) under different minsup(m.s.)

ERD Bookcross

IAR. IRR. IAR. IRR.

m.s.=6% 9.4 2.4 m.s.=0.6% 474.5 5.31

m.s.=10% 16.6 2.6 m.s.=1% 511.6 5.21

m.s.=14% 20.8 2.8 m.s.=1.4% 518.6 5.18

MovieLens 1 MovieLens 2

IAR. IRR. IAR. IRR.

m.s.=13% 1130 24.5 m.s.=1.3% 600 5.74

m.s.=15% 1162 24.6 m.s.=1.5% 641 5.75

m.s.=17% 1192 25 m.s.=1.7% 700 5.79

Table 4.5: Run time (in second) under different minIRS(m.I.)

ERD Bookcross MovieLens 1 MovieLens 2

IAR. IRR. IAR. IRR. IAR. IRR. IAR. IRR.

m.I.=0 16.6∗ 2.6 511.6∗ 5.21 1162∗ 24.6 641∗ 5.75

m.I.=0.8 15.5∗ 2.4 510.2∗ 5.2 1080∗ 24 552∗ 5.66

m.I.=1.6 13.8∗ 2.3 481.7∗ 5.17 964∗ 23.3 492∗ 5.63
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One main contribution to efficiency improvement is the first step (explicit

dependency discovery) in my proposed IRRMiner, which only exists in my

algorithm. It checks whether an item has dependent itemsets; items without

dependent itemsets are not considered in the subsequent steps. Many items

without dependent itemsets but are frequent are filtered out in an early stage.

However, such items cannot be removed in the beginning of IARMiner which

uses a support threshold to filter out non-frequent items in its first step. This

partly explains why IRRMiner is clearly more efficient than IARMiner.

The time complexity analysis of the proposed Algorithm 4.1 is detailed in

this paragraph. Assume the total number of items in the transactional matrix

is N . Given an implicit rule mining task, the total process of the IRRMiner

algorithm is divided into two parts: the preparation stage illustrated by Line

1 and the implicit rule mining stage described from Line 2 to the end of

the algorithm. Please note that the preparation stage is a pre-processing

operation, once it is ready, various sizes of implicit rules under different

minIRS values can be mined without the need to conduct the preparation

stage again, which means it is not necessary to run Line 1 every time when

we mine implicit rules. Hence, the run time of IRRMiner mainly depends on

the second stage. Specifically, suppose a percentage of α of all the N items

have dependent itemsets, so C2
αN possible size-2 itemsets will be generated

in Line 2, which result in C2
αN = (αN)∗(αN−1)

2
times of computation from

Lines 3 to 7, accordingly, the time complexity of these lines is O((αN)2).

Meanwhile, at most C2
αN hidden dependent itemsets will be selected in Line

5, which results in the maximum computational times being also C2
αN from

Lines 8 to 15. The time complexity of Lines 8 to 15 is O((αN)2) too. Overall,

the time complexity of the implicit rule mining stage is O((αN)2) in mining

size-2 implicit rules. Similarly, the time complexity of mining size-3, size-4,

..., etc. implicit rules in Algorithm 4.2 are O((αN)4), O((αN)8), ..., etc.

For the preparation stage, when I set the maximum length of link itemset

to 1, 2, 3, etc., the time complexity is O((αN)), O((αN)2), O((αN)4), etc..

In IARMiner, the time complexity is O((βN)3), O((βN)4), O((βN)6), etc.,
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when the maximum length of the mediate itemset is set to 1, 2, 3, etc., where

parameter β is the percentage of frequent items w.r.t all items.

To summarize, when mining size-2 rules, the time complexity of IR-

RMiner is O((αN)2), compared to O((βN)3), O((βN)4), O((βN)6), etc.,

of IARMiner if I do not consider the preparation stage of IRRMiner. Even if

I take the preparation into consideration, the time complexity of IRRMiner is

O((αN)2), O((αN)2), O((αN)4) compared toO((βN)3), O((βN)4), O((βN)6)

of IARMiner respectively by setting the maximum length of the depen-

dent itemsets in IRRMiner to the same as that of the mediate itemset in

IARMiner. Accordingly, IRRMiner reduces the time complexity of O((N))

and O(N2) respectively when I set the maximum length of link itemset to

1 and larger than 1 with the consideration of preparation. This explains

why IRRMiner is always much more efficient than IARMiner, especially in a

dataset with a large number of items. This is consistent with the empirical

results in Tables 4.4 and 4.5.

4.4.5 Data Factor Test

To test the performance of the proposed algorithm on datasets of different

characteristics, I conduct data factor test. Specifically, two data factors:

density (D) and the total number of items (N) are selected. Recall the num-

ber of possible size-2, size-3, etc., itemsets are C2
αN , C

3
αN , etc., respectively,

as illustrated in the fourth paragraph of Section 4.4.4, it is obvious that α

and N can substantially affect the number of mined implicit rules by firstly

deciding the number of possible generated itemsets and candidate itemsets.

Furthermore, α is greatly affected by data density, because the items in a

dense dataset are more likely to be dependent on each other than those in

a sparse one. In other words, data density closely relates to the number of

resultant rules via α.

To make a fair comparison, when one data factor is tested, I ensure the

other data factor is identical on all the datasets by conducting necessary

processing on them. For example, when testing the effect of density, the
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number of items in the three datasets used in the following density test is

kept the same.

Density Test

I test the effect of dataset density on the number of implicit rules mined by

IRRMiner by running it on three real-world datasets with various density

degrees but with the same number of items. The number of obtained rules

is shown in the left hand-side sub-figure of Figure 4.3.

It is quite obvious that under the same experimental settings, the number

of rules is significantly influenced by the data density. The left hand-side sub-

figure of Figure 4.3 shows that the denser a dataset is, the more rules are

obtained. The number of rules of all sizes for the dataset with a density of

20.6% is much larger than that for the dataset with density of 10.3%, the

latter is also much larger than that on the dataset with density of 5.2%.

In addition, it is much more likely that larger rules will be obtained for

denser datasets, for instance, only the densest dataset (D = 20.6%) results

in rules of size larger than 9. This is consistent with the statement in the first

paragraph of this subsection that items in a dense dataset are more likely to

depend on each other and lead to a higher α for the dataset, and produce

more rules.

Figure 4.3: Rule number comparisons w.r.t different data density degrees

(D) or item numbers (N)
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Item number Test

I test the effect of item number (N) on the number of implicit rules mined by

IRRMiner by running it on three real-world datasets with different number

of items but with the same density. The number of rules obtained is shown

in the right hand-side sub-figure of Figure 4.3. The results are also consistent

with the analysis in the first paragraph in this subsection. When the data

density is unchanged, larger N implies more candidate itemsets generated

and also more rules mined.

4.5 Implicit Rule-based Recommendations

IRRMiner can be applied to different cases, such as product promotion and

cross-saling by exploring the implicit relations hidden behind various prod-

ucts. Here, I show how the mined implicit rules assist in pattern-based rec-

ommendation (Hiltz-Laforge, Nonez, Pourshahid & Watts 2013) to increase

recommendation reliability. I first analyze the theoretical benefits and then

justify them with real-world case studies. Note that the implicit rules used for

recommendations are mined on transactional data, hence we can only make

recommendations based on transactional information, which is the typical

scenario where pattern-based recommendation is applicable. This is quite

different from the well-known content-based or collaborative filtering (Sun,

Wang, Gao & Ma 2012)-based recommendations which are built on the rating

data.

One of the most important applications of association rules or correlation

rules is to increase product sales by recommending some items associated

with the items that a customer has just bought. To apply these rules to the

recommendation domain, I introduce the concept of recommendation rules

in the form of X → Y to describe the recommendation strategy whereby

itemset Y is recommended to those consumers who have just bought itemset

X. In this case, a direct method to evaluate recommendation quality is to

check whether the recommended items have actually been bought by the
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customers or not. The higher possibility of Y to be bought together with

X, the more reliable the recommendation rule X → Y . Based on such

observation, the recommendation reliability of a typical recommendation rule

X → Y is defined as the percentage of transactions with X and Y included

w.r.t those including X. Formally,

Reliability(X → Y ) =
#transactions including X and Y

#transactions including X
(4.11)

Usually, different patterns lead to different recommendation strategies and

recommendation rules in pattern-based recommendation (Choi et al. 2012),

which result in different levels of recommendation reliability. Note that here,

pattern is a general concept; implicit rules, association rules and correlation

rules (Nijssen, Guns & De Raedt 2009) are all specific forms of patterns. To

be specific, association rule-based recommendation suggests those explicitly

associated items; correlation rule-based recommendation suggests explicitly

correlated items; while implicit rule-based recommendation makes recom-

mendations by considering not only explicit dependency but also implicit

dependency between items. Since my mined implicit rules are built on the

basis of dependency between items, which is similar to correlation rules, I

compare implicit relation-based recommendation with correlation rule-based

recommendation in terms of reliability. Next, I analyze the recommendation

strategies in the form of recommendation rules based on implicit rules and

correlation rules (Brin et al. 1997) respectively and then compare these two

kinds of rule-based recommendations in terms of reliability.

Suppose x and y are two distinct items while Z is an itemset and an

implicit rule x⊕ y|Z is mined among them. Accordingly, a recommendation

rule Z ∧ ¬y → x (Z ∧ y �→ x) is derived for recommending a related item x

to those who have just bought itemset Z based on the explicit dependency

between x and Z, and at the same time the effect of the implicitly related

item y of x is considered. Specifically, when a business plan to promote or

recommend item x to a customer, if the customer has bought Z but not y

(and x), it can be proceeded. However, if the customer has already bought Z

and y, the planed recommendation action should be terminated. In this way,
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the conditions (antecedents of recommendation rules) to recommend an item

are more precise, and accordingly, recommendation reliability is improved.

On the other hand, for items x and y and itemset Z, two correlation rules

[x, Z] and [y, Z] can be easily obtained due to the strong explicit dependency

between x(y) and Z. Here [x, Z] infers that x and Z are positively correlated.

Based on these correlation rules, two recommendation rules Z → x and

Z → y are derived for recommending correlated item x and y to those who

have just bought Z. Technically, such recommendations are less reliable than

implicit rule-based recommendations due to the lack of consideration of the

implicit relations between items (e.g., the implicit relation between x and

y). Unfortunately, both the existing association rule-based recommendation

and correlation rule-based recommendation do not take such kind of implicit

relations into account.

Taking the ERD data as an example, let us consider under which condi-

tions recommending item coke is more reliable. Two recommendation rules

r1 : pizza→ coke and r2 : pizza∧¬sprite→ coke can be derived based on cor-

relation rules and implicit rules respectively. The left-hand side of each rule

indicates the conditions in which to recommend the right-hand side items.

The first rule r1 infers that once customers buy pizza we can recommend coke

to them while the second rule means when customers have bought pizza, we

need to check if the other items implicitly related to coke have already been

bought, if they have not been bought, we would recommend coke. In prac-

tice, when we go back to the transactions in Table 4.1, it is obvious that the

conditions in which to recommend coke described by r2 are more precise and

reliable than that of r1, which can also be illustrated by a higher reliabil-

ity of 100% of r2 than a lower reliability of 66.67% of r1. This shows that

taking into account implicit relations between items contributes to reliable

recommendations.

In addition to the above theoretical benefits of implicit rules in increas-

ing recommendation reliability, I also calculate the reliability of both implicit

rule-based recommendations and correlation rule-based recommendations on
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two real-world datasets: ERD and MovieLens 1. The results are given in

Tables 4.6 and 4.7, where the mean values of the corresponding recommenda-

tion rules based on implicit rules and correlation rules respectively are given.

Please note that here the parameter minIRS only exists in the implicit

rule-based recommendation algorithm (IRRMiner), and under each minIRS

value setting, the identical number of implicit rules and correlation rules are

selected to compare their average reliability. It is obvious that, under all

the minIRS value settings, implicit rule-based recommendation always has

higher reliability than the correlation rule-based one, as shown in the first

column in Table 4.6 (35.54% for the Im Rule compared to 33.7% for the

Core Rule), and in the first column in Table 4.7 (49.41% for the Im Rule

compared to 43.98% for Core Rule). It is clear that the reliability of all

implicit rules (shown in the first column) increases with an increase in the

minIRS. This is because, the implicit rules with weak implicit relations are

filtered out during the increase of minIRS, and fewer and stronger implicit

rules are selected. Such strong rules have higher reliability. Also less strong

correlation rules are selected to guarantee the identical number of rules as

implicit rules, so the reliability of the correlation rules also increases with an

increase in minIRS. Please note that the top 10, top 5 and top 3 rules are

rarely affected by the increase of minIRS as the implicit relation strength

(IRS) of these rules is usually much higher than minIRS.

Table 4.6: Mean recommendation reliability using implicit rules (Im Rule)

and correlation rule (Core Rule) w.r.t different minIRS

minIRS=0 minIRS =

0.5

minIRS=1 minIRS =

1.5

ERD Im Rule 35.54% 37.5% 38.52% 39.17%

Core Rule 33.7%* 35.6%* 36.3%* 36.8%*

Movie

Lens 1

Im Rule 49.41% 49.97% 51.8% 54.11%

Core Rule 43.98%* 44.45%* 45.97%* 47.72%*

In addition, some specific recommendation rules based on implicit rules
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Table 4.7: Mean recommendation reliability of top-K rules when minIRS =

1

All rules K = 10 K = 5 K = 3

ERD Im Rule 38.52% 40.58% 42% 43.2%

Core Rule 36.3%* 38.33%* 39.7%* 40.9%*

MovieLens 1 Im Rule 51.8% 62.89% 63.79% 64.21%

Core Rule 45.97%* 53.87%* 55.32%* 55.32%*

and correlation rules are selected below in Equations (4.12) and (4.13). To

differentiate these from recommendation rules, I use p
′
1 and p

′
2 to represent

two implicit rules mined from the ERD dataset. Based on the relations

between the items included in these implicit rules, some recommendation

rules based on correlation rules (e.g., r
′
11, r

′
21) and implicit rules (e.g., r

′
13, r

′
23)

are derived. In addition, to show the significant effect of the implicitly related

items on recommendation reliability, I also add another rules (r
′
12, r

′
22). The

name of each item is given below.

R
′
1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
′
1 : i

′
11 ⊕ i

′
48|i

′
12

r
′
11 : i

′
11 → i

′
12 reliability(r

′
11) = 42.4%

r
′
12 : i

′
11 ∧ i

′
48 → i

′
12 reliability(r

′
12) = 36.3%

r
′
13 : i

′
11 ∧ ¬i

′
48 → i

′
12 reliability(r

′
13) = 45.1%

(4.12)

R
′
2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
′
2 : i

′
19 ⊕ i

′
48|i

′
12

r
′
21 : i

′
19 → i

′
12 reliability(r

′
21) = 41.5%

r
′
22 : i

′
19 ∧ i

′
48 → i

′
12 reliability(r

′
22) = 38.69%

r
′
23 : i

′
19 ∧ ¬i

′
48 → i

′
12 reliability(r

′
23) = 43.5%

(4.13)

i
′
11 : A book titled ‘An Introduction to Secondary Data Analysis with IBM SPSS

Statistics’ (Book 1)

i
′
12 : Philips Peripherals SWR2122/27 Retractable USB Cable

i
′
16 : Tableau software for data analysis

i
′
19 : A book titled ‘Python Data Science Handbook: Essential Tools for Working

with Data’ (Book 2)
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i
′
48 : A book titled ‘Microsoft Excel 2013 Data Analysis and Business Modeling

(Introducing)’ (Book 3)

i
′
61 : San-Disk Memory Card

Please note that I target the scenario that, for a given item, in what con-

ditions (described by the antecedent of the recommendation rules) it should

be recommended to achieve greater reliability. In practice, a given item can

be recommended in all the different conditions described by different rules

(e.g., r
′
11, r

′
12, r

′
13), but usually the market wants to make a recommendation

as reliable as possible. It is quite clear, given the same item (e.g., Retractable

USB Cable), more reliable recommendation rules (r
′
13, r

′
23) can be achieved

if more implicit relations (the relations between Books 3 and 1 and 2 re-

spectively) are taken into consideration. This reflects the common shopping

behavior that customers do not prefer to buy two similar items within one

transaction. For the other dataset MovieLens 1, the movie name is not given

in the source data MovieLens10M, so I do not show the specific rules mined

on it.

4.6 Summary

Rule-based recommender systems are one of the most simple and straight-

forward solution to session-based recommender systems and they are still

valuable in some real-world business organization and optimization due to

their simplicity and easy practicality. However, most existing rule-based rec-

ommender systems are only based on explicit and straightforward relations

embedded in association rules, correlation rules and so on while ignoring more

comprehensive relations like implicit relations between items, which usually

reduces the recommendation reliability. To bridge this gap, in this chapter,

I have proposed a new approach for rule-based recommendations by tak-

ing more complex relations into account: implicit rule-based recommender

system. The proposed implicit rule-based recommender system basically
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contains two stages: implicit rule inference and recommendation generation.

Accordingly, I have proposed a new approach which first captures the de-

pendency between items and then links those items that share the same

dependent items (or itemsets) to infer implicitly related rules. Thanks to

the special new structures of implicit rules, the complex relations between

multiple items are comprehensively revealed. Experimental results on real-

world datasets show that my proposed implicit rule mining algorithm is very

promising and can generate implicit rules which cannot be discovered by

existing algorithms. The resultant implicit rules are then used for implicit

rule-based recommendations and the results on real-world datasets demon-

strate that they greatly benefit recommendations by increasing their reliabil-

ity. In the future, I will explore the possibility of incorporating item features

into my rule inference framework to reveal low-level intrinsic inter-item re-

lations (e.g., similarity) for recommendations. Hopefully, more informative

implicit rules can be achieved to support more powerful implicit rule-based

recommender systems.
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5.1 Introduction

In this chapter, I focus on another critical challenge on item level in session-

based recommender systems: the item heterogeneity issue as shown in Figure

1.1 in Chapter 1. This is also the second challenge I addressed in this thesis

as demonstrated in the thesis structure Figure 1.2 in the first chapter. Item

heterogeneity refers to that different items in a transaction are often relevant

to the following items in different scales, some are more relevant to next

items and others may not. Note that, to make the concept more specific,

the session-based recommender systems are specialized to transaction-based

recommender systems in this chapter as I conduct recommendations only on

transaction data, which is one out of the multiple scenarios of session data

as discussed in Section 2.1.

5.1.1 Target Problem and Motivation

Nowadays, recommender systems (RSs) play an important role in real-world

business especially in the e-commerce domain. However, most existing RS

theories face various issues (Cao 2016) such as tending to repeat items that

are similar to what users may have already chosen (Deshpande & Karypis

2004). In reality, users may prefer items that are novel and different from

that already in hand. To address this aspect, new recommendation paradigm

(Cao 2016) needs to be made on a transactional context, i.e., what has al-

ready been chosen in a transaction. On one hand, transaction-based RSs

(TBRSs) (Huang & Zeng 2011) incorporate previous transactions, i.e., inter-

transactions, to generate more sensible and reliable new transactional rec-

ommendations, such as next-basket and next-item recommendations (Wang,

Guo, Lan, Xu, Wan & Cheng 2015) through analyzing inter-transaction cou-

pling relationships (Cao 2015). These are quite different from the typical

RS approaches built on user preferences and item property. On the other,

however, it is still unclear what next-item should be recommended when a

collection of items has been placed into a transaction. This generates the
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need to recommend the next item under a transactional context by ana-

lyzing intra-transaction dependency. Here, the context for recommending

the next item refers to the corresponding item-related transaction, e.g., a

shopping-basket record consisting of multiple chosen items.

Let us illustrate the above problem with an example. A user first puts

three items {milk, apple, orange} into a cart and then adds bread to the same

cart. Subsequently, the transaction is finalized as {milk, apple, orange, bread}.
If I take the first three items as the context and the last one as the target to

recommend, existing methods may suggest vegetables like green salad due

to the nearest contextual items (orange and apple). However, the choice of

the target item bread may depend on the first item (milk). In this case, a

TBRS should pay more attention to milk than to orange and apple, because

milk may be more related to the next choice bread. This example shows the

importance of next-item recommendation which can be misled by irrelevant

items in a transaction. Moreover, real-world transactional data often only

indicates those items co-appear in a transaction with the order (e.g., the item

timestamps) between items. Therefore, it may not be possible and realistic

to recommend transactional items with a rigid order.

It is quite challenging to learn the relevance and transition between items

in a transactional context. In TBRSs, a general challenge is to build an at-

tentive context which outputs the real next choice with a high probability

(Verbert, Manouselis, Ochoa, Wolpers, Drachsler, Bosnic & Duval 2012).

Some existing approaches aim to generate recommendations by taking a

transaction as the context. However, most existing TBRSs utilize a par-

tial context with an ordering assumption. Sequential pattern mining (Yap

et al. 2012) is used to predict the next item using associations between items

with a rigid order assumption. Although simple and effective, such kind

of approaches usually lose those infrequent items (Hu, Cao, Cao, Gu, Xu

& Wang 2017) due to the minimum support constraint. In addition, the

dynamic context containing arbitrary items may fail to match any mined

frequent patterns (Wang, Bao & Zhou 2017). Markov chain (MC) (Rendle
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et al. 2010, Cao, Ou & Yu 2012) is another way to model sequential data.

(Wu et al. 2013) proposed Personalized Markov Embedding (PME) to first

embed users and songs into a Euclidean space by modeling sequential singing

behaviours and then generate recommendations based on the embeddings.

Recently, a personalized ranking metric embedding method (PRME) was

proposed to precisely model personalized check-in sequences for next POI

recommendation (Feng et al. 2015). Both PME and PRME are first-order

MC models built on rigid ordered data to model the transition between

sequential items from the same transaction. They may lose higher-order

dependencies and the assumed rigid ordered data may not always be real-

world cases. Recently, a matrix factorization (MF) based approach (Chou

et al. 2016) factorizes the matrix of transition probability from the current

item to the next one into the latent factors. However, MF easily suffers from

sparsity issues due to the power-law distributed data in the real world (Hu,

Cao, Cao, Gu, Xu & Yang 2016). Factorized Personalized Markov Chains

(FPMC) (Rendle et al. 2010) combines the power of MF and MC to factorize

the transition matrix over underlying MC to model personalized sequential

behaviours for next-basket recommendation. Similar to MC and MF, FPMC

also suffers from the unrealistic rigid order assumption and data sparsity is-

sue. Inspired by great success of deep networks, (Hidasi et al. 2015) applied

deep recurrent neural networks (RNN) to model the transaction of sequential

data but the high computational cost caused by the complex structures pre-

vents its application to large data. Compared to deep architectures (Wang,

Liu, Wu, Cao, Meng & Kennedy 2016), shallow networks are more efficient in

dealing with such kinds of issues, especially on large datasets. But currently

quite few literature works on shallow network-based recommmender systems

to the best of my knowledge.

Moreover, MC, MF and RNN were originally designed for time-series data

with a rigid natural order, hence they do not fit unordered transactions.

For example, it makes no difference whether milk or bread is put into the

cart first. In addition, existing methods do not effectively weight the items
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within a context, namely paying more attention to those relevant items. Such

attention distinction is quite important especially for long transactions which

often contain many items irrelevant to the next choice.

5.1.2 My Design and Main Contributions

This chapter addresses the above issues by proposing an attention-based

transaction embedding model (ATEM). ATEM builds an attentive context

embedding over the embeddings (Jian, Cao, Pang, Lu & Gao 2017) of all the

observed items in a transaction by identifying the contextual items with high

relevance to the next choice. Considering the large number of items, usually

over 105, in real-world business, I build a shallow wide-in-wide-out network

(Goth 2016) to reduce the time and space cost. Specifically, I incorporate

the attention mechanism (Shaonan, Jiajun & Chengqing 2017) into the shal-

low network to build an attentive context over all the observed items in a

transaction without the rigid ordering assumption. Thanks to the attention

mechanism, the proposed model is able to pay greater attention to more rel-

evant items and less attention to less relevant ones. As a result, ATEM is

more effective and robust to predict the next item in a transaction with less

constraints. The main contributions of this chapter are as follows:

• I figure out and highlight the item heterogeneity issue in session-based

recommender systems, which could be of great significance to satisfied

recommendation outputs.

• An attention-based model learns an attentive context embedding that

intensifies relevant items but downplays those irrelevant to the next

choice. My method does not involve a rigid ordering assumption over

items in a transaction.

• A shallow wide-in-wide-out network implements ATEM, which is more

effective and efficient for learning and prediction over a large number

of items.
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• My empirical study shows that (1) ATEM significantly outperforms

the state-of-art TBRSs on two real-world datasets in both accuracy and

novelty; and (2) the attention mechanism makes a significant difference

to TBRSs by comparing the methods with and without the attention

mechanism.

5.2 Problem Statement

Before going into the details of my proposed model, I first define the problem

and define basic concepts.

Generally, transaction-based recommendations are built on shopping basket-

based transaction data. For a given transactional dataset, let T = {t1, t2...t|T |}
be the set of all transactions, and each transaction t = {i1, i2...i|t|} consists

of a subset of items, where |T | denotes the number of elements in set T .

All the items occurring in all transactions constitute the whole item set

I = {i1, i2...i|I|}. Note that the items in a transaction t may not have a rigid

order. For a given target item is ∈ t, all the items in t except is are picked up

as its corresponding context c, namely c = t\is. Particularly, an attentive

context means items within the context contribute differently to the context

embedding for next-item recommendation. Given the context c, my ATEM

is constructed and trained as a probabilistic classifier that learns to predict a

conditional probability distribution P (is|c). A total of |t| training instances

are built for each transaction t by picking up each item as the target one

each time.

Therefore, TBRS is boiled down to rank all candidate items in terms of

their conditional probability over the given context. Note that in the pre-

diction stage, the conditional probability is computed based on the attentive

embedding of the context c. Such embedding is built on all the contextual

items included in c by utilizing the attention mechanism to learn the weight

of each contextual item.
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Figure 5.1: The ATEM architecture, which first learns item embeddings and

then integrates them into the context embedding for target item prediction,

where ‘A’ represents the attention model.

5.3 Modeling and Learning

In this section, I first demonstrate the architecture of the proposed ATEM

model, and then discuss how to train the model and learn the parameters.

Finally, I show how to make predictions and accordingly generate recommen-

dations using the trained model.

5.3.1 Attention-based Transaction Embedding Model

Overall, from bottom to top, the proposed ATEM model consists of an input

layer, an item embedding layer, a context embedding layer, an output layer,

plus an attention layer between the item and context embedding layers, as

shown in Figure 5.1. Next, I explain the working mechanism of the model

layer by layer from the input to the output.
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Item Embedding

Giving a contextual itemset c to the input layer, the input units in the

bottom of Figure 5.1 constitute a one-hot encoding vector where only the

unit at position ij (ij ∈ c) is set to 1 and all others are set to 0. For each

i ∈ c, I encode it in the same way as ij. Therefore, a vector with length |I|
is achieved to represent each item in the context and a total of |c| vectors
can be achieved for a given context c.

The information delivered by the sparse one-hot vectors is limited. In

ATEM, I create an embedding mechanism to map these vectors to an infor-

mative and lower-dimensional vector representation in the item embedding

layer, where a K-dimension real-valued vector hj ∈ R
K is used to represent

the embedding of item ij. The input weight matrix Wi ∈ R
K×|I| is used to

fully connect the input-layer and item embedding-layer. Note that the jth

column of the weight matrix Wi
:,j actually encodes the one-hot vector of item

ij to the real-valued embedding hj, namely:

hj = Wi
:,j (5.1)

Transactional Context Embedding with Attention

When the embeddings of all items in context c are ready, I can obtain the

embedding ec ∈ R
K of context c by integrating the embeddings of all items

in c. Specifically, the attentive context embedding is built as a weighted sum

of hj:

ec =
∑
ij∈c

αtjhj , s.t.
∑
ij∈c

αtj = 1 (5.2)

where αtj is the integration weight of contextual item ij w.r.t the target item

it, which indicates the contribution scale of ij to the occurrence of it. In

my model, to better capture the different contribution scale of various con-

textual items, I develop an attention layer to learn the integration weights

automatically and effectively. Compared to assigning the weights manually
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under certain assumptions, or directly learning the weights without the at-

tention mechanism, my method not only works more flexibly without such

assumptions but also focuses more on the key items and reduces the inter-

ference from irrelevant items in a long context. Next, I demonstrate how the

attention model achieves the integration weights.

Specifically, I use a softmax layer to determine the weights of different

contextual items. In this case, those contextual items more relevant to the

target item are given larger weights, while the input of the softmax is a

transformation of each item embedding.

αtj =
exp(e(hj))∑

s∈ct exp(e(hs))
(5.3)

e(hj) = wαhT
j (5.4)

where wα is an item-level context vector shared by all contextual items as

shown in Figure 5.1. The shared context vector wα can be seen as a high level

representation of a fixed query ‘which is the informative item’ over the con-

textual items like that used in memory networks (Kumar, Irsoy, Ondruska,

Iyyer, Bradbury, Gulrajani, Zhong, Paulus & Socher 2016). It is randomly

initialized and jointly learned during the training stage. As wα serves as a

weight vector to connect the item embedding layer to the attention model, I

also refer to it as attention weight in the following section to keep it consistent

with input and output weights.

Essentially, I measure the importance of each item ij as the similarity of

its embedding hj with the item level context vector wα and get a normalized

importance weight αtj of item ij w.r.t the target item it through a softmax

function (Yang, Yang, Dyer, He, Smola & Hovy 2016). Consequently, the at-

tentive context representation vector can be computed using Equation (5.2).

Target Item Prediction

After getting the representation of context c, we feed it into the output

layer for the prediction task, which is shown in the top of Figure 5.1. Here
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the output weight matrix Wo ∈ R
|I|×K is used to fully connect the context

embedding layer and output layer. With the embedding of the given context

c plus the weight matrix Wo, the score St of a target item it w.r.t the given

context c is computed as:

St(c) = Wo
t,:ec (5.5)

where Wo
t,: denotes the tth row of Wo. The resultant score St(c) quantifies

the relevance of the target item it w.r.t the given context c. As a result, the

conditional probability distribution PΘ(it|c) can be defined in terms of the

softmax function, which is commonly used in neural network or regression

model.

PΘ(it|c) = exp(St(c))

Z(c)
(5.6)

where Z(c) =
∑

i∈I exp(Si(c)) is the normalization constant and Θ = {Wi,

wα,Wo} is the model parameters. Therefore, a probabilistic classifier mod-

eled by my proposed ATEM is obtained to predict the target item.

5.3.2 Learning and Prediction

In the previous subsection, I have described the construction of a proba-

bility classifier over the transaction data d = 〈c, ic〉, where c is the input,

namely the context constructed on the items within a transaction, and ic is

the observed output, namely the corresponding relevant item conditional on

this context. Given a training dataset D = {〈c, ic〉}, the joint probability

distribution can be obtained as:

PΘ(D) ∝
∏
d∈D

PΘ(ic|c) (5.7)

Therefore, the model parameters Θ can be learned by maximizing the con-

ditional log-likelihood (cf. Equation (5.6)):

LΘ =
∑
d∈D

logPΘ(ic|c) =
∑
d∈D

Sic(c)− logZ(c) (5.8)

Note that, both the evaluation of LΘ and the computation of its correspond-

ing log-likelihood gradient involve the normalization term Z(c), which needs

to sum exp(Sic(c)) over the entire item set for each training instance. This
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means, it takes O(|I| × |D|) time of computation to get the normalization

constant for each iteration to train this model. Unfortunately, |I| and |D| are
usually quite large in real-world business. For example, the Amazon dataset

contains millions of transactions for more than ten thousand of products.

Such a high computation cost makes the training process intractable.

Noise Contrastive Estimation

To tackle the aforementioned issue, I adopt a subsampling approach to

deal with the softmax layer, namely noise-contrastive estimation (NCE)

(Gutmann & Hyvärinen 2012) which was proposed for training unnormal-

ized probabilistic models and has been broadly used to handle similar issues

in NLP etc. NCE does not directly compute the normalization constant of

the softmax to avoid the high computation cost, instead it works with the

other approximate objective which is much cheaper to compute.

The main idea of NCE is to use a binary classifier to distinguish samples

from the data distribution from those with a known noise distribution Q. In

my case, given a training example 〈c, ic〉, the probability of sampling from

either a positive example or K noise examples is represented as a mixture of

these two distributions (Mnih & Teh 2012):

PΘ(y, ic|c) = 1

K + 1
PΘ(ic|c) + K

K + 1
Q(ic) (5.9)

Then the posterior probability of a sample ic coming from the data distribu-

tion, namely the probability of a positive example, is calculated as:

PΘ(y = 1|ic, c) = PΘ(ic|c)
PΘ(ic|c) +KQ(ic)

≈ exp(Sic(c))

exp(Sic(c)) +KQ(ic)
(5.10)

where the normalization term Z(c) is dropped from PΘ(ic|c). This is because
the NCE is a normalized estimator where the objective encourages PΘ(ic|c)
to be approximately self-normalized (Gutmann & Hyvärinen 2012). Hence,

the probability of ic coming from the noise samples is PΘ(y = 0|ic, c) =

1 − PΘ(y = 1|ic, c). Subsequently, instead of maximizing the original log-

likelihood in Equation (5.8), we can maximize the likelihood of the training
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samples against K noise samples as (Mnih & Kavukcuoglu 2013):

JΘ(ic, c) = logPΘ(y = 1|ic, c) +KEik∼Q[logPΘ(y = 0|ic, c)]

≈ logPΘ(y = 1|ic, c) +
K∑
k=1

logPΘ(y = 0|ik, c) (4.11)

Substituting Equation (5.10) into Equation (4.11), the gradient of JΘ(ic, c)

can be immediately obtained. It approaches the original maximum likeli-

hood (Equation (5.8)) gradient when K increases (Mnih & Teh 2012). K is

empirically set to 8 in my experiments.

∇JΘ(ic, c) =
KQ(ic)

exp(Sic(c)) +KQ(ic)
∇Sic(c)−

K∑
k=1

exp(Sik(c))

exp(Sik(c)) +KQ(ik)
∇Sik(c)

(4.12)

Learning and Ranking

After we get the gradient of JΘ(ic, c) as illustrated in Equation (4.12), all

the parameters Θ are learned by back-propagation. Algorithm 5.1 briefly

summarizes the learning process. Note that ∇e(hj)αtj is the gradient of a

softmax function (cf. Equation (5.3)) and it can be well computed (Buntine

& Weigend 1994).

In Algorithm 5.1, � denotes the element-wise product. Index t corre-

sponds to the output item it which includes both the positive sample ic and

all noise ones {ik} and ij ∈ c is one of the input items from the context. w:,j

is the corresponding input weight (cf. Equation (5.1)). A specific gradient-

based update process for the parameter is achieved after we substitute the

gradients demonstrated in Algorithm 5.1 (cf. Steps 3-5) into Equation (4.12).

To reduce the high computation cost caused by the large number of training

samples, we adopt a mini-batch scheme to train the model, where each batch

contains 50 training instances. The details to build the instances are given in

the experimental part. My experimental results are achieved by using Adam

(Kingma & Ba 2014) for the specific gradient descent operation.
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Algorithm 5.1 ATEM Parameter Learning Using SGD

1: l← 0

2: while not converged do

3: Compute output weight wo
t,:-gradient (Equation (5.5)): gwo

t,:
← ec

4: Compute attention weight wα
tj-gradient (Equations (5.2)-(5.5)): gwα

tj
←

Wo
t,: � h2

j �∇e(hj)αtj

5: Compute input weight wi
:,j-gradient (Equations (5.1)-(5.5)):

gwi
:,j
←Wo�

t,: � (αtj +∇e(hj)αtj �wα � hj)

6: Perform SGD-updates for wo
t,:, w

α
tj and wi

:,j :

wo
t,: ← wo

t,: + Sl
t(g)gwo

t,:
(output weight update),

wα
tj ← wα

tj + Sl
tj(g)gwα

tj
(attention weight update),

wi
:,j ← wi

:,j + Sl
j(g)gwi

:,j
(input weight update)

7: l← l + 1

8: end while

After all the parameters have been learned by the training process, the

model can be used as a transaction-based recommender system, which is

ready to make predictions and accordingly generate recommendations. To

be specific, given an arbitrary transaction-based context c containing all the

items chosen in a certain transaction, the probabilities of choosing each next

candidate item can be calculated according to Equation (5.6) immediately,

and then the ranking over all of them can be achieved accordingly.

5.4 Experiments and Evaluation

The empirical study of the proposed ATEM is given in this section. Specif-

ically, I first setup the experiments by preparing the experimental datasets

and introducing the comparison methods, and then evaluate the performance

in terms of recommendation accuracy and novelty.
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5.4.1 Experimental Setup

Data Preparation

I evaluate my method on two real-world transaction data sets: IJCAI-15 1

and Tafang 2.

First, a shopping-basket-based transaction table is extracted from each

of the original datasets. The transaction table contains multiple transactions

and each transaction consists of multiple items. Note that those transactions

containing only one item are removed as they do not fit my model as I use

at least one item as context and another as the target. Second, the trans-

action table is split into training and testing sets. Specifically, I randomly

choose 20% from the transactions happened in last 30 days as the testing set,

while the remainder is for training. Finally, to build the training and testing

instances of format d = 〈c, ic〉 as illustrated in last section, for a transac-

tion t, each time one out of which is picked up as the target item ic and all

the remaining ones are used as the corresponding context c. Subsequently,

for a transaction containing |t| items, |t| instances are built in total. The

characteristics of the datasets are shown in Table 5.1.

During the training stage, transactions in the training set are imported

into the model in batches to learn the context embeddings. In the testing

process, the learned embeddings are used to predict the target item. The true

target item is used as the ground truth. I calculate the accuracy measures

Recall@K and MRR (Chou et al. 2016) by comparing the predicted results to

the ground truth. However, it is not enough to evaluate a recommender sys-

tem only using accuracy metrics (Ge, Delgado-Battenfeld & Jannach 2010).

Considering the fact that an increasing number of customers prefer to enjoy

a more surprising experience by discovering novel products which they have

not chosen before, I also measure the recommendation novelty by comparing

the recommendation list to the corresponding contextual itemset.

1https://tianchi.aliyun.com/datalab/dataSet.htm?id=1
2http://stackoverflow.com/questions/25014904/download-link-for-ta-feng-grocery-

dataset
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Table 5.1: Statistics of experimental datasets

Statistics IJCAI-15 Tafang

#Transactions 144,936 19,538

#Items 27,863 5,263

Avg. Transaction Length 2.91 7.41

#Training Transactions 141,840 18,840

#Training Instances 412,679 141,768

#Testing Transactions 3,096 698

#Testing Instances 9,030 3,150

Comparison Methods

I use the four representative start-of-the-art methods, i.e., PBRS, FPMC,

PRME and GRU4Rec introduced in Section 2.4, as the baselines for the

experiments. In addition, I built another model TEM as below to test the

efficacy of attention mechanism.

• TEM : A model similar to ATEM except that it utilizes distance-based

exponential decay (Hu, Cao, Wang, Xu, Cao & Gu 2017) to replace the

attention mechanism to assign the weights manually. The contextual

items near to the target one are given larger weights.

5.4.2 Performance Evaluation

In this section, the accuracy evaluation is first given, followed by the novelty

evaluation.

Accuracy Evaluation

Two commonly used accuracy metrics for session-based RSs are used for

the evaluations. Particularly, recall (REC@K) and mean reciprocal recall

(MRR@K) are used as the evaluation measures, their definitions are given

in Section 2.3.1. Note that rating-based RS evaluation metrics, e.g., MSE,
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Table 5.2: Accuracy comparisons on IJCAI-15

Model REC@10 REC@50 MRR

PBRS 0.0780 0.0998 0.0245

FPMC 0.0211 0.0602 0.0232

PRME 0.0555 0.0612 0.0405

GRU4Rec 0.2283 0.3021 0.1586

TEM 0.3177 0.3796 0.1918

ATEM 0.3542 0.5134 0.2041

Improve (%) 11.49 35.25 5.01

Table 5.3: Accuracy comparisons on Tafang

Model REC@10 REC@50 MRR

PBRS 0.0307 0.0307 0.0133

FPMC 0.0191 0.0263 0.0190

PRME 0.0212 0.0305 0.0102

GRU4Rec 0.0628 0.0907 0.0271

TEM 0.0789 0.1716 0.0231

ATEM 0.1089 0.2016 0.0347

Improve (%) 38.02 17.48 28.04

are not applicable in my work as I do not work on rating data to predict the

ratings.

Table 5.2 and Table 5.3 demonstrate the results of REC@10, REC@50

and MRR over the testing sets on two real-world datasets, respectively. For

PBRS, I empirically set the minimum support to 0.01 and 0.008 on IJCAI-15

and Tafang dataset respectively. As it only focuses on those frequent items

and filters out infrequent ones, the performance is not so good. The number

of factors is set to 10 for training the FPMC to achieve the best performance.
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However, the accuracy performance of FPMC on both datasets is quite poor.

This is due to the fact that both datasets are extremely sparse and thus

a very large but quite sparse item transition matrix is constructed on each

dataset to train the MF model. For example, in IJCAI-15 dataset, each

transaction only contains an average of 2.91 items from over 27,000 ones (cf.

Table 5.1). This indicates each row of the built matrix contains less than

two items. In practice, the non-empty entries account for less than 0.01%.

I set the embedding dimensions to 60 as suggested in (Feng et al. 2015)

when training the PRME model. Compared to FPMC, the performance of

PRME is a little better, but it is still poor. This is because PRME is a first-

order MC model, which learns the transition probability over the successive

item rather than the whole context. This may lead to information loss.

Furthermore, in the real word, the purchase of goods does not always follow

a rigid sequence assumed by such kind of models. Benefiting from the deep

structure, GRU4Rec achieves much better performance compared to FPMC

and PRME.

For my ATEM model, the batch size is empirically set to 50 and the

number of hidden units for item embeddings is set to 128 and 40 on IJCAI-

15 and Tafang dataset respectively. I run 20 epochs to train the model. It

clearly achieves a better performance than GRU4Rec, where the REC@10

and REC@50 exceed 35% and 50% respectively on IJCAI-15 dataset. The

highest MRR also proves that my model can effectively put the users’ desired

items in the front of the recommendation list, the reason being that, different

from the previous models which either capture only first-order dependency

between items or capture the dependency between each contextual item and

target one respectively, ATEM builds an embedding of the context by treat-

ing all the contextual items as a whole. Therefore, the complex dependency

relations (e.g., intra-context dependency, context-target dependency) can be

better captured. More importantly, the attention mechanism is applied here

to discriminate the contributions of different contextual items to the predic-

tion of a certain target item. This actually helps greatly to build a more
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informative context embedding for different target items. From the point

of view of real-world applications, my model has a very shallow and concise

structure for easy training, which makes it more efficient to recompute the

scores for ranking all candidate items when contexts keep updating in on-

line recommendations, compared to those complex and deep models (e.g.,

GRU4Rec).

The settings of TEM are kept the same as ATEM and the parameter

λ in exponential decay is set to 0.75 to obtain the best performance. The

performance of TEM is obviously weaker than ATEM. This is caused by

the distance assumption used in TEM, which essentially still has an order

assumption over items within a transaction. This may not be consistent with

real-word cases, as previously stated.

The Effect of Context Length

Although longer transactional contexts consisting of more items may be more

informative, they may be more fragile and contain irrelevant items, resulting

in reduced recommendation accuracy when these are not identified. To show

the advantages of my model under varies lengths of contexts, I test the effect

of context length. Figure 5.2 illustrates that longer contexts benefit accuracy,

and my method clearly outperforms the others under longer contexts, such

as a context consisting of four items (denoted as Len-4). Note that PBRS,

FPMC and PRME are mainly first-order dependency based and thus are not

sensitive to context length. Hence, they are not included in this test.

The Effect of Item Order

To test the effect of the order of items within a transaction on recommen-

dation accuracy, I randomize the default item order in the IJCAI-15 data to

build a disordered dataset. Table 5.4 shows the accuracy of different methods

on this new data. Compared to the results in Table 5.2, other approaches

experience much more performance degradation than ATEM. This indicates

the stronger ability of ATEM compared to the other methods in handling
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Figure 5.2: ATEM achieves higher REC@10 and MRR than the other

approaches, especially under long contexts.

Table 5.4: Accuracy on disordered IJCAI-15

Model REC@10 REC@50 MRR

PBRS 0.0500 0.0559 0.0185

FPMC 0.0151 0.0412 0.0183

PRME 0.0346 0.0389 0.0351

GRU4Rec 0.1636 0.2121 0.1022

TEM 0.2660 0.3012 0.1431

ATEM 0.3423 0.4981 0.1960

Improve (%) 28.68 65.37 36.97

disordered data.

Novelty Evaluation

Except for accuracy, novelty is another important quality which should be

considered in real-world RS (Wang, Hu & Cao 2017). Recall that by con-

sidering what a customer has already chosen in a transaction (transactional

context), my proposed TBRS can effectively avoid recommending duplicate

items and suggest some novel items which can result in a surprising expe-

rience. Therefore, I employ the local novelty measure MCAN defined in

Section 2.3.2 to quantify the difference between the given context and the
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Figure 5.3: ATEM achieves higher novelty than the other approaches.

recommendation list. The larger the difference, the higher the novelty. It

should be noted that the aforementioned accuracy guarantees the relevance

of recommended items, so highly novel items are also of high relevance.

In my model, the items which have already been chosen correspond

to the context c used for recommendation R. Subsequently, MCAN (cf.

Section 2.3.2) measures the mean non-overlap ratio between each context-

recommendation pair 〈ci, Ri〉 over all N top-K recommendations.

Figure 5.3 illustrates the results of novelty comparison on the two datasets.

PBRS only results in frequent patterns, hence it is difficult to match the

whole context exactly, especially for long contexts. Subsequently, low nov-

elty is achieved without considering all the contextual items. FPMC does not

learn its parameters well on such sparse datasets, so it outputs relatively ran-

dom recommendations. Accordingly, FPMC obtain low novelty. PRME is a

first-order MC model which makes recommendations by only considering the

exact prior item while ignoring other contextual items, so it may recommend

duplicate items and thus lead to low novelty. GRU4Rec can accumulate the

influence of all the sequential items from the context to make relatively reli-

able and novel recommendations. Compared to the aforementioned methods,

my model not only considers the whole context but also tries to build an at-

tentive context embedding utilizing attention mechanism. Consequently, it
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is easier for me to generate novel and relevant recommendations.

In summary, the higher accuracy and novelty of the next-item recom-

mended by ATEM than the baselines verifies the significance of weight-

ing all the contextual items in building an attentive context embedding for

transaction-based recommender systems. In addition, the power of the at-

tention mechanism is further justified by the comparison between ATEM and

TEM.

5.5 Summary

To effectively recommend the next item within a transactional context, which

cannot be addressed by existing next-basket and next-items recommender

systems, this chapter proposed an attention-based transaction embedding

model ATEM. ATEM is a shallow wide-in-wide-out neural network. It learns

an attentive context embedding that is expected to be the most relevant to

the next choice over all the observed items in a transaction. The empirical

evaluation on the real-world transactional data shows its significant superior-

ity in addressing gaps in state-of-the-art approaches. This also demonstrates

the effectiveness of my solution to the widely existed item heterogeneity is-

sue in session-based recommender systems. I will explore the application

of ATEM to other session-based recommendation scenarios like next-song

or next-web page recommendations. We will also explore its application

to other problems such as the author-topic relation learning (Rosen-Zvi,

Chemudugunta, Griffiths, Smyth & Steyvers 2010).
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6.1 Introduction

In this chapter, I focus on a quite common but critical challenge in recom-

mender system area: cold start issue, which is less-studied in session-based

recommender systems. This is also the third challenge we addressed in this

thesis as demonstrated in the thesis structure Figure 1.2 in the first chap-

ter. To address this challenge, I go down to the feature level and focus more

the feature dependency and the joint modeling of feature dependency, item

dependency and the interactions between them, as shown in Figure 1.1 in

Chapter 1. Cold start items means those items rarely occurred or totally

new. Similar to Chapter 5, I specify session-based recommender systems to

transaction-based recommender systems in this chapter.

6.1.1 Target Problem and Motivation

Nowadays, recommender systems (RS) play an important role in real-world

business especially in the e-commerce domain. For example, the RS behind

thousands of websites (e.g., Amazon) provide magic power to help end users

to discover and make choices from a huge number of items. As a result,

RS can not only improve customers’ shopping experience but also increase

the business profits. Although lots of work has been done to produce high

quality recommendations, some issues are still challenging and need more

efforts. One of them is to enable RS to dynamically perceive customers’ next

choice on thousands of candidate items online according to what they have

just put in the shopping carts. In this chapter, I call the next item to choose

as the target item while those items having been added to cart are treated as

its context. The challenges come from two sides: on one hand, the context

is dynamic along with the shopping transaction; on the other hand, the RS

needs to keep updating the recommendations when the context was changed.

For instance, suppose a customer Robin starts an online shopping transaction

on Amazon: first, he bought a cellphone and then a protective film may be his

next choice, so good RS should be capable of perceiving the protective film
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according to the context of cellphone. When Robin has bought the cellphone

and protective film, his next choice is probably an earphone rather than

buying another type of protective film again. Therefore, the recommended

item should be changed from the protective film to the earphone accordingly.

This dynamic recommendation process keeps updating until the transaction

is finished.

This kind of recommender systems can be easily formalized as the session-

based recommender systems as demonstrated in Section 2.1. Similar to Chap-

ter 5, in this chapter, they are called transaction-based RS (TBRS) (Huang

& Zeng 2011) instead as they work on transactional data, which are different

from the rating-based RS (RBRS) (Adomavicius & Tuzhilin 2015) working

on rating data. Although existing TBRS can recommend next items given

the context, most of them treat the context as static rather than dynamic and

can only work on static transactional data, an example is the pattern-based

RS (Yap et al. 2012). Moreover, it is quite hard for them to keep updating

recommendations due to the long computational time, like deep network-

based RS (Hidasi et al. 2015, Wang, Liu, Wu, Cao, Meng & Kennedy 2016).

As a result, they do not work efficiently for online recommendations. RBRS

has been well studied but it cannot tackle my problems here due to the lack

of consideration of context, existing TBRS cannot perform well either for

online recommendations due to the aforementioned reasons. In this chapter,

I focus on TBRS and target at handling the dynamic context and producing

online recommendations.

Due to the lack of effective approach to model the context of a trans-

action event, most current TBRS cannot capture the intra-session relevance

over items perfectly and thus cannot produce high quality recommendations.

They tend to recommend those popular and long-released items while ignore

those less popular or newly-released ones. In practice, customers may not

always need popular or similar items to form immutable shopping behaviors,

instead, they want to explore something novel or unpopular. For example,

when the first smart-phone iPhone appeared in 2010, most customers prefer
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to it rather than Nokia, a popular function-phone (not smart-phone) brand

lasted for more than a decade at that time. Therefore, more sensible RS

which can bring surprising experience to users by recommending novel but

relevant items is increasingly important. In this chapter, novel items refer to

unpopular or newly-released items while ‘relevant’ infers the recommended

items are strongly relevant to the context. It’s clear that an effective ap-

proach to model the dynamic context in real-time is necessary to produce

high quality online recommendations.

Content-based filtering (CBF) (Melville, Mooney & Nagarajan 2002) and

collaborative filtering (CF) (Koren 2008) are two approaches that are most

commonly used in RS. They are not applicable to TBRS directly though they

perform well in RBRS. This is because these methods are actually designed to

work on rating matrix in RBRS, which is quite different from the shopping-

basket data in TBRS, thus it is hard for them to capture the relevance

between items embedded in transactional data.

Pattern or rule-based recommendation (Lin et al. 2002, Adda et al. 2005)

is a intuitive and straightforward solution to transaction-based recommenda-

tion issues. It first captures associations between items and then recommends

items associated to the context items. Although simple and effective some-

times, patterns are extracted from those frequent items due to the ‘support’

measure, whereas those infrequent ones are missed. In addition, they can

not be applied to online recommendation directly as the dynamic context

may contain arbitrary items, it probably fail to match any mined pattern.

As a result, the discovered patterns can neither capture the relevance be-

tween all items nor achieve the goal in this chapter. Considering the order

between items, some sequential pattern mining (SPM) based recommenda-

tion methods are proposed, such as (Yap et al. 2012). They assume a rigid

order over items within transactions (Han, Pei, Mortazavi-Asl, Chen, Dayal

& Hsu 2000), which may not always be the case. For instance, it makes no

difference whether milk or bread is put into the cart firstly.

Markov Chain (MC) (Rendle et al. 2010) is another straightforward way
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to model sequential data and thus can be used for TBRS on sequence data.

(Rendle et al. 2010) used Markov Chain to estimate the transition proba-

bility from current item to the next item and thus make prediction based

on this probability. (Wu et al. 2013) proposed Personalized Markov Embed-

ding (PME) to map the users and songs to an Euclidean space by modeling

the sequential singing behaviours, the prediction and recommendation are

conducted on the base of the embeddings. Although sequential behaviour

prediction based on Markov Chain is effective for capturing the transition

preferences of certain users and thus make good recommendations, it is essen-

tially based on item order within a transaction, which is not always available

in real-world business and such method only captures the first-order depen-

dency between items. Recently, matrix factorization (MF) (Chou et al. 2016)

is used to factorize the transition probability from current item to the next

one to the latent factors of each item and user. (Rendle et al. 2010) com-

bined MF and MC for next-item recommendation, the latent user and item

representations from the {user, item, last item} triplets are learned for next-

item recommendation. Similar to sequential patterns, both MC and MF were

originally designed for time-series data with rigid natural order, which limit

their applications in TBRS, where the order between items within a transac-

tion usually makes no difference. Moreover, they cannot handle those novel

and cold start items well as the transitions between them and other items

tend to be weak due to their low frequencies. To the best of my knowledge,

there is no existing literature particularly works on the cold start issues in

session-based recommender systems so far.

The above illustrations reveal the difficulty of modeling the context espe-

cially for dynamic context. In practice, the next choice is not only affected

by one item or part of items in front of the target item, but by all items

bought in the transaction event (i.e., the whole context). It is important

to model the whole context and learn the relevance between the whole con-

text and the target item. Furthermore, the intra-transaction relevance over

items are greatly driven by their intrinsic nature, in another words, there
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are complex coupling relations (Cao 2015) between item features and item

relevance. Such relations are particularly critical for those novel items with

quite a few transaction records. For example, milk and bread are always

bought together probably due to their different but closely related cate-

gories ‘drink’ and ‘food’. This indicates that not only the context items

but also the features of these items can affect the choice of the target item.

To capture the indicators on the next choice as more as possible, I propose a

neural-network-based comprehensive transaction embedding model (NTEM)

to learn the embeddings of both items and their features when modeling the

relevance between the context and the known choice. The model is compre-

hensive for several reasons: it models the relations between the target item

and the whole context rather than part of it. It learns the embedding of

the two important aspects (e.g., items and their features) of a transaction at

the same time. During model training, the coupling relations between item

relevance and item features are learnt and encoded into feature embeddings,

which is useful for novel item discovery and recommendation. Though com-

prehensive, the embedding model has a shallow and wide network structure

containing only one hidden layer, which guarantees its efficiency to find the

best next choices over thousands of candidate items when the given context

changes over time. This is suitable for online recommendation.

6.1.2 My Design and Main Contributions

Inspired by the great success of modern word embedding models, such as

Word2Vec (Mikolov, Sutskever, Chen, Corrado & Dean 2013), in natural

language processing (NLP) domain, I propose a shallow and wide network-

based transaction embedding model (NTEM) to learn the relevance between

different items efficiently on a large number of items with its wide-in-wide-out

structure. Such relevance is learnt by capturing both the explicit relevance

between items from the shopping-basket data and the implicit relevance from

item features together with the coupling relations between them and the

item relevance. It is noted that a deep structure is not efficient for online
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recommendation due to the long computational time needed to deal with

thousands of items in real time. The Word2Vec cannot be directly applied to

RS for two reasons: on one hand, it lacks of necessary element to incorporate

the item features. On the other hand, the words in NLP often have a strict

sequence, which is different from my case.

My model, NTEM has a three-layer network structure consisting of in-

put layer, embedding layer and output layer as shown in Figure 6.1. The

input layer contains double wide-in data vectors, the contextual itemset is

collected from one while their corresponding features are acquired from the

other. The embedding layer learns the item embeddings and feature embed-

dings respectively. The target item is then predicted by the output layer

taking the embeddings of contextual items and features as the input. The

NTEM learns the relevance between items with comprehensive transaction

embeddings using a concise network structure. The main contributions of

this work are summarized below.

(1). I model the whole context using a comprehensive network-based

transaction embedding model for the next choice prediction.

(2). A TBRS model is proposed, which does not require the strict order

over items within one transaction. This is more consistent with the real-world

case.

(3). I incorporate item features into the model and encode the feature-

item relevance coupling relations into feature embeddings, which makes my

model also work well on cold start cases.

(4). I propose a shallow and wide network, which recommends the next

item efficiently on large number of items under dynamic context.

6.2 Transaction Embeddings for Online Rec-

ommendation

In this section, I start with the problem formulation, then I talk about the

proposed NTEM model including the network architecture in the model and
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Figure 6.1: The NTEM architecture, which learns item embeddings and

feature embeddings for target item prediction based on contextual items and

their features

the model construction, finally I illustrate how to train the model and how

to make prediction and thus produce recommendations for online shopping

using the trained model.

6.2.1 Problem Formalization

Let T = {t1, t2...t|T |} be a set of transactions, each transaction t = {i1, i2...i|t|}
contains a set of items, where |T | denotes the number of elements in set

T . All the items occurred in all transactions constitute the whole item set

I = {i1, i2...i|I|}. Let F = {f 1, f 2...f |F |} be a set a features which de-

scribe the items from I. Each item i is described by a set of feature values

Fi = {f 1
i , f

2
i ...f

|F |
i }. Note that the items in one transaction t may not have

a rigid order, which is consistent with the real-world cases. Given the set of

context itemset c, my NTEM is constructed and trained as a probabilistic

classifier that learns to predict a conditional probability distribution P (is|c),
where c ⊆ t\is is the context from a transaction t ∈ T w.r.t the target item

is. This is similar to the bag of word (BOW) model in natural language

processing, which trains a classifier to learn a conditional probability distri-

bution P (wj|wI), where wI is the context consisting of several words of the

target word wj (Rong 2014). Similar to BOW, for each target item is ∈ t, the

transaction context is c = t\is, namely all the items except the target one in

the transaction are picked up as the context. Totally |t| training instances
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are built for each transaction t by picking up one item as the target one each

time.

Since I want to capture more information from the context for predic-

tion, the features of items are added to the model as part of context, which

result in cf =< c, Fc >, where Fc = {Fi|i ∈ c} is the corresponding fea-

tures of the items from c. Thus my NTEM model is refined to predict the

conditional probability distribution P (is|c, Fc) when the transaction-feature

context < c, Fc > is given. We call c and Fc as transaction context and

feature context respectively in this chapter. Thus, the TBRS is reduced to

ranking all candidate items in terms of their conditional probability over the

given transaction-feature context. Note that in the prediction stage, the con-

ditional probability is computed based on the embeddings of item set c and

its corresponding features Fc learned in the training stage.

Particularly, the incorporation of features contributes greatly to the rec-

ommendation of novel items. Due to the low frequencies of novel items in

training set, the embeddings of these items may not be learned well dur-

ing the model training process and it leads to poor prediction. Thanks to

the feature embeddings synchronously learned with the item embeddings,

the intra-transaction item relevance can be partly encoded into feature value

embeddings of novel items. In addition, part of the feature values of novel

items may already be embedded when encoding those of frequent items as

some feature values may be shared between frequent items and infrequent

ones.

6.2.2 Neural-Network-based Transaction Embedding

Model (NTEM)

In this section, I mainly talk about the details of constructing NTEM and

learning its parameters.

Giving a context < c, Fc > to the input layer, the input units in the

bottom left corner of Figure 6.1 constitute a one-hot encoding vector where

only the units at position ij (ij ∈ c) is set to 1 and all other units are set
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to 0. For each i ∈ c, I encode it in the same way as ij. Note that items

may have both numerical and categorical features in real-world business. In

this work, I only consider those categorical features. For a value from a

categorical feature f (f ∈ F ) with m different values, I transform it to a

1×m vector using one-hot encoding. Suppose V =
∑

nk is the total number

of distinct values of all features, where nk is the number of distinct values

in feature fk. For the features of a given item, a 1 × V vector is achieved

by doing the transformation of all feature values first and then concatenate

all the transformed vectors together. Thus the input layer for each training

example consists of |c| item vector with length |I| and |c| item feature vectors

with length V .

In the input layer, items and item features are represented by sparse one-

hot item and feature vectors. In NTEM, I create an embedding mechanism to

map these vectors to an informative and lower-dimensional vector representa-

tion in the embedding layer, where a K-dimension vector Ei ∈ [0, 1]K is used

to represent the item embedding. The transaction context weight matrix

Wt ∈ R
K×|I| is used to fully connect between input-layer and embedding-

layer. Where the ith column Wt
:,i encodes the one-hot vector of item i to the

embedding Ei using the commonly used logistic function σ(·).

Ei = σ(Wt
:,i) (6.1)

To make the training and prediction more stable, here I use the nonlinear

embeddings as they are bounded in [0,1] compared to the linear embeddings.

Furthermore, the nonlinear embeddings are more expressive than linear one

though they may involve a little more computation cost. After embedding

all items in c, I can obtain the embedding Ec ∈ [0, 1]L of transaction con-

text c by combining all embeddings of items in such context. As illustrated

in the following equation, the transaction context embedding is built as a

combination of Ei, i ∈ c.
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Ec =
∑
i∈c

ωiEi (6.2)

where
∑

i∈c ωi = 1. The combination weight ωi for each item i in context

c can be assigned to different values according to specific applications. For

instance, in sequential data, the weights decay with time span to the target

item. As illustrated in the introduction part, I treat the items within a

transaction as unordered, so uniform weights are used in this chapter, i.e.,

the items in context are equally important for the prediction of the target

item.

Similarly, I use the feature context weight matrix Wf ∈ R
L×V to encode

the one-hot item feature vector Fi of item i to the embedding EFi
∈ [0, 1]L.

EFi = σ(Wf
:,Fi

) (6.3)

Similar to transaction context, I combine the embeddings of features of all

items from c to construct the whole feature embedding EFc as below.

EFc =
∑
i∈c

ωFiEFi (6.4)

where
∑

i∈c ωFi
= 1. Uniform weights are assigned to the feature embedding

of each item for the same reason as ωi illustrated above.

The output weight matrices Wo ∈ R
|I|×K and Wp ∈ R

|I|×L is used to

fully connect the embedding-layger and output-layer as depicted in the top

of Figure 6.1. With the embeddings of given contextual itemset c and its

features Fc, plus the weight metrics Wo and Wp, the score Sis of a target

item is w.r.t the given context < c, Fc > is computed as:

Sis(c, Fc) = Wo
s,:Ec +Wp

s,:EFc (6.5)

where W o
s,: denotes the sth row of W o. This score quantifies the relevance

of the target item is w.r.t the given context < c, Fc >. As a result, the

conditional probability distribution PΘ(is|c, Fc) can be defined in terms of

softmax function, which is commonly used in neural network or regression

model.
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PΘ(is|c, Fc) =
exp(Sis(c, Fc))

Z(c, Fc)
(6.6)

where Z(c, Fc) =
∑

i∈I exp(Si(c, Fc)) is the normalization constant and Θ =

{Wt,Wf ,Wo,Wp} is the model parameters. Thus a probabilistic classifier

modeled by my NTEM is obtained.

6.2.3 Learning and Prediction

In the above subsection, I have built a probabilistic classifier based on the

transaction and item feature information data b =< g, ig >, where g =<

c, Fc > is the input data, namely the transaction-feature context, and ig is

the corresponding observed output, namely an item bought together with

the given transaction context c. Given a training dataset D = {< g, ig >},
the joint probability distribution over it is obtained:

PΘ(D) ∝
∏
b∈D

PΘ(ig|c, Fc) (6.7)

As a result, the model parameters Θ can be learned by maximizing the

conditional log-likelihood:

LΘ =
∑
b∈D

logPΘ(ig|c, Fc) =
∑
b∈D

Sig(c, Fc)− logZ(c, Fc) (6.8)

Evaluating LΘ and evaluating the corresponding log-likelihood gradient

involve the normalization term Z(c, Fc), which needs to sum exp(Sig(c, Fc))

over the whole itemset for each training instance. That is to say, training

this model take |I| × |D| times of computation to get the normalization

constant for each iteration, which makes the training process intractable.

To tackle this problem, I adopt a sub-sampling approach, namely noise-

constrictive estimation (NCE) (Gutmann & Hyvärinen 2012) to deal with

the normalization calculation of softmax function in the training process. I

sample 50 negative items each time in the experiment.

139



CHAPTER 6. AN ITEM FEATURE INTEGRATED SESSION-BASED RS

All the parameters Θ are learned by back propagation. Algorithm 6.1

summarizes the learning process briefly. In Algorithm 6.1, � denotes element-

wise product operation, io is the output item which includes both positive

example and noise examples. ij ∈ c is the input item from the context and ωij

is the corresponding combination weight used in Equation (6.2). Similarly,

Fij is the corresponding input feature of item ij and ωFij
is its corresponding

combination weight used in Equation (6.4).

Algorithm 6.1 NTEM Parameter Learning Using Gradient Descent

1: l← 0

2: while not converged do

3: Compute wo
io-gradient (Equation (6.1)): gwo

io
← E�

c

4: Compute wp
io
-gradient (Equation (6.3)): gwp

io
← E�

Fc

5: Compute wt
:,ij

-gradient (Equation (6.5)):

gwt
:,ij
← ωijW

o�
io,: � Ei � (1− Ei)

6: Compute wf
:,Fij

-gradient (Equation (6.5)):

gwf
:,Fij

← ωFij
Wp�

Fio ,:
� EFi

� (1− EFi
)

7: Perform SGD-updates for wo
io , w

p
io
, wt

:,ij
and wt

:,ij
:

wo
io ← wo

io + Sl
io(g)gwo

io
, wp

io
← wp

io
+ Sl

io(g)gwp
io
, wt

:,ij
← wt

:,ij
+

Sl
io(g)gwt

:,ij
, wf

:,Fij
← wf

:,Fij
+ Sl

io(g)gwf
:,Fij

8: l← l + 1

9: end while

Due to the large computation cost and the strength in matrix calculation

of GPUs, a GPU-based adaptive stochastic gradient descent (SGD) optimizer

is designed to speed up the training process.
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6.3 Experiments and Evaluation

6.3.1 Experimental Setup

Data Preparation

I evaluate my method on two real-world transaction data sets: IJCAI-15 1

and Tafang 2. First, a shopping-basket-based transaction table and an item

information table are extracted from each of the original data. The trans-

action table contains multiple transactions and each transaction consists of

multiple items. Note that those transactions containing only one item are

removed as they can not fit my model. This is because, I use at least one

item as context for constructing the embeddings. The item information table

contains the feature values of each item occurred in the transaction table,

note that I only focus on those categorical features in this chapter. Secondly,

the transaction table is splitted into training and testing set. Specifically, I

randomly choose 20% from the transactions happened in last 30 days as the

testing set, while others are used for training. The item information table is

used in both training and testing processes. Finally, to test the performance

of my proposed model under different cold-start levels, part of the transac-

tions in training set are removed following certain rules. To be specific, I

construct 4 different training sets with a drop rate of 0, 40%, 80%, 95% re-

spectively. Taking the one with drop rate of 40% as an example, for each

target item selected in the testing set, 40% of all the transactions containing

it in the training set are dropped. The characteristics of the datasets are

shown in Table 6.1.

During the training, the transactions in the training set together with the

corresponding item features are imported into the model in batches to learn

embeddings of each item and each feature value. In the testing process, the

learned embeddings are used to predict the target item given the (n−1) ones.

1https://tianchi.aliyun.com/datalab/dataSet.htm?id=1
2http://stackoverflow.com/questions/25014904/download-link-for-ta-feng-grocery-

dataset
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Table 6.1: Statistics of experimental datasets

Statistics IJCAI-15 Tafang

#Transactions 144,936 19,538

#Items 27,863 5,263

#Features 3 1

Avg. Transaction Length 2.91 7.41

#Training Transactions 141,840 18,840

#Training Instances 412,679 141,768

#Testing Transactions 3,096 698

#Testing Instances 9,030 3,150

The real target item in the testing set is used as the ground truth. I calculate

accuracy measures Recall@K (Yuan et al. 2013) and MRR (Chou et al. 2016)

by comparing the predicted results and the ground truth. I also calculate

the recommendation novelty measures: global novelty and local novelty by

comparing the recommendation list and the whole item population and the

given context item set respectively. Finally, the performance of my proposed

method is evaluated by comparing it and other related ones in terms of

recommendation accuracy and novelty.

Evaluated Methods

In the experiments, I compare my proposed NTEM with the three commonly

used baselines: FPMC, PRME and GRU4Rec. All of them have been intro-

duced in Section 2.4 in Chapter 2.

6.3.2 Performance Evaluation

Except for the traditional recommendation accuracy, I also evaluate the rec-

ommendation novelty to test the capability of the proposed method to rec-

ommend novel items.
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Table 6.2: Accuracy comparisons between different recommendation models

IJCAI-15 Tafang

Scenario Model REC@10 REC@50 MRR REC@10 REC@50 MRR

drop

0

FPMC 0.0016 0.0025 0.0031 0.0189 0.0216 0.0089

PRME 0.0555 0.0612 0.0405 0.0212 0.0305 0.0102

GRU4Rec 0.1182 0.1566 0.0965 0.0428 0.0887 0.0221

NTEM 0.2026 0.3224 0.1125 0.0689 0.1716 0.0231

drop

40%

FPMC 0.0012 0.0021 0.0026 0.0008 0.0010 0.0058

PRME 0.0327 0.0411 0.0312 0.0102 0.0205 0.0095

GRU4Rec 0.1108 0.1356 0.0868 0.0330 0.0659 0.0196

NTEM 0.1928 0.2794 0.1117 0.0575 0.1049 0.0377

drop

80%

FPMC 0.0009 0.0017 0.0021 0.0005 0.0008 0.0020

PRME 0.0212 0.0287 0.0215 0.0084 0.0125 0.0056

GRU4Rec 0.0493 0.0611 0.0398 0.0110 0.0244 0.0054

NTEM 0.1098 0.1450 0.0686 0.0254 0.0494 0.0072

drop

95%

FPMC 0.0003 0.0008 0.0012 0.0002 0.0004 0.0008

PRME 0.0089 0.0113 0.0105 0.0071 0.0096 0.0043

GRU4Rec 0.0233 0.0337 0.0173 0.0101 0.0172 0.0042

NTEM 0.0318 0.0639 0.0173 0.0215 0.0305 0.0068

Accuracy Evaluation

I use the widely used accuracy metrics (i.e., REC@K andMRR) for transaction-

based recommendation defined in Section 2.3.1 to evaluate all the comparison

approaches.The result of each approach is given in Table 6.2.

Table 6.2 demonstrates the results of REC@10, REC@50 and MRR over

the testing sets of different cold-start levels. The number of factor is set to

10 for training FPMC as the best performance is achieved in such setting.

The performance of FPMC on both data sets is quite poor, even in the warm

start situation (e.g., REC@50=0.0025 when drop rate=0 on IJCAI-15). The

main reason is that both data sets are extremely sparse and thus a very large

but quite sparse matrix is constructed to train the MF model for each data

set. For instance, in IJCAI-15 data set, each user only has an average of

3.6 transactions and each transaction only contains an average of 2.91 items
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of over 27,000 ones. This leads to that each row of the constructed matrix

contains less than two items (cf. the avg. transaction length in Table 6.1,

note that one out of the items need to be taken out as the output) and all

other entries are empty. By calculation, I found the non-empty entries in

the constructed matrix of IJCAI-15 account for less than 0.01%. I set the

embedding dimensions to 60 as suggested in (Feng et al. 2015) when training

PRME model. The performance of PRME is a little better than FPMC, but

it’s still poor especially in those cold start cases. This is because PRME is a

fist-order MC model, which learns the transition probability over successive

item instead of the whole context. Namely, this model only predict the target

item based on its previous one while ignore all those bought before in the

same transaction, which lost some information. Furthermore, in the real-

word, the choice of items does not follow a rigid sequence assumed by such

kind of models. Benefiting from the deep structure, GRU4Rec achieves much

better performance compared with FPMC and PRME models. Especially,

when I drop no more than 40% transactions, the REC@10 is above 10% on

IJCAI-15, which can lead to a relative accurate recommendation in real-world

business.

The batch size is empirically set to 200 and number of hidden units for the

item and feature value embeddings are set to 50 and 20 respectively. I run

60 epochs to train my NTEM model. It achieves much better performance

than GRU4Rec, where the REC@10 and REC@50 exceed 20% and 30% re-

spectively when drop nothing on IJCAI-15. In the extremely cold start case

(drop 95% ), it also achieves obvious better performance than other methods

on both data sets. The REC@10 and REC@50 of my model exceed 3% and

6% respectively, compared to around 2% and 3% of GRU4Rec on IJCAI-

15. The higher MRR of my model also shows that we can accurately put

the customers’ desired items in the front of the recommendation list. The

reason is multifaceted. First of all, I use a complete context to predict one

target item, and I do not assume a rigid order between the items within one

transaction. This makes the input more informative and consistent with the
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reality compared with those models which only utilize part of the context

and assume a rigid order between items. Second, more information is used

by my model by incarnating the item features into it. More importantly, the

coupling relations between item features and its transactions are learned and

encoded into item and its feature embeddings in the back-forward propaga-

tion training mechanism. Thanks to the features and the coupling relations,

additional information is provided to help with the item prediction and rec-

ommendation, especially for those novel items which lack of sufficient trans-

action information. What’s more important, my model has a very concise

structure which is easy to train. This shallow structure is efficient enough

to retrain and recompute the score for ranking of all candidate items in an

incremental dataset for online recommendations. However, GRU4Rec is a

deep RNN consisting of GRU layers, which makes it more time consuming

when new transaction records are added into the dataset.

Novelty Evaluation

Except for accuracy, novelty is another important quality which should be

considered in real-world recommendation scenarios (Vargas & Castells 2011).

Recall that in this paper I also try to recommend those infrequent or unpop-

ular items, namely novel items, so the novelty is particularly important to

measure the recommendation quality of my model. Specifically, I evaluate the

recommendation novelty from both global perspective and local perspective

by using different metrics.

Accordingly, a global novelty measure M2ITF and a local novelty mea-

sure MCAN are defined in Section 2.3.2 to measure the recommendation

performance from novelty perspective.

Figure 6.2 and Figure 6.3 show the results of global novelty and local

novelty comparisons of top-10 recommendations over testing sets using the

aforementioned measures M2ITF@10 and MCAN@10 respectively on both

data sets. Overally, my proposed NTEM achieves both higher global novelty

and local novelty compared to other approaches. FPMC is not trained well
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Figure 6.2: M2ITF comparisons on top-10 items, NTEM achieves higher

global novelty than other approaches

on such sparse dataset and can not work well, so its recommendations are

not precise and have a lot of randomness. Recall the fact that most of the

candidate items in the dataset are frequent and not novel. Accordingly, we

get lowM2ITF andMCAN on FPMC. PRME is a first-order Markov Chain

model in which a sequential hypothesis is forced between the items within a

transaction and it predicts the target item by only utilizing the one before it

in the transaction. This is not always the case in the real world and it leads

to information loss by ignoring other items in the transaction, so PRME also

gets low novelties here. GRU units in GRU4Rec can accumulate the effect

of all the sequential items in a transaction, it makes use of all other items

in the transaction to predict the target one. Taking the advantage of the

deep structure, it achieves relative high novelties. As a result, GRU4Rec is

a relative good TBRS to make novel recommendations.

My proposed NTEM do not have the sparse issue as FPMC due to its

totally different work mechanism from matrix factorization used in FPMC,

so it works well even on a sparse data set as shown in my experiment. Fur-

thermore, NTEM does not assume a sequence between the items within a

transaction, which is closer to the actual situation. More importantly, we

make full use of all the other items in a transaction to predict the target
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Figure 6.3: MCAN comparisons on top-10 items, NTEM achieves higher

local novelty than other approaches

one, which makes the prediction more solid by utilizing richer information.

For the cold start issue, we incorporate the item features into the model and

take the advantage of the information flow on feature values for prediction

when the available transaction information is limited. So NTEM is more

easily to provide novel recommendations and to achieve higher global and

local novelties.

In practice, both the global and local novelties are somehow related to the

recommendation accuracy here, specifically, some kind of positive relations

exist between them. In the cold start scenarios, as all the target items are

infrequent or novel, higher recommendation accuracy means more chance to

get the target items into the recommendation list. Whereas more target

items included in the recommendation list lead to higher novelty.

6.4 Discussions

Currently, I have to admit a weakness of my work on dealing with the purely

cold items though it can get good results in the extremely high drop rate (i.e.

95%) case. I try to analyze the reasons and provide some suggestions in this

section. On one hand, the model parameters are learned on training set, so
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they tend to reveal the existing patterns in training set naturally. However,

the purely cold items never appear in the training set, nothing is learned

for them when training. On the other hand, for those purely cold items,

only their features are used for predictions. This requires their feature values

have occurred frequently in the training set and thus good embeddings can be

learned. In addition, the item features also affect the prediction of new items

greatly. In general, high-dimensional features have stronger capabilities to

deliver information than low-dimensional ones. Unfortunately, the shopping-

basket datasets in transaction domain usually have diverse feature values and

low dimensions. For instance, the IJCAI-15 dataset only has three features:

category, brand and seller. The average frequency of feature values in brand

and seller is below five, which is quite infrequent. This leads to the feature

values of new items in testing set occur too few times or even never occur,

which leads to learning poor embeddings of them and thus poor information

delivering capacity. Some potential solutions to improving my model for

dealing with purely cold items may be: (1) finding more suitable datasets

with high-dimensional features and intensive feature values, like audio data,

image data or text data; (2) only using those features having already occurred

in training set.

6.5 Summary

Perceiving the next choice in a dynamic context especially for onling rec-

ommendation circumstance is demanding but challenging. In this chapter,

I propose NTEM to build a more precise and efficient TBRS, it also shows

great potential to improve the recommendation novelty. With the integration

of both high level transaction information and low level item feature infor-

mation, more comprehensive two level relations between items are captured

for session-based recommendations. Particularly, such integration structure

benefits greatly the cold start issue in session-based RSs. The empirical

evaluation on real-world e-commerce datasets shows the comprehensive su-
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periority of my methods over other state-of-the-art ones. In the future, I

will extend my model to other domains, like relational learning on social

networks.
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CHAPTER 7. AN INTER-SESSION DEPENDENCY
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7.1 Introduction

In this chapter, I go up to the session level and focus on some critical chal-

lenges on this level in session-based recommender systems: inter-session de-

pendency, session heterogeneity and irrelevant sessions as shown in Figure

1.1 in Chapter 1. These challenges are unified to the inter-session depen-

dency modeling issue which is the fourth challenge I addressed in this thesis

as shown in the thesis structure Figure 1.2 in the first chapter. Similar to

item heterogeneity in Chapter 5, session heterogeneity means that out of

all recent sessions taken into account, different ones are actually relevant to

the current session in different degrees, some are more relevant and others

may not or even irrelevant. To keep it consistent with previous chapters,

session-based recommender systems are specialized to transaction-based rec-

ommender systems in this chapter for the same reason.

7.1.1 Target Problem and Motivation

Given a transactional context, which is a set of recent transactions together

with several existing items in the current transaction, a transaction-based

recommender system (TBRS) tries to predict the next item a user is likely

to choose. It is usually formalized as a transaction-based next-item recom-

mendation problem (Wang, Hu & Cao 2017). The set of recent transac-

tions is called inter-transaction context while the already-chosen items form

the intra-transaction context (Yap, Tan & Pang 2007). Generally speak-

ing, the main challenge of next-item recommendations is to comprehensively

capture the complex dependency embedded in the transaction data. Such

dependency can be categorized into intra-transaction dependency between

the intra-transaction context and the target items and inter-transaction de-

pendency between the inter-transaction context and the current transaction

(Chiueh & Bajpai 2008).

In the transactional data example shown in Figure 7.1, a user has two re-

cent transactions t1 and t2, and the current transaction t3. I consider the item
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Figure 7.1: An example of user transactions. Thicker lines and darker cir-

cles indicate stronger dependencies and items more relevant to milk, while

cIa(cIe) represents the intra (inter)-transaction context.

milk from t3 as the target to recommend and all other prior transaction infor-

mation as the corresponding context. Existing transaction-based next-item

recommenders may suggest salad by considering only the inter-transaction

items apple and orange in t3, which may not be accurate as salad was just

bought in t2. Moreover, from the intra-transaction perspective, the choice

of milk may depend much more on bread than on apple or orange. In such

a case, a TBRS should be able to pay more attention to bread when mod-

elling intra-transaction dependency. From the inter-transaction perspective,

milk may also be influenced by cake and egg bought in t1 but less related

to t2. This indicates that a good TBRS should not only take t1 and t2 into

account but also concentrate much more on t1. This example shows the

importance of inter-transaction dependency and the significance of discrim-

inating the contribution scales of different items and transactions according

to their relevance to the next chosen item. Various approaches have been

proposed to model the transaction dependencies for next-item recommen-

dations. Pattern-based RSs predict the next item by using mined frequent

patterns (Yap et al. 2012). Although easy to implement, the ‘support’ con-
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straint filters out many infrequent but interesting items and thus leads to

information loss. Rule- and pattern-based RSs are well-studied recommen-

dation approaches, that predict the next item by using mined frequent pat-

terns (Yap et al. 2012): specifically, (Bendakir & Aı̈meur 2006) mined rules

associating courses and students for course recommendations. To capture the

transition between a sequence of songs, (Hariri, Mobasher & Burke 2012) dis-

covered sequential patterns for next-song recommendations. Although simple

and effective, these methods often overlook infrequent items (Wang, Hu &

Cao 2017). More importantly, they capture only the co-occurrence relation-

ships within transactions while ignoring the available inter-transaction de-

pendency. Markov chain (MC) models (Rendle et al. 2010) offer another way

to model inter-item transitions within transactions. Personalized Markov

Embedding (PME) generates the embeddings of users and items in a Eu-

clidean space for next-song recommendations (Wu et al. 2013). Recently,

to learn users personalized sequential check-in information, a personalized

ranking metric embedding method (PRME) was proposed for next POI rec-

ommendations (Feng et al. 2015). Both PME and PRME are first-order MC

models, where the higher-order dependencies are ignored and where the as-

sumed rigidly ordered data may not always be available. More importantly,

they are limited to the intra-transaction relations only, neglecting the inter-

transaction dependency, which may lead to unreliable recommendations. To

capture higher order dependency in sequential data, recurrent neural net-

works (RNN) (Hidasi et al. 2015) have been successfully applied in TBRSs.

A gated recurrent unit (GRU)-based RNN was proposed to capture long-term

dependency within transactions (Hidasi et al. 2015), but the high computa-

tional cost caused by the complex structure prevents its application to large

data. Compared to deep architectures, shallow networks are usually more ef-

ficient in dealing with such issues, especially on large datasets. Particularly,

the Word2Vec model has achieved great success in learning the probability

distribution over a sequence of words (Goth 2016). However, both networks

treat the nearest items as the most important, and this treatment may de-
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grade the influence of relevant items due to their rigid order assumption.

More importantly, they are still limited to the intra-transaction dependency

modelling and ignore the inter-transaction one. Moreover, both MC and

RNN assume a rigid order of items and thus the next choice is assumed to

depend more on the recent items. Therefore, those truly relevant contextual

items may not be attended to. Such attention is quite important, though,

for intra-transaction dependency modelling, especially for long transactions

often containing irrelevant items. More importantly, all these approaches

capture only intra-transaction dependency, ignoring inter-transaction depen-

dency, which may impact the next item (Chiueh & Bajpai 2008), especially

for periodic transactions. However, not all recent transactions relate to the

next choice, priority should be given to related transactions.

7.1.2 My Design and Main Contributions

This paper addresses the above issues by proposing a novel hierarchical at-

tentive transaction embedding (HATE) model. The HATE first builds an

attentive embedding for each transaction by emphasizing the relevant items

in it and then builds attentive inter-transaction context embedding by high-

lighting those recent transactions more related to the current one and the next

choice. Simultaneously, an attentive intra-transaction context embedding is

built on the items chosen in the current transaction. Finally, a hybrid con-

text representation is achieved by combining both inter- and intra-transaction

context embeddings for next-item predictions.

Considering the large number of items in real-world datasets, it is prac-

tical to incorporate attention (Vaswani et al. 2017) into a shallow network

(Goth 2016) in building a concise but powerful structure for attentive con-

text representation learning. As a result, the proposed model is capable of

capturing both intra- and inter-transaction dependency attentively and the

resultant context representation is more informative to predict the next item.

My validation on two real-world transaction datasets verifies the necessity of

combining the inter-transaction dependency with the attention mechanism.
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Accordingly, major contributions of this model include the following:

• I notice and highlight the significant influence of inter-transaction de-

pendency on the next-item recommendation tasks. Subsequently, a

framework is proposed to incorporate inter-session dependency into

such typical session-based recommender sytsems.

• A hierarchical attentive transaction embedding model is proposed to

learn the context representation for transaction-based item recommen-

dations by attentively capturing both intra- and inter-transaction de-

pendencies.

• A shallow and wide network is designed for efficiently learning context

representations over a large number of items and transactions.

In summary, my model relaxes the rigid order assumption over items

within a transaction, which broadens its applications. Empirical evalua-

tion shows that (1) HATE outperforms the state-of-art TBRSs on real-world

datasets by around 20%; and (2) the incorporation of an inter-transaction

context or attention mechanism achieves at least a 10% improvement in ac-

curacy.

7.2 Problem Statement

Given a transaction dataset, let T = {t1, t2...t|T |} be the set of all trans-

actions, such that each transaction t = {i1, i2...i|t|} consists of a subset of

items and is associated with a given user and a specified timestamp, where

|T | denotes the number of transactions in T . All the items occurring in all

transactions constitute the whole item set I = {i1, i2...i|I|}. Note that the

items in a transaction t may not have a rigid order.
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Figure 7.2: The HATE architecture: first learns item embeddings, then in-

tegrates them into intra-transaction context embedding or transaction em-

beddings on which inter-transaction context embedding are built, and finally

feeds both intra- and inter-transaction embeddings into the output layer for

target item prediction. AIa(AIe) represents the intra- and inte)-transaction

attention model.

Given a target item is ∈ tj(j �= 1), all other items in tj from the intra-

transaction context cIa = tj\is. The recent transactions of the same that

happened before tj form the inter-transaction context cIe = {t1, t2...tj−1}. cIa
and cIe together constitute the transactional context c = {cIa, cIe}. Given

the context c, HATE is trained as a probabilistic classifier that learns to

predict a conditional probability distribution P (is|c). Therefore, TBRS aims

to rank all candidate items in terms of their conditional probability over the

given context.
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7.3 Modelling and Learning

I first demonstrate the architecture of HATE and then discuss the details

of model training, followed by computing predictions and recommendations

after training the model.

7.3.1 The Hierarchical Attentive Transaction Embded-

ding Model

As shown in Figure 7.2, the proposed HATEmodel consists of two main parts:

the transactional context embedding part at the bottom and the prediction

part (output layer) at the top. The embedding part contains two modules:

inter-transaction context embedding and intra-transaction context embed-

ding. Specifically, the first part is a hierarchical structure which consists of

an input layer, the item embedding, intra-transaction attention, transaction

embedding, inter-transaction attention and inter-context embedding. The

second part is built from the input layer to the intra-transaction context

embedding layer. Next, I explain details of the working mechanism of the

model from input to output.

Inter-transaction Context Embedding

I present item embedding, then transaction embedding, and lastly attentive

inter-transaction context embedding.

Item Embedding For a given contextual item il from a transaction t, I

create an embedding mechanism to map its ID number to an informative and

low-dimensional vector representation in the item embedding layer, where a

K-dimensional real-valued vector hl ∈ R
K is used to represent item il. The

input weight matrix W1 ∈ R
K×|I| is used to fully connect the input-layer

and item embedding-layer. Note that actually the lth column of W1 encodes

item il to a real-valued embedding hl as below. Several different mapping

approaches including logistic function have been tried to map item ID to its

embedding and the following way is found to achieve the best performance
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in my case.

hl = W1
:,l (7.1)

Attentive Transaction Embedding When the embeddings of all the

items in transaction t are ready, we can obtain the embedding et ∈ R
K of

contextual transaction t by integrating the embeddings of all items in t using

the attention mechanism. Specifically, the attentive transaction embedding

is built as a weighted sum of hl:

et =
∑
il∈t

αslhl, s.t.
∑
il∈t

αsl = 1 (7.2)

where αsl is the integration weight of contextual item il w.r.t the target item

is, indicating the contribution scale of il to the choice of is. In my model,

to better capture the different contribution scales of contextual items, I de-

velop an attention layer to learn the integration weights automatically and

effectively. Compared to assigning the weights manually under certain as-

sumptions, e.g., order assumption, or directly learning the weights without

the attention mechanism, my method not only works more flexibly without

assumptions but also emphasizes those important items and reduces the inter-

ference from irrelevant ones. Next, I demonstrate how the intra-transaction

attention model achieves this goal.

Intra-Transaction Attention As with most attention models, I use

a softmax layer to learn the weights of different contextual items w.r.t to

the target item. In this way, items that are more relevant to the target

item are given larger weights, and vice versa. The input of softmax is the

transformation of each item’s embedding:

αsl =
exp(σ(hl))∑

iv∈t exp(σ(hv))
(7.3)

σ(hl) = wαhT
l (7.4)

wherewα is an item-level context vector shared by all contextual items, which

can be seen as a high level representation of a fixed query ‘which item is rel-

evant to the target item?’ over all the contextual items (Kumar et al. 2016).
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The vector is randomly initialized and jointly learned during the training

stage. As wα serves as a weight vector connecting the item embedding layer

to the intra-transaction attention model, I denote it as an intra-transaction

attention weight, to be consistent with input and output weights. Essentially,

the importance of each item il is achieved by first calculating the similarity

between its embedding hl and the item level context vector wα and then nor-

malizing it into an importance weight αsl through a softmax function (Yang

et al. 2016).

Attentive Inter-transaction Context Embedding Inter-transaction

context embedding is built on top of the embedings of transactions included

in the inter-transaction context. Specifically, the inter-transaction context

embedding is computed as a weighted sum of transaction embeddings:

eIe =
∑

tx∈cIe
βsxetx , s.t.

∑
tx∈cIe

βsx = 1 (7.5)

where βsx is the integration weight of transaction tx from the inter-transaction

context cIe for the target item is. It indicates the relevance degree of tx

to the current transaction, i.e., intra-transaction context cIa, by modelling

the interaction between tx and cIa in the inter-transaction attention model

AIe. More relevant to the current transaction, tx will be more influential

in the choice of is, therefore βsx essentially implies the contribution scale of

transaction tx to the choice of the target item is.

Inter-Transaction Attention Differing from the intra-transaction at-

tention model, except for the transactions from inter-transaction context, I

take the intra-transaction context as an additional input to model the in-

teraction between transactions as indicated in Figure 7.2. I first use a ma-

trix to model the interactions between each inter-transaction and the intra-

transaction context, and I then import the product of inter-transaction em-

bedding, interaction matrix and intra-transaction context embedding into

the attention model.

βsx =
exp(�(etx))∑

tf∈cIe exp(�(etf ))
(7.6)
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�(etx) = etxW
βeTIa (7.7)

where Wβ is a transaction-level interaction matrix shared by all the con-

textual transactions. It can be regarded as a high level representation of a

query ‘Which transaction in the inter-transaction context is relevant to the

current one?’. This matrix is randomly initialized and jointly learned during

the training process. I refer it to as the inter-transaction attention weight.

eIa is the embedding of intra-transaction context and its calculation will be

given shortly.

Intra-Transaction Context Embedding

Intra-transaction context embedding is similar to the aforementioned atten-

tive transaction embedding.

Given an intra-transaction context cIa consisting of multiple chosen items

in the current transaction, I first get the embedding of each item with the

aforementioned item embedding. I then integrate these embeddings atten-

tively to build the intra-transaction context embedding.

eIa =
∑

iz∈cIa
αszhz, s.t.

∑
iz∈cIa

αsz = 1 (7.8)

where hz is the embedding of an intra-transaction context item iz and is

calculated using Equation (7.1) while αsz is the integration weight calculated

using Equations (7.3) and (7.4).

Target Item Prediction

Once the embeddings of both intra- and inter-transaction contexts are ready,

I feed them into the output layer for the target item prediction, as shown in

the upper part of Figure 7.2. Here the output weight matrixW2 ∈ R
|I|×K and

W3 ∈ R
|I|×K are used to fully connect the intra- and inter-transaction context

embeddings to the output layer. Specifically, given the context embeddings

and the weights, a score indicating the possibility of the choice of a target
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item is under the context c is computed using:

Sis(c) = W2
s,:eIe +W3

s,:eIa (7.9)

where W2
s,: denotes the sth row of W2 and Sis(c) quantifies the relevance

of the target item is w.r.t the given context c. Therefore, the conditional

probability distribution PΘ(is|c) is defined with the commonly used softmax

function:

PΘ(is|c) = exp(Sis(c))

Z(c)
(7.10)

where Z(c) =
∑

i∈I exp(Si(c)) is the normalization constant and Θ = {W1,

wα,Wβ,W2,W3} includes the model parameters. Therefore, a probabilistic

classifier modeled by the proposed HATE model is obtained to predict the

target item and accordingly recommend the next item.

7.3.2 Parameter Learning and Item Prediction

I now discuss how to learn the model parameters and predict the next item

using the trained model in this section.

A probabilistic classifier is built over the transaction data d = 〈c, ic〉,
where c is the input context and ic is the observed output conditional on c.

Given a training dataset D = {〈c, ic〉}, the joint probability distribution is

obtained by:

PΘ(D) ∝
∏
d∈D

PΘ(ic|c) (7.11)

Therefore, the model parameters Θ can be learned by maximizing the con-

ditional log-likelihood (cf. Equation (7.10)):

LΘ =
∑
d∈D

logPΘ(ic|c) (7.12)

Note that the evaluation of LΘ and its corresponding gradient computa-

tion involve the normalization term Z(c), the computation of which is time

consuming as it sums exp(Sic(c)) over all the items for each training in-

stance. The commonly used Noise contrastive estimation (NCE) technique

(Gutmann & Hyvärinen 2012) is adopted here to enhance the training effi-

ciency. Due to the space limitation, I do not provide the details of NCE.
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Once the model parameters Θ have been learned, HATE is ready to com-

pute predictions and thus generate next-item recommendations. Specifically,

given an arbitrary transactional context which contains both intra- and inter-

transaction contexts indicating prior transaction data of a user, the probabil-

ities of choosing next candidate items are calculated according to Equation

(7.10), and a ranking reflecting the priority of the candidate items is achieved.

7.4 Experiments and Evaluation

I demonstrate the empirical study of my proposed HATE model in this sec-

tion. To be specific, I first setup the experiments by preparing the experimen-

tal datasets and introducing the comparison methods and evaluation metrics,

and then evaluate the performance in terms of recommendation accuracy and

novelty.

7.4.1 Experimental Setup

Dataset Preparation

I evaluate my proposed method on two real-world grocery store transac-

tion datasets: a public dataset Dunnhumby1 and a proprietary ANS dataset

(Luo, Li, Koprinska, Berkovsky & Chen 2017). Dunnhumby includes trans-

action records of around 2,500 households shopping frequently at multiple

stores of the same retailer over two years. ANS contains transaction records

of about 1,000 customers, collected by an Australian national supermarket

chain within a period of one year.

First, a sequence of transactions is extracted for every user and then a

sliding window is used to cut each users transactions sequence into multiple

triple-transaction units. For each unit, I consider the first two transactions as

the inter-transaction context cIe and the last one as the current transaction.

My selection is data-drive and is explained by the most frequently observed

1http://www.dunnhumby.com/sourcefiles
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Table 7.1: Statistics of experimental datasets

Statistics Dunnhumby ANS

#Transactions 65,001 99,987

#Items 10,292 11,996

Avg. Transaction Length 12.15 10.81

#Training Sequence of Trans. 149,606 258,561

#Training Instances 402,739 703,062

#Test Sequence of Trans. 7,874 13,608

#Test Instances 21,205 36,933

transaction pattern of three transactions per week in the shopping cycle.

Each time one item from the current transaction is picked up as the target

item is and all others are considered as the intra-transaction context cIa.

I do this because the order information over items within transactions is

not provided and thus I relax the rigid order assumption. As a result, the

training and test instances are built in the format of d = 〈c, ic〉(c = {cIe, cIa})
as illustrated in the previous section. Finally, I randomly select 20% of

transactions that occurred in the last 30 days as the test set and leave the

remainder for training. The characteristics of the datasets are shown in

Table 7.1.

Comparison Methods and Metrics

In addition to the four baseline methods, i.e., PBRS, FPMC, PRME and

GRU4Rec, introduced in Section 2.4, I add other three methods (SWIWO,

ATE and HTE ) into the baselines for the comparison in this experiment.

• SWIWO : A shallow wide-in-wide-out network embedding model for

session-based RSs (Hu, Cao, Wang, Xu, Cao & Gu 2017).

• ATE : A model similar to HATE that only utilizes the intra-transaction

context. This assesses the contribution of the inter-transaction context.
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Table 7.2: Accuracy comparisons on Dunnhumby

Model REC@10 REC@50 MRR

PBRS 0.0817 0.0901 0.0421

FPMC 0.0333 0.0711 0.0317

PRME 0.0757 0.0912 0.0613

GRU4Rec 0.2018 0.3002 0.1216

SWOWI 0.2469 0.3379 0.1139

ATE 0.2752 0.3754 0.1250

HTE 0.2752 0.4000 0.1218

HATE 0.3012 0.4513 0.1421

Improve (%) 9.45 12.82 13.68

• HTE : A model similar to HATE that replaces the inter-transaction

attention module with a fully-connected layer. This assesses the effect

of the inter-transaction attention module.

7.4.2 Performance Evaluation

I evaluate the recommendation performance from both accuracy and novelty

perspectives.

Accuracy Evaluation

Two common accuracy metricsREC@K andMRR for ranking issues defined

in Section 2.3.1 are used in the accuracy evaluations.

Table 7.2 and Table 7.3 show the obtained REC@10, REC@50 and MRR

on two real-world transaction datasets. I empirically set the minimum sup-

port to 0.02 on both datasets in PBRS. The information loss caused by

filtering out infrequent items leads to poor performance. To achieve the

best performance, I set the factor number to 10 for FPMC which performs

not good on both datasets, mainly caused by the data sparsity. Due to the
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Table 7.3: Accuracy comparisons on ANS

Model REC@10 REC@50 MRR

PBRS 0.0572 0.0765 0.0410

FPMC 0.0310 0.0555 0.0292

PRME 0.0611 0.0800 0.0522

GRU4Rec 0.1405 0.2951 0.0755

SWOWI 0.1400 0.3015 0.0805

ATE 0.1542 0.2254 0.0805

HTE 0.1756 0.2755 0.0874

HATE 0.1756 0.3515 0.0993

Improve (%) 0 27.59 13.62

large numbers of transactions and items but limited interactions between

them, quite large but very sparse item transition matrices are constructed

to train this MF model. For instance, the non-empty entries of the transi-

tion matrix built on Dunnhumby only account for 0.12%. Following (Feng

et al. 2015), the embedding dimension is set to 60 for PRME. Although bet-

ter than FPMC, it still does not perform good enough. As a first-order MC

model, PRME is easy to lose information by learning the transition prob-

ability over the successive item instead of the whole context. In addition,

the rigid order assumption set by these models may not always match the

real world purchasing events. GRU4Rec achieves much better performance

compared to the above three methods by benefiting from its deep structure.

Building a flexible embedding on the whole context, SWIWO is able to cap-

ture the complex intra-transaction dependency for better recommendations.

A common drawback of all these models is that they are all limited to the

intra-transaction dependency.

For my HATE model, the embedding dimension and the batch size are

empirically set to 50 and 30 respectively on both datasets. Adagrad (Duchi,

Hazan & Singer 2011) with an initial learning rate of 0.5 is applied to train

the model. By attentively incorporating the inter-transaction dependency,
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HATE outperforms the best baseline SWOWI by approximately 20% in

terms of recall and MRR on both datasets, which validates the advantage

of my model. In particular, the enhanced 10% performance of HATE com-

pared to ATE and HTE demonstrates the significance of incorporating inter-

transaction context and attention mechanism respectively. Different from the

baselines, which are based on the intra-transaction dependency only, HATE

takes both intra- and inter-transaction dependency into account. Particu-

larly, the hierarchical attention mechanism helps to emphasize those truly

relevant items and transactions when modeling dependency. These effec-

tively enhance the prior contextual information and lead to more reliable

recommendations. My model has a shallow and concise structure for easy

training and prediction, which makes it more practical compared to those

deep and complex models like GRU4Rec.

The Effect of Number of Incorporated Inter Transactions

Generally speaking, a long inter-transaction context which contains more

recent transactions is more likely to include transactions irrelevant to the

current transaction and the next-item choice. As a result, it is harder to

identify and emphasize those truly relevant transactions in a long context.

To show the advantage of attention mechanism in handling long contexts, I

test the effect of the number of incorporated inter-transactions on a subset

of Dunnhumby by selecting users with at least 6 transactions. Each time a

different number of recent transactions is considered as the inter-transaction

context. Figure 7.3 shows that HATE gains larger margins compared to

HTE when incorporating more transactions, which demonstrates its ability

to emphasize the relevant transactions in longer inter-transaction contexts.

I only compare here HATE and HTE because only these two approaches can

incorporate inter-transaction context.
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Figure 7.3: HATE gains larger margins when incorporating more inter-

transactions.
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Figure 7.4: HATE achieves higher novelty than compared methods.

Novelty Evaluation

I use the novelty measure MCAN defined in Section 2.3.2 to quantify the

difference between the intra-transaction context and the recommendation

list. Larger MCAN indicates higher novelty.

Figure 7.4 shows the novelty comparison results on the two experimental

datasets. Due to the dropping of infrequent items, PBRS is hard to match

the whole intra-transaction context exactly, which results in low novelty. The

parameters of FPMC are not learned well on such sparse datasets and thus

cannot achieve high novelty. Ignoring higher order dependency, PRME is
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easy to recommend duplicate items and thus leads to low novelty. Due to

the accumulation of effect of all sequential items from the current transac-

tion, GRU4Rec makes relatively novel recommendations. By mapping the

whole intra-transaction context into a latent representation, SWIWO is able

to capture the complex dependency within a transaction in a more flexible

way, which makes it easier to achieve novel recommendations. In compari-

son, my model not only attentively captures the intra-transaction dependency

but also incorporates the inter-transaction dependency attentively. Conse-

quently, it is easier for my model to generate novel and relevant recommen-

dations. In addition, the incorporation of inter-transaction contexts or the

attention mechanism contribute clearly to the improvement of novelty by

comparing HATE and ATE or HTE.

7.5 Summary

Effectively recommending the next item under a transactional context poses

a significant challenge to session-based recommender systems, especially un-

der the transaction context. Accordingly, this work proposes a hierarchical

attentive transaction embedding model HATE - a shallow and wide neural

network. By incorporating both current transaction and recent transactions,

HATE is able to capture both intra- and inter-transaction dependencies to

build a more informative context representation. In addition, the incorpo-

ration of hierarchical attention models allows us to emphasize items and

transactions particularly relevant to the next-item choice when building the

attentive representation. An informative and attentive representation leads

to better recommendations. Empirical validation on two real-world trans-

action datasets shows the superiority of HATE over several state-of-the-art

approaches. In future, I will explore the applications of HATE to other

session-based recommendation contexts like next-song recommendations and

other problems e.g., document analysis (Marinai, Gori & Soda 2005) and

multimedia recommendations (Chen, Zhang, He, Nie, Liu & Chua 2017).
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8.1 Conclusions

In conclusion, this thesis offers a comprehensive and systematic literature re-

view on session-based recommender systems in Chapter 3 and then it presents

several techniques to bridge the gaps in session-based recommender systems

in the subsequent chapters. To be specific, I address several different chal-

lenges in session-based recommender systems – the implicit relation mod-

elling in rule-based recommendations, the item heterogeneity issue, the cold-

start item issue, and the inter-session relation modelling issue in next-item

recommendations by systematically modeling the dependency of different lev-

els in transaction data (i.e., item-item level, feature-item level and session

[transaction]-item level). Each challenge is addressed by one chapter from

Chapter 4 to Chapter 7, which will be concluded one by one in the following

part.

In Chapter 3, I give a systematic survey on session-based recommender

systems to show the existing related works, recent progress and gaps in this

particular area. I motivate the necessity of session-based recommender sys-

tems by pointing out the gaps in other types of recommender systems, such

as collaborative filtering, and by conducting comprehensive comparisons be-

tween them and session-based ones. I then systematically formalize the

session-based recommendation problem and define some key relevant con-

cepts used in this thesis, followed by the summary of the development his-

tory of session-based recommender systems, comparisons between various

scenarios in session-based recommender systems and the categorization of

existing session-based recommender system techniques. More importantly,

I summarize the representative approaches in each category, which includes

rule/pattern-based approaches, sequential pattern-based approaches, Markov

chain model-based approaches, factorization-based approaches and neural

model-based approaches.

In Chapter 4, I focus on the most basic session-based recommender sys-

tems, namely rule-based recommender systems and I determine the draw-

backs of the existing rule-based approaches. That is they focus only on the
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explicit co-occurrence relations like associations or correlations while ignoring

the complex implicit relations between items, which can often result in unreli-

able recommendations. To bridge such gaps, I propose an implicit rule-based

recommender systems, which first infers implicit rules with more complex

implicit relations embedded through rule and pattern relation analysis and

then uses the inferred rules for recommendations. Accordingly, an implicit

rule inference framework combining with a corresponding implementation al-

gorithm, IRRMiner, is proposed. Empirical evaluations on IRRMiner shows

its advantage over other similar indirect rule mining algorithms. The ex-

perimental results of my built implicit rule-based recommender system on

real-world datasets demonstrate its effectiveness on improving the reliability

of recommendations.

In Chapter 5, I focus on the item heterogeneity in session-based recom-

mendations, particularly for next-item recommendations. Item heterogeneity

means different items in a transaction context may have different correlation

scales to the next items and thus contribute differently to the occurrence of

these items. Accordingly, an attention-based transaction embedding model

is proposed to build a more precise and informative embedding for the trans-

action context for item recommendations. Specifically, the attention mech-

anism is applied to learn the significance weights of different items in the

prior transaction context automatically. A shallow neural network model

called ATEM is built by incorporating an attention layer to first embed the

transaction context and then predict the next item. I conduct empirical eval-

uations on the recommendation results in terms of recommendation accuracy

and novelty. The comparisons with other state-of-the-art session-based rec-

ommender systems show the superiority of my model.

In Chapter 6, I focus on the cold start item issue in session-based rec-

ommendations, especially in the next-item recommendations. The cold start

issue is quite common and typical in recommender systems and has attracted

much attention in other types of recommender systems like collaborative fil-

tering, but is less studied in session-based recommender systems. Accord-
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ingly, I build a shallow neural network to first map items and their features

to latent feature space and then jointly model the feature interactions and

item dependencies. During the joint modelling, the interactions between item

features and item occurrence are learned, which particularly benefits the rec-

ommendations of those cold-start items with quite limited occurrence in the

data. Experimental studies on real-world datasets demonstrate the merit of

my proposed approaches over other representative ones.

In Chapter 7, I focus on a kind of high-level dependency modelling in

session-based recommender systems, which is ignored in most existing meth-

ods. Specifically, I figure out and emphasize the importance of inter-session

dependency in session-based recommendations, especially in next-item rec-

ommendations. To this end, I build a hierarchical attention-based embed-

ding model to jointly model the intra-session dependency and inter-session

dependency for next-item recommendations. With the attention mechanism

incorporated, the model is able to emphasize those significant items in one

session (transaction) and the significant sessions out of multiple contextual

sessions. Experiments on real-world transaction datasets demonstrate the

importance of inter-session dependency for next-item recommendations and

the superiority of my proposed methods over existing state-of-the-art session-

based recommender systems.

In summary, in this thesis, I have systematically explored the typical less-

studied issues like implicit relations, item heterogeneity, cold-start items, and

inter-session dependency in session-based recommender systems. I provide

my solutions and demonstrate their efficacy with empirical studies on real-

world transaction datasets. Each chapter (i.e., from Chapter 4 to Chapter 7)

of this thesis is supported by a research paper1 listed in list of publications.

Therefore, what I have done and propose in this thesis is of great significance

to the session-based recommendation research and applications in the area

of recommender systems.

1The papers of Chapter 4, 5 and 6 have been published, the paper of Chapter 7 is

under review.
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8.2 Future Work

Although recommender systems (RSs) have been well studied and broadly

applied, session-based recommender system is a relative emerging area in

RSs. According to my systematic explorations and observations in this area,

I have identified a collection of challenges that still face the recommender sys-

tem researchers; these challenges may represent the future research directions

of this community. I divide these challenges into six branches with respect

to the information source and scenario settings. Next, I demonstrate each

branch in each subsection in the following six subsections by first illustrating

its significance and then the specific issues that remain open.

8.2.1 Session-based Recommendations with Users’ Gen-

eral Preference

Significance. The key difference between session-based recommender sys-

tems and other conventional recommender systems like collaborative filter-

ing is that the former mainly captures the short-term sequential behaviour

patterns while the latter mainly learns the long-term general preference and

the taste of users. Obviously, even each of the two shows its own advantages

over the other, but must sacrifice the other’s advantage. In other words,

session-based recommeder systems usually ignore the users’ general prefer-

ences which can be well captured by collaborative-filtering. This may lead to

unreliable recommendations as users with different shopping preferences and

consumption habits may choose different items next even under the same

context (e.g., the same chosen items in hand). In this case, how to learn the

users’ general preference in transaction data and then incorporate it into the

session-based recommender system models is a critical yet challenging task.

Open issues. Here, I discuss two major issues with respect to the general

preference learning and its incorporation into session-based recommender

systems and I sketch the possibilities for future research.

- How to incorporate explicit user preference into session-based recom-
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mender systems? In this case, the users’ ratings on their purchased items

are available, usually forming a user-item rating matrix by accumulating all

users’ ratings on the items. An intuitive way is to first predict a users’ pref-

erence on all candidate items utilizing conventional approaches like matrix

factorization and then use the preference data as a constraint to tune the

candidate ranking and selection in session-based recommendations. For in-

stance, if some candidate items have similar probabilities to be chosen in the

subsequent action, according to the session context, those items with higher

preference to particular users can be put to the front of the according recom-

mendation list. Another way is to combine the above two factors together

when ranking the candidate items for the reocmmendation list. In (Zhao,

Wang, Ye, Gao, Yang, Zhao & Chen 2017), the authors proposed a GAN

framework to leverage the MF and RNN hybrid model for movie recommen-

dation, which jointly models long-term preferences and short-term behaviour

patterns.

- How to incorporate users’ experience into session-based recommeder sys-

tems without explicit user preference data? In the real-word cases, the ex-

plicit preference data may not be always available as customers may not rate

everything they bought. In this case, the shopping-basket based transaction

data is usually used as a kind of implicit feedback (He & McAuley 2016b, He

et al. 2016) to indicate users’ preference in some degree. Some existing works

(Anyosa, Vinagre & Jorge 2018, Peska & Vojtas 2017) have explored how to

learn users’ preference from these implicit feedback data in the collabora-

tive filtering framework. In practice, the implicit feedback data is much

more readily available in session-based recommendation scenarios like clicks

or views of items (Schnabel, Bennett, Dumais & Joachims 2018). Note that

in such case, the implicit preference data is actually the same to the session

data used in session-based RSs. Therefore how to learn the users’ implicit

preference from such data and simultaneously avoid the information dupli-

cation in session-based reocmcmender systems is a challenge without good

existing solutions.
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8.2.2 Session-based Recommendations Considering More

Contextual Factors

Significance. Recommendation contexts refer to the practical and specific

situations in which a user makes his or her next choice of products. Ac-

cordingly, contextual factors refer to different aspects from the context that

may affect a user’s choices, such as weather, season, location, time, or recent

popularity trends. Considering these context factors may make a substantial

difference in recommendation performance. In fact, a session-based recom-

mender system can be seen as a simplified context-aware system that takes

only the chosen items in hand as the context for the choice of next items

(Twardowski 2016). The significance of context in recommender systems

is also emphasized by other researchers like Gediminas etc. (Adomavicius

& Tuzhilin 2005, Adomavicius & Tuzhilin 2015), Shi etc. (Shi, Larson &

Hanjalic 2014) and Pagano etc.(Pagano, Cremonesi, Larson, Hidasi, Tikk,

Karatzoglou & Quadrana 2016).

Open issues. Although contextual information has been incorporated into

conventional recommender systems in some works or even context-aware RSs

has been proposed as a new type of RSs(Unger 2015, Adomavicius & Tuzhilin

2015), context is still rarely exploited in session-based recommender systems.

- How to incorporate more contextual factors into session-based recom-

mender systems? Quite limited works have explored on this topic. Con-

textual Recurrent Neural Networks (CRNNs) for Recommendations are pro-

posed to incorporate contextual factors, such as types of user-item interac-

tions, time gaps between different events in a session, and time of a day, into

an RNN-based session recommender system (Smirnova & Vasile 2017). In

(Lerche, Jannach & Ludewig 2016, Jannach & Ludewig 2017a), the recent

popularity trend, users’ recently viewed items, and items with discounts in

shopping mall are considered as contextual factors in session recommenda-

tions. However, these works are just a starting point; more explorations

are still needed on how to collect more contextual information and how to

develop models to more effectively incorporate such information into session-
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based recommendation tasks.

8.2.3 Session-Based Recommendations With Noisy and

Irrelevant Items

Significance. Currently, sequence modelling-based session-based recommender

systems like RNN-based ones and Markov chain-based ones always assume

that strong dependency exists over successive items. In other words, the cur-

rent item has the most influence on the next item. However, this may not be

the case in the real-world transaction data because a user may just randomly

pick up some items he likes into the cart. These randomly picked items may

be irrelevant to both the already-chosen items and the following items to be

chosen. If we ignore such cases, the recommendation results may be easily

misled by these noisy items, degrading the recommendation performance.

Open issues. How to make reliable recommendations with a noisy session?

Although some mechanisms, like attention (Wang et al. 2018) and pooling

mechanisms (Tang & Wang 2018), have been applied to session-based rec-

ommender systems to emphasize those really relevant and important items

for the next choice from the whole session, work in this area remains limited.

More efforts are required to develop a more robust and tolerant system for

session recommendation tasks for noisy sessions.

8.2.4 Session-based Recommendations for Multi-Step

Recommendations

Significance. Usually, a shopping event contains multiple steps rather than

just one step. For example, when a user buys a bread, he may buy milk

later, followed by cheese. Given the partial session consisting of bread, most

current session-based recommender systems only make recommendations one

step forward; for instance, they make predictions only on milk rather than

predicting milk and then cheese. This tendency may reduce the utility of

recommender systems greatly.
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Open issues. How to generate multi-step recommendations given a partial

session as the context? This issue is practical and critical but extremely

challenging. Considering the advantage of multi-step modelling, an encoder-

decoder framework (Li et al. 2015, Loyola, Liu & Hirate 2017) may be an

intuitive choice for this issue.

8.2.5 Session-based Recommendations with Cross-Session

Information

Significance. Actually, a user’s choice on the next item may depend not

only on the previous items in the current session, but also on items from

other sessions. For example, a user buys a cellphone in a shopping event on

Monday; he or she may then want to buy a cellphone cover or an accessory in

shopping on Wednesday. To this end, taking cross-session information into

account may make a difference in session-based recommendations.

Open issues. How to incorporate cross-session information into session-

based recommender systems? Exploration of this topic is quite limited. The

work in (Quadrana et al. 2017) proposed a hierarchical RNN architecture to

model both intra- and inter- session dependency for session recommendations.

However, it applied only a very intuitive method to incorporate multiple

sessions into an RNN structure. Further exploration of this topic is needed.

8.2.6 Session-based Recommendations With Cross-Domain

Information

Significance. Cross-domain means domains different from but relevant to

the target domain in which the recommendations are made (Hu, Cao, Xu,

Wang, Gu & Cao 2013). Usually, the users’ purchased items are not limited

to one domain and items from multiple domains are required to meet users’

daily necessities. In addition, the choices of items from different domains may

not be independent of each other. For instance, a user may see the movie

‘Titanic’ first and really like it, and then he or she may listen to the movie’s
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primary song, ‘My heart will go on’, and like the singer ‘Celine Dionne’ –

the user may listen to others of her songs, such as ‘I’m Your Angel’. In

another case, young girls who like the protagonist, ‘Rose’, in Titanic would

like to buy the same dress as Rose’s. Such examples show that the items from

different domains may not only be dependent but can even form a sequence

of events with high correlation embedded: {Titanic, ‘My Heart Will Go

On’, Celine Dionne, ‘I’m Your Angel’} or {Titanic, Rose, Rose’s style of

dress}. The recommendations based on such scenarios are interesting but

quite challenging. On one hand, such recommender systems not only cover

more aspects of our daily lives but also provide a solution to the data sparsity

issue in the case where only one domain is considered. On the other hand,

it is hard to collect a user’s consumed products or services from various

domains together, and the relations between items from different domains

are much more complex than those from one domain. For example, there

may be sequential patterns or may be nothing between them.

Open issues. According to whether the products or services from different

domains can form a tight session or not, there are two open issues that can

be further explored.

- How to borrow knowledge from other domains to help with the session

recommendations in the target domain? When no sessions can be built over

products or services from different domains, the way to make use of other

domains is a main-auxiliary framework. Such a framework takes the target

domain where the recommendations are made as the main information source

while taking information from other domains as a supplementary source to

leverage the recommendation performance in the target domain. An intu-

itive choice is transfer learning (Pan & Yang 2010, Elkahky, Song & He 2015)

which transfers knowledge from other domains to help with the tasks in the

target domain. Although transfer learning has been well applied in con-

ventional recommender systems, such as collaborative filtering (Li, Yang &

Xue 2009, Pan, Xiang, Liu & Yang 2010, Pan & Yang 2013, Loni, Shi, Lar-

son & Hanjalic 2014), it is still only explored in session-based recommender
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systems.

- How to make session recommendations over products or services from

multiple domains? This case happens when a session can be built on ele-

ments from different domains, as in the aforementioned example {Titanic,
‘My Heart Will Go On’, Celine Dionne, ‘I’m Your Angel’}. Different from

the case mentioned in the above paragraph, this case treats all elements

from different domains equally and every domain can serve as the target do-

main. It is much more interesting yet challenging than the other case. It

can incorporate all of a user’s daily needs into a unified recommender sys-

tem framework, and thus is able to cover many more aspects of our daily

lives. However, the challenge arises from directions: session-building and

model development. Different from session recommendations in one domain,

where the natural sessions are usually already there for direct usage, usu-

ally no obvious sessions on cross-domains are available. Therefore, how to

build a reasonable session from multiple heterogeneous data sources is the

first challenge. Once the cross-domain sessions are ready, how to develop a

model to effectively capture the complex and heterogeneous coupling rela-

tions (Cao 2015) between elements from different domains presents another

challenge.
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