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Abstract 

 

Once considered a sterile site below the larynx, the tracheobronchial tree and parenchyma of 

the lungs are now known to harbor a rich diversity of microbial species including bacteria, 

viruses, fungi and archaea. Many of these organisms, particularly the viruses which comprise 

the human respiratory virome have not been identified, so their true role is unknown. It seems 

logical to conclude that a “healthy” respiratory microbiome exists which may be modified in 

disease states and perhaps by therapies such as antibiotics, antifungals and antiviral 

treatments. It is likely that there is a critical relationship or equilibrium between components of 

the microbiome until such time as perturbations occur which lead to a state of dysbiosis or an 

“unhealthy” microbiome. The act of lung transplantation provides an extreme change to an 

individual’s respiratory microbiome as, in effect, the donor respiratory microbiome is 

transplanted into the recipient. The mandatory ex vivo period of the donor lungs appears to 

be associated with blooms of resident viral species in particular. Subsequently, allograft injury, 

rejection and immune suppressive therapy all combine to create periods of dysbiosis which 

when combined with transient infections such as community acquired respiratory viruses may 

facilitate the development of chronic allograft dysfunction in predisposed individuals. As our 

understanding of the respiratory microbiome is rapidly expanding, based on the use of new 

generation sequencing tools in particular, it is to be hoped that insights gained into the subtle 

relationship between the microbiome and the lung allograft will facilitate improved outcomes 

by directing novel therapeutic endeavors. 
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Introduction 

 

The microbiome consists of all micro-organisms and their products that occupy surfaces within 

the human body. Each major compartment of the human body appears to have a unique 

microbiome with species which are specific for that environment. The microbiome 

encompasses bacteria, fungi, viruses (including bacteriophages) and archaea. These micro-

organisms are an integral part of the functional human unit. The human body hosts more than 

a trillion microbial cells and microbiome-associated genes outnumber human-coded genes 

100-fold.1 Humans and microbes have co-evolved over millions of years, and subsequently, 

the human immune system and the microbiome demonstrate complex interactions. The 

development of the microbiome is integral in shaping the immune response, while the immune 

system is required in order to maintain this large, and highly diverse set of microbes. Thus, a 

symbiotic interface has been established within the human body.2 

 

The advent of culture-independent new technologies such as highly-parallel DNA sequencing 

facilitated the beginning of the Human Microbiome (HM) Project, which signaled a phase shift 

from investigating single organisms in isolation, to investigating the whole microbial 

community. The HM project aimed to characterize the human microbiota and to analyze the 

role of micro-organisms in health and disease. The focus was on the bacteria found in five 

main body sites: oropharynx, skin, vagina, gut and nasal cavity. During the HM project, 

bacterial reference genomes were determined and an open-access database was established 

to allow collaborative efforts from laboratories worldwide.3,4 Collaboration between numerous 

laboratories has allowed the characterization of commensal bacterial species within a range 

of body systems. After initially concentrating on developing a reference set composed of a 

range of normal individuals, the role of microbial imbalance or dysbiosis in different disease 

states has been investigated.5 
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Many modern molecular techniques exploit the 16S ribosomal RNA (rRNA) gene, a small and 

highly conserved locus contained within all bacterial genomes that allows easy identification 

of bacterial sequences, and a target for amplification and sequencing.6 Once sequenced, 

these can be referenced against the open-access databases to give genus and species level 

information. The next-generation sequencing technologies such as the 454 pyrosequencing 

and Illumina platforms allow whole communities to be characterised simultaneously and for a 

greatly reduced cost compared to previous sequencing technologies.7 The conserved 16S 

rRNA region is largely responsible for the large body of research now available focusing on 

bacteria, in comparison to the limited data regarding viruses and fungi present within human 

systems.  

 

Prior to the HM Project, culture-based techniques were used to investigate bacterial presence 

in the human body, which led to the assumption that the respiratory tract was a sterile site. 

Accordingly, the lungs were originally omitted from the list of priority sites for the HM project.8 

This appeared to disregard prior evidence from the 1970’s and 80’s suggesting that the lungs 

contained bacteria aspirated from the upper respiratory tract, identified using radiotracers in a 

group of healthy individuals.9,10 Subsequent to the initial efforts in mapping the human 

microbiome, research studies began to emerge that demonstrated that the lower respiratory 

tract is home to a diverse range of bacterial species with variations between health and 

disease states.11 In late 2009, the Lung HIV Microbiome Project was established with the aim 

“To characterize the microbiome of the lung and respiratory tract, and enhance understanding 

of the role of the lung microbiome in preserving health or causing disease and in the divergent 

effects observed in HIV-infected versus uninfected individuals.”12 Since then, numerous 

studies have characterised aspects of the bacterial microbiota in a range of acute and chronic 

respiratory conditions.  

 

The human microbiome is intricately involved in a range of normal and pathological processes 

during development, and throughout life. Traditionally, it was assumed that the microbiome 
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was established at birth, and its composition was dependent on route of delivery. The fetal gut 

microbiome demonstrates diverse communities within the first week of life, however a more 

mature equilibrium is not reached until approximately 3 years of age13. New published 

evidence indicates the presence of bacterial DNA in amniotic fluid and placental specimens, 

raising the possibility of microbiome exposure prior to birth.14,15 There are differences in the 

neonatal gut microbiome between full-term and pre-term infants. The major phyla in pre-term 

infants is Firmicutes compared with a dominance of Actinobacteria in full-term infants,16 which 

further suggests that microbiome seeding may occur during pregnancy and vary with 

gestational age. Additionally, breastfeeding in the early neonatal period appears to have 

significant effects on gut microbiota development. In a group of breastfed infants, virulence 

genes were increased within the gut microbiome, which correlated with up-regulation of 

immunity-related genes. Early exposure from the mother, both while in utero and in the first 

few weeks of life, plays an important role in the development of the microbiota in multiple 

organ systems.  

 

Establishment of the microbiome is crucial in immune development. The effect of early 

exposure to allergens was evaluated in a murine model, where exposure to house dust mite 

(HDM) in the early neonatal period lead to increased airway eosinophilia and airway hyper-

responsiveness. After establishment of lung microbiota and shifts from Firmicutes and 

Gammaproteobacteria towards a Bacteriodes predominance during the first two weeks after 

birth, a decreased response to aeroallergens was observed. An emergence of a Treg subset 

which required interaction with programmed death ligand 1 (PD-L1) appeared to be associated 

with this decreased allergen response.17 This demonstrates the importance of airway 

microbiota establishment in the development of atopic responses and possibly the later 

development of asthma. During childhood, diet, genetics and environmental exposures affect 

development of the microbiome, all of which play an important role in immune system 

maturation. Specifically, the oral microbiota, which in turn influences the lung microbiota, has 
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been shown to be influenced by external factors in the first 5 years of life, including 

breastfeeding, day care attendance and use of antibiotics.18,19  

 

The Human Respiratory Microbiome 

 

The respiratory microbiome includes all airway and lung-tissue associated microbes, and is 

more specifically defined as the lower respiratory tract beneath the larynx. Above this, the 

oropharyngeal and nasal-associated microbiota are separate to the lower respiratory tract 

microbiome and have received more attention previously due to ease of access.  

 

The majority of studies investigating the microbiome have focused on the gut due to the 

relatively large biomass present and the ease of sampling. Conversely, there are many 

challenges when attempting to characterize the microbiome of the respiratory tract. In 

particular, there are difficulties in obtaining samples from the distal airways due to the risk of 

upper airway contamination. The dominant methodologies employed in sampling the lower 

respiratory tract include bronchoalveolar lavage (BAL) obtained via bronchoscopy, and 

spontaneously expectorated or induced sputum. Sputum presents a less invasive method of 

sampling the lower respiratory tract but has an increased risk of oropharyngeal contamination 

due to passing directly through the upper respiratory tract. However, when used as a sampling 

technique in diseases such as cystic fibrosis (CF), bronchiectasis and chronic obstructive 

pulmonary disease (COPD), the biological signals detected have been significantly and 

meaningfully associated with multiple measures including severity of illness, airway 

inflammation, antibiotic use and risk of subsequent exacerbations.20-25 A further study found 

that expectorated sputum samples accurately represented the dominant microbes in the 

relatively homogenous respiratory tract of individuals with end-stage CF who had undergone 

lung transplantation, however sputum samples overrepresented the diversity and 

representation of atypical bacterial species.26 Bronchoscopy is a more invasive option, which 
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may have a lower rate of upper respiratory tract contamination. The bronchoscope is passed 

through either the oral or nasal cavity to sample the lungs, but once inserted, lavage is 

collected directly from distal airways without direct passage through the upper respiratory tract. 

A recent study27 using serial BAL analysis, demonstrated that sampling the lungs via 

bronchoscopy was not significantly confounded by the oral microbiome, consistent with 

previous serial bronchoscopy studies.28 The evidence from these studies supports the 

understanding that minimal contamination from the upper respiratory tract is present in lower 

respiratory tract samples when utilising bronchoscopic techniques. 

 

Sampling of the lower respiratory tract and lung tissues has indicated that there are 

approximately 10-100 bacterial cells per 1000 human cells within the lungs, 29 a greatly 

reduced biomass compared with other colonised body compartments. This may be due to 

lower levels of nutrient sources in the lungs supporting microbiota growth when compared with 

the gastrointestinal tract. Variable physiological conditions are present within the lungs which 

may also affect bacterial presence. These factors include pH, relative blood perfusion, relative 

alveolar ventilation, temperature, oxygen concentration, epithelial cell structure, deposition of 

inhaled particles, and number of inflammatory cells.30-32 These local selective pressures 

appear to play less of a role in healthy subjects. The greatest impact is seen in severe cases 

of chronic respiratory conditions where the lung microenvironment becomes maladapted due 

to remodelling of the airways and extra-cellular matrix.33,34  

 

Additionally, lung-associated biomass appears to be significantly lower than the upper 

respiratory tract biomass. Total bacterial signal level as measured by qPCR for 16S rRNA-

encoding genes in DNA, showed that the signal level was 100- 1000 fold lower in BAL samples 

when compared with an oral wash.27 A similar pattern was also observed with species 

richness, with a higher bacterial species richness in the oral cavity compared with both the 

lungs and the nasal cavity. This low concentration of microbiota within the lungs may be 

associated with the early understanding of lung sterility, but even after clear demonstration of 
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a resident lung microbiota using sequencing based approaches, the low biomass still presents 

further challenges in characterizing the burden and diversity of microbial species contained 

within the lower respiratory tract. 

 

Culture-based protocols characteristic of clinical microbiology laboratories are optimised to 

detect acute infections with respiratory pathogens in individuals and to distinguish their 

absence. They rely on sufficient microbial load and specific growth conditions to encourage 

growth of these bacterial species.35 These conditions selectively disadvantage the growth of 

anaerobes and bacteria which do not optimally flourish at 37°C, encompassing the majority of 

bacterial species which have now been determined to compose the healthy lung microbiota. 

Many of the species present within the healthy lung determined by culture-independent 

techniques, have now been grown in culture under modified conditions. The first study to utilize 

these culture-independent sequencing methodologies to characterize the microbiota in the 

lungs of healthy subjects showed that the lungs contain a distinct and diverse microbiome. 

Furthermore, the bacterial composition in the lungs of healthy controls was compared with 

asthmatic subjects, demonstrating early evidence of variations in the lung microbiota in 

patients with chronic respiratory diseases, specifically the relative enrichment of 

Proteobacteria.36  

 

Using culture independent techniques, it has since been determined that the most common 

bacterial phyla in the lower respiratory tract include Bacteroidetes, Firmicutes, and 

Proteobacteria. The most prominent genera present in healthy controls are Prevotella, 

Veillonella, and Streptococcus. Studies comparing concurrently collected upper and lower 

respiratory tract samples show that the microbial communities are distinct from each other, 

but there are similarities that prevail. This suggests that the traditional understanding of the 

respiratory tract as comprised of discrete, independent compartments is likely outdated. A 

more accurate representation of the respiratory tract is a single continuous, internally 
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heterogeneous ecosystem from the anterior nares through to the alveoli.27 Spatial 

heterogeneity of the microbial topography within this system occurs within different areas but 

there is constant movement of species between these areas.11 

 

This clear spatial heterogeneity within the different lobes of the lung37, and at different levels 

of the respiratory tract has been observed in chronic respiratory conditions. The turbulent act 

of coughing may play a role in homogenizing the microbial species within the lumen of the 

airways, thus decreasing spatial heterogeneity in healthy subjects.28,37 In disease states such 

as CF, where thick, sticky secretions prevent effective clearance of microbes through 

mucociliary and coughing mechanisms, spatial differences in microbes may be more 

commonly observed38. Lung disease alters the population dynamics and the lung terrain37, 

which translate into unique environmental conditions in each disease state which facilitate 

changes to the local microbial communities.  

 

The microbiota of the lungs is a balance between immigration of species, likely from 

microaspiration and direct movement into the lungs, elimination due to mucociliary 

mechanisms, cough and the innate and adaptive immune responses and selective pressures 

present within the lungs themselves. Previous studies have shown that microbiota from the 

oral cavity are constantly being introduced into the lower respiratory tract, often during sleep 

as a result of microaspiration9,10 and likely due to the direct mucosal extension between the 

oral cavity and the lungs. It has also been suggested that microaerosols generated in the oral 

cavity may be inhaled into the lungs and further contribute to the composition of the lung 

microbiome. The bacterial communities within healthy lungs demonstrate significant overlap 

with the bacterial species found in the oral cavity but not the nasal cavity. However, the relative 

abundance of bacterial phyla in healthy lungs appears to be significantly different from the oral 

bacterial community. Selective elimination of Prevotella species was observed in the lung, 27 

providing further evidence for the influence of selective pressures within the lower respiratory 

tract in shaping the microbiome composition. 
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Elimination mechanisms are involved in clearance of microbial species from the respiratory 

tract. Mucociliary clearance and cough allow organisms to be mechanically removed from the 

lungs. Microbes are trapped within the mucus secreted from goblet cells and through the 

constant beating of cilia or coughing are moved up and out of the lower respiratory tract into 

the pharynx where they are either expectorated or swallowed. Host inflammatory cells and 

cytokines are involved in the immune response in the lungs leading to the clearance of 

potential pathogens. The composition of effector cells present within the airway appears to be 

associated with features of the microbiota.28 Therefore, a constant flux in the lung microbiota 

from introduction of oral microbes and elimination of species present within the lungs as well 

as selective pressures induced by the lung microenvironment, create a ‘steady state’ during 

health (Figure 1).27  

The Gut-Lung Axis 

The gut microbiome is modified in response to respiratory illness and chronic conditions while 

the lung microbiome also appears to be influenced by the gut microbiome. This complex 

interplay between these two body systems and the microbiomes contained within them is 

dubbed the ‘gut-lung axis’ and the vital cross-talk between their mucosal surfaces may have 

important implications for both health and disease. A study in children with CF demonstrates 

that the lung and gut microbiota likely develop simultaneously after birth. Furthermore, 

concordant fluctuations in bacterial species at both sites have been observed.39 Dietary intake 

also appears to influence changes in the lung microbiome, in addition to the gut.39,40 As 

mentioned earlier, the early development of the gut microbiota is important in the development 

of immune responses. The absence of a normal gut microbiota increases susceptibility to lung 

infection41, providing further evidence that the intestinal microbiome may influence the 

development of a dysbiotic state in the lung microbiome.  
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Dysbiosis in both the airway and intestinal microbiota has been observed in the presence of a 

range of respiratory diseases.42-44 Additionally, the course of some respiratory diseases has 

been shown to be modified by shifts in intestinal microbiota, such as the development of 

asthma and other atopic conditions.42,44 The hygiene hypothesis stipulates that reduction in 

environmental exposures, use of antibiotics and dietary changes can lead to disruptions of the 

gut microbiota, which in turn, leads to a decrease in immune tolerance. This resultant decrease 

in the Th1 immune response leads to a shift towards the propensity for allergic airway 

changes.45 In a murine model, early exposure to antibiotics caused a reduction in microbial 

load and diversity, which was strongly associated with the later development of allergic airway 

inflammation in adults who were exposed to aeroallergens.46 Conversely, the oral 

administration of probiotics including Lactobacillus species to children with CF led to a 

restoration of the intestinal microbiota to similar levels as healthy controls. The resultant 

microbiome composition has previously been shown to be associated with a reduction in the 

frequency of pulmonary exacerbations.43  

 

Acute bacterial and viral infections cause changes in the underlying microbiota. Chronic 

bacterial colonization with known pathogens such as Pseudomonas aeruginosa and 

Haemophilus influenzae in CF has been associated with distinct lung microbiomes, dominated 

by Prevotella and Flavobacterium in the case of P. aeruginosa and Neisseria when H. 

influenzae is present.47 Similarly, the microbiome may play a role in determining susceptibility 

to viral infection. The pneumococcal vaccine, and depletion of Streptococcus pneumoniae in 

an in vitro model has been associated with a 31% reduction in viral respiratory tract 

infections.48 Molyneaux et al showed that rhinovirus infection in healthy subjects has little 

effect on the underlying lung microbiota when measured in induced sputum samples. They 

did find, however, that in patients with COPD, rhinovirus infection led to an outgrowth of certain 

pathogenic bacteria, mainly those in the Proteobacteria phylum including Haemophilus 

influenzae.22 In a murine model, infection with influenza virus was shown to lead to changes 
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in the gut microbiome due to intestinal injury mediated by Th-17 cell-dependent 

inflammation.49 

 

Murine studies have shown that bacterial activation of Nod-like receptors in the gut led to 

increased reactive oxygen species in alveolar macrophages50 which are associated with 

effective bacterial clearance mechanisms in the lung. Peptidoglycan (a bacterial cell wall 

component) can translocate from the gut into the blood stream and the bone marrow to cause 

systemic and organ specific effects after systematic presentation to the host immune system 

via Nod1 receptors. This can lead to increased killing of Streptococcus pneumoniae and 

Staphylococcus aureus.51 Studies have shown that lipopolysaccharides (LPS), another 

bacterial product, can reduce viral infection rates suggesting that development of the gut 

microbiota may play an important role in susceptibility to respiratory viral infections. In vitro, 

pre-stimulation of human macrophages with LPS led to an 80% reduction in RSV and influenza 

infections52, demonstrating the complex interplay between bacterial and viral species.  

 

Inter-organ microbiome interactions are not only limited to the gut. Early establishment of a 

commensal nasopharyngeal microbiota appears to be protective of RSV-induced airway 

hyper-responsiveness. Mice were infected with RSV and subsequently treated with antibiotics 

which depleted Streptococcus viridans in the nasal passage associated with a strong immune 

response to the RSV infection with increased numbers of inflammatory lymphocytes, reduced 

Tregs and transforming growth factor-beta, and increased airway hyper-responsiveness.53 The 

interactions between the resident microbiomes within different organ systems are yet to be 

fully characterized, however for chronic respiratory disease sufferers, this area presents many 

possible future treatment avenues.  

 

Bacterial Studies  
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Pathological changes that occur in chronic respiratory conditions place selection pressures on 

the lung microbiome. Resultant shifts in growth patterns of specific bacterial populations are 

invoked by increased mucus production, changes in oxygen availability54 and temperature55 

in certain areas and an exacerbated inflammatory response leading to increased production 

of cytokines.56,57 Use of oxygen therapy, antibiotics and steroids in the treatment of these 

conditions may also impact the microbiome (Figure 1). As COPD, interstitial pulmonary fibrosis 

(IPF) and CF are the respiratory conditions for which lung transplantation is most commonly 

indicated, the microbiota associated variations observed in these diseases will be the focus of 

this chapter. All of these conditions demonstrate characteristic periods of ‘exacerbations’ or 

deterioration from the stable state. Emerging evidence indicates that these exacerbations may 

be associated with dysbiosis of the lung microbiota. 

 

COPD 

 

Multiple studies have investigated the lung microbiota of patients with COPD during stable 

periods when no evidence of lung infection could be observed. Several sample types including 

BAL, explanted lung tissue and expectorated sputum samples have been analyzed. These 

studies have revealed that the distal airways and alveoli in COPD patients contain a distinct 

microbiome which may prove relevant to the progression of the disease and the intermittent 

development of infectious exacerbations.11 Differences in the bacterial microbiome between 

individuals with COPD, non-COPD smokers and non-smoking controls have been observed. 

However, Erb-Downward et al did not demonstrate a distinct ‘COPD’ microbiome using 

sequencing techniques. Instead there was an extensive overlap in the bacterial communities 

between these three groups but decreased diversity of bacterial species in those with severe 

COPD.29,58 When the microbiome was characterised in lung tissue samples using PCR and 

terminal restriction fragment length polymorphism analysis, the microbiota seen in individuals 

with severe COPD differed from individuals with CF and mild COPD controls.29 An increase in 

microbiome diversity in COPD compared with healthy controls has also been demonstrated 
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using sequencing methods, however diversity did not seem to correlate with disease severity. 

Species clustering did occur, however, with use of inhaled therapy including both 

bronchodilators and corticosteriods.59 Spatial heterogeneity of bacterial species within the lung 

was markedly increased in patients with severe COPD.58 These shifts in the microbiota in 

COPD may be explained in part by the decreased surface area of the lung due to alveolar wall 

breakdown as the disease progresses, which leaves less available terrain for the distribution 

of the microbiota. This may also be responsible for the increased bacterial burden observed 

in severe destructive lung diseases.  

 

It has been postulated that changes in the microbiome may underlie exacerbations of COPD. 

A number of studies have compared the composition of the microbiome during stable periods 

with the composition during an exacerbation to determine if certain bacterial species are 

associated with worsening symptoms. Sethi et al compared the presence and load of the most 

common bacterial strains observed during an acute exacerbation and in the stable state of 

COPD. They found that change in bacterial load is unlikely to be the main mechanism involved 

in the occurrence of an exacerbation and suggested that host-pathogen interactions were 

more important.60 A study by Millares et al showed that colonization with Pseudomonas 

aeruginosa in severe COPD did not have significant effects on the biodiversity of the rest of 

the microbiome. Furthermore, during exacerbations, previous Pseudomonas colonization had 

little effect on the changes in microbes observed, compared to those who had never been 

colonized, including an increased abundance of Haemophilus, Streptococcus and Moraxella 

species.61 Furthermore, it has been observed that during an exacerbation, movement toward 

the Proteobacteria phylum, including detection of a range of non-typical COPD pathogens 

occurs. Treatment also appeared to be an important factor in microbiome shifts. Antibiotic 

treatment initially decreases Proteobacteria, but also induces overall microbiome suppression. 

Treatment with corticosteroids alone enriched further for members of the Proteobacteria 

phylum.62  
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Idiopathic Pulmonary Fibrosis   

There are few studies of the microbiome in the interstitial lung diseases. However, recent trials 

suggest that the microbiota may also have an important role in mediating the development of 

IPF. A randomized controlled trial showed a decrease in respiratory infections and an all-cause 

mortality benefit for patients receiving cotrimoxazole63, while the PANTHER trial demonstrated 

that immunosuppression led to increased mortality in patients with IPF.64 A limited number of 

studies have shown a role for the microbiota in predicting more severe disease and 

progression.65-68 It has also been shown that pneumolysin (pneumococcus-associated toxin) 

mediates fibrotic progression in animal models of alveolar epithelium injury.69 Therefore the 

presence of certain bacteria within the lung microbiota may predispose certain individuals to 

the development of IPF.  

Cystic Fibrosis 

It is generally accepted that pathogenic bacteria such as S.aureus and P.aeruginosa are 

commonly present within the lower airways of patients with CF and almost universally present 

by adolescence.70 CF was one of the notable exceptions to the previous understanding that 

the lungs were sterile. Hence, CF research has led the field in microbiome-related studies in 

chronic lung diseases.  

 

Microbial composition and diversity vary with disease progression. As patients develop more 

severe disease, bacterial community diversity has been shown to decrease significantly. 

However, in individuals with a mild lung disease phenotype, the bacterial community diversity 

remains stable over time. In both cases, microbial density remained steady. The most 

significant driver of a microbiome shift was antibiotic usage, however over time with increased 

usage, bacterial communities developed resistance to change.23,25 

 

Studies have suggested that treatment outcomes do not correlate with the susceptibility of 

strains of Pseudomonas aeruginosa to certain antibiotics. Two large trials have shown no 
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association between the clinical response to antibiotics during pulmonary exacerbations and 

in vitro bacterial susceptibility to the chosen antibiotics.71,72 This suggests that a single 

organism may not be responsible for causing an exacerbation. Instead, complex microbiome 

interactions may be of greater importance.  

 

Multiple studies in CF have shown that there is no change in bacterial burden or community 

diversity between samples taken during stable periods and at the time of exacerbations. It is 

instead suggested that an exacerbation occurs when there is an acute dysbiosis of the 

respiratory microbiome (acute shift in bacterial species) coupled with a disordered host 

immune response.25,73-75 Price et al showed that the lung microbiota in CF had a complex 

microbial composition, which appeared to be unique to each patient analysed. This 

microbiome demonstrated resilience to exacerbation and antibiotic treatment with persistence 

of microbial species observed at multiple time points.76 

 

Microbial interactions play an important role in CF exacerbation frequency and progression of 

the disease. Emerging research is examining the possibility of modifying the microbiome to 

improve disease-related outcomes for patients with CF. 43,77 

 

Lung Transplantation 

 

Many host-specific and environmental factors have been shown to influence the human 

microbiota, however in this review, the focus will be on the impact of lung transplantation on 

respiratory microbiome dynamics and in contrast, how these variations in the lung microbiome 

affect transplant outcomes. Lung transplantation provides us with a unique opportunity to 

separate out host-specific, immune-related and extrinsic factors in shaping the microbiome 

after donor lungs have been transplanted into a new recipient. In effect, this is transplantation 

of the human respiratory microbiome. 
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Lung transplantation is often the only viable option remaining for individuals with end-stage 

lung disease, providing patients with hope for an improved longevity and quality of life. 

However, compared with other solid organ transplantation, lung transplantation has the lowest 

long-term survival rates. Worldwide, the median survival time post bilateral lung transplant is 

7.4 years as reported in the International Society for Heart and Lung Transplantation (ISHLT) 

2017 Registry report compared with a median of 12.4 years for both living and deceased donor 

kidney transplantation.78  

Lung transplantation is associated with multiple opportunities for lower respiratory tract 

sampling with both surveillance and clinically indicated bronchoscopies. Some of the first lung 

microbiome studies incorporating longitudinal analysis were performed in the transplant 

cohort, due to the ability to conduct serial invasive sampling for surveillance of the allograft. 

Borewicz et al79 showed in a small cohort that the lung microbiome in transplant patients is 

not very stable in the early post-transplant period with less than 10% of species retained over 

the three time points. Another cohort of lung transplant recipients underwent longitudinal 

sampling of their lower respiratory tract for up to 12 months, showing that bacterial diversity 

increased during the first 9 months post-transplant. This likely reflects development of a new 

stable state in the donor lungs. After 9-12 months post lung transplant, bacterial diversity 

began to decrease.80 Finally, Willner and colleagues81 surveyed 16 patients who had been 

transplanted for CF and found dynamic changes in the lung microbiome over time which was 

heavily influenced by antibiotic use. These preliminary data indicate that there are important 

fluctuations in both microbiota burden and diversity, especially in the early transplant period. 

Some associations between bacterial diversity and negative outcomes81,82 have been 

suggested, however limited data at this point restrict conclusions. 

 

It has been previously thought that unanticipated donor transmission of infectious organisms 

is a rare, and dangerous event.83 Much work has focused on reducing the occurrence of 

transmission events, specifically of blood-borne viruses such as Human Immunodeficiency 
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Virus (HIV) and Hepatitis B (HBV) and C (HCV) viruses. However, emerging evidence shows 

that the microbiome is transplanted from the donor into the recipient at the time of lung 

transplantation and that the composition of the donor microbiome may have important 

implications for transplant outcomes. The post-transplant lung microbiome may also be 

modified through a range of factors. These include nosocomial acquisition of microbes from 

the ICU while intubated and from contact with other infected individuals while in hospital, 

transmission from the native lung in recipients who receive a single lung transplant, aspiration 

of gastric organisms due to the increased burden of gastro-esophageal reflux disease (GERD) 

in transplant recipients84 and the impact of the upper respiratory tract microbiota (Figure 2). 

Little research currently addresses the origin of the microbes that induce the longitudinal 

changes in the microbiome that have been previously described.79-81 Further research studies 

and a greater understanding are needed to characterize implications for clinical management.  

 

The vagus and other sympathetic nerves are transected at the hilum during lung 

transplantation causing loss of neural supply and complete denervation of the lungs in the 

early transplant period. This leads to decreased cough reflex, impaired ciliary beat frequency 

leading to impaired mucociliary clearance and implications for gastro-esophageal motility.85 

Reduction in mechanical clearance mechanisms such as cough and the mucociliary escalator 

have important implications in the ability of the recipient to clear inhaled pathogens and 

allergens and therefore reduces the rate of elimination of species which is important in 

maintaining the ‘steady state’ airway microbiota.86 Furthermore, recipients receive high level 

induction and maintenance immunosuppression87 which reduces the ability of the immune 

system to respond and clear microbial species, further impacting the elimination aspect in 

determining the microbial balance.  

 

The immigration of bacterial species into the lower respiratory tract is accelerated with 

gastroesophageal dysfunction and reflux, which lead to increased aspiration events. The 

incidence of GERD is significantly increased after lung transplantation,84 which has been 
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shown to impact the composition of the lower respiratory tract microbiota.32 Furthermore, the 

use of acid-suppression medications such as proton-pump inhibitors have been associated 

with an increased risk of overgrowth of acid-sensitive gastric flora such as Streptococcus and 

Staphylococcus, which were also found at higher concentrations in the lungs following reflux 

events, indicating the likely exchange of microflora between these two sites.88 These bacteria 

are often associated with symptomatic upper respiratory tract infections and pneumonia.89 

Laryngeal dysfunction and oral hygiene may also have an impact on lower respiratory tract 

microbiota due to increased pathogenic species in the oral cavity spreading to the airways, 

causing variations in the lung microbiome and through the increased risk of aspiration and 

inhalation events when there are alterations to the larynx.90,91 Furthermore, altered growth 

conditions within the lungs may have significant effects on microbiome dynamics with 

outgrowth of certain species and increased spatial heterogeneity within the lung field. These 

altered conditions may be caused by a number of factors including modifications to the airway 

terrain due to changes in ciliary function and mucus production, changes in regional growth 

conditions due to pneumocystis and general bacterial prophylaxis, and finally, effects of 

reperfusion after the transplant has occurred (Figure 2).37  

 

Mortality within the first-year post-transplant is associated with primary graft failure and acute 

rejection events. Within the first year of transplantation, up to 55% of recipients are treated for 

acute allograft rejection.92 However, there has been limited research in acute rejection 

compared with chronic rejection and bronchiolitis obliterans syndrome (BOS), but there is 

some evidence to suggest that both bacterial and viral infections, and possibly perturbations 

to the underlying microbiota, may have an important role in mediating early allograft 

dysfunction. Glanville et al showed that persistent Chlamydia pneumoniae infection is 

associated with early mortality and rejection events.93 Parainfluenza virus (PIV) infection also 

has a demonstrated association with the development of acute allograft dysfunction, with one 

study showing that 82% of patients with parainfluenza viral infection in their cohort also had 

evidence of acute allograft dysfunction. Furthermore, 32% of these PIV positive patients 
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developed bronchiolitis obliterans within 18 months follow up.94 Conversely, Ahya et al showed 

that detection of EBV DNA was not correlated with the development of acute allograft rejection. 

Instead, the authors suggested that increased viral load may be a surrogate marker of effective 

immunosuppression thus providing protective allograft effects.95 

 

The principal factor limiting long-term survival in lung transplant recipients is chronic lung 

allograft dysfunction (CLAD) mostly due to BOS. According to the ISHLT Registry Report, 50% 

of lung transplant recipients develop BOS within 5 years of transplant, while 76% of recipients 

develop BOS within 10 years.96 The primary pathological feature is bronchiolitis obliterans, a 

form of intraluminal airway fibrosis located mainly within the terminal bronchioles.97 It is now 

recognized that the causes of BOS are heterogeneous, and have differing clinical courses. 

Both viral and bacterial infections have been suggested to be risk factors for the development 

of BOS.98,99 New evidence emerging with the use of non-culture based techniques indicates 

that the underlying lung microbiome may play a greater role.8 Early studies investigating the 

respiratory microbiome post lung transplantation indicate that lung transplant recipients have 

variations in their lung microbiome compared with healthy controls100, and furthermore, that 

the microbiome changes over the post-transplant period79 as the lung microbiota becomes 

established within its new host and as an equilibrium is reached between the host immune 

response and immunosuppression levels. In these studies that have shown differences in 

transplant microbiome compared with healthy controls, one study has indicated increased 

bacterial burden in the BAL of lung transplant recipients79, while in others, decreased bacterial 

burden was observed in transplanted lungs.81,82,100 Some suggestions of decreased 

community diversity were seen. However, this appears to more commonly be the case in those 

with active respiratory symptoms and is not necessarily observed in asymptomatic controls.82 

Therefore, further information about the differences between symptomatic and asymptomatic 

transplant patients are required including elucidating how these may correlate with both 

microbiome dysbiosis and negative outcomes in this cohort.  
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A number of studies have investigated the relationship between the presence of specific 

members of the microbiome and the risk of BOS. This relationship was first demonstrated 

using traditional culture-based techniques and serum antibody detection. More recently the 

advent of metagenomics techniques has allowed the dynamics of the greater lung microbiome 

to be examined in more detail. Some bacterial species, such as Pseudomonas appear to play 

a greater role in mediating the development of BOS. Multiple culture based studies have 

consistently shown that airway colonization with P. aeruginosa is predictive of subsequent 

development of chronic rejection.”99,101-103 However, one study has shown a negative 

correlation between presence of Pseudomonas spp. and development of BOS.81 In those 

studies where a positive relationship between Pseudomonas colonization, and development 

of BOS was seen, de novo colonization post-transplant rather than persistence of pre-

transplant Pseudomonas colonization had an increased likelihood of BOS development.81,103  

 

Patients with suppurative lung disease, including CF, who had chronic colonization prior to 

transplant are at a greater risk of re-infecting the allograft with persistent bacterial species 

from the upper airway and the sinuses (Figure 2). Vital et al attempted to mitigate this risk by 

performing endoscopic frontal-spheno-ethmoidectomy procedures immediately post-

transplant and using multiple Pseudomonas-active antibiotics. Despite this treatment, 65% of 

patients had persistent colonization post-transplantation. This study also demonstrated 

greater BOS-free survival in those patients who did not demonstrate detection of 

Pseudomonas.104 Dickson et al identified two distinct Pseudomonas species which were both 

prominent in the lung microbiome samples of lung transplant recipients, but were associated 

with distinct clinical phenotypes. P. aeruginosa, when detected, is usually seen in high 

abundance and is accompanied by acute clinical infection, whereas P. fluorescens is usually 

detected at a moderate abundance and is rarely correlated with development of acute 

symptomatic infection.82 If the bacteria are only identified at the family level, the distinction 

between these species may be missed. P. fluorescens has been shown to be rarely detected 

using culture-based methodologies, thus the authors suggest this may account for the lack of 
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correlation between detection of Pseudomonas and development of BOS seen in the study by 

Willner et al, who utilised culture-independent techniques.81 Therefore, characterization of the 

microbiome and subsequent monitoring may provide further information on risk of BOS. It also 

highlights the future possibility of modifying the microbiome in attempts to reduce the 

development of BOS.  

 

The increased access to culture independent techniques has played an important part in 

defining the role of the respiratory microbiome in lung transplantation. Variations in the lung 

microbiome post-transplant appear to modify the risk of both acute and chronic rejection 

events. Lung transplantation provides us with a unique scenario in which to investigate the 

lung microbiome and the changes that may occur in response to a new host, surgery-related 

damage and donor-transmission events. The substantial follow-up opportunities presented 

have allowed the lower respiratory tract microbiome to be monitored longitudinally and for the 

dynamics and shift of microbial species to begin to be elucidated.  

 

Fungal Studies  

Compared with the bacterial component of the lung microbiome, the fungal component termed 

the ‘mycobiome’ represents a largely understudied area with fewer than 10 published papers 

describing the fungal composition of the microbiome using next generation sequencing 

techniques (NGS). Despite the limited data present in this area, there appears to be many 

parallels between the fungal and bacterial components of the microbiome including the 

understanding that fungal species are present during health, and that there is significant intra-

subject variability in the diversity of species detected.105 Limited studies have compared fungal 

and bacterial species in disease states with healthy controls. The most common fungal genera 

identified in healthy lung samples were Cladosporium, Eurotium, Penicillium, Aspergillus, 

Candida, and Pneumocystis.100,106 Similarly to the bacterial component, a large range of fungal 

species have been found in lung samples since the use of NGS, which are not detectable by 
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culture. Up to 82% of the fungal species detected in sputum samples by sequencing were 

unable to be cultured. Furthermore, in this group of 55 CF patients, only 27% were found to 

be positive for fungus when culture-based methods were used, compared with 90% of the 

cohort being positive by sequencing.107 

 

The lung mycobiome has been investigated in CF and COPD, with decreases in fungal 

diversity being observed. Furthermore, decreased fungal diversity has been associated with 

lower lung function. It has been suggested that the decreased diversity may be due to out-

growth of a single species, or the loss of rare species as part of overall decreased fungal 

abundance.    In CF, it has been shown that the highest species richness is observed in those 

with the lowest disease severity scores.106 Similarly to the observations from the bacterial 

component of the microbiome, fungal communities also appear to remain stable through 

antimicrobial therapy and exacerbations.108,109 There are very limited data regarding the 

mycobiome in COPD, however two studies have shown Aspergillus110 and Pneumocystis111 to 

be highly represented species within BAL samples from patients with COPD. How these 

interact with other fungal species, and other bacterial members of the microbiome is yet to be 

elucidated. 

 

Many aspects impact the microbiome in transplant, including donor transmission, structural 

changes within the lungs and immunosuppression. However, there is still limited information 

regarding how these factors impact the mycobiome. The fungal aspect of the microbiome has 

been characterised in a small set of lung transplant patients showing that in general, there is 

decreased fungal abundance and diversity compared with healthy controls. Charlson et al 

characterised the lung mycobiome in 21 patients following lung transplantation, and found that 

in many cases, it was largely dominated by Candida species which were also found in the 

oropharyngeal wash of these subjects. In two individuals, high levels of Aspergillus were 

detected, however these were largely absent in the oropharyngeal wash samples. 

Furthermore, Cryptococcus was observed in the BAL samples of 6 patients at relatively low 
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abundance.100 Indication for transplant also appears to have an effect. Individuals transplanted 

for CF showed the lowest species richness.100 

 

Certain members of the mycobiome may be associated with negative outcomes post-

transplant. Colonization with Aspergillus has been shown to be strongly associated with 

development of BOS and increased BOS-related mortality using Cox-regression analyses.112 

Willner et al demonstrated that Aspergillus species were decreased in transplant patients who 

had Pseudomonas-dominated microbiomes, which was shown to be negatively correlated with 

the development of BOS.81 Therefore, further characterization of the mycobiome is necessary 

to determine the contribution of members to negative outcomes post lung transplantation. This 

may contribute to long-term treatment strategies in microbiome manipulation as a way of 

mitigating the development and progression of BOS.  

 

Virome Studies  

There are limited data in the area of the virome due to the inherent limitations in isolating and 

defining this part of the microbiome. In the lungs, the bacterial biomass is reduced compared 

with other compartments such as the intestine and the oral cavity. The amount of viral genomic 

material is even lower. Isolating viral nucleic acids without the use of a conserved sequence 

such as 16S in bacteria or ITS region for fungi, and effectively depleting both human and 

bacterial genomic material presents many challenges and may account for the lag in our 

knowledge of the viral component of the microbiome. 

 

The first studies in the area of the lung virome were in patients with CF, paralleling the early 

studies of the bacterial component of the microbiome. Bacteriophage communities in a small 

cohort of individuals with CF were compared with healthy controls, to demonstrate that there 

appears to be a core set of bacteriophages found in the healthy lung and an additional core 

set of phages found in individuals with CF which correspond to concurrent pathogenic bacterial 
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species. In CF, the lung bacteriophage community appears to be driven by airway pathology 

and the persistence of certain bacteria.113 The same group conducted a small case series 

evaluating spatial heterogeneity within CF lungs. A large range of DNA viruses and 

bacteriophages were observed within the lungs of individuals with end-stage lung disease, 

with clear heterogeneity in the presence of viruses within different lobes of the lungs.38 

Since then, a handful of studies have largely characterized the virome in individuals with acute 

viral infections. In this case, there is an overwhelming abundance of the causative organism 

which is often concurrently detected using PCR methods. However, a range of other viral 

species including torque teno viruses, herpes viruses and community acquired respiratory 

viruses such as picornavirus and adenovirus have been characterised in these samples.114,115 

Furthermore, a study characterizing the respiratory virome in febrile and afebrile children has 

provided evidence to show that a resident lung virome is likely established in healthy children 

within the first two years of life which may also impact the development of the immune 

system.116 

The human respiratory virome has been investigated in lung transplantation. Young et al have 

characterized the DNA virus profile in the oropharyngeal washes and BAL samples post-

transplant.117
 A range of DNA viruses were detected using sequencing, including herpes 

viruses, human papillomavirus and bacteriophages. Anelloviruses, including torque teno virus, 

dominated these samples accounting for over 68% of reads. These anelloviruses were further 

quantified using real time qPCR. Transplant patients were shown to have significantly greater 

viral loads in both the oropharyngeal wash and BAL samples compared to healthy controls.117 

A further study explored the role of torque teno virus in lung transplant recipients in the peri-

operative period. Torque teno virus was shown to increase in the immediate post-operative 

period, however the magnitude of viral load increase was shown to be associated with 

development of primary graft dysfunction.118 Therefore, monitoring changes in the virome may, 

in the future, assist in determining risk profiles for graft injury and adequate levels of 

immunosuppression to guide therapeutic actions post-transplantation (Figure 3).  



25 
 

 

There is some evidence to suggest that viral infections are associated with the development 

of BOS. Garantziotis et al showed a relationship between infection with influenza and 

subsequent decline in lung function associated with early graft dysfunction and / or BOS.119 

A further study has indicated that the one-year incidence of BOS is significantly increased 

(25%) in patients who have had a respiratory virus detected by PCR compared with virus-

negative patients (9%). However, detection of a respiratory virus in patients who already had 

diagnosed BOS had no impact on progression.120 This was further evidenced by a 

retrospective 5-year cohort study on lung transplant patients, where detection of a lower 

respiratory tract viral infection was significantly correlated with development of BOS and BOS-

related mortality.121 A further study that compared patients with symptomatic viral infection 

with asymptomatic controls, demonstrated PCR detected virus in the symptomatic group 

which was associated with both acute rejection events and progression to BOS.122 

 

The herpes group viruses have been studied extensively as a quasi-resident species within 

the lungs of transplant recipients. Cytomegalovirus (CMV) and Epstein Barr Virus (EBV) as 

well as Human Herpesvirus Type 6 (HHV-6), in particular, have received attention but data 

regarding their relationship to allograft dysfunction are somewhat confounded by the efficacy 

of prophylactic use of specific antiviral therapies.123 Some relationships are clear. An EBV 

naïve recipient of an EBV positive lung allograft has the highest risk of developing post-

transplant lymphoproliferative disease (PTLD) (50% in some series) which carries a high 

mortality rate. This has been somewhat ameliorated of recent times by the selective use of 

anti-CD20 monoclonal antibody therapy to target EBV driven B-cell clonal expansion as an 

adjunct to reduction in immune suppression which, of itself, was commonly associated with 

the development of acute cellular rejection and graft dysfunction. This relationship between 

the risk of PTLD and EBV viral load has led some units to pursue a policy of peripheral load 

monitoring in blood using a quantitative EBV PCR with the intention of reducing immune 

suppression pre-emptively if EBV load increases, to circumvent the risk of PTLD.124 
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Conversely an absent EBV load raises the question of acute rejection risk. The oncogenic 

potential of EBV, Kaposi's sarcoma herpesvirus (KSHV), and human T-lymphotropic virus type 

1 (HTLV-1) has been confirmed by high-throughput RNA sequencing data from 50 common 

lymphoma cell culture models from the Cancer Cell Line Encyclopedia project.125 The role of 

HHV-6 in the pathogenesis of organizing pneumonia, a not uncommon finding on 

transbronchial biopsy deserves further study.123 Repeated EBV DNA detection in blood, 

possibly reflecting chronic EBV replication, has been associated with the development of 

BOS.126 

CMV can cause fulminant pneumonia and death, which since the development of effective 

treatment modalities127 is now rare, except for drug resistant strains, an ever-present risk of 

the use of widespread prophylaxis.128 A largely intracellular virus, CMV can be detected in 

bronchoalveolar lavage fluid and analysis of paired samples suggests detection of CMV DNA 

in BAL fluid reflects virus replication in the lung rather than oropharyngeal contamination.129 

Whether BAL load monitoring assists in the determination of a therapeutic decision is 

debatable versus a qualitative assessment. However, peripheral load monitoring in blood 

using a quantitative PCR is the gold standard for initiation of therapy versus prophylaxis. CMV 

naïve recipients of a positive donor graft hold the highest risk of CMV pneumonia, therefore 

there exists some evidence for ongoing prophylaxis.130 

 

To date, there are very limited studies characterizing the human virome, and none in the areas 

of COPD or IPF. Further research may help to elucidate the changes in the resident virome 

between different disease states, and how these impact progression. Early studies in lung 

transplantation show distinct differences in the respiratory virome composition and diversity 

between lung transplant recipients and healthy controls. However, the detection of causative 

viral organisms in symptomatic individuals has been associated with negative transplant 

outcomes. The presence of certain viral species, and their viral load may help to guide 

treatment strategies and modifications to the respiratory virome may improve outcomes for 
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patients in the future (Figure 3). In the majority of lung virome studies published, sequencing 

has focused on the DNA virus community due to the inherent limitations of working with RNA 

viruses which are much more prone to degradation. Little is known about the role of RNA 

viruses in both healthy individuals and in disease states, including after transplantation. 

Further studies, particularly those with a prospective longitudinal design, are needed to 

describe the large collection of viruses detected by NGS which remain unnamed and 

uncharacterized and to determine their role within the greater microbiome in both health and 

disease.  

 

Summary and Conclusions 

In a very real sense, our understanding of the component parts of the microbiome and, in 

particular, the human respiratory microbiome is just beginning. New tools, including next 

generation sequencing are now available to assist in the exploration of this exciting field of 

knowledge, however much work remains. Essentially, we need to define the constituents of 

the human respiratory microbiome in health and in disease states. Furthermore, we need to 

develop an understanding of the range of normal throughout different phases of life and 

between different communities. In the human respiratory virome, in particular, it is vital to 

appreciate the concept of resident species such as anelloviruses and the impact of transient 

species such as community acquired respiratory viruses to underpin future research given the 

ubiquitous nature of the latter. Mapping the spatial architecture within the lung could also prove 

critical in localizing pathology to lung regions and providing potential targeted therapeutic 

options. Similarly, the ability to detect pathological alterations in the respiratory microbiome 

will depend on a deep understanding of the dynamics and inter-relationships between 

bacteria, viruses, fungi and archaea. The study of these relationships will perhaps become a 

field unto itself. To date, there are little data in this area as a silo mentality has prevailed which 

has allowed a focus on one component at a time, perhaps reflecting individual interests and 

experience, as well as the limits of technology available, not to mention financial constraints. 
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The challenge, therefore, for funding bodies especially, is to see and appreciate the whole, 

and not just the component parts. Only then, will the workings of the integrated machine 

become clear and our contemporary knowledge, which has been beset by false premises of 

microbial sterility of the lung, be cast aside to permit a revised vision of the complex microbial 

basis of this precious organ that allows us to breathe. Transplanting the human respiratory 

microbiome, as perforce is integral to lung transplantation, is a bold endeavor replete with its 

own special challenges where early exploratory evidence based on serial monitoring is 

showing promise of recognizing causes and outcomes of dysbiosis related to immune 

suppression. Whether real time analysis will permit therapeutic adjustments to facilitate better 

outcomes remains to be tested in the crucible of clinical practice. 
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Figure Legends: 

Figure 1: Dynamics of the Human Respiratory Microbiome 

The human respiratory microbiome comprises all organisms that live in or on the human lung 

and respiratory tract including bacteria, fungi, archaea, viruses and bacteriophages. 

Numerous forces combine to create a dynamic situation such that the net result represents 

the balance between acquisition, elimination and local defense measures designed to 

maintain an equilibrium between resident and transient species. 

Figure 2: Dysbiosis of the Lung Microbiome after Lung Transplantation 

After lung transplantation, the healthy lung equilibrium between resident and transient species 

may be challenged by the donor microbiome transplanted within the new lungs which may be 

qualitatively and quantitatively different from the microbiome of the explanted native lungs. 

Other external events can also lead to dysbiosis including community acquired respiratory 

virus infection, the ex-vivo stage of lung procurement and the impact of immune suppression. 

Figure 3: Dynamics of the Human Respiratory Virome after Lung Transplantation 
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This concept diagram demonstrates a potential temporal relationship between resident viral 

species within the lung and transient species. Specific events lead to blooms of resident 

species such as the ex-vivo stage of lung procurement and heightened immune suppression. 

It is likely but not proven that acute community acquired respiratory virus (CARV) infection 

may suppress resident species temporarily while the impact of the development of chronic 

lung allograft dysfunction (CLAD) may depend on phenotype and also on therapies employed. 

 


