Forensic intelligence: Applications in illegal drug trafficking

by

Harmonie Michelot

A thesis submitted for the

Degree of Doctor of Philosophy (Science)

University of Technology Sydney
Certificate of original authorship

I, Harmonie Michelot, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences at the University of Technology Sydney. This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Signature:

Harmonie Michelot

Production Note:
Signature removed prior to publication.

Date: 17.01.2019
First and foremost, my deepest gratitude goes to Prof. Claude Roux, who gave me the opportunity to come to the University of Technology, Sydney (UTS) and agreed to supervise this research project. Even with your demanding position, you always managed to find time to assist me with the project and personal issues, giving me wise advice and staying positive whatever the matter was. You also supported me during these past years both academically and financially for which I am grateful. Thank you for all the opportunities you gave me along the way to grow as a researcher.

I would like to acknowledge Dr Marie Morelato who co-supervised this research project. Your involvement with this research was far more important than a co-supervision and you took to heart your role since the first day I started. I thank you for your assistance and guidance not only with the research, but also with the PhD life as a whole. You shared your experience and pushed me to get the best out of my work which I appreciate.

Dr Scott Chadwick also co-supervised this research and even though we disagree on what a real cheese fondue is supposed to look like (“wheel cheese”, really?), I cannot hold it against you and I must thank you for being part of this adventure. You actively participated in the different projects, and even though it was not your primary field of expertise, you always showed interest to help me with the overall research. I would like to thank you for your optimism and always working in a joyous and relaxed atmosphere.

Dr Mark Tahtouh, my final co-supervisor, your interest for this project and your contribution to assist with the insight of the Australian Federal Police (AFP) were a great plus. Thank you for spending time with me to discuss my findings and always giving me your opinion so I could meet your expectations. I would also like to thank your involvement in the different projects, especially spending time ensuring I conducted experiments at the AFP and received proper training in Canberra to obtain valuable research results.

I would like to thank the Australian Federal Police for their collaboration on this project, especially for letting me use the IMS instrument and for preparing the samples I needed, as well as letting me use the Sydney headquarter facilities for the experiments.
My gratitude goes to the Hitachi Company for letting me use their instrument. In particular, Daisuke Kohara and Okuza Kazuhiko for their time and the trust they invested in us. I also would like to thank Dr Hadrian Fraval for his time and his interest in the project and for putting me in contact with the Hitachi Company.

I would like to thank everyone at UTS who assisted with the analytical side of the project, in particular Dr Ronald Shimmon, Dr Verena Taudte and Dr Linda Xiao.

I would like to thank the University of Lausanne for their collaboration. A special thanks to Prof. Olivier Ribaux who accepted this partnership and Prof. Pierre Esseiva for his wise advice.

I would like to thank all friends from all over the world who helped me get through this research life and showed me that great friendship does not stop even from the other side of the world. A special thank to Candice, Rolanda, Maelle and Lydie for helping me during the writing stage of my thesis.

To Matthieu, or as we say “Matt déménagement à votre service”! Thank you for those years of connivance.

To Rolanda, you are still present to listen to me and to give me advice even after leaving UTS, and most importantly thank you for making me discover the best dessert ever (Beavertail of course!).

To Lydie, you helped me transition from Australia to Switzerland and you were a great support during this last year.

To Maelle, thank you for spending hours over the phone so we could both encourage each other and realise we were living similar experiences.

To Candice, you followed this PhD from start to finish. You got so involved that you even decided to come for several months to the other side of the world even though it implied sharing a cockroach’s den (both literally and figuratively I shall say!). You welcomed me and cheered me up in the home stretch in your ‘beloved’ Bernardière. Thank you!
To you, Dimitri. You deserve a medal for your patience to cope with this situation and with myself. Let’s say I am not really a model of “Zen attitude”, and you stood by me in this tumultuous rollercoaster without turning a hair. 24 hours flights, jetlags, nothing stopped you from being present and supporting me during my research. As if it was not enough, you contributed to this thesis directly and indirectly. You should be entitled the researcher’s lifebelt; at least you were and are mine.

When I received the opportunity to realise what I had been pursuing during my studies, my parents did not show any reluctance and actually pushed me to “go away” on the other side of the world, as we say. During these past three years, although distance was felt, it did not impact on their presence to support me in my Australian experience by any means. They did manage to ensure that the research went smoothly by providing delicious cheese regularly to make sure my French blood would not modify while living in Sydney... Joke aside, this thesis is the achievement of ten years of studies, starting back exactly in September 2008. Thank you, Isabelle and Dominique, you are part of this achievement and this is definitely a team accomplishment: WE did it!

It is difficult to bring this research to a close. With the inevitable question of “What comes next?”, as a musician, I will quote Freddie Mercury for this one: “The show must go on!”
The research conducted during this project was presented at several international conferences listed below.

Oral presentations

Michelot H, *Drug profiling in an intelligence-led perspective*, presented at the 4th Doctoral School of the School of Criminal Justice of the University of Lausanne, 24th-27th August 2015, Les Diablerets (Switzerland)

Poster presentations

Table of contents

CERTIFICATE OF AUTHORSHIP AND ORIGINALITY ... III

ACKNOWLEDGEMENTS .. IV

LIST OF CONFERENCES ... VII

TABLE OF CONTENTS .. IX

LIST OF FIGURES .. XIV

LIST OF TABLES .. XVII

ABBREVIATIONS .. XVIII

ABSTRACT ... XXII

CHAPTER 1: THEORETICAL FRAMEWORK ... 1

1.1 CONTEXT ... 2

1.1.1 Forensic intelligence principles ... 2

1.1.2 Forensic drug intelligence ... 10

1.1.3 Forensic drug intelligence’s implementation in Australia ... 18

1.2 WHERE TO FROM HERE? ... 23

1.3 AIMS AND OBJECTIVES OF THE RESEARCH ... 26

CHAPTER 2: CHEMICAL TRENDS OF COCAINE AND HEROIN BORDER SEIZURES 29

2.1 INTRODUCTION ... 30

2.1.1 Background concepts: from cultivation to consumption ... 30

2.1.2 Chemical profiles of cocaine and heroin .. 36

2.1.3 Scope of this chapter .. 44

2.2 MATERIAL AND METHOD .. 45

2.3 RESULTS .. 46

2.3.1 Seizures distribution ... 46

2.3.2 Purity .. 48

2.3.3 Solvents ... 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td>Adulterants</td>
<td>53</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Diluents</td>
<td>56</td>
</tr>
<tr>
<td>2.4</td>
<td>DISCUSSION</td>
<td>57</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Purity</td>
<td>57</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Solvents</td>
<td>60</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Adulterants</td>
<td>63</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Diluents</td>
<td>66</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Cutting agents and public health</td>
<td>67</td>
</tr>
<tr>
<td>2.5</td>
<td>CONCLUSIONS</td>
<td>68</td>
</tr>
</tbody>
</table>

CHAPTER 3: MULTIVARIATE ANALYSIS OF CHEMICAL PROFILES OF COCAINE AND HEROIN BORDER SEIZURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>71</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Development of a training model</td>
<td>72</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Pre-treatments</td>
<td>75</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Comparison metrics</td>
<td>76</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Performance of the statistical method</td>
<td>81</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Scope of this chapter</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>METHODOLOGY</td>
<td>85</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Determination of suitable seizures</td>
<td>85</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Choice of variables</td>
<td>87</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Pre-treatments</td>
<td>88</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Comparison metrics</td>
<td>89</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Correlation matrix and classification</td>
<td>90</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Performance of the statistical method</td>
<td>92</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Seizures linked with circumstantial information</td>
<td>93</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Summary of the methodology followed in this study</td>
<td>94</td>
</tr>
<tr>
<td>3.3</td>
<td>RESULTS</td>
<td>95</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Determination of linked and unlinked populations</td>
<td>95</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Pre-treatments</td>
<td>97</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Correlation between variables</td>
<td>98</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Correlation between specimens</td>
<td>99</td>
</tr>
<tr>
<td>3.4</td>
<td>DISCUSSION</td>
<td>110</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Choice of statistical methods</td>
<td>110</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Selected seizures for the training dataset</td>
<td>112</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Chemical profiles of cocaine specimens</td>
<td>114</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Chemical profiles of heroin specimens</td>
<td>115</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Restricted usage of variables</td>
<td>116</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Complementary source of information</td>
<td>118</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Future directions</td>
<td>119</td>
</tr>
<tr>
<td>3.5</td>
<td>CONCLUSIONS</td>
<td>121</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>124</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Field instruments and current uses</td>
<td>125</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Banknotes studies</td>
<td>131</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Screening tools for the detection of illicit drugs on identity documents as a new approach</td>
<td>133</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Hypothetical case study</td>
<td>135</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Scope of this chapter</td>
<td>138</td>
</tr>
<tr>
<td>4.2</td>
<td>MATERIAL AND METHODS</td>
<td>142</td>
</tr>
<tr>
<td>4.2.1</td>
<td>General procedure</td>
<td>142</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Material: chemicals, surfaces and swabs</td>
<td>145</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Method</td>
<td>146</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Experiments</td>
<td>148</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Summary of the methodology followed in this study</td>
<td>152</td>
</tr>
</tbody>
</table>
Table of contents

APPENDIX 11 : HAMMING DISTANCE AND JACCARD INDEX FOR SOLVENTS’ PROFILE WITH BINARY VALUES OF COCAINE SPECIMENS .. 202

APPENDIX 12 : CORRELATION FOR ALKALOIDS AND SOLVENTS’ PROFILES COMBINED FROM COCAINE SPECIMENS 204

APPENDIX 13 : COMPARISON OF OBTAINED CORRELATIONS WITH ASSOCIATED TP, TN, FP AND FN FOR THE DIFFERENT PROFILES INVESTIGATED WITH COCAINE BORDER SEIZURES ... 205

APPENDIX 14 : SECONDARY TRANSFER WITH BANKNOTES .. 207

APPENDIX 15 : INTER-INDIVIDUAL VARIATION FOR DIRECT TRANSFER WITH FINGERS .. 208

REFERENCES.. 209
List of figures

Figure 1: The pyramid model of forensic intelligence [28] ... 4

Figure 2: Forensic intelligence cycle process [34] ... 5

Figure 3: The structure of illicit drug trafficking [33] ... 11

Figure 4: Different conceptions of drug profiling [65] ... 15

Figure 5: Two-dimensional representation of links’ inference depending on the trafficking network’s level .. 16

Figure 6: Australian Federal Police standardised sampling procedure .. 19

Figure 7: Australian Federal Police procedure regarding drug seizures .. 21

Figure 8: Summary of the research ... 28

Figure 9: Reduction in yield of cocaine during production .. 32

Figure 10: Chemical composition - presence in total mass of the specimen 42

Figure 11: Location of cocaine seizures per year in function of percentages of weights and seizures .. 47

Figure 12: Location of heroin seizures per year in function of percentages of weights and seizures .. 47

Figure 13: Purity of cocaine and heroin over six years .. 49

Figure 14: Percentage of solvents present in cocaine specimens over six years 51

Figure 15: Percentage of solvents present in heroin specimens over six years 52

Figure 16: Percentage of adulterants present in cocaine specimens over six years 54

Figure 17: Percentage of adulterants present in heroin specimens over six years 55
Figure 18: Percentage of diluents present in cocaine and heroin specimens over six years ... 56

Figure 19: Traditional statistical approach applied to illicit drugs’ data............................ 73

Figure 20: Intervariability calculations.. 80

Figure 21: Intravariability calculations.. 80

Figure 22: Ideal scenario to discriminate between linked and unlinked population [189] 82

Figure 23: Common scenario to discriminate between linked and unlinked population [189] 82

Figure 24: Procedure to obtain categories from correlation matrices............................ 91

Figure 25: Methodology employed in this study.. 94

Figure 26: Discriminative model for the alkaloids’ profile of cocaine data 102

Figure 27: Discriminative model for the alkaloids’ profile of heroin data 103

Figure 28: Discriminative model for the alkaloids’ profile including truxillines of cocaine data .. 105

Figure 29: Discriminative model for the impurities’ profile of heroin data..................... 108

Figure 30: Database containing results after screening of passports............................... 135

Figure 31: Links established from results in the database... 136

Figure 32: Added knowledge from established links... 137

Figure 33: Instrument DS-1100 N™ from Hitachi®.. 141

Figure 34: Sample preparation methodology... 143

Figure 35: Methodology developed for analysis after transfer, activity and persistence experiments .. 144

Figure 36: Methodology employed in this study.. 152
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Results obtained with IonScan 500 DT™</td>
<td>156</td>
</tr>
<tr>
<td>38</td>
<td>Results obtained with IonScan 500 DT™ including false positives</td>
<td>158</td>
</tr>
<tr>
<td>39</td>
<td>Results obtained with DS-1100 N™</td>
<td>161</td>
</tr>
<tr>
<td>40</td>
<td>Results obtained for simultaneous transfer of cocaine and heroin with DS-1100 N™</td>
<td>162</td>
</tr>
<tr>
<td>41</td>
<td>Results obtained for simultaneous transfer of methamphetamine and MDMA with DS-1100 N™</td>
<td>162</td>
</tr>
<tr>
<td>42</td>
<td>Limits of detection of the four drug standards obtained with DS-1100 N™</td>
<td>165</td>
</tr>
</tbody>
</table>
List of tables

Table 1: Sampling procedure in Australia ... 20

Table 2: Solvents values’ calculations at NMI ... 38

Table 3: Impurities detected in cocaine specimens .. 39

Table 4: Impurities detected in heroin specimens ... 41

Table 5: Illustration of Jaccard similarity coefficient calculations ... 79

Table 6: AUC values obtained for alkaloids’ profile of cocaine data .. 99

Table 7: AUC values obtained for alkaloids’ profile of heroin data ... 100

Table 8: AUC values obtained for solvents’ profile of cocaine data .. 106

Table 9: AUC values obtained for impurities’ profile of heroin data 107

Table 10: Summary of outcomes optimised in this study.. 121

Table 11: Summary of techniques employed for illicit drugs detection 127

Table 12: Parameters employed for IMS analyses ... 147

Table 13: Results from blind tests .. 163

Table 14: Summary of outcomes with comparison of techniques employed in this study 166
Abbreviations

- **ACBPS** : Australian Customs and Border Protection Services
- **ACT** : Australian Capital Territory
- **AFP** : Australian Federal Police
- **AIDDC** : Australian Illicit Drug Data Centre
- **AIDIP** : Australian Illicit Drug Intelligence Program
- **ATR-FTIR** : Attenuated Total Reflectance - Fourier Transform Infrared
- **APCI-ITMS-MS** : Ion trap tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization
- **AUC** : Area Under the Curve
- **CE-DAD** : Capillary Electrophoresis with Diode Array Detector
- **Corr** : Correlation
- **DEA** : Drug Enforcement Administration
- **DTB** : Direct Transfer experiment with Benchtop
- **DTF** : Direct Transfer experiment with Fingers
- **ELSD** : Evaporative Light Scattering Detector
- **ENIPID** : Enhanced National Intelligence Picture on Illicit Drugs
- **FASS** : Forensic and Analytical Science Service
• FN : False Negative

• FP : False Positive

• GC-MS : Gas Chromatography coupled to a Mass Spectrometer

• HPLC : High-Performance Liquid Chromatography

• HS-GC-FID : Head Space Gas Chromatography coupled to a Flame Ionisation Detector

• ICPMS : Inductively Coupled Plasma Mass Spectrometry

• IMS : Ionisation Mobility Spectrometry

• IRMS : Isotopic Ratio Mass Spectrometry

• LC-MS : Liquid Chromatography coupled to a Mass Spectrometer

• LOD : Limit of detection

• LT : Linear transformation

• MA : methylamphetamine

• MDMA : 3,4- Methylenedioxyamphetamine

• MEK : Methyl ethyl ketone

• MIBK : Methylisobutylketone

• N : Normalisation

• NMI : National Measurement Institute

• NPS : New Psychoactive Substances
• **NSW** : New South Wales

• **PEDIT** : Physical Examination Data Input Template

• **PROMIS** : Police Real Time Online Management Information System

• **PTHIT** : Phenyltetrahydroimidazothiazole

• **ROC** : Receiving Operator Curve

• **SIM** : Single Ion Monitoring mode

• **Sqrt** : Square Root

• **STRL** : Special Testing and Research Laboratory

• **THC** : Tetrahydrocannabinol

• **TN** : True Negative

• **TP** : True Postive

• **UNODC** : United Nations Office on Drug and Crime

• **3-MAM** : 3-MonoAcetylMorphine

• **6-MAM** : 6-Monoacetylmorphine

• **10min A** : 10 minutes of Activity experiment

• **30min A** : 30 minutes of Activity experiment

• **1h A** : One hour of Activity experiment

• **12h P** : 12 hours Persistence experiment
• **24h P**: 24 hours Persistence experiment

• **2nd T**: Secondary transfer experiment
Abstract

This research aimed at getting a better understanding of illicit drug trafficking, especially from an Australian point of view, by looking at different approaches of getting valuable information in a timely fashion for forensic intelligence purpose. The study was conducted in collaboration with the Australian Federal Police (AFP) who provided appropriate data. In return, the study was expected to provide findings to grow their knowledge about such criminal phenomenon that is illegal drug trafficking.

Two distinct approaches were undertaken. The first one was an analysis of chemical results of cocaine and heroin border seizures performed by the AFP during 2008 and 2013. Trends regarding the purity as well as added compounds over time and per geographic location were discovered. Moreover, statistical methods were applied on the provided datasets to assess the feasibility to develop an automatic triage of those chemical results and highlighting links between seizures based on their chemical data. Promising results with few error rates were obtained, as cocaine seizures could be discriminated with 9.36 % of false positives and 2.45 % of false negatives, and heroin seizures could be discriminated with 4.82 % of false positives and 2.94 % of false negatives. Therefore, the automatic statistical model could be implemented for routine use at the AFP.

The second approach was a proof of concept study investigating the possibility to use currently deployed portable instruments for intelligence purpose instead of the traditional identification and case-specific aim that they are designed for. Three different technologies were tested, Attenuated Total Reflectance - Transform Infrared spectroscopy (ATR-FTIR), Ion Mobility Spectroscopy (IMS) and Ion trap tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization (APCI-ITMS-MS) for the detection of remnants of drugs present on the surface of passports, using various parameters including transfer, activity and persistence. An experimental design was developed and different scenarios were trialled. Promising results were obtained especially with APCI-ITMS-MS, as drugs’ residues could be detected even after an activity of thirty minutes in quantities less than 0.05 μg. The findings demonstrate that a routine use at customs would be feasible to obtain a better overview of trafficking flows instead of targeting specific individuals.
Abstract

The different projects conducted within this research emphasise the need for data triangulation and using various source of information to get a more holistic view of the criminality, in this case illegal drug trafficking.