

BACTERIAL CELL DIVISION; A NOVEL TARGET FOR NEW ANTIBACTERIALS

Kennardy Dewanto Kusuma

January 2019

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Certificate of originality

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

I also verify that the research conducted for this thesis is supported by the Australian

Government Research Training Program.

Production Note:

Signature removed prior to publication.

Kennardy D. Kusuma

August 2018

١

Acknowledgements

This PhD project has been a very long and exciting journey for me and I have many people to thank for that. First and foremost, I have to thank God for His grace and mercy in keeping my health and giving me the time to undertake this journey and see it through to completion. I would also like to thank my principal supervisor, Professor Liz Harry, as well as my secondary supervisors, Associate Professor Alison Ung and Dr Amy Bottomley. They have all constantly inspired me with their enthusiasm and passion for science. They have not only taught me how to be a better scientist but have also shaped me into the person that I am today. Their constant encouragement and advice on all things related to science and otherwise are words that have kept me going throughout this PhD project and I know that this PhD would not have been possible without their help. The three of them have been fantastic mentors throughout my research journey and I couldn't have asked for better supervisors. I would also like to thank the three of them in helping read and re-reading this thesis. Without their proof-reading efforts, I fear that this thesis would have been incomprehensible.

I would also like to thank the people of the Harry lab (past and present) for their friendship and assistance both in and outside the lab; Hajime, Sam, Leigh, Jaye, Mike S, Mike L, Andrew, Cath, Amy, Nural, Cindy, Isa, Shirin, Beth, Daniel, Riti and Liz P. You guys have made the lab such an amazing place to work! Your knowledge and passion for science is infectious and inspiring.

A special thanks to Iain Duggin and Amy for being great mentors in the early years of my PhD during protein purifications. Also, Nick Dixon, Aaron Oakley, Nan and Faye with all protein chemistry knowledge and the tricks of the trade. I would also like to thank Joel Mackay and Lorna White for their help and insights into the world of NMR and both David Jacques and Kate Michie for mentoring me in the art of protein

crystallization. I would also like to thank the university and the i3 institute for providing equipment and lab space for conducting experiments. I would also like to thank our collaborators overseas for providing strains and assistance. In particular, I would like to thank Professor Frederico José Gueiros Filho from the Universidade de São Paulo for providing the *B. subtilis* FtsZ mutant protein that allowed me to complete my PhD and submit this thesis.

On a personal note, I would like to thank my family; dad, mum, Fabian and Quentina for their continuous love and support, as well as reminders which constantly drives me to be the best that I can be. I owe a big thanks to my extended family of uncles, aunties and friends from Galilee Best Unity Church Inc. which have supported me and encouraged me along the way. I wouldn't even be here without your support.

Lastly, I would like to thank the Australian government for providing me with an Australian postgraduate award. Without this financial assistance, I would not have a roof over my head and meals would be limited to drinking water.

Table of Contents

Certificate of originality	I
Acknowledgements	II
Table of Contents	IV
List of Figures and Tables	X
Abbreviations	XVI
Publications	XIX
Abstract	XXI
CHAPTER 1 - INTRODUCTION	1
1.1 THE IDEAL ANTIBIOTIC	1
1.2 TARGETS OF CURRENTLY APPROVED ANTIBIOTICS	5
1.3 MECHANISMS OF RESISTANCE TO CURRENTLY APPROVED ANTIE	BACTERIAL
AGENTS	10
1.3.1 Modification of the target	10
1.3.2 Enzymatic inactivation	12
1.3.3 Efflux pumps	13
1.3.4 Reduced permeability	15
1.3.5 Possible solutions to antibiotic resistance	15
1.4 CELL DIVISION AND DIVISION PROTEINS	18
1.6 FTsZ: THE PROKARYOTIC HOMOLOGUE OF TUBULIN	21
1.7 FTSA: AN ACTIN-LIKE FTSZ-INTERACTING PROTEIN	23
1.8 Interaction between FtsZ and FtsA	25
1.9 Is FTSZ A GOOD ANTIBACTERIAL TARGET?	27
1.10 Inhibitors of FtsZ: The Benzamide Derivatives	31
1 10 Thesis aims	33

CHAPTER 2 - MATERIALS AND METHODS	43
2.1 Materials	43
2.1.1 Chemicals	43
2.1.2 Solutions	44
2.1.3 Bacterial strains and plasmids	47
2.2 METHODS	56
2.2.1 DNA manipulation	56
2.2.1.1 Plasmid extraction.	56
2.2.1.2 Preparation and transformation of electro-competent <i>E. coli</i>	56
2.2.1.3 PCR amplification of wild-type <i>B. subtilis ftsZ</i> ^{$12-315$} gene	57
2.2.1.4 Restriction digest of the PCR product and plasmid	58
2.2.1.5 Ligation of the PCR product and plasmid	58
2.2.1.6 Colony PCR	59
2.2.2 Protein purification	59
2.2.2.1 Overproduction trial of <i>Acinetobacter</i> FtsZ and FtsA	59
2.2.2.2 Analysis of the Acinetobacter FtsZ and FtsA protein overproduc	tion
and solubility	60
2.2.2.4 Ammonium sulphate precipitation trial	61
2.2.2.5 Sodium chloride dialysis trial	62
2.2.2.6 Optimized purification protocol	62
2.2.3 Functional assays	68
2.2.3.1 GTPase assay using wild-type <i>B. subtilis</i> FtsZ ¹²⁻³¹⁵	68
2.2.4 Nuclear Magnetic Resonance	70
2.2.4.1 Competition experiment using HSQC	70
2.2.5 Crystallography	70

2.2.5.1 Setting up crystal trays	70
2.2.6 Molecular modelling	71
2.2.6.1 Creating a protein homology model of Staphylococcus aureus	s FtsZ and
Acinetobacter FtsA	71
2.2.6.2 Assessing the validity of the homology models	72
2.2.6.3 Protein-protein interaction using docking	73
2.2.6.4 Superimposition of multiple crystal structures	74
2.2.6.5 Identification of Accessible Binding Spheres	75
2.2.6.6 Molecular Dynamics Simulations	75
CHAPTER 3 - UNDERSTANDING THE INTERACTION OF	
ACINETOBACTER FTSZ AND FTSA USING IN SILICO METHODS	77
3.1 Introduction	77
3.1.1 Interaction between FtsZ and FtsA	79
3.2 RESULTS: INSILICO INVESTIGATION OF THE INTERACTION BETWEEN	FTSZ
AND FTSA IN ACINETOBACTER	82
3.2.1 Analysis of full-length FtsZ amino acid sequence alignment to ide	entify the
conserved C-terminal peptide in Acinetobacter FtsZ	82
3.2.2 Accuracy validation of the 3D modelling program through the re-	
construction of the published Staphylococcus aureus FtsZ structure	87
3.2.3 In silico reconstruction of Acinetobacter spp. FtsA tertiary structu	ure92
3.2.4 In silico model of Acinetobacter spp. FtsZ and FtsA interaction	97
3.3 DISCUSSION	103
CHAPTER 4 – PROTEIN PURIFICATION OF FULL-LENGTH	
ACINETOBACTER FTSZ AND FTSA FOR IN VITRO INTERACTION	N STUDY
	108

4.1 Introduction 108
4.2 RESULTS: OVERPRODUCTION AND PURIFICATION OF THE FULL-LENGTH
ACINETOBACTER FTSZ AND FTSA PROTEINS
4.2.1 Overproduction and solubility analysis of Acinetobacter baumannii and
Acinetobacter baylyi full-length FtsZ
4.2.2 Ammonium sulphate precipitation trial of untagged Acinetobacter full-
length FtsZ114
4.2.3 Purification trial of full-length Acinetobacter untagged FtsZ117
4.2.4 Analysis and prevention of proteolysis of full-length A. baylyi untagged
FtsZ during purification
4.2.5 Purification of full-length A. baylyi untagged FtsZ leading to X-ray
crystallography trials
4.2.6 Crystallography trials using full-length A. baylyi untagged FtsZ123
4.2.7 Overproduction analysis of full-length A. baylyi N-terminus and C-
terminus hexa-histidine-tagged FtsA125
4.2.8 Purification trial of full-length A. baylyi C-terminal hexa-histidine-tagged
FtsA using nickel affinity chromatography
4.2.9 Concentrating full-length A. baylyi C-terminal hexa-histidine-tagged FtsA
using various methods
4.2.10 Confirming full-length A. baylyi C-terminal hexahistidine-tagged FtsA
polymeric state via size exclusion chromatography
4.3 DISCUSSION
CHAPTER 5 - IN SILICO ANALYSIS OF FTSZ CRYSTAL STRUCTURES TO
BETTER UNDERSTAND ITS POTENTIAL AS A DRUG TARGET138
Preface 138

5.1 Introduction	138
5.2 RESULTS AND DISCUSSION: IN SILICO ANALYSIS OF FTSZ STRUCTURES	FROM
DIFFERENT BACTERIAL SPECIES	141
5.2.1 Comparison of GDP-bound FtsZ structures from different bacterial	species
	141
5.2.1.1 Superimposition of published FtsZ X-ray crystal structures	141
5.2.1.3 Comparison of accessible binding sites between GDP-bound Fts	sZs
from various bacterial species	149
5.2.2 Comparing GTP and GDP-bound FtsZ of various bacterial species	154
5.2.2.1 Comparison of GTP- and GDP-bound FtsZ structures	154
5.2.2.2 Accessible binding site comparison of GTP- and GDP-bound no	on-
staphylococcal FtsZ structures	157
5.2.3 Molecular dynamics simulation	161
5.3 CONCLUSION	167
CHAPTER 6 - FRAGMENT-BASED DRUG DISCOVERY USING FTSZ	Z AS A
TARGET	168
6.1 Introduction	168
6.1.1 Inhibitors of FtsZ	168
6.1.2 Fragment-based drug discovery	169
6.1.3 Requirements for a successful FBDD project	170
6.1.4 Fragment-based drug screening using NMR	171
6.1.5 Producing compounds by fragment-linking and -growing	173
6.2 RESULTS: FRAGMENT-BASED DRUG DISCOVERY USING B. SUBTILIS FTS.	Z AS
THE TARGET	176

6.	.2.1 Bioinformatically identifying the mutation A182E on B. subtilis FtsZ	
st	tructure	176
6.	.2.2 Initial fragment-based drug screening	177
6.	.2.3 TROSY-HSQC screen with ^{15}N labelled B. subtilis $FtsZ^{1-315}$ $A182E$	182
6.	2.4 HSQC-NMR competition experiment using B. subtilis $FtsZ^{1-315}$ $A182E$	184
6.	.2.5 Overproduction and purification of wild-type B. subtilis $FtsZ^{12-315}$	188
6.	.2.6 Functional assay using a GTPase kit with the wild-type B. subtilis Fts.	Z^{12-315}
		192
6.	.2.7 Triple-ligand detect experiment using wild-type B. subtilis $FtsZ^{12-315}$ to)
co	onfirm the binding of the fragment 1, 3 and 14 to the wild-type protein	195
6.	.2.8 Crystallization of wild-type B. subtilis FtsZ ¹²⁻³¹⁵	197
6.3 1	DISCUSSION	208
СНАН	PTER 7 - GENERAL DISCUSSION	214
СНАЕ	PTER 8 - REFERENCES	223

List of Figures and Tables

Figure 1.1: Pathways targeted by antibiotics	3
Figure 1.2: Timeline of antibiotic discovery	4
Figure 1.3: Mechanisms of lateral gene transfer	9
Figure 1.4: Vancomycin resistance mechanism of action	11
Figure 1.5: The working of the efflux pump complex TolC-Acr	AB in E.
coli	14
Figure 1.6: Schematic of <i>E. coli</i> and <i>B. subtilis</i> cell division	19
Figure 1.7: The E. coli cell division proteins and their partner	s that
form the divisome	20
Figure 1.8: Crystal structure of M. jannaschii FtsZ and its abi	lity to
polymerise	23
Figure 1.9: The crystal structures of FtsA from T. maritima an	d actin25
Figure 1.10: Structural comparison of S. aureus FtsZ and hum	an α-
tubulin	29
Figure 2.1: Standard curve of known phosphate concentration	vs
absorbance at 650 nm	68
Figure 2.2: An example of a well set up in the 96-welled MRC	plate for
crystallography	71
Figure 3.1: Crystal structure of FtsA from T. maritima bound	to FtsZ C-
terminal peptide	80
Figure 3.2: Full-length FtsZ amino acid sequence alignment using Clu	ıstal Omega
	83
Figure 3.3: Peptide location affects linker length	86

Figure 3.4: Superimposition of S. aureus FtsZ homology model to) that of
the S. aureus FtsZ X-ray crystal structure using Discovery	Studio
4.5	91
Figure 3.5: Homology modeling workflow in Discovery Studio 4.5	592
Figure 3.6: 3D-Profile Verification of the Acinetobacter spp. hom	nology
FtsA model using Discovery Studio 4.5	96
Figure 4.1: A. baylyi/baumannii untagged FtsZ purification work	flow 113
Figure 4.2: Ammonium sulphate precipitation trials of untagged	<i>A</i> .
baumannii and A. baylyi FtsZ	115
Figure 4.3: Testing of untagged A. baumannii and A. baylyi FtsZ	
stability in a range of sodium chloride concentrations	116
Figure 4.4: Testing gel filtration method using A. baylyi and A.	
baumannii untagged FtsZ revealed a double band	117
Figure 4.5: A. baylyi untagged FtsZ purification	120
Figure 4.6: Test to see if proteolysis happens during cell lysis for	A.
baylyi FtsZ	121
Figure 4.7: Successful A. baylyi untagged FtsZ purification	123
Figure 4.8: Microcrystal formation of A. baylyi untagged full-len	gth
FtsZ	125
Figure 4.9: Overproduction screening of full-length A. baylyi N-	
terminus and C-terminus hexa-histidine-tagged FtsA	127
Figure 4.10: A. baylyi/baumannii N- and C-hexahistidine tagged I	FtsA
purification workflow	128
Figure 4.11: Inclusion bodies purification trial of N-terminus and	d C-
terminus his-tagged A. baylyi full-length FtsA from 1L culti	are128

Figure 4.12: Purification trial of A. baylyi C-terminal hexahistidin	e-
tagged full-length FtsA	130
Figure 4.13: Concentrating full-length A. baylyi C-terminal	
hexahistidine-tagged FtsA via dialyzing against PEG 20,000.	132
Figure 5.1: Druggable regions of FtsZ	140
Figure 5.2: Superimposition of FtsZ from various organisms and o	f FtsZ
structures with human α- and β-tubulin	143
Figure 5.3: Comparison of druggable pocket sizes between FtsZ fr	om
different organisms	147
Figure 5.4: Comparison of the accessible binding sites of various (GDP-
bounded FtsZ structures	152
Figure 5.5: Amino acid sequence alignment of the T6-loop from m	ultiple
bacterial species using Clustal Omega	153
Figure 5.6: Analysis of the accessible binding sphere of S. aureus	FtsZ
when bound to different nucleotides and the FtsZ inhibitor	
PC190723	157
Figure 5.7: A model of structural changes in monomeric FtsZ upon	n
binding to GDP and GTP	160
Figure 5.8: Conformational change of B. subtilis FtsZ	162
Figure 5.9: Conformational change of S. aureus FtsZ when bound	to
nucleotides and an inhibitor	165
Figure 5.10: Conformational change of S. aureus FtsZ	166
Figure 6.1: Chemical structure of Vemurafenib and Venetoclax	171
Figure 6.2: Examples of antibacterials that were developed from	
fragment-based drug discovery	171

Figure 6.3: Typical schematic of fragment-based drug discovery
Figure 6.4: The process of fragment linking
Figure 6.5: The process of fragment growth
Figure 6.6: Indication of the A182E mutation position in the B. subtilis
FtsZ
Figure 6.7: Cut-off value for determining "hit" fragments in the triple-
ligand detect experiments
Figure 6.8: Mapping the binding location of the four hit fragments on the
B. subtilis FtsZ crystal structure
Figure 6.9: An example spectrum showing fragment binding to B.
subtilis FtsZ ¹⁻³¹⁵ A182E
Figure 6.10: The preferred binding site of fragment 1, 3 and 14 on the
B. subtilis FtsZ ¹⁻³¹⁵ A182E
Figure 6.11: Overproduction of wild-type B. subtilis FtsZ ¹²⁻³¹⁵
Figure 6.12: Chromatogram and SDS-PAGE of size exclusion
chromatography during the purification of wild-type B. subtilis
$FtsZ^{12-315}$
Figure 6.13: Concentrated protein sample of wild-type B . $subtilis$ $FtsZ^{12}$
³¹⁵ from peak 1 and peak 2
Figure 6.14: Testing the protein sample for phosphate contamination
using malachite green
Figure 6.15: Calculated GTPase specific activity of wild-type B. subtilis
FtsZ ¹²⁻³¹⁵ at different protein concentrations
Figure 6.16: Diffraction pattern produced by wild-type B. subtilis
FtsZ ¹²⁻³¹⁵ crystal203

Figure 6.17: Optimization of crystallization condition of wild-ty	ype <i>B</i> .
subtilis FtsZ ¹²⁻³¹⁵ protein resulted in the increase of crysta	ıl size .204
Figure 6.18: The effect of using 20% glycerol as a cryoprotecta	nt to the
crystal diffraction pattern	207
Table 1.1: Current reported inhibitors of FtsZ and experimental evide	nce
provided	35
Table 2.1: Antibiotic sources and their working concentration for <i>E. co</i>	o li 43
Table 2.2: Media used in this study	43
Table 2.3: Solutions used in this study	44
Table 2.4: Bacterial strains used in this study	47
Table 2.5: Plasmids used and constructed in this study	53
Table 2.6: Primers used for the PCR amplification of <i>B. subtilis</i> FtsZ ¹²	-31557
Table 2.7: The molecular weight, pI and extinction coefficient of prote	ins used in
this study	67
Table 3.1: S. aureus FtsZ homology model analysis	90
Table 3.2: Acinetobacter spp. FtsA homology model analysis	95
Table 3.3: Simulated interactions of T. maritima FtsZ to A. baumannii	/baylyi
FtsA	99
Table 4.1: Examination of strains and induction temperatures to overp	oroduce
soluble A. baumannii and A. baylyi FtsZ	112
Table 5.1: RMSD values obtained from the superimposition of FtsZ ar	d tubulin
structures	144
Table 5.3: FtsZ structural differences between the GDP- and GTP-box	ınd states
	155

Table 6.1: Mutant B. subtilis FtsZ amino acid residues which changed up	on
fragment binding during the TROSY-HSQC experiment	182
Table 6.2: Amino acid of mutant B. subtilis FtsZ which experienced a cha	ange in
their signals upon the addition of fragments and GDP	185
Table 6.3: Comparison of triple-ligand detect experimental data between	mutant
and wild-type B. subtilis FtsZ protein	197
Table 6.4: Conditions which were identified to produce <i>B. subtilis</i> FtsZ ¹²	-315
crystal with sharp edges	199
Table 6.5: Cell dimension of the crystal form pursued in this study	205

Abbreviations

°C Degrees Celcius

 μ Micro (10⁻⁶)

¹⁵N Nitrogen 15

Å Angstrom

ADP Adenosine 5'-diphosphate

Amp^r Ampicillin resistance

APS Ammonium per sulfate

ATP Adenosine 5'-triphosphate

bp Base pair(s)

cm centimeter

Cα alpha carbon

Da Dalton(s)

DNA Deoxyribose nucleic acid

dNTPs deoxyribonucleotide triphosphate

DTT Dithiothreitol

FD Faraday constant

fts Filamentous temperature sensitive

g Gram(s)

GDP Guanosine 5'-diphosphate

GTP Guanosine 5'-triphosphate

h Hour(s)

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

IPTG Isopropyl-1-thio-β-D-galactopyranoside

K Kelvin

Kan^r Kanamycin resistance

kb Kilobase(s)

K_d Dissociation constant

kDa Kilo (10^3)

L Liter

LB both Luria-Bertani broth

m Milli (10⁻³)

M Moles per Liter (Molar)

min Minute(s)

MTS Membrane targeting sequence

MWCO Molecular weight cut off

n Nano (10⁻⁹)

NBD nucleotide-binding domain

 $OD_{(x)}$ Optical density measured at x nanometer wavelength

p Probability

PCR Polymerase chain reaction

PEG Poly-ethylene glycol

PMSF Phenylmethylsulfonyl fluoride

ps Picosecond

R resolution

RMSD root mean square deviation

RNA Ribonucleic acid

rpm Revolution per minute

rRNA Ribosomal ribonucleic acid

SDS Sodium dodecyl sulphate

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

sec Second(s)

STD-NMR Saturated transfer difference nuclear magnetic resonance

TEMED Tetramethylethylenediamine

Tet^r Tetracycline resistance

Tris Tris(hydroxymethyl)methylamine

TROSY-HSQC Transverse relaxation optimized spectroscopy-heteronuclear

single quantum coherence

U Units (enzyme activity)

V Volts

v/v Volume per volume

w/v Weight per volume

Xg Times gravity

 Ω Ohms

Publications

Journal articles

Bottomley AL, Liew ATF, **Kusuma KD**, Peterson E, Seidel L, Foster SJ, et al. Coordination of Chromosome Segregation and Cell Division in *Staphylococcus aureus*. Frontiers in Microbiology. 2017;8(1575).

Kusuma KD, Griffith R, Harry EJ, Bottomley AL, Ung AT. *In silico* Analysis of FtsZ Crystal Structures Towards a New Target for Antibiotics. Australian Journal of Chemistry. 2018

Conference proceedings

Kusuma KD, Amy Bottomley, Alison Ung, Aaron Oakley, Nick Dixon, Nan Li, Elizabeth Harry (2015) Cell division as a new target for the development of antibiotics against *Acinetobacter*, East Coast Protein Meeting, Brisbane, Poster presentation.

Kusuma KD, Amy Bottomley, Elizabeth Harry, Renate Griffith, Alison Ung (2017) Understanding FtsZ as an antibacterial target, Solution for Drug-Resistant Infections Conference, Brisbane, Poster presentation.

Abstract

The problem of antibiotic resistance is a complex issue and one that urgently needs addressing from multiple sectors, including agriculture, medicine, science/research, government, social science, businesses and the community. Although many strategies are being implemented around the world to address these different aspects that contribute to the rise and spread of antibiotic resistance, one further possibility to help alleviate this problem is through the design of novel antibiotics. The essential process of bacterial cell division, is yet to be targeted by any of the FDA-approved antibiotics and represents an untapped area of potential drug targets. In this thesis, the overall strategy of inhibiting the bacterial cell division process is to target the essential and conserved protein FtsZ in two ways: Firstly, to understand the essential interaction of FtsZ with another division protein, FtsA as a starting point to design inhibitors of division complex formation and, secondly, to develop compounds that inhibit FtsZ function.

Characterizing the protein-protein interaction of FtsZ and its partner FtsA used the proteins from the organism *Acinetobacter* spp.. This is because *A. baumannii* is now classified by the World Health Organization as a priority 1 pathogen that urgently needs an antibiotic against due to its high multidrug resistance profile, as well as causing high mortality rates. Two of the most highly conserved bacterial cell division proteins, FtsZ and FtsA, have been recognised as promising drug targets in *Acinetobacter* spp. and other bacteria. The interaction of these two proteins has been known for over a decade with mutational studies indicating that the conserved aspartate and proline at the extreme C-terminal peptide of FtsZ being the important amino acid residues for the interaction of FtsZ and FtsA in *Escherichia coli* and other bacterial species. Cocrystallography of *Thermotoga maritima* FtsZ C-terminal peptide and FtsA identified

an additional amino acid; arginine, to be important in the interaction of FtsZ and FtsA. In the *Acinetobacter* spp. the aspartate, proline and arginine have been changed to a serine, glutamine and lysine, respectively. Understanding this could potentially be used to develop new narrow-spectrum antimicrobials to specifically treat *Acinetobacter* infections. The work in this thesis attempted to understand the implication of these amino acid differences by initially conducting an *in silico* study. The data obtained suggests that the serine, glutamine and lysine are important for the FtsZ/FtsA interaction of *Acinetobacter* spp. Further follow up co-crystallographic studies were planned using full-length *Acinetobacter* FtsZ and FtsA. Both of these full-length *Acinetobacter* proteins were successfully purified in this study but, the purified FtsZ protein was unable to form crystals of acceptable size for structure determination, while the purified FtsA were found to be aggregated. Therefore, in the interest of time and for gaining positive results, the focus of the project was shifted towards solely understanding and targeting FtsZ.

Thus far, many published FtsZ inhibitors have been shown to target FtsZ in one of the three druggable regions on the protein: nucleotide-binding domain, interdomain cleft and T7-loop. A missing piece of information is an in-depth understanding of FtsZ structure at the molecular level across diverse bacterial species to ensure inhibitors have high affinity for the FtsZ target in a variety of clinically relevant pathogens. To address this, an *in silico* investigation was conducted by analysing multiple FtsZ structures, which revealed that FtsZ groups into two distinct classes based on structural differences. The outcome of this analysis lead to the suggestion of several binding pockets on FtsZ which can potentially be used as a broad- and narrow-spectrum target. The use of fragment-based drug discovery approach, allowed the confirmation of one of the suggested pockets, which is located towards the front of the nucleotide-binding domain.

This pocket is yet to be reported in the literature, therefore, allowing the possibility of novel drug design to contribute in tackling the global issue of antimicrobial resistance.