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Abstract

Network representation aims to learn a latent feature space so that artificial intelligent

algorithms can be applied based on the latent features. The set of latent features is

obtained from the information hidden behind network structures, which is learned to

provide knowledge for traditional machine learning tasks, such as node classification,

recommendation and data visualization. Networks, which are a kind of structured

data, limit the representation performance in the structure searching process. There-

fore, a good node sampling strategy plays an important role in network representation.

Recent research has driven significant progress in network representation by employ-

ing random walk as the network sampling strategy. However, real-world large-scale

information networks naturally have structural sparsity. The existing approaches

to random walk-based network representations are in the domain-specific view to

represent the nodes in a vector format, which cannot guarantee a good representation

by one network knowledge learning.

To address these gaps, this research proposes a framework and develops two

algorithms to adapt useful information across relational large-scale information net-

works and allows the information of the network structure to be transferred from one

network to another network to improve the performance of network representation.

First, a novel framework of transferring structures across large-scale information



vi

networks (FTLSIN) is proposed. FTLSIN consists of a two-layer random walk

to measure the relations between two networks and predict the links across them.

Second, a cross-domain network representation algorithm (CDNR) is proposed

to demonstrate the knowledge which transfers across domains. CDNR learns the

structural information from dense networks to sparse networks and further defines

the two-layer random walk in unsupervised feature learning with a cross-domain

node mapping procedure and a cross-domain walk mapping procedure. Thirdly,

a cross-domain similarity learning algorithm (CDSL) is proposed to acquire the

most relevant knowledge from the external network. CDSL is nested in the biased

random walk-based node sampling and targets the minimum cost of searching the

neighborhood in the biased random walk that considers the first-order and second-

order walking; and the neighborhood is described by a dual centrality indicator

which consists of closeness centrality and betweenness centrality. The developed

framework and the two algorithms are very innovative and significantly contribute to

both fields of transfer learning and network representation.
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