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Abstract

Network representation aims to learn a latent feature space so that artificial intelligent

algorithms can be applied based on the latent features. The set of latent features is

obtained from the information hidden behind network structures, which is learned to

provide knowledge for traditional machine learning tasks, such as node classification,

recommendation and data visualization. Networks, which are a kind of structured

data, limit the representation performance in the structure searching process. There-

fore, a good node sampling strategy plays an important role in network representation.

Recent research has driven significant progress in network representation by employ-

ing random walk as the network sampling strategy. However, real-world large-scale

information networks naturally have structural sparsity. The existing approaches

to random walk-based network representations are in the domain-specific view to

represent the nodes in a vector format, which cannot guarantee a good representation

by one network knowledge learning.

To address these gaps, this research proposes a framework and develops two

algorithms to adapt useful information across relational large-scale information net-

works and allows the information of the network structure to be transferred from one

network to another network to improve the performance of network representation.

First, a novel framework of transferring structures across large-scale information



vi

networks (FTLSIN) is proposed. FTLSIN consists of a two-layer random walk

to measure the relations between two networks and predict the links across them.

Second, a cross-domain network representation algorithm (CDNR) is proposed

to demonstrate the knowledge which transfers across domains. CDNR learns the

structural information from dense networks to sparse networks and further defines

the two-layer random walk in unsupervised feature learning with a cross-domain

node mapping procedure and a cross-domain walk mapping procedure. Thirdly,

a cross-domain similarity learning algorithm (CDSL) is proposed to acquire the

most relevant knowledge from the external network. CDSL is nested in the biased

random walk-based node sampling and targets the minimum cost of searching the

neighborhood in the biased random walk that considers the first-order and second-

order walking; and the neighborhood is described by a dual centrality indicator

which consists of closeness centrality and betweenness centrality. The developed

framework and the two algorithms are very innovative and significantly contribute to

both fields of transfer learning and network representation.
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Chapter 1

Introduction

1.1 Background

Information networks (Newman, 2010) is a kind of structure-based data, which

employ network topology structures to save a part of information. Large-scale

information network ranges the size from hundreds of nodes to millions and billions

of nodes (Tang et al., 2015). The large volume of nodes make complex connections

over the network and contains complex data structures than normal information

networks. To fully analyze such kind of information networks is a quite challenging

problem especially in machine learning domain.

The large-scale information network datasets, which are extracted from real-

world complex systems, are rich in domain-specific information. New techniques

are needed to learn the knowledge from network structures, and the aim of network

research in the big data age is to learn this knowledge in an intelligent way. Networks

categorize the components (nodes), the direct interactions (links), and the connection

strengths (weights of the links) to explain the properties of systems in the physical
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information networks that share the same substructures: subset networks of (a)

social network formed by users {A1,B1,C1,D1} and user friendships; (b) biological

network formed by proteins {A2,B2,C2,D2} and protein-protein interactions; and

(c) citation network formed by authors {A3,B3,C3,D3} and collaborations. Figure

1.1 (d) extracts the network structure of (a), (b) and (c) formed by nodes {A,B,C,D}

and their links. It is worth noting that although the nature of the nodes and the links

differ in various systems, as shown in Figure 1.1 (a)-(c), the sub-structures may be

exactly the same, as illustrated in Figure 1.1 (d). It is therefore also a challenging

task to acquire useful information that may be hiding behind these different types of

networks.

Network representation, also known as network embedding, allows analyzing

the network structure and mining the information behind the structure in a machine

learning perspective (Huang et al., 2017; Wang et al., 2017). By generating a la-

tent representation space in relatively low dimensions from the interactions in high

dimensions, network representation inputs a structured data of graph and outputs

the embeddings of the graph in a specific dimensional space. It guarantees the

correspondence between community structure in the input graph and its embeddings.

Therefore, the main advantage of network representation is that the learned repre-

sentations encode community structure, so it can be easily exploited by simple and

standard classifiers (Bhagat et al., 2011).

Good network representation in a domain-specific network topology structure

will ensure that the subsequent learning algorithm is appropriate. Network repre-

sentation learns a latent feature/vector space by learning the information from the

network structures formed by nodes, links and weights (Tang and Liu, 2009). It

is particularly useful in non-decomposable systems because it allows the network
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structure to be analyzed and the information behind the structure to be mined with

the guarantees of the correspondence between community structure in the input

network and its representations.

Representation learning in the machine learning domain involves complex but

highly structured dependencies; it requires smoothness in learning functions and

faces sparsity in latent feature learning (Bengio et al., 2013). The previously used

per-node partition function (Bandyopadhyay and Gamarnik, 2008) is expensive to

compute, especially for large information networks. To overcome this disadvantage

for network representations, a series of sampling strategies have been proposed

(Kurant et al., 2011; Lelis et al., 2013) to analyze the statistics within local structures,

e.g., communities and sub-networks. These approaches are different from traditional

representation learning (Ding et al., 2015; Paalanen et al., 2006; Zhu et al., 2015).

The latent feature learning of the network representation captures neighborhood

similarity and community membership in topologies (Pan et al., 2016; Tu et al.,

2016; Yang et al., 2015). To handle the sparsity of network representations and to

improve sampling performance, researchers have been motivated over the last decade

to use a stream of short random walks as a basic tool for extracting information from

real-world large-scale information networks. The random walk (Noh and Rieger,

2004) is a type of similarity measurement for a variety of problems in community

detection (Lai et al., 2010; Liu and Lü, 2010; Noh and Rieger, 2004), which computes

the local community structure information sub-linear to the size of the input network

(Breitkreutz et al., 2008; Leskovec et al., 2005; Leskovec and Mcauley, 2012; Perozzi

et al., 2014; Yang and Leskovec, 2015).

In this research, we focus on the challenge of a lack of connections in a network

representation task. The existing network representation methods do not perform
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well in domain-specific network representation when facing structural sparsity that

is caused by a lack of connections. Furthermore, the performance of domain-

specific network representation methods that are developed for one network decreases

sharply when they are applied to another network. If we develop a framework

that successfully combines the advantages of network representation and domain

adaptation in transfer learning, structure transfer will greatly benefit real-world

large-scale information network representations. Therefore, we develop a novel

Framework of Transferring Structures across Large-Scale Information Network

(FTLSIN) and two algorithms of Cross-Domain Network Representation (CDNR)

and Cross-Domain Similarity Learning (CDSL).

1.2 Research Questions and Objectives

This research aims to answer the following four research questions.

1.2.1 Research Questions

QUESTION 1. (RQ1) How to relate two independent networks that belong to

different domains in a transfer learning setting?

The model, developed for source domain network representation, usually has

poor performance if directly applied to the target domain network representation task

because the target domain network is not as dense in structural information as the

source domain network. Two different networks abstracted from different systems

which belong to different domains also differ in distributions or feature spaces. To

leverage knowledge from the source domain network to improve the performance of
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target domain network representation, a model should be developed for cross-domain

knowledge adaptation use which has the function of learning from external data.

Therefore, the proposed framework is beyond the existing domain-specific network

representation approaches. It is crucial to find a way to relate two independent

networks so that knowledge transfer can be undertaken between the two domains.

QUESTION 2. (RQ2) How to match the unbalanced scales of nodes that belong to

different networks in the source domain and in the target domain?

The sample scales of the source domain and the target domain differ in the

following two aspects: the source domain has dense information in structures and the

target domain has sparse information in structures; and the node scale of the source

domain network is much larger than the node scale of the target domain network. The

representation made on network structures is dramatically influenced by structural

density. The network representation made on sparse structures might be enriched by

employing external related network structures. However, finding the relationships,

such as by link prediction, across two networks consumes time and resources and

also increases the cost of searching for the target network representation. Direct link

prediction on nodes would cause high computational complexity. In addressing the

scales of nodes, it is important to match the node scale of the source domain network

to the same level of the target domain network, so that computational complexity is

kept at the same level as the domain-specific approach which is related to the smaller

node scale of the target domain.
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QUESTION 3. (RQ3) What kind of knowledge should be transferred from the

source domain network to the target domain network?

This research focuses on a simple network structure where the network is origi-

nally unweighted, the nodes in the network are without attributes and the links in the

network are undirected. Therefore, the network representation only depends on such

structures. In this case, what kind of knowledge should be transferred from the source

domain to the target domain is crucial for cross-domain network representations.

Per-node partitioning is expensive for large-scale real-world networks. Therefore,

the type of transferred knowledge should exclude the original network structures to

avoid the high cost of computations. In other words, network structures need to be

mapped into another format while keeping as much information as possible from the

original structure.

QUESTION 4. (RQ4) How to select the most relevant network in the source domain

to adapt knowledge to the network in the target domain?

In the real world, the number of related networks that are selected as candidates

for the source domain is very large. To improve the representation performance of

the target domain network, the most relevant and helpful source domain network

is required to guarantee positive knowledge transfer. Previous works on transfer

learning usually do not discuss the selection of the source domain; instead, the source

domain selection usually depends on human experience to select the source domain

or test the performance on a small sample set. However, in the large-scale information

network representation domain, human experience may lead to huge variations in

real-world facts and a small sample set is not effective for network-structure data.
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Therefore, it is essential to calculate the similarity between the network in the source

domain and the network in the target domain.

1.2.2 Research Objectives

This research aims to achieve the following objectives, which are expected to answer

the above research questions:

OBJECTIVE 1. To predict links between nodes in the cross-domain networks by

designing FTLSIN.

This objective corresponds to RQ1. Since the domain-specific random walk-

based network representations in this thesis are used as the baseline, the divergence

of the source domain and the target domain is discussed from the perspective of

random walk-based network representations in cross-domain learning for network

representations. To this end, the discrepancies between domain-specific network

representations and cross-domain network representations are explored from two

aspects. First, the local network structures of the neighborhood in the two domains

are compared and the node degrees are measured to determine whether the biased

random walks are the same in the two domains. Secondly, if the biased random

walks are different across domains, FTLSIN is designed to achieve cross-domain link

prediction and to construct relationships between the two domains. FTLSIN includes

a two-layer random walk, which provides cross-domain knowledge transfer paths

along the predicted links. The top layer and bottom layer load the source domain

network and the target domain network, respectively. Knowledge is transferred

between layers and the cross-domain network representation finally works on the

top layer supported by the biased random walk.
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OBJECTIVE 2. To develop a cross-domain node mapping procedure in the CDNR

algorithm to cluster a super node in the source domain network corresponding to

the node in the target domain network.

This objective corresponds to RQ2. To balance the scales of the two networks in

the source domain and in the target domain, the source domain network is reshaped

into a smaller size but it keeps the same level of structural information. To achieve

this goal, the concept of a super node is employed to cluster a group of nodes that

share the same property in the source network and which corresponds to the node

property in the target network. In this work, node property refers to node importance.

This can also be the node degree as the proposed dual centrality. Therefore, the cross-

domain node mapping procedure works between the nodes of the target network

and the super nodes of the source network; then, the predicted links are constructed

based on cross-domain node mapping.

OBJECTIVE 3. To develop a cross-domain walk mapping procedure in the CDNR

algorithm to map the source domain network structure information of random walks

to the target domain network.

This objective corresponds to RQ3. The super links are studied for this objective

to describe the structures of the super graph. This cross-domain walk mapping

procedure is developed as a key procedure in CDNR and defines the transferred

knowledge in two aspects: knowledge objective and knowledge format/value. In

FTLSIN, the bottom layer that loads the source domain network pre-learns a set of

random walks. The source domain network is reshaped by the super graph so that the

random walks are a sequence of super nodes. Then, the cross-domain walk mapping

generates weights for the corresponding links in target network. Therefore, the super
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graph-shaped random walks in the bottom layer are the transferred knowledge and

the weights are the format and the value of the knowledge. These weights guide

the random walks in the top layer for the target network that contains the structure

information of the source domain network.

OBJECTIVE 4. To develop a CDSL algorithm to select the source domain network

based on the target domain network representations.

This objective corresponds to RQ4. To address the fact that the relations of two

domains is not clear, this study develop the CDSL algorithm to particularly measure

the similarity between networks across domains which further supports a source

domain selection task. CDSL calculates the domain similarities based on the network

patterns of node importance where the information flow is fully observed in this

research by node centrality and node power. CDSL learns from the dual centrality

which reflects the network pattern. The learning of the dual centrality parameter

corresponds to the similarity of the paired networks across domains.

1.3 Research Contributions

The main contributions of this research are summarized as follows:

• A novel FTLSIN is proposed to elaborate on how external network informa-

tion helps the target domain network representation in unsupervised feature

learning. FTLSIN investigates scalable networks and works on a two-layer

random walk for both the source domain and the target domain. The knowl-

edge transfer in FTLSIN is theoretically developed by link predictions across
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two-layer random walks so that the relationships between two independent

networks across domains are constructed.

• Based on FTLSIN, a novel CDNR algorithm is developed. Compared to

the domain-specific algorithms, CDNR is more effective for sparse network

structures, and the challenge from unbalanced scales of nodes in two networks

is overcome by a cross-domain node mapping procedure. The concepts of

super node and super graph are introduced for source domain node clustering

in this procedure which learns based on the target domain node samples.

The experiment results show that CDNR can improve network representation

accuracy without developing a new representation model for the target domain.

• CDNR defines the transfer objective, i.e., the knowledge of random walks

from the source domain. The knowledge of source domain random walks

is specifically sampled from the super graph structure and it is saved as the

weights on the super links. This part of the weights is transferred along the

predicted links across domains to guide the target domain random walks. This

procedure theoretically proves the advances of the sampling strategy in CDNR.

• CDSL addresses the source domain selections based on the network patterns.

The novel work of CDSL fully considers the node importance in CDNR and

embeds two node importance indicators describing node centrality and node

control power on information flows to form a dual centrality indicator, which

is parametrized with the domain similarity and learns with the biased random

walks to minimize the searching costs within the neighborhoods.
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1.4 Research Significance

The theoretical and practical significance of this research is summarized as follows:

Theoretical significance: This study investigates the natural properties of struc-

tural sparsity in large-scale information networks and proposes to represent the

network structure information by a set of latent features from a cross-domain adap-

tation view. This work theoretically proves that the knowledge sharing framework

of FTLSIN across related but independent domains improves the network represen-

tations of the target sparse network. To fulfill the task of cross-domain learning

for network representation, the two algorithms of CDNR and CDSL are further

proposed to define the objectives and the paths of knowledge transfer, which inherit

the advantage of transfer learning in information supplemented by learning to learn.

The cross-domain node mapping procedure and the cross-domain walk mapping

procedure in the CDNR algorithm theoretically define knowledge transfer paths; and

the CDSL algorithm provides the theorem of domain selection based on the target

domain network representation task. The framework and the algorithms developed

in this research work in the two-layer random walk that enables effective knowledge

transfer.

Practical significance: This study starts from the practical research challenges

of network-structure data sampling and data sparsity, which are commonly found in a

new real-world system. These challenges limit a good network representation which

helps artificial intelligent learning task. We propose the solution of cross-domain

learning for network representation which will benefit society given the important

role transfer learning plays in daily life. The findings help resolve the real-world

cold start problem, especially in new areas where the collected data are scarce while
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the relational area has a large amount of data that can offer referable information.

Newly founded corporations and organizations can utilize data from related systems

that abstract as an information network. The data biases of scales, distributions and

features in a new system and the related systems are modified by this research.

1.5 Thesis Structure

The logical structure of this thesis (the chapters and the corresponding research

questions and research objectives) and the relationship between the chapters are

shown in Figure 1.2. The main content of each chapter is summarized as follows:

CHAPTER 2. This chapter studies the literature and discovers the network

representation limitations in the domain-specific view, thereby revealing the current

research gap. In this chapter, random walk-based network representation for large-

scale network information mining is introduced, after which a categorization of

the existing algorithms based on network pattern mining and structure sampling is

analyzed. A detailed literature review of network pattern mining in node importance

to network representations are given. Lastly, the transfer learning approaches which

support the cross-domain network representations in the network knowledge transfer

aspect are summarized. The limitations of the reviewed approaches and algorithms

are discussed in this chapter, which inspires the following chapters and solutions.

CHAPTER 3. The existing domain-specific methods of mining information

networks in machine learning represent the nodes of an information network in

a vector format. However, a real-world large-scale information network cannot

undertake network representation well using only one network. When network

structure information is transferred from one network to another, the performance of
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network representation decreases sharply. To address this issue, this chapter proposes

a novel framework of FTLSIN to transfer useful information across relational large-

scale information networks. FTLSIN consists of a two-layer random walk to measure

the relations between two networks and predict the links across them. This chapter

constitutes the theoretical foundation of the proposed algorithms, and it addresses

RQ1 to achieve Objective 1.

CHAPTER 4. To overcome the recent research limitations in the domain-

specific network sampling strategy of structural sparsity, this chapter describes

FTLSIN and proposes a CDNR algorithm. CDNR works on the two-layer random

walks with unsupervised feature learning. The bottom layer prepares the knowledge

from the random walk learning of the networks in the source domain. The top layer

completes the random walk-based network representation for the target network

using the prepared knowledge transferred from the bottom layer. Knowledge transfer

works on a cross-domain node mapping procedure and a cross-domain walk map-

ping procedure. The cross-domain node mapping procedure addresses the issue of

unbalanced node scales of networks in different domains (addresses RQ2 to achieve

Objective 2), and the cross-domain walk mapping procedure defines the transfer of

knowledge from the source domain to the target domain (addresses RQ3 to achieve

Objective 3). The work in this chapter accomplishes structural information transfer

from a dense network to a sparse network.

CHAPTER 5. The success of adapting structural knowledge from the external

network in the source domain for the target domain network discussed in Chapter 3

and in Chapter 4 leads to the important question posed in RQ4. From the numerous

network candidates in the source domain, Chapter 5 proposes a CDSL algorithm to

acquire the most relevant knowledge from the external network. CDSL is nested in
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biased random walk-based node sampling which is also the knowledge that stands

for the network structural information for network representations. CDSL targets the

minimum cost of searching the neighborhood which considers first- and second-order

walking; and network pattern analysis focusing on the neighborhood is described by

a dual centrality indicator which consists of closeness centrality and betweenness

centrality. This chapter achieves Objective 4.

CHAPTER 6. This chapter summarizes the findings of this thesis and points to

directions for future work.
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1.6 Publications Related to this Thesis

Below is a list of the refereed international journal and conference papers during my

PhD research that have been published or currently under review:

Published:

1. Xue, S., Lu, J., Zhang, G., and Xiong, L. (2018). A framework of transferring

structures across large-scale information networks. In Proceedings of the 2018

International Joint Conference on Neural Networks, pages 1-6, IEEE. (ERA

Rank A, Outstanding student paper award)

2. Xue, S., Lu, J., Wu, J., Zhang, G., and Xiong, L. (2016). Multi-instance

graphical transfer clustering for traffic data learning. In Proceedings of the

2016 International Joint Conference on Neural Networks, pages 4390-4395.

IEEE. (ERA Rank A)

3. Xue, S., Lu, J., Zhang, G., and Xiong, L. (2015). SEIR immune strategy for

instance weighted Naïve Bayes classification. In Proceedings of the 22nd

International Conference on Neural Information Processing, pages 283-292.

Springer. (ERA Rank A)

4. Xue, S., Lu, J., Zhang, G., and Xiong, L. (2015). Heterogeneous feature

space based task selection machine for unsupervised transfer learning. In

Proceedings of the 10th International Conference on Intelligence Systems and

Knowledge Engineering, pages 46-51. IEEE. (ERA Rank B)

5. Zhao, L., Xiong, L., and Xue, S.* (2016). Global recursive based node

importance evaluation. In Proceedings of the 12th International Conference
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on Advanced Data Mining and Applications, pages 738-750. Springer. (ERA

Rank B)

6. Xiong, L., Xue, S.*, Yang, S., and Han, C. (2015). Multi-source macro data

process based on the idea of sample=overall in big data: An applicability study

on influence factors to smart city. In Proceedings of the 2015 International

Conference on Logistics, Informatics and Service Science, pages 1-6. IEEE.

7. Xue, S., Xiong, L., Zhao, L., and Wu, J. (2017). Graph-theoretic node impor-

tance mining in world city networks: Methods and applications. Information

Discovery and Delivery, 45(2): 57-65. (ERA Rank A)

8. Xue, S., Xiong, L., Yang, S., and Zhao, L. (2016). A self-adaptive multi-view

framework for multi- source information service in cloud ITS. Journal of

Ambient Intelligence and Humanized Computing, 7(2): 205-220.

9. Liu, Z., Xue, S.*, Zhang, L., Pu, J., and Wang, H. (2017). An improved

kernel minimum square error classification algorithm based on L2,1-norm

regularization. IEEE Access, 5: 14133-14140.

10. Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., and Zhang, G. (2015). Trans-

fer learning using computational intelligence: A survey. Knowledge-Based

Systems, 80: 14-23. (ERA Rank B)

Paper Under Review and Working Papers:

1. Xue, S., Lu, J., and Zhang, G. (2018). Cross-domain network representation.

Pattern Recognition, under review. (ERA Rank A*)
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2. Xue, S., Lu, J., and Zhang, G. (2018). Cross-domain similarity learning based

on network patterns. IEEE Transactions on Neural Networks and Learning

Systems, submitted. (ERA Rank A*)

3. Xue, S., Lu, J., and Zhang, G. (2018). Cross-domain node embedding on

heterogeneous information networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, will submit. (ERA Rank A*)

4. Xue, S., Lu, J., and Zhang, G. (2018). Complex networks in decision making:

A survey. Decision Support Systems, will submit. (ERA Rank A*)



Chapter 2

Literature Review

2.1 Random Walk-based Network Representation

The data structure of a network that includes nodes and links is complex for machine

learning algorithms. Network representation inputs structural information and learns

a latent feature space, which ensures that machine learning models accomplish

artificial intelligence tasks (Yang et al., 2015). Both deep mining network structures

and developing representation deep learning models achieves improvements in

performance in network representation (Wang et al., 2018b). A good network

representation reduces the number of machine learning difficulties. Similarly, a good

network structure learning reduces representation learning loads (Tang et al., 2015).
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2.1.1 Network Representation for Large-scale Information Net-

works

Large-scale information networks are usually extracted from real-world complex sys-

tems and in particular preserve network structures to retain all kinds of information.

To acquire this information requires network analysis. The information is usually

large in volume, which is good for mining, but is varied and imbalanced in content,

which has disadvantages in network representation. The network structure is also

naturally sparse, which requires special attention when network representations are

conducted.

Attributions have been studied in graph/network representations to improve the

network representation performance. Attributed community detection method was

leveraged to add attributes on the links (Li et al., 2018a). Rich text information

of the node attributes was learned (Yang et al., 2015). However, it introduces the

extra challenge in identifying the two different kinds of information for network

representations from network structures and node attributes. Therefore, some recent

studies have focused on developing deep learning models to enhance the network

representation learning which use network structural information only, such as

GraphGAN (Wang et al., 2018b); sampling structural information with network

properties, such as scale-free observations (Feng et al., 2018); predicting links on

a dynamic network in the homogeneous space, such as the DepthLGP model (Ma

et al., 2018); and capturing the evolutionary structure properties of a network (Zhou

et al., 2018). The above attempts are all conducted on a single domain and learn

from unlabeled data.
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In contrast to the domain-specific approaches, our aim is to leverage useful

information from similar domains by efficient domain adaptation. Previous studies

on domain adaptation focused on latent feature space training to overcome the

differences in feature distributions or attributes (Lu et al., 2015). They attempted to

reduce the distribution discrepancy between similar domains to a minimum by feature

matching and instance reweighting (Cao et al., 2018), because traditional machine

learning models are only suitable for the uniformed feature distribution of different

domains. Most such approaches are based on Maximum Mean Discrepancy (MMD).

For unsupervised domain adaptations, however, it has been proved that subspace-

based techniques, such as domain adaptation on statistical manifold (Baktashmotlagh

et al., 2014), outperform MMD-based approaches. Furthermore, two scenarios of

homogeneous and heterogeneous feature spaces on what to transfer across domains,

and how, have been separately studied. Domain adaptations on heterogeneous

spaces (Moon and Carbonell, 2017) are more challenging but commonly exist in

real-world applications. Augmented features for supervised and semi-supervised

heterogeneous domain adaptation have been discussed (Li et al., 2014) to enable

a Support Vector Machine (SVM) classification task. A deep asymmetric transfer

network has been proposed for unbalanced domain adaptation which offers deep

models for the source domain and the target domains (Wang et al., 2018a). To address

the imbalanced problem, Wang et al. (2018c) focused on completely-imbalanced

labels for the network embedding using the intra-class similarity and inter-class

dissimilarity measurement, where the solution can be introduced to unsupervised

target domain network representations in a cross-domain way.
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2.1.2 Shortest Path-based Network Patten Mining

Few studies have worked on cross-domain network representation learning, par-

ticularly cross-network similarity learning. Network analyses measure topology

similarities, such as similarities in nodes (Ribeiro et al., 2017) and neighborhoods

(Perozzi et al., 2014), to summarize network patterns. Node centralities evaluate

the node position in a network so that nodes with close importance level to the

network can be clustered as a group (Kermarrec et al., 2011). Node centrality is

measured in two aspects on centrality and power, and each aspect consists of various

indicators (Xue et al., 2017). For example, the indicator of closeness describes the

node’s ability in information spreading (Solé-Ribalta et al., 2016), and the indicator

of betweenness calculates the node’s control ability on information distribution (Goh

et al., 2003; Newman, 2005a). Node centralities also work with random walks to

sample up network substructures (Newman, 2001).

A state-of-the-art practice in network representation input to partition the network

to a range of shortest paths in a fixed length (Grover and Leskovec, 2016; Mikolov

et al., 2013; Perozzi et al., 2014). The shortest paths try to retain as much information

as the network. This transformation from a network to a set of paths is essential for

large-scale networks, because the computational complexity in the network search

process is extremely high, since the representation starts from every node and walks

along links. It has been proved that random walks that are rooted at each node and

repeatedly search along the shortest paths can represent the structures of the whole

network (Perozzi et al., 2014).
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2.1.3 Network Representation by Random Walks

For the purpose of using network analysis on structured data, a series of algorithms

have been proposed based on DeepWalk (Perozzi et al., 2014), which trains a natural

language model on the random walks generated by the network structure. Denote

a random walk wvs that starts from a root node vs, DeepWalk slides a window

in a length of 2w + 1, and maps the central node vi to its representation f (vi).

Hierarchical Softmax factors out the probability distributions Pr(vi±d| f (vi)), where

d = {1, · · · ,w}, corresponding to the paths staring at vi and going over all other nodes

in the random walk. The representation f is updated to maximize the probability

of vi co-occurring with its context {vi±d, d = {1, · · · ,w}}. Random walk based

DeepWalk shows promising results on large-scale network representation if the

datasets have a satisfying structure.

LINE and Node2Vec are the other two structure-based network representation

algorithms that improves the performance of DeepWalk. LINE (Tang et al., 2015)

preserves both local and global network structure by first-order proximity and second-

order proximity respectively and suitable for all kinds of networks, i.e., directed and

undirected networks and weighted and unweighted networks. Node2Vec (Grover and

Leskovec, 2016) explores the diverse neighborhoods of nodes in a biased random

walk procedure with search bias a .

Above mentioned algorithms are inspired from recent advancements in unsuper-

vised feature learning and the language modeling from sequences of words to vectors

or networks. They contributed to the network analysis by modeling a stream of short

random walks. Different from traditional representation learning, the latent feature

learning of network representation captures neighborhood similarity and community
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membership in topologies. The potential of these algorithms in real-world scenarios

is their good performance in large heterogeneous networks.

To the best of our acknowledge, a few works have studied cross-domain network

adaptations, but most of them are for sentimental purposes (Li et al., 2018b). The

cost is also a key aspect of cross-domain representation in large-scale networks,

which directly affects the performance of machine learning algorithms (Bousmalis

et al., 2016). To meet all the above requirements, we try to find a solution from the

domain similarity learning and start from the network pattern of node centralities.

Our work can be categorized in a cross-domain network representations based on

domain similarities which only focuses on network structure information. It generally

works for both homogeneous and heterogeneous domain adaptations. The properties

of network patterns also contribute to network representation in network structure

sampling in the two domains, therefore the similarity learning algorithm using

network patterns is efficient for the cross-domain network representations.

2.2 Graph-theoretic Node Importance Mining in In-

formation Networks

Information networks use graph theory to express nodes and links in perspective of

complex networks. The information senders and receivers in a network are denoted

as nodes, and the information flows between nodes are denoted as links. In this

way, an information network can be extracted as a complex network model and

mapped into an adjacent matrix. In this section, we survey the articles that use
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complex network theories to extract information networks as a complex system and

use graph-theoretic node importance mining methods (Figure 2.1).

In the real world, the rapid development of global finance and technology has

led to the inclusion of a new set of importance nodes in information networks. The

emergence of developing important nodes and these changes to the information

network have attracted attention from both academics and industry. Evaluating the

node importance in an information network is a fundamental academic question, but

it is also very challenging to detect these changes. One of the phenomena within

these network changes is that developing nodes are replacing the positions of other

nodes that used to be important in the network. The significance and innovations of

graph-theoretic node importance mining in information networks are as follows:

• It represents real-world networks as a part of information network, for example,

in document networks, financial networks and cultural networks;

• It prevents the negative influence of information networks, for example, con-

trolling and preventing the spread of rumor over Internet; and

• It improves the robustness of information networks by network optimization.

Take the most complex information network for example, World City Network

(WCN) combine two concepts: cities and complex systems. Previous research has

defined node importance, and how to evaluate the importance of nodes within a

WCN has also been discussed. Within the three perspectives of node importance

mining – social network analysis, system science and information searching – Neal

(2011) made great contributions to node importance mining in WCN by proposing

a differentiation between centrality and power. Because of the development of
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large-scale networks and large-scale graph mining, the research in this area has

dramatically developed in the past five years. The study of node importance has

been expanded in both breadth and depth. For example, Liu et al. (2013) provided

an in-depth analysis of node importance models in large city networks. Their work

focuses on network topologies and spreading dynamics and explains their advantages,

shortcomings and computing complexity.

The study of information networks covers a broad range of fields which includes

document networks and information services over resources flows. In the scope

of social and behavioral science, node importance mining method implements the

process of digital information capture, analysis and deep mining, which acquires

knowledge from raw data by intelligent techniques and achieves the goal of digital

information supply chain, including transport, flows, tracking, exchanging and

sharing. The graph-theoretic mining method benefits to large-scale datasets and

heterogeneous datasets, which is a supportive tool of big data in the graph mining

domain.

Motivated by the significance and the innovation of graph-theoretic node im-

portance mining in information networks, we survey the graph-theoretic methods

for mining node importance and the prospects for future works. In the remaining

parts of this section, we review the graph-theoretic indicators of node importance;

the graph-theoretic node importance mining methods on network topologies (in

the view of static networks) including but not limited to node relevance, centrality

measurement, power measurement, measurement with centrality and power and

heterogeneous fusion; and graph-theoretic methods for mining node importance that

are based on transmission mechanisms (in the view of dynamic networks) which
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consist of network evolution, node immunization and robustness in dynamics. The

last section presents our analysis and main findings.

2.2.1 Graph-theoretic Indicators of Node Importance

Centrality

Centrality is one of the most popular methods to measure a node’s position and

its importance in an information network. Centrality requires that nodes are not only

independent from each other but also related to other nodes in the network (Neal,

2011). Centrality means the node that links to the most resources in positive linked

networks is a central node and can be partially regarded as the important node of an

information network evaluated by the centrality analysis. In other words, centrality

reflects the resources that are spread and gathered in an information system.

In WCN, Frideman (1986) was the first to propose a world city hypothesis. He

asserted that the important nodes in WCN are always those cities that are home

to the headquarters of multinational companies, while world cities are those that

possess the most social resources. Sassen (2010) extended this world city hypothesis

from business into finance, indicating that the Internet gathers information resources,

so that the centrality has various styles. However, the two centralities defined by

Friedmann and Sassen both reflect only one aspect of resource gathering but do

not consider the spread of resources. For example, in the resource flow of city

logistic networks (Duan and Lu, 2013) and airline networks (Derudder et al., 2004),

the important nodes are not the cities that act as resource-gathering centers, but

they are the cities that spread resources. Therefore, Neal (2011) extended the

traditional concepts of centrality and indicated that centrality should have both
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resource-gathering and resource-spreading characteristics, so does other kinds of

information networks.

Power

Power is defined by the node that controls the most information resources in a

negative linked network. For example, cities with the headquarters of multinational

companies are the command and control centers in global finance markets. However,

in actor-network theory (Latour, 2005), all cities can be translated into actors and can,

therefore, be included in unified networks to maintain a balanced status. Therefore,

a single city cannot control all the power. The power lies within a system and is

obtained by network spreading (Allen, 2009). Therefore, Neal (2011) defines power

as the influence of resource flows.

Combination of Centrality and Power

As evidenced above, centrality and power are two major indicators for mining

node importance from information networks. Neal (2011) first described the dif-

ference between centrality and power. The social behavior exchange theory states

that when two sides meet their requirements from each other, they become more

highly reliant; however, when one side becomes an unavoidable choice for the other,

the former can assume control of the exchange processes. Therefore, controlling

power is not only influenced by the relationships within information networks but

also between related nodes. If one node is strongly connected to other nodes, then

that node exerts greater influence and control over the information network. For

example, suppose a Central Node A and a Central Node B have the same number

of links (as shown in Figure 2.2), but the nodes linked to Node A also link to many

other nodes, while the nodes linked to Node B have no other links, then we can say

Node B has greater control of the network than Node A.
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Figure 2.2 Two network examples with different node importances

Neal (2011) proved that power is not equal to centrality. Those nodes with high

centrality may not have great power (Cook et al., 1983). To this end, Cook et al.

(1983) introduced a multi-dimensional matrix of network positions to better describe

node importance in information networks. Using this matrix, they found in WCN

that nowadays, cities like New York and London have both high centrality and high

power; cities like Washington and Brussels have high centrality and low power; and

cities like Miami and Stockholm have low centrality and high power. Moreover, the

importance of a node is also influenced by its sub-connected nodes (Neal, 2013a)

and the two-mode interlocking networks (Liu and Derudder, 2012).

2.2.2 Graph-theoretic Node Importance Mining on Network Topolo-

gies

There are many methods that mine important nodes from information networks. Most

of them are based on graph theory and graph mining technology (Xie et al., 2015);

however, the most popular methods are based on network topologies. The methods

of node importance mining based on network topologies are different from network

connectivity mining, as they are a kind of graph-theoretic measures of centrality, and
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thus, they consider the structure of networks so that the potential node integrations

within information networks are evaluated as well (Neal, 2012). In this section, we

survey node relevance, centrality and power-based measurements, heterogeneous

fusion and other methods. The subsequent relationships of the methods are shown in

Figure 2.3.
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Figure 2.3 Graph-theoretic node importance mining methods on network topology

The graph-theoretic node importance mining methods based on network topolo-

gies comprise two main categories: node relevance and shortest path. The method of

node relevance is measured by degree analysis. The methods of shortest path that aim
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at finding optimal spreading paths are measured by several node importance analyses,

for example, betweenness, closeness centrality, eigenvector centrality, Bonacich cen-

trality and alter-based centrality. Betweenness is used particularly for measurements

of power, while closeness centrality and eigenvector centrality are used particularly

for measurements of centrality. Bonacich centrality is an extension of eigenvector

centrality which measures node importance on both centrality and power. The other

mining methods for node importance based on network topologies included in this

review are via processes such as node deleting, node contraction and data mining

and machine learning - embedded techniques. For heterogeneous network structures,

fusion methods integrate all the previously mentioned measurements.

Node Relevance

Node relevance focuses on the characteristics of network structures. It evaluates

the links in the network and the condition of the links. A classical method is by

degree analysis. The degree centrality is one of the most important indicators of

power. Some existing research regards centrality and power as the same indicator

(Derudder et al., 2004). The degree denotes the number of links that directly connect

to a node (Freeman, 1978). Node relevance can also reflect the influence of a

node within a information network, but this method only considers the number of

neighbors, not the importance of the neighbor nodes. In particular, when networks

meet the Matthew effect, the evaluation of the information network is not accurate.

Nodes that act as centers can be important nodes in information networks, even

though they do not control many information resources.
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Centrality Measurement

Closeness centrality

Closeness centrality is the reciprocal of the sum of the shortest paths between

all nodes which is used to reflect a node’s ability to gather and spread information

resources. A node is regarded as the closeness centrality only when it has a short

number of paths from other nodes in information networks (Freeman, 1978). The

node with the highest closeness centrality score is considered the center of the net-

work. However, this method relies on network topology. The process of interlocking

somehow promotes the closeness centrality, as it is common in information network

construction and produces dense in node importance mining (Neal, 2012). Therefore,

closeness centrality works well on star networks but is not suitable for random

networks.

Eigenvector centrality

Eigenvector centrality is an important method for centrality that calculates the

reputation of a single node by summing the linear reputations of all other nodes in

the network (Borgatti and Everett, 2006). It uses the eigenvectors corresponding

to the eigenvalues of linear equations. The eigenvectors comprehensively analyze

the importance of their neighbor nodes and assume diverse importance among them.

For this reason, it stands out for its accuracy compared to other centrality methods.

Poulin et al. (2000) proposed a cumulated nomination indicator based on iteration

mapping when solving eigenvectors. The cumulated nomination is suitable for both

big and multiple-branch networks because of its rapid convergence speed. Affected

by interlocking, however, only in a few situations, the eigenvector centrality method

of node importance causes star topologies in information networks which easily

indicates eigenvector centrality and shows its robustness (Neal, 2012). Therefore, a
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disadvantage of this method is that it is difficult to apply in the real world because

eigenvectors are based on linear topologies and most nodes in the real world are not

linear.

Power Measurement

Betweenness was first proposed by Freeman in 1977 to evaluate the power of one

single node on an entire social network. Betweenness is calculated by the number of

shortest paths that include the node (Freeman, 1977). Betweenness is an important

indicator for measuring the control of power now (Alderson and Beckfield, 2004), as

it can accurately reflect which nodes control the resources in networks and monitor

their flow. Cities like Miami, which serve as a transportation link between several

other cities, influence entire networks and therefore hold important positions. Henne-

mann and Derudder (2014) proposed a framework based on traditional betweenness

which integrated a randomized baseline model and considered the original degree

distribution. This framework distinguished the important links from the overall

connectivity. Sun et al. (2016a) proposed a vulnerability evaluation model aimed

at detecting weak nodes by introducing methods from graph theory and complex

networks. In their experiments, they found that the nodes with a high degree of

betweenness also had high influence in urban transportation networks. Such nodes

are easily attacked, and nodes with high betweenness offer key links in information

networks. However, betweenness cannot be directly applied to big networks.

Measurement with Centrality and Power

Bonacich centrality

Bonacich centrality is a method that calculates eigenvector centrality and mea-

sures the characteristics of centrality and power (Bonacich, 1987). It consists a

user-defined attenuation parameter and an adjacent matrix of the network. When
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the attenuation parameter is positive, Bonacich centrality is used to find the links to

central nodes in the network; when the attenuation parameter is negative, it means

that the network has few connected nodes, the nodes cannot be replaced and they

take control of the resources in the network. Furthermore, Neal (2011) indicated that

the eigenvector and Bonacich centrality methods could not find the key nodes from

networks when eigenvalues become high. Boyd et al. (2013) extended Neal’s theory

by introducing a new parameter. In this method, eigenvector centrality is relevant to

recurrent centrality, but it is not relevant to power. In previous research, Bonacich

centrality proved to be feasible in a few circumstances (Neal, 2013a) because of this

attenuation parameter.

Alter-based centrality

Neal (2013a) proposed alter-based centrality to evaluate the positions of nodes

in information networks. Alter-based centrality consists of a recursive centrality

indicator and a recursive power indicator and considers the degrees of both the nodes

and their neighbors. Suppose there are two networks, as shown in Figure 2.2, the

degrees of the black nodes s are both 3. In Network A, the recursive centrality of the

node s is 9 and its recursive power is 0.75; in Network B, its recursive centrality and

recursive power are both 3. The above results show that compared to other methods,

alter-based centrality which consists of recursive centrality and recursive power

can distinguish nodes by local structures. Although Neal’s alter-based centrality

considered the relationships between nodes, it still has some shortcomings (Boyd

et al., 2013; Neal, 2013a,b) which are as follows: 1) partial recursion is not sufficient

to evaluate node importance mining; 2) it does not consider the degrees of all nodes;

and 3) the parameters only reflect the degree and connection strengths but ignores

their weight. These disadvantages reduce node importance mining accuracy.
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Heterogeneous Fusion

The heterogeneous fusion of node importance mining methods on network

topologies has been proposed for a few applications. Liu et al. (2014b) compared

the centralities of degree, closeness centrality and betweenness centrality on a two-

mode WCN of an inter-city network and inter-firm network where the firms have

their branches in different cities and different firms in one city produce behaviors

such as information sharing, cooperation and innovation diffusion: degree evaluates

the direct linkage of individual nodes to other nodes in WCN, closeness centrality

evaluates the inverse distances of individual nodes to other nodes in WCN and

betweenness centrality detects the nodes that control or facilitate interactions. Jia

et al. (2015) suggested the comprehensive consideration of the influence of node

characteristics and nodes that are heterogeneous to network topologies. The mining

of important nodes is conducted through synthetic evaluation and merging, main

eigenvector calculations with a graphical Fourier transform and heterogeneous node

integration through graph signal-processing-based centrality. Konstantakis et al.

(2015) improved Global VAR to model a network using different types of economic

entities and analyze networks by degree centrality, the recursive power of alter-based

centrality and Bonacich centrality.

Other Methods

The graph-theoretic node importance mining methods based on network topolo-

gies also integrate the data mining and machine learning methods. Take the data

mining method integration for example, benchmarking and self-organizing maps

were proposed for heterogeneous world cities to which hierarchical analysis was

applied in network topological research (Arribas-Bel et al., 2013); Neal (2014)

validated the methods of naive, normalized, interlocking and sorting in WCN mea-
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surement; and social network analysis studied economic corporation networks (Sigler

and Martinus, 2017). Sanderson et al. (2015) used a least squares regression model

to mine the relationships between WCN and immigration. This research found

that degree centrality was the better choice for this research problem compared to

betweenness.

2.2.3 Graph-theoretic Node Importance Mining on Transmission

Mechanisms

Node importance also relates to factors in transmissions within fixed network topolo-

gies and changing topologies. By introducing network dynamics, researchers have

tried to find the driving nodes that control the entire network as another kind of

the key methods of node importance mining (De Domenico et al., 2015; Pei and

Makse, 2013; Saito et al., 2012). In this section, we review the graph-theoretic

node importance mining methods of network evolution, node immunization and

robustness in dynamics, based on transmission mechanisms.

Network Evolution

A set of visualization methods, such as alluvial diagrams (Liu et al., 2014a), are

popularly used to illustrate the network evolutions over time. Most of the network

evolutions are reflected by similarity/dissimilarity patterns on clusters which indicate

the major tendencies. Using hierarchical cluster analysis, the temporal evolutions

and the regional patterns can also be extracted. To address the great challenge of con-

ducting visual analysis on dynamic networks, Hadlak et al. (2013) developed a new

approach to discover the sub-structures involving important nodes and links, which
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share similarities over time, jointly using the techniques of intelligence computation,

data visualization and network interaction analysis.

Node Immunization

In the epidemic model, the node immunization problem focuses on epidemic

dynamic processes. The nodes in such a network can have different states, such

as susceptible (S), infected (I), recovered (R) and exposed (E). The transmissions

between different states form various epidemic models representing corresponding

immune strategies. The well-known epidemic models of Susceptible-Infected (SI)

(Chen et al., 2016), Susceptible-Infected-Susceptible (SIS) (Saito et al., 2012) and

Susceptible-Infected-Recovery (SIR) (Wang, 2014; Zhang et al., 2015) work on the

node immunization. Du et al. (2014) first applied Technique for Order of Preference

by Similarity to Ideal Solution (TOPSIS) to identify node importance in complex

network area which was supported by centrality evaluation methods according

to network types. Hu et al. (2016) then evaluated node-spreading abilities as a

measurement of node importance using modeling techniques, TOPSIS and weighted

centrality in degrees, along with closeness centrality and betweenness, simulated

in a SIR model, and proved that indicator weightings lead to accurate results. This

research was previously supported in the study by Hu et al. (2015) by considering

the relationships between a node and all its neighbor and non-neighbor nodes, and

its robustness was proven using a deleting method. Sun et al. (2016b) developed an

appropriate node importance mining method for the real-world application of energy

industry wireless sensor networks by introducing important transmission parameters

in an influence transfer-feedback mechanism.
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Robustness in Dynamics

The transmission-mechanism-based robustness analysis of node importance in

dynamic networks includes node deleting and node contraction. Taking the node

deleting method as an example, it evaluated the node importance, linkages and the

network’s robustness when deleting some nodes. The basic idea of this method is

that if the deleted nodes cause massive destruction to the network, the nodes must

be important. Corley and David (1982) regarded the distance changes between

the source node and the target node as a factor of node importance when nodes

are deleted. Based on the study of influential spreaders in complex networks, Niu

et al. (2015) analyzed the robustness of the methods of degree centrality, closeness

centrality, betweenness, k-shell decomposition and eigenvector centrality. By adding,

deleting and resetting links in original networks, node importance may change.

2.2.4 Comprehensive Analysis and Findings

In this section, we have reviewed several current trends of graph-theoretic node

importance mining in information networks, which are developed on the bases of

graph-theoretic indicators of node importance: centrality and power. According

to this review, the graph-theoretic mining methods used in node importance are

classified into two main groups based on static and dynamic: statistic mining on

network topologies and dynamic mining on transmission mechanisms. The trends of

node importance mining include:

• Centrality versus Power. As the node importance indicator of power is

distinguished from centrality, more studies focus on the characteristic of the

power of control over the information network. In the state-of-the-art research
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works, many more methods and applications are measured with the indicator

of power compared with centrality. The main reason is that power indicates

the influence of the node (i.e. information flows), reflects the controlling

performance of network spreading and has higher robustness in dynamics.

• Centrality/Power versus Centrality and power. Of the methods and appli-

cations on node importance indicators, miscellaneous methods with centrality

and power measurements have been extensively used for node importance

mining in information networks, mainly in the domain of theoretic meth-

ods. Nevertheless, miscellaneous methods are more suitable in dealing with

complex real-world applications, especially the application problems that are

solved by transmission mechanisms.

• Methods on network topologies versus Transmission mechanisms. The

theoretic research on transmission mechanisms are relatively new compared

with the research on network topologies; however, it is playing an increasingly

important role in recent applications. As transmission processes rely on

resource distribution on information networks, researchers take robustness

into account for power. This is why there is limited work on the mining of

centrality.

• Methods versus Applications. Information networks face various challenges

from multiple fields such as economics, politics, cultures and information

technology. In recent studies, most application problems are represented

by transmission mechanisms. It seems that accurately measuring the node

importance in the real world using single indicator could be difficult in the

future. Although the research of node importance mining has developed over
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more than two decades, it is strongly limited by techniques of graph theory-

based complex network and with the constraints of real-world applications

and vice versa.

From this survey, we address several important research challenges of graph-

theoretic node importance mining and offer the following suggestions for future

work. So far, node importance mining methods have been applied to small-scale

problems in information networks. Nonetheless, in the era of big data, there are

many interesting applications that can exploit where the measurements of degree,

eigenvector centrality, Bonacich centrality and alter-based centrality can manage

large-scale networks. In the future, the techniques of computational intelligence will

pave the way for using data-driven graph mining and case-based learning in complex

real-world applications.

2.3 Transfer Learning

Although machine learning technologies have attracted a remarkable level of atten-

tion from researchers in different computational fields, most of these technologies

work under the common assumption that the training data (source domain) and the

test data (target domain) have identical feature spaces with underlying distribution.

As a result, once the feature space or the feature distribution of the test data changes,

the prediction models cannot be used and must be rebuilt and retrained from scratch

using newly- collected training data, which is very expensive and sometimes not

practically possible. Similarly, since learning-based models need adequate labeled

data for training, it is nearly impossible to establish a learning-based model for a

target domain which has very few labeled data available for supervised learning. If
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we can transfer and exploit the knowledge from an existing similar but not identi-

cal source domain with plenty of labeled data, however, we can pave the way for

construction of the learning-based model for the target domain.

Transfer learning has emerged in the computer science literature as a means of

transferring knowledge from a source domain to a target domain. Unlike traditional

machine learning and semi-supervised algorithms, transfer learning considers that

the domains of the training data and the test data may be different (Fung et al.,

2006). Traditional machine learning algorithms make predictions on the future

data using mathematical models that are trained on previously collected labeled

or unlabeled training data which is the same as future data (Baralis et al., 2008;

Kuncheva and Rodriguez, 2007; Yin et al., 2006). Transfer learning, in contrast,

allows the domains, tasks, and distributions used in training and testing to be different.

The study of transfer learning has been inspired by the fact that human beings can

utilize previously-acquired knowledge to solve new but similar problems much more

quickly and effectively. The fundamental motivation for transfer learning in the

field of machine learning focuses on the need for lifelong machine learning methods

that retain and reuse previously learned knowledge. Research on transfer learning

has been undertaken since 1995 under a variety of names: learning to learn; life-

long learning; knowledge transfer; meta learning; inductive transfer; knowledge

consolidation; context sensitive learning and multi-task learning (Pan and Yang,

2010).
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2.3.1 Transfer Learning Concepts

Definition 2.1. Domain (Pan and Yang, 2010) A domain, which is denoted by

D = {X ,P(X)}, consists of two components: 1) Feature space X ; and 2) Marginal

probability distribution P(X), where X = {x1, · · · ,xn} 2X .

Definition 2.2. Task (Pan and Yang, 2010) A task, which is denoted by T =

{Y, f (·)}, consists of two components: 1) A label space Y = {y1, · · · ,ym}; and 2) An

objective predictive function f (·) which is not observed and is to be learned by pairs

{xi,yi}.

The function f (·) can be used to predict the corresponding label, f (xi), of a new

instance xi. From a probabilistic viewpoint, f (xi) can be written as P(yi|xi). More

specifically, the source domain can be denoted as D s = {(xs
1,y

s
1), · · · ,(xs

n,ys
n)} where

xs
i 2X s is the source instance and ys

i 2Y s is the corresponding class label. Similarly,

the target domain can be denoted as D t = {(xt
1,y

t
1), · · · ,(xt

n,yt
n)} where xt

i 2X t is

the target instance and yt
i 2 Yt is the corresponding class label and in most scenarios

tn⌧ sn.

Definition 2.3. Transfer learning (Pan and Yang, 2010) Given a source domain

D s and its learning task T s, a target domain D t and its learning task T t , transfer

learning aims to improve the learning of the target predictive function f t(·) in D t

using the knowledge learned from D s and T s where D s 6= D t or T s 6= T t .

In the above definition, the condition D s 6= D t implies that either X s 6= X t or

Ps(X) 6= Pt(X). Similarly, the condition T s 6= T t implies that either Y s 6= Yt or

f s(·) 6= f t(·). In addition, there are some explicit or implicit relationships between the

feature spaces of two domains such that we imply that the source domain and target
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domain are related. It should be mentioned that when the target and source domains

are the same (D s = D t) and their learning tasks are also the same (T s = T t), the

learning problem becomes a traditional machine learning problem.

According to the uniform definition of transfer learning introduced by Definition

2.2, transfer learning techniques can be divided into three main categories: 1) In-

ductive transfer learning, in which the learning task in the target domain is different

from the learning task in the source domain (T s 6= T t); 2) Unsupervised transfer

learning which is similar to inductive transfer learning but focuses on solving un-

supervised learning tasks in the target domain such as clustering, dimensionality

reduction and density estimation (T s 6= T t); and 3) Transductive transfer learning,

in which the learning tasks are the same in both domains, while the source and target

domains are different (T s = T t , D s 6= D t). When the method aims to optimize

the performance on multiple tasks or domains simultaneously, it is considered to

be multi-task learning. If it optimizes performance on one domain, given training

data that is from a different but related domain, it is considered to be transductive

transfer learning or domain adaptation. Transfer learning and transductive transfer

learning have often been used interchangeably with domain adaptation. In addition,

unsupervised domain adaptation can be considered as a form of semi-supervised

learning, but it assumes that the labeled training data and the unlabeled test data are

drawn from different distributions. The existing techniques and methods, which have

thus far been used to handle the domain adaptation problem, can be divided into four

main classes:

• Instance weighting for covariate shift methods which weight samples in the

source domain to match the target domain. The covariate shift scenario might
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arise in cases where the training data has been biased toward one region of

the input space or is selected in a non-independent and identically distributed

(non-i.i.d.) manner. It is closely related to the idea of sample-selection bias

which has long been studied in statistics (Heckman et al., 2013) and in recent

years it has been explored for machine learning. Huang et al. (2007) proposed a

novel procedure called Kernel Mean Matching (KMM) to estimate weights on

each instance in the source domain, based on the goal of making the weighted

distribution of the source domain look similar to the distribution of the target

domain. Sugiyama et al. (2008) and Tsuboi et al. (2009) proposed a similar

idea called Kullback-Leibler Importance Estimation Procedure (KLIEP). Here

too the goal is to estimate weights to maximize similarity between the target

and weight-corrected source distributions.

• Self-labeling methods which include unlabeled target domain samples in the

training process and initialize their labels and then iteratively refine the labels.

Self-training has a close relationship with Expectation Maximization (EM)

algorithm, which has hard and soft versions. The hard version adds samples

with single certain labels while the soft version assigns label confidences

when fitting the model. Tan et al. (2009) modified the relative contributions

of the source and target domains in EM. They increased the weight on the

target data at each iteration, while Dai et al. (2007) specified the trade-off

between the source and target data terms by estimating Kullback-Leibler

(KL) divergence between the source and target distributions, placing more

weight on the target data as KL divergence increases. Self-training methods

have been applied to domain adaptation on Natural Language Processing
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(NLP) tasks including parsing (Sagae, 2010); Part-of-Speech (POS) tagging

(Jiang and Zhai, 2007a); conversation summarization (Sandu et al., 2010);

entity recognition (Ciaramita and Chapelle, 2010; Jiang and Zhai, 2007b);

sentiment classification (Tan et al., 2008); spam detection (Jiang and Zhai,

2007a); cross-language document classification (Shi et al., 2010); and speech

act classification (Jeong et al., 2009).

• Feature representation methods which try to find a new feature representation

of the data, either to make the target and source distributions look similar, or

to find an abstracted representation for domain-specific features. The feature

representation approaches can be categorized into two classes: 1) Distribution

similarity approaches aim explicitly to make the source and target domain

sample distributions similar, either by penalizing or removing features whose

statistics vary between domains (Arnold et al., 2007; Jiang and Zhai, 2007b)

or by learning a feature space projection in which a distribution divergence

statistic is minimized (Chen et al., 2009; Pan et al., 2011); 2) Latent feature

approaches aim to construct new features by analyzing large amounts of

unlabeled source and target domain data (Ben-David et al., 2010; Ciaramita

and Chapelle, 2010; Pan et al., 2010).

• Cluster-based learning methods rely on the assumption that samples connected

by high-density paths are likely to have the same label if there is a high density

path between them (Gao et al., 2008). These methods aim to construct a

graph in which the labeled and unlabeled samples are the nodes, with the link

weights among samples based on their similarity. Dai et al. (2007) proposed

a co-clustering based algorithm to propagate the label information across
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domains for document classification. Xue et al. (2008) proposed a cross-

domain text classification algorithm to integrate labeled and unlabeled data

from different but related domains.

2.3.2 Transfer Learning using Naïve Bayes

Bayesian techniques refer to methods that are related to statistical inference and

are developed based on Bayesian theorem. A Bayesian classifier is a probabilistic

methodology for solving classification problems. Since probability is a useful tool

for modeling the uncertainty in the real world and is adequate for quantifying the

certainty degree of an uncertain truth, Bayesian classifier is popular in the machine

learning community. When it comes to the transfer learning setting, the distribution

of the training data and test data is not identical, so a Bayesian classifier trained on

training data may not be predictive for the test data. To address this challenging

problem, Bayesian-based transfer learning algorithms have been developed in recent

years.

The naïve Bayes classifiers (Lewis, 1992) are among the most popular classifiers

in real world application. They pose a simple but strong assumption that there is

independence between each pair of features given the class variables. Though this

assumption is not suitable in most real scenarios, naïve Bayes classifiers have never-

theless been proved to work quite well in some complicated applications, especially

automatic medical diagnosis (Kononenko, 1993), spam filtering (Androutsopoulos

et al., 2000) and text categorization (Sebastiani, 2002) , in which they may even

outperform more advanced algorithms, such as support vector machine, or random

forests. Normally, the probabilistic model for a classifier is
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P(C|F1, · · · ,Fn) =
p(C)p(F1, · · · ,Fn|C)

p(F1, · · · ,Fn)
(2.1)

where p(F1, · · · ,Fn) indicates a posteriori probability of class variable C, conditional

on feature variables F1 through Fn. Since p(F1, · · · ,Fn) has no relation with the class

variable and the value of Fi(i = 1, · · · ,n) is observable, the above equation can be

expressed as

P(C|F1, · · · ,Fn) µ p(C)p(F1, · · · ,Fn|C) (2.2)

Under the independence assumption adopted by naïve Bayes classifier, which

means

P(C|F1, · · · ,Fn) µ p(C)
n

’
i=1

p(Fi|C) (2.3)

From Eq. (2.3) we find that a prediction made by a classifier depends on the prior

probability of the class variable and the product of the likelihood of each feature

variable given a specific class variable. To estimate each feature’s distribution, it is

necessary to make parameter estimation, assuming a predefined distribution (i.e.,

multinomial distribution or multivariate Bernoulli distribution) or generating a non-

parametric model for a feature that comes from training data. However, if the test

data (new-domain data) follow a different distribution from the training data (old-

domain data), we cannot obtain an accurate feature distribution estimation for the

new-domain data based on the parameter learned from the old-domain data, which

leads to bad prediction performance in the result. Estimating the feature distribution
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for new-domain unlabeled data limits the application of the naïve Bayes classifier in

the transfer learning setting.

To adapt the naïve Bayes classifier from the training data to the test data, Dai

et al. (2007) proposed a novel Naïve Bayes Transfer Learning (NBTL) classification

algorithm for text categorization. NBTL first trains a naïve Bayes classifier on the

training data and applies the learned classifier on the test data to obtain a pseudo label

for the test data during learning, thereby providing an initial model estimation for

the test data under target distribution. The EM algorithm is then applied in iteration

to find a local optimal model only for fitting the target distribution, meaning that

the naïve Bayes classifier trained on the training data is adapted to the test data. To

measure the difference between the different distributions, KL divergence is used

to estimate a trade-off parameter in the NBTL model, and the experiment results

show that the performance of NBTL increases when the distribution between the

training data and the test data is significantly different. The main disadvantage of

NBTL lies in the fact that the influence of new-domain specific features is ignored.

Instead of treating both old-domain and new-domain data equally, an adaptive

naïve Bayes is proposed in (Tan et al., 2009). It uses a weighted EM algorithm to

dynamically increase the importance of new-domain data and decrease the weight of

old data, while at the same time emphasizing the usage of both generalizable features

drawn from the old-domain data and all the features from the new-domain data

for tackling the cross-domain sentiment classification problem. Roy and Kaelbling

(2007) developed an alternative method of transferring the naïve Bayes classifier.

They first partition the dataset into a number of clusters, such that the data for each

cluster for all tasks has the same distribution. Then they train one classifier for each

partition; all classifiers are then combined using a Dirichlet process.
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In addition to text classification, Ma et al. (2012) developed a Transfer Naïve

Bayes (TNB) algorithm to predict cross-company software defects. The implemen-

tation can be summarized in three steps: it first collects maximum and minimum

value vectors of the target feature from test data, then each feature of a training

sample is compared with the corresponding part of those two vectors to calculate

the number of similar attributes and the weight of that training instance is computed

through a gravitational analogy. After obtaining all the weights for the training data,

a prediction model can be built with those weighted training data to classify the test

dataset.

2.3.3 Comprehensive Analysis and Findings

In this section, we have reviewed several current trends of computational intelligence-

based transfer learning. From the summary of transfer learning, it is concluded that

transfer learning with the use of computational intelligence, as an emerging research

topic, starts playing an important role in almost all kinds of application. In the future,

several important research challenges in the field of computational intelligence-based

transfer learning need to be addressed.

• First, the computational complexity is a crucial issue in computational intelligence-

based transfer learning. Almost, all reviewed studies have focused on accuracy

as a measurement for model performance. However, comparing with the

statistical transfer learning methods, computational intelligence techniques

usually gain more computational complexity which should be handled.

• In addition, how to avoid negative transfer is an open problem in not only the

classical transfer learning but also in computational intelligence-based transfer
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learning. The transferability among source and target domains needs to be

studied profoundly and a comprehensive and accurate transferability measures

to be implemented that can guarantee the negative learning will not happens.

• Moreover, all reviewed studies have assumed that the feature spaces between

the source and target domains are the same. However, in many applications,

which we wish to transfer knowledge among domains, this assumption cannot

be held. This type of transfer learning which is referred as the heterogeneous

transfer learning has not been addressed in computational intelligence-based

transfer learning literature.

• Finally, so far the computational intelligence techniques are applied for small

scale transfer learning problems. Nonetheless, in the era of big data, there are

many interesting applications such as social network analysis and web-based

recommender systems that can exploit transfer learning and computational

intelligence techniques. The capability of computational intelligence to handle

non-i.i.d. noisy data can pave the way to use these techniques in big scale real

world applications.



Chapter 3

Framework of Transferring

Structures across Large-scale

Information Networks

3.1 Introduction

In this chapter, we consider the following challenges of developing a framework for

transferring the network structures across large-scale information networks.

• Challenge 1: How to effectively predict links between nodes across relational

networks for the purpose of improving performance of network representation

in the target network?

• Challenge 2: How to transfer the random walks in the source network to the

target network based on the similarity measurement achieved in Challenge 1?
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To this end, we propose a FTLSIN which implements an unsupervised feature

learning for scalable networks. FTLSIN is built by a two-layer random walk to

generate a neighborhood of nodes in the target network with a secondary from the

learned walks in the source network which measures the similarity and predicts links

across networks. Experiment results on real-world datasets empirically demonstrate

that FTLSIN achieves better performance compared to the state-of-the-art network

representation algorithms.

3.2 Problem Statement

The problem of FTLSIN is formulated as follows. Suppose we have a source

domain (D s) and a target domain (D t), where the source domain has a source

network Gs = (V s,Es) with its corresponding label space Y s, and the target domain

has a target network Gt = (Vt ,Et) with its label space Yt . Both networks are

unweighted. For a cross-domain classification problem < Tt ,Ts,(xt
test ,yt

test)>, we

firstly implement a latent feature learning procedure from topology structures of Gs

and Gt as a maximum likelihood optimization problem and then learn the labels Yt

in the target domain with standard classifiers as an evaluations of the cross-domain

network representations.

In this chapter, let f : V ! Rd be the mapping function from nodes to feature

representation, where d refers to the lower-dimensions of our representation, f s are

specially designed for the source network and the target network respectively, i.e.,

f s : V s! Rd and f t : Vt ! Rd . As a sampling strategy, we define a neighborhood

of nodes NS(u)⇢V for every node in the source network and in the target network,

where NS(us)⇢V s, us 2V s, NS(ut)⇢Vt and ut 2Vt . By predicting the latent feature
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space Rd , our proposed framework of FTLSIN can be applied to any (un)directed

and (un)weighted network across domains.

3.3 Large-scale Information Network Structures Trans-

fer Framework

3.3.1 Skip-gram in FTLSIN

The FTLSIN, as shown in Figure 3.1, learns random walks by Skip-gram and

outputs the network representations from the input of networks in source domain and

target domain, respectively. Skip-gram (Mikolov et al., 2013) is a language model

exploiting word orders in a sequence and assuming that words closer are statistically

more dependent or related. We employ the Skip-gram architecture to FTLSIN which

treats the nodes in a sequence and fully uses the structures to make network analysis.

Given a current node us in the source network within a certain window, we have a

FTLSIN Skip-gram for source networks by maximizing the following log-likelihood

function of f s in observing a neighborhood of NS(us):

max
f s Â

us2V s
logPr(NS(us)| f s(us)) (3.1)

Given a node ut in the target network with a certain window, we have a FTLSIN

Skip-gram for the target network by maximizing the following log-likelihood func-

tion of f t in observing a neighborhood of NS(ut):

max
f t Â

ut2Vt
logPr(NS(ut)| f t(ut)) (3.2)
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Following the standard assumptions of Node2Vec (Grover and Leskovec, 2016),

conditional independence and symmetry in feature space are defined in Eqs. (3.3)

and (3.4), respectively.

Pr(NS(u)| f (u)) = ’
ni2NS(u)

Pr(ni| f (u)) (3.3)

Pr(ni| f (u)) =
exp( f (ni) · f (u))

Âv2V exp( f (v) · f (u))
(3.4)

In our proposed FTLSIN Skip-gram (see in Algorithm 3.2), the network neigh-

borhood strategy applied on the target network can be different from the ones on

source networks. Meanwhile, the window length and optimization function f s and

f t set in FTLSIN Skip-gram also can differ from networks.

3.3.2 Two-layer Random Walk in FTLSIN

The FTLSIN consists of a Cross-Domain 2-Layer Random Walk (CD2LRW), which

includes a bottom-layer random walk and a top-layer random walk. In Figure 3.1, the

CD2LRW measures the likelihood between super-nodes {v0,x0} based on its learning

of random walk ws
i . The top-layer maps two nodes {v,x} in the target network to

the corresponding super-nodes {v0,x0} in a source network within a node mapping

procedure and a walk mapping procedure. The Algorithm of CD2LRW in FTLSIN

is as shown in Algorithm 3.1.

Given a random walk of node in either a source network us or a target network

ut , u is in a fixed length of l, i.e., the length of us is ls and the length of ut is lt . The

CD2LRW allows ls different from lt .
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Let vi denote the ith node in the walk, where the start node is v0 = u and all the

nodes in the walk follows the distribution:

P(vs
i = xs|vs

i�1 = vs)

=

8
>><

>>:

pvsxs
Z if (vs,xs) 2 Es

0 otherwise
(3.5)

P(vt
i = xt |vt

i�1 = vt)

=

8
>><

>>:

pvt xt
Z if (vt ,xt) 2 Et

0 otherwise
(3.6)

where pvsxs and pvtxt are the unnormalized transition probability between nodes vs

and xs, and between nodes vt and xt ; and Z is the normalizing constant.

Bottom-layer Random Walk

The design of the bottom-layer random walk is for the network representation

both in the target network and in the source network. We employ parameters p and q

to guide the walk by considering the network neighborhood. In order to determine

which node in the neighborhood have a higher probability to be connected into the

random walk, the search bias a is employed into Eqs. (3.7) and (3.9):

pvsxs = apq(ts,xs) ·wvsxs (3.7)

where wvsxs is the weight on link (vs,xs).
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Algorithm 3.1: CD2LRW in FTLSIN
Input:

Gt = (Vt ,Et): a target network;
Gs = (V s,Es): a source network.

Output:
Wt : a walk set of target network.

1: W s Apply bottom-layer random walk to process the source network, Eqs.
(3.5)-(3.8).

2: Gs = (V s,E s,G s,F s) Samples the source network to a super-graph with
super-nodes.

3: for ws
i in W s do

4: fnode Node mapping on ws
i by Eq. (3.11).

5: wv0x0  Walk mapping on ws
i and fnode by Eqs. (3.12)-(3.13), where

v0,x0 2 V s.
6: end for
7: Wt  Apply bottom-layer random walk to process the target network, Eqs.

(3.5)-(3.10), where wvtxt = wv0x0 .
8: return Wt

apq(ts,xs) =

8
>>>>>><

>>>>>>:

1
p if dtsxs = 0

1 if dtsxs = 1

1
q if dtsxs = 2

(3.8)

where dtsxs is the shortest path between nodes ts and xs through node vs.

pvtxt = apq(tt ,xt) ·wvtxt (3.9)

where wvtxt is the weight on link (vt ,xt).
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apq(tt ,xt) =

8
>>>>>><

>>>>>>:

1
p if dttxt = 0

1 if dttxt = 1

1
q if dttxt = 2

(3.10)

where dttxt is the shortest path between nodes tt and xt through node vt .

Top-layer Random Walk

For the random walk in the top layer, we define a node mapping procedure and

a walk mapping procedure. The node mapping procedure starts from one node

v 2Vt in the target network to a node set v0 2V s
i in the source network. The walk

mapping procedure learns from a walk ws 2 {W s
i } in the source network to a new

walk wt 2Wt in the target network.

Following the assumption of transfer learning (Lu et al., 2015), the scale of

networks in the source domain is much larger than the scale of the network in the

target domain, i.e., |V s
i |� |Vt | or |Es

i |� |Et |. The node mapping procedure links

a node in target network and a set of nodes in source network. Thus, we employs

the definition of super-graph and super-node to process the node mapping procedure.

Specifically, the node set v0 is denoted as a super-node.

A super-graph (Guo and Zhu, 2014) is represented as G = (V ,E ,G ,F ), where

V is a finite set of graph-structure nodes. E ⇢ V ⇥V denotes a finite set of links,

and F : E ! G is an injective function from E to G , where G is the set of single-

attribute graphs. A node in the super-graph, represented by a single-attribute graph,

is called a super-node.
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Algorithm 3.2: Skip-gram in FTLSIN
Input:

Wt : a target random walk set learning from Algorithm 3.1.
Output:

f t : Vt ! Rd: an optimized mapping function for FTLSIN.
1: f t(0) Initialize the target network mapping function.
2: for wt

i in Wt do
3: f t  Apply Eq. (3.2)-(3.4) to optimize f t .
4: end for
5: return f t

As above, our node mapping procedure measures the likelihood of a node in the

target network and a super-node in the source network, i.e., fnode : vt !V s
i .

fnode =

8
>><

>>:

1 if deg(vt) = deg(V s
i )

0 otherwise
(3.11)

In the walk mapping procedure, walk set of target network Wt is jointly de-

termined by the node mapping function fnode and weighted random walk kernel

(Guo and Zhu, 2014) on super-graph in source network. The walks over the source

network W s = {ws
i} is naturally within a super-graph. The links forming a ws

i links

two super-nodes, as shown in Figure 3.1 (d).

Within the top-layer random walk, an link weight in a target walk (wv0x0 in wt
i) is

formed by two terms in Eq. (3.12). The former term is contributed by the virtual

weight in the target network wv0t x0t , and the latter term is contributed by the learning

weight from a walk mapping wt
vv0xx0 .

wv0x0 = b ·wt
vv0xx0+(1�b ) ·wv0t x0t (3.12)
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where b = |Vt |/(|V s
i |+ |Vt |).

wt
vv0xx0 = max

fwalk
Â

W s
wi
2W s

Â
vs2v0,
xs2x0

logP(xs|vs) (3.13)

where P(xs|vs) = 1/dvsxs .

3.4 Experiments

3.4.1 Datasets

We select two academic citation networks as the datasets. Both of them are for the

multi-class classification problem. Nodes are denoted as papers in these networks.

Table 3.1 FTLSIN dataset statistics

Domain Network Num. of Num. of Num. of
Nodes Links Labels

Source DBLP 60,744 52,890 4
Target M10 10,310 77,218 10

• DBLP1 dataset (source network), which consists of bibliography data in

computer science has been used widely in network and graph analysis (Wu

et al., 2014, 2018). Each paper may cite or be cited by other papers, from

which naturally forms a citation network. The network in this dataset abstracts

a list of conferences from four research areas, i.e., database, data mining,

artificial intelligence and computer vision.
1http://arnetminer.org/citation (V4 version is used)
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• CiteSeer-M102 dataset (target network) is a subset of CiteSeerX data which

consists of scientific publications from ten distinct research areas, i.e., agricul-

ture, archeology, biology, computer science, financial economics, industrial

engineering, material science, petroleum chemistry, physics and social science.

3.4.2 Setups

Our experiment evaluates the latent feature representations on standard supervised

learning task: linear SVM classification. We choose the linear classifier instead of

non-linear classifier or sophisticated relational classifiers in order to reduce the impact

of complicated learning approaches on the classification performance. For evalua-

tions, we randomly partition the dataset in the target domain into two non-overlapping

sets for training and testing by nine groups of training percents, {0.1,0.2, · · · ,0.9}.

We repeat the above steps for ten times and thus receive ten copies of the training

data and the testing data. The reported experiment results are the average of the ten

runs and their variance.

3.4.3 Baselines

Figure 3.2 and Figure 3.3 show power law distributions (Adamic and Huberman,

2000) on the experiment datasets and their random walks, which obey the assump-

tions of the random walk that if the degree distribution of a connected graph follows

a power law distribution, the frequency which the nodes appear in the short random

walks will also follow a power law distribution (Perozzi et al., 2014).
2http://citeseerx.ist.psu.edu/
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We implement the following random walk based domain-specific network repre-

sentation algorithms for comparison. The baselines are applied with the FTLSIN

Skip-gram for source networks in Eqs. (3.1), (3.3)-(3.4).

• DeepWalk (Perozzi et al., 2014) learns d-dimensional feature representations

by simulating uniform random walks. The sampling strategy in DeepWalk can

be seen as a special case of FTLSIN with bottom-layer random walk in p = 1

and q = 1.

• LINE (Tang et al., 2015) learns d-dimensional feature representations in two

separate phases. In the first phase, it learns d/2 dimensions by BFS-style

simulations over immediate neighbors of nodes. In the second phase, it learns

the next d/2 dimensions by sampling nodes strictly at a 2-hop distance from

the source nodes.

• Node2Vec (Grover and Leskovec, 2016) learns d-dimensional feature rep-

resentations by BFS-style simulations over immediate neighbors of nodes.

The sampling strategy in Node2Vec is also a special case of FTLSIN with

bottom-layer random walk in p = 1 and q = 1.

3.4.4 Parameters Setting

The parameter settings used for FTLSIN are in line with typical values used for

DeepWalk, LINE and Node2Vec. Specially for source and target networks, we set the

dimensions of feature representation at d = 128, set the walk length at l = 80, set the

number of walks of every source node at k = 10, and set the window size at r = 10.

In this way, the total number of walks over a input network is w = SampleSize⇥ k,
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and the shape of walk sets are in w⇥ l. The parameters of search bias a is set at

p = 1 and q = 1.

3.4.5 Result Analysis

The node feature learning by network representations are input to a one-against-all

linear SVM classifier (Hsu and Lin, 2002). We use Macro-F1 and Micro-F1 for

comparing performance and the results are shown in Table 3.2. These two measures

are popular just like the classification accuracy performance in data mining areas

(Wu et al., 2012).

Representation Analysis. Figure 3.4 (a) illustrate the feature spaces of DBLP

by FTLSIN bottom-layer random walk, Figure 3.4 (b) illustrate the feature spaces

of M10 by FTLSIN two-layer random walk. These two illustrations show almost

the same distributions in feature spaces and get good mappings in a low dimension

than PCA (Figure 3.5), LLE (Figure 3.6) and Laplacian (Figure 3.7) based network

representations.

Effectiveness of search priority in random walks. In Table 3.2, DeepWalk

and LINE show the worse performance than FTLSIN and Node2Vec, which can be

explained by its inability to reuse samples, a feat that can be easily done using the

random walk. The outstanding of Node2Vec among benchmark models indicates

the exploration strategy is much better than the uniform random walks learned by

DeepWalk and LINE. Meanwhile, the poor performance of DeepWalk and LINE is

mainly because the network structure is rather sparse, with noises and only contains

limited information. FTLSIN and Node2Vec are both good performing on M10
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Table 3.2 FTLSIN classification results on target domain network of M10

Model Statistic 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

DeepWalk mean 0.1758 0.1833 0.1897 0.2049 0.2051 0.2216 0.2236 0.2420 0.2431
variance 0.0086 0.0100 0.0122 0.0126 0.0128 0.0111 0.0170 0.0133 0.0220

LINE mean 0.2338 0.2362 0.2623 0.2821 0.3269 0.3244 0.3561 0.3508 0.4128
variance 0.0102 0.0170 0.0110 0.0141 0.0150 0.0087 0.0193 0.0184 0.0486

Node2Vec mean 0.3342 0.4166 0.4714 0.5213 0.5550 0.5843 0.6216 0.6353 0.6535
variance 0.0099 0.0110 0.0153 0.0127 0.0176 0.0092 0.0215 0.0115 0.0324

FTLSIN mean 0.3530 0.4374 0.4980 0.5519 0.5876 0.6179 0.6580 0.6712 0.6967
variance 0.0043 0.0049 0.0063 0.0050 0.0065 0.0072 0.0074 0.0078 0.0183

Macro-F1

DeepWalk mean 0.2523 0.2667 0.2768 0.2945 0.2935 0.3077 0.3101 0.3294 0.3359
variance 0.0117 0.0051 0.0072 0.0120 0.0081 0.0086 0.0158 0.0123 0.0220

LINE mean 0.3160 0.2984 0.3421 0.3596 0.4070 0.4275 0.4498 0.4277 0.4773
variance 0.0113 0.0127 0.0144 0.0249 0.0382 0.0548 0.0383 0.0302 0.0486

Node2Vec mean 0.4326 0.4748 0.5338 0.5900 0.6092 0.6388 0.6866 0.6981 0.6568
variance 0.0147 0.0156 0.0153 0.0153 0.0290 0.0314 0.0202 0.0572 0.0261

FTLSIN mean 0.4662 0.5094 0.5747 0.6354 0.6557 0.6863 0.7377 0.7488 0.6908
variance 0.0057 0.0120 0.0121 0.0107 0.0128 0.0147 0.0143 0.0153 0.0200
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Figure 3.4 Illustrations of 2-dimensional network representation by FTLSIN
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Figure 3.5 Illustrations of 2-dimensional network representation by PCA
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Figure 3.6 Illustrations of 2-dimensional network representation by LLE
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network with above advantages, as parameter of search bias a adds the flexibility in

exploring local neighborhoods prior to global network.

Importance of information from source domain. Table 3.2 shows that FTLSIN

outperforms the domain-specific benchmark models, which uses topological infor-

mation from the source domain to learn the network representation in the target

domain. When we add a top-layer in FTLSIN, the information in the source network

are transferred to the source network by adjusting the weights on the links of the

target network.

3.5 Summary

In this chapter, the proposed FTLSIN offers a solution for the scenario in network

representation that transferring structures across networks with CD2LRW. The

FTLSIN effectively improves the performance of latent feature learning in large-

scale citation networks as shown in the experiment. Meanwhile, it reduces learning

difficulties of data sparsity and noises. Future works include FTLSIN with multiple

labels and deep network representation.



Chapter 4

Cross-domain Network

Representations based on Random

Walk Transfer

4.1 Introduction

Typical random walk-based network representation algorithms, such as DeepWalk

(Perozzi et al., 2014), learn sequences of nodes to model the network structures of

deep features. However, these domain-specific network representation algorithms

still limit the performance of network representations. Random walk-based network

representations are highly dependent on the sliced window for sampling the nodes.

When the distance between two nodes that share the same content is larger than

the size of window, the random walk fails in this representation round and turns to

the next round of sampling. Although the missing representations are covered by a

vast amount of sampling in some related works, the process increases computational
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complexity (Perozzi et al., 2014). Most previous works are domain-specific random

walk-based network representation algorithms that cannot overcome the gap that

the network structure is too sparse to obtain a satisfying latent feature space for

further machine learning tasks. The sparsity may be caused by the smaller scale of

the network which is generating the nodes and links.

In this chapter, we propose a novel CDNR based on FTLSIN proposed in (Xue

et al., 2018). CDNR is different from previous deep transfer learning approaches

for cross-domain graph-structured data, i.e., context enhanced inductive representa-

tion (Hamilton et al., 2017) and intrinsic geometric information transfer (Lee et al.,

2017). CDNR has the advantage of using a sampling strategy, as in domain-specific

random walk-based network representations, and focuses on large information net-

work representations which show special characteristics that a graph does not. By

addressing the challenges of cross-domain relationships and cross-domain random

walk constructions, CDNR makes the following contributions:

• Contribution 1: The novel algorithm of CDNR is proposed to enable knowl-

edge sharing across related domains by link prediction on the node mapping

procedure. By generating new links between two independent networks,

CDNR calculates the similarities and determines the relationships across do-

mains.

• Contribution 2: The proposed random walk strategy works synchronously for

the source and target domains. In CDNR, knowledge is transferred from the

source domain to the target domain in a walk mapping procedure. The network

in the target domain leverages shared knowledge to make representations.
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• Contribution 3: An extension of CD2LRW is proposed to complete the

contributions of 1 and 2 in an unsupervised feature-learning way. The output

of CD2LRW is the set of random walks of the target network, from which

CDNR learns the network representation based on the random walks.

4.2 Problem Statement

Let G = (V,E) be a given network, where V represents the members of the network

known as nodes and E represents their connections known as links, E ✓ (V ⇥V ).

In the cross-domain problem, we have a D s and a D t . The domain (Pan and Yang,

2010) is denoted as D = {X ,P(X)}, where X is the feature space and P(X) is

the marginal probability distribution that X = {x1, · · · ,xn} 2X . In the domain-

specific scenario, X s and X t are represented by Gs = (V s,Es) and Gt = (Vt ,Et)

respectively, because Ps(Xs) and Pt(Xt) are different in P(·) or in X . In CDNR,

D s = {X s,Ps(Xs)} and D t = {X t ,Pt(Xt)}. We target the network representation

on X t which is jointly represented by Gt = (Vt ,Et) and the shared knowledge

from Gs = (V s,Es). CDNR introduces the structural knowledge from D s to D t

and improves the network representations in D t when the per-node scale of Gt

is smaller than that of Gs. We first implement a domain-specific latent feature-

learning procedure from the topology structures of Gs as a maximum likelihood

optimization problem to generate a set of random walks in the bottom layer of

CD2LRW. NS(us) ⇢ V s is designed as a network neighborhood of node us where

us 2V s to determine the neighborhood network structures of Gs. A neighborhood

sampling strategy (S) with standard biased random walk is generated for NS(us).

The top layer of CD2LRW is then designed to make the cross-domain structural
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knowledge transfer. Let f : Vt ! Rd be the mapping function from nodes to feature

representations for the target domain network, where d denotes the lower-dimensions

of the latent feature space. The representation outputs of CDNR will be evaluated by

a standard classifier in the target domain.

4.3 CDNR with CD2LRW

CDNR extends domain-specific random walks to cross domains and assumes that

networks across domains follow the power-law distribution. CD2LRW contributes

CDNR under the Skip-gram framework and is optimized by maximum likelihood.

As shown in Figure 4.1, CD2LRW first makes a domain-specific random walk in

the bottom layer and involves the target network in the top layer. A cross-domain

node-mapping procedure then predicts the links from the top layer to the bottom

layer and a cross-domain walk-mapping procedure transfers the knowledge from the

bottom layer to the top layer. Lastly the random walk learning for the target network

is processed in the top layer using the transferred knowledge and its own network

structure information. The example of the four steps are as follows.

• Step 1 generates random walks in the bottom layer, which is the source domain

knowledge prepared for cross-domain walk mapping.

• Step 2 finds the super-nodes V 0 in the source network using the cross-domain

node mapping function Fnode. vt in the target network and V 0 in the source

network correspond to the close degrees, Deg(vt) ⇠ Deg(V 0). Each pair of

(vt ,V 0) is linked with e⇤vtV 0 .
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• Step 3 transfers the source network random walk knowledge via e⇤vtV 0 and

saves the knowledge on the updated weight w⇤i j. This procedure Fwalk offers

more structural information for the random walk in the target network.

• Step 4 conducts the CDNR based on the top-layer random walk for the target

network. Each node is embedded in a vector format and all nodes are mapped

to a latent feature space optimized by the maximized likelihood. The detailed

steps in CDNR are explained in this section.

4.3.1 Random Walk Sampling Strategies: Domain-specific

DeepWalk (Perozzi et al., 2014) trains a neural language model on the random walks

generated by the network structure. After denoting a random walk that starts from a

root node, DeepWalk slides a window and maps the central node to its representa-

tion. Hierarchical Softmax factors out the probability distributions corresponding

to the random walk and the representation function is updated to maximize the

probability. DeepWalk has produced promising results in dealing with sparsity in

scalable networks, but has relatively high computational complexity for large-scale

information networks. LINE, Node2Vec and Struc2Vec are the other structure-based

network representation algorithms that improve the performance of DeepWalk. LINE

(Tang et al., 2015) preserves both the local network structure and the global net-

work structure by first-order proximity and second-order proximity respectively and

can be applied to large-scale deep network structures that are directed, undirected,

weighted and unweighted. Node2Vec (Grover and Leskovec, 2016) explores the

diverse neighborhoods of nodes in a biased random walk procedure by employing

classic search strategies. Struc2Vec (Ribeiro et al., 2017) encodes structural sim-
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ilarities and generates the structural context for nodes using random walks. The

above-mentioned works has contributed to network analysis by modeling a stream

of short random walks. In this chapter, we propose CDNR which employs biased

random walk sampling strategies to learn network structures based on those earlier

works.

4.3.2 Power-law Distribution: The Assumption

The power-law distribution exists widely in real-world networks. It is a special

degree distribution that follows P(deg) ⇠ deg�a, where deg is a node degree and

a is a positive constant (Newman, 2005b). A network that follows the power-law

distribution is also regarded as a scale-free network with the scale invariance property

(Barabási, 2009). The social networks, biological networks and citation networks

being discussed in this chapter are observed to be scale-free in nature (Barabási and

Pósfai, 2016). In log-log axes, the power-law distribution shows a linear trend on

the slope ratio of �a (Figures 4.2-4.7), which reflects that numerous links connect

small degree nodes and will not change regardless of network scale (Adamic and

Huberman, 2000). It has been observed in (Perozzi et al., 2014) that if a network

follows the power-law distribution, the frequency at which a node undertakes in a

short random walk will also follow the same distribution. Meanwhile, random walks

in power-law distribution networks naturally gravitate towards high degree nodes

(Adamic et al., 2001). The link predictions in CD2LRW are therefore leveraged

on the power-law distribution as well as the distance calculation between the two

independent networks across domains. The network that has small distance to the
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target network is regarded as the source domain. The scale invariance property

should theoretically ensure that power law-based CDNR is robust.

4.3.3 Bottom-layer Random Walk: Knowledge Preparation

The bottom-layer random walk is designed for random walk sampling in the source

domain. The sampled random walks are the structural knowledge waiting to be

transferred to the target domain.

The bottom-layer random walk introduces a biased random walk to efficiently

explore diverse neighborhoods and sample the nodes along the shortest path1. Sup-

pose W s = {W 1
vs ,W 2

vs , · · · ,W k
vs} is a set of stochastic random walks in the bottom

layer that are rooted at node vs 2V s where k is the given number of random walks.

For each random walk Wvs , we generate a length in l and the nodes in Wvs within

the neighborhood are searched along the shortest path. For example, let c denote

the ith node and c�1 denote the i�1th node in Wvs where vs = c0. The probability

that node x is involved in Wvs as c+1 is based on the neighborhood NS(c). If link

exc 2 Es, P(x|c) = pxc
Z , otherwise it is 0. Z is the partition function that ensures a

normalized distribution; see definition in (Bengio et al., 2013). pxc is guided by the

search bias parameter a and only works in each NS(c). pxc = apq(x,c) ·wxc, where

wxc refers to the weight on link exc and apq(x,c) follows the following search rules:

if the shortest path dxc�1 = 0, apq(x,c) = 1/p; if dxc�1 = 1, apq(x,c) = 1; and if

dxc�1 = 2, apq(x,c) = 1/q. In this way, p describes the case in which the nodes

are revisited by a random walk so that the sampling strategy on random walks is

computationally efficient, especially for real-world large-scale networks.
1The shortest path is a path between two nodes for which the sum of its links weights is minimized.
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4.3.4 Top-layer Random Walk: Knowledge Transfer

CDNR deals with the scenario in which the training sample in the target network is

insufficient to make a good network representation. In the procedure described in the

bottom-layer random walk, the scale of the sampled random walks is small compared

with the scale of the nodes. The top-layer random walk is therefore proposed to

counter this obstacle under the common framework of transfer learning (Lu et al.,

2015). The cooperation of CD2LRW is achieved by a cross-domain node mapping

procedure and a cross-domain walk mapping procedure.

Cross-domain Node Mapping

The source network candidates must first meet the following requirements:

• Requirement 1 |V s|> |Vt |: the scale of the nodes should be larger than the

node scale of the target network; and

• Requirement 2 hdegsi > hdegti: the average node degree2 should be larger

than the average node degree in the target network.

Candidates are then evaluated in a super-graph structure (Guo and Zhu, 2014)

which is formed by super-nodes, as shown in Figure 4.1.

Definition 4.1. Super-node in Source Domain A super-node is a sub-structure of

the original source network. Denoting V = {V 0,E 0|V 0 ✓V s,E 0 ✓ Es}, a super-node

V 0 consists of a group of nodes {vs} from the original network that share the same

degree and E 0 are the links appearing in the sub-structure of the original network.
2The average node degree is the mean of the degrees of all nodes in the network.
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Definition 4.2. Super-graph in Source Domain A super-graph is formed by the

super-nodes as Gs = (V ,E ,G ,F ), where E denotes a finite set of links as F : G !

E , and G = {G0 = (V 0,E 0)}.

To map a large-scale source domain network to a small-scale target domain

network, a cross-domain node mapping procedure is implemented by predicting

links, starting from the nodes in the target domain network to the super-nodes in the

source domain network. We attempt to pair each node vt 2Vt with more than one

super-node V 0 2 V with an link evtV 0 2 E⇤ and a weight wvtV 0 2W ⇤, where E⇤ are

the predicted links that arrange the knowledge transfer paths with various weights

W ⇤ to control how much knowledge should be transferred from the source domain

to the target domain. The node mapping function is as follows:

Fnode : (Vt ,V )! E⇤ (4.1)

For each pair of (vt ,V 0),

evtV 0 =

8
><

>:

1 if wvtV 0 > 0

0 if wvtV 0 = 0
(4.2)

wvtV 0 =
min(Deg(vt),Deg(V 0))
max(Deg(vt),Deg(V 0))

(4.3)

where Deg(v) denotes the degree of node v.

Denoting the node degree Deg(vt) in the target network ranges from 1 to

max(degt) where |degt | = ndegt and the node degree Deg(vs) in the source net-

work ranges from 1 to max(degs) where |degs|= ndegs , there are three possible cases

in cross-domain node mapping.
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• Case 1: If ndegs = ndegt , only one V 0 maps to vt . Deg(Vt) and Deg(V ) are

ranked in decreasing order, respectively. vt finds the V 0 that are in the same

position as their own degree sequences, denoted as Deg(vt)⇠Deg(V 0). In this

case, the cross-domain node mapping is completed directly by Eqs. (4.2) and

(4.3), E⇤ = {evtV 0} and W ⇤ = {wvtV 0}.

• Case 2: If ndegs > ndegt , more than one V 0 is mapped to vt .

• Case 3: If ndegs < ndegt , we add ndegt � ndegs super-nodes which are empty

sets V 0null =? in V , where Deg(V 0null) = 0.

In Case 2 and Case 3, the cross-domain node mapping Fnode : (Vt ,V )! E⇤ is

optimized by maximizing the likelihood between Vt and V . Starting from each vt ,

we weight wi to each pair of (vt ,V 0i ) according to Eq. (4.3), where i = 1, · · · ,nnode

and nnode = max(ndegs ,ndegt ).

max
Fnode

Â
vt2Vt

h
nnode

Â
i=1

⇥
log(C)�a� log(~dz~w~w>~d>z )

⇤
i (4.4)

where ~w = [w1, · · · ,wi, · · · ,wnnode ]
>. ~dz is a vector in size of nnode with the value

of 0 or 1, which selects out the super-nodes that are Deg(vt)⇠ Deg(V 0). Let a� =

min{as,at} in which as and at are the power-law slope ratio of Gs and Gt respectively.

h = 1
ndegt

e
1�n2

degs
ndegs gel controls the range of the likelihood over the global cross-domain

node mapping, where g is the parameter of Vt and l is the parameter of V . The

optimized cross-domain node mapping results are E⇤ µ ~dz where W ⇤ = ~dz~w in Case

2 and Case 3.
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Cross-domain Walk Mapping

The cross-domain walk mapping transfers in the random walks the source domain

W s generated in top-layer random walk via the predicted links E⇤ and the W ⇤ learned

by cross-domain node mapping, and assists the random walk learning in the target

domain. The cross-domain walk mapping function is as follows:

Fwalk : (Gt ,W s,E⇤,W ⇤)!W t (4.5)

Corresponding to the cross-domain node-mapping procedure which learns from

a super-node to a general node, the cross-domain walk mapping procedure learns

from the links E connecting the super-nodes V along W s to the general links Et in

Gt . The learning is therefore designed so that the transferred knowledge works on

the weights of Et .

Suppose that et
i j 2 Et , the weights on et

i j in the top layer of the CD2LRW are

denoted as:

w⇤ti j = wt
i j +Â

V 0i
Â
V 0j

w⇤iV 0i w⇤jV 0j
⇥ 1

lP
Â

E 0
V 0t V 0t+1

✓PV 0i V 0j

ws
V 0t V 0t+1

⇤
(4.6)

where wt
i j is the weight of et

i j in Gt ; V 0i is one of the corresponding super-node of

node i; V 0j is one of the corresponding super-node of node j; PV 0i V 0j
is the shortest

path from V 0i to V 0j ; lP is the length of PV 0i V 0j
; and ws

V 0t V 0t+1
is the weight on E 0V 0t V 0t+1

that E 0V 0t V 0t+1
2 E forms PV 0i V 0j

.

We then learn the random walks on Gt in the cross-domain top layer, using the

same procedure as used in the bottom-layer random walk with w⇤i j and optimized by

the following top-layer feature learning.
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4.3.5 Top-layer Feature Learning: Knowledge Representation

CDNR represents the knowledge in the target domain after CD2LRW has completed

the knowledge preparation in the source domain and the knowledge transfer to the

target domain. CDNR learns the latent feature space by f : Vt!Rd in the Skip-gram

framework.

Given a node ut in the target domain with the window size r, we obtain a cross-

domain Skip-gram for the Gt by maximizing the following log-likelihood function

of f in observing a neighborhood of NS(ut),

max
f Â

ut2Vt
logPr(NS(ut)| f (ut)) (4.7)

Algorithm 4.1 of CDNR is formed by a CD2LRW and a Top-layer Feature

Learning. The two-layer design completes the knowledge transfer from the source

network to the target network. The bottom layer loads the source network and the

top layer loads the target network, where the bottom layer pre-learns the useful

knowledge of random walks to assist the random walk sampling in the top layer.

In summary, the main advantage of CDNR is that when the network structure

lacks the information to generate good network representation, the two layers are

designed to share knowledge by overcoming the challenges presented by the un-

balanced scale of nodes and random walks. The proposed CD2LRW in CDNR

offers efficient cross-domain mapping with a relatively low computational cost of

O(hdegti|Vt |). The computational complexity of Top-layer Feature Learning is in

line with Node2Vec of O(hdegti2|Vt |).
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Algorithm 4.1: The CDNR algorithm
Input:

Gt = (Vt ,Et) in the target domain and Gs = (V s,Es) in the source domain; start
node ut 2Vt ; and walk length l.

Output:
A latent feature space of Gt in Rd .

CD2LRW
1: W s Apply bottom-layer random walk to process random walks in Gs.
2: for vt in Vt do
3: Fnode(vt ,V 0) Cross-domain node mapping by Eqs. (4.1)-(4.4).
4: end for
5: E⇤  Predicted links by cross-domain node mapping.
6: W ⇤  Weights on E⇤.
7: for et

i j in Et do
8: {i,V 0i } Find super-nodes in Gs that eiV 0i

2 E⇤.
9: { j,V 0j} Find super-nodes in Gs that e jV 0j

2 E⇤.
10: PV 0i V 0 j Construct shortest paths between V 0i and V 0j .
11: ws

v0tV 0t+1
 Weights on E 0v0tV 0t+1

2 E .
12: w⇤ti j  Update weight on et

i j by Eq. (4.6).
13: end for
Top-layer Feature Learning

1: for ut in Gt do
2: NS(ut) Search neighborhood of ut .
3: f  Apply Skip-gram to optimize.
4: end for
5: W t  Apply CD2LRW to process random walks in Gt by Eqs. (4.5)-(4.7).
6: return Rd  A latent feature space of Gt by f .

4.4 Experiments

This section evaluates the effectiveness of CDNR compared to the baseline algorithms

of network representations in multi-label classifications.
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Table 4.1 CDNR dataset statistics

Datasets Num. of Num. of Ave. Num. of LabelsNodes Links Degree Categories
Blog3 10,312 333,983 64.776 39 Interests

YouTube 31,703 90,082 8.199 37 Interests
Facebook 4,039 88,234 43.691 10 Groups

PPI 3,890 37,845 19.609 50 States
arXivCit-HepPh 34,546 421,578 24.407 11 Years
arXivCit-HepTh 27,777 352,807 25.409 11 Years

4.4.1 Datasets

We select six real-world large-scale networks of different kinds as the experimental

datasets, consisting of three online social networks (Blog3, YouTube, Facebook), two

citation networks (arXivCit-HepPh, arXivCit-HepTh) and one biological network

(PPI). All of them are for the multi-class multi-label classification problem. In the

online social networks, nodes represent users and the users’ relationships are denoted

as links. In the citation networks, papers are denoted as nodes and links describe the

citations in this experiment. In the biological network, genes are denoted as nodes

and links represent the relationships between the genes.

• BlogCatalog3 (Blog3)3 dataset is a social blog directory which manages blog-

gers and their blogs. Both the contact network and selected group membership

information is included. The network has 10,312 nodes, 333,983 undirected

links and 39 different labels. Nodes are classified according to the interests of

bloggers.

• YouTube4 dataset is a social network dataset generated by users who share

videos online. The labels represent groups of website users that enjoy common
3http://socialcomputing.asu.edu/datasets/BlogCatalog3
4http://leitang.net/code/social-dimension/data/youtube.mat



4.4 Experiments 89

video genres (e.g. anime and wrestling). The network has 90,082 undirected

links, 31,703 connected and labeled nodes and 37 different labels on connected

nodes.

• Facebook5 dataset consists of circles (i.e., friends lists) from Facebook. This

dataset contains user profiles as node features, and circles as link features and

ego networks. The network has 4,039 nodes, 88,234 undirected links and 10

different labels representing groups of users.

• PPI6 dataset is a subgraph of the PPI network for Homo Sapiens, which

obtains labels from hallmark gene sets and represents biological states. The

network has 3,890 nodes, 76,584 undirected links and 50 different labels.

• arXiv High-energy Physics Citation Network (arXivCit-HepPh)7 dataset

and arXiv High-energy Physics Theory Citation Network (arXivCit-HepTh)8

dataset are abstracted from the e-print arXiv. arXivCit-HepPh covers all the

citations within a dataset of 34,546 papers (regarded as nodes) with 421,578

directed links. arXivCit-HepTh covers all the citations within a dataset of

27,777 papers (regarded as nodes) with 352,807 directed links. If a paper i

cites paper j, the graph contains a directed link from i to j. The data consist of

papers from the period January 1993 to April 2003, categorized by year.

The networks chosen in the experiment follow the power-law distribution (Adamic

and Huberman, 2000), as do the random walks on the networks (Perozzi et al., 2014),

as shown in Figures 4.2-4.7.
5https://snap.stanford.edu/data/egonets-Facebook.html
6https://downloads.thebiogrid.org/BioGRID
7http://snap.stanford.edu/data/cit-HepPh.html
8http://snap.stanford.edu/data/cit-HepTh.html
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4.4.2 Setups

Our experiment evaluates the latent feature representations on a standard super-

vised learning task: linear SVM classification (Fung and Mangasarian, 2005). A

linear classifier is chosen instead of a non-linear classifier or sophisticated relational

classifier to reduce the impact of complicated learning approaches on classification

performance. For the evaluations, we randomly partition the dataset in the target

domain into two non-overlapping sets for training and testing by nine groups of

training percentages, {0.1,0.2, · · · ,0.9}. We repeat the above steps ten times and

thus obtain ten copies of the training data and testing data. The reported experiment

results are the average of the ten runs and their variance.

The node feature learning by network representations are input to a one-against-

all linear SVM classifier (Hsu and Lin, 2002). We use Macro-F1 and Micro-F1 (Yang

and Liu, 1999) to compare performance and the results are shown in Tables 4.3-4.8.

The F1 score is designed to evaluate the effectiveness of category assignments by

classifiers.

We use the indicators of true positive (tp), false positive (fp) and false negative

(fn) to measure the standard recall (r) and precision (p). For F1(r, p) = Micro_F1,

let r = Â t p
Â t p+Â f n and p = Â t p

Â t p+Â f p . The Micro-F1 score computes the global n⇥m

binary decisions, where n is the number of total test nodes, and m is the number

of categories of binary labels. For F1(r, p) = Micro_F1, let r = 1
m Â t p

t p+ f n and

p = 1
m Â t p

t p+ f p . The Macro-F1 score computes the binary decisions on individual

categories and then averages the categories.

F1(r, p) =
2rp

r+ p
(4.8)
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This experiment summarizes the network statistics in Table 4.1. Node degree is

the number of links reflecting the connection capability of the node. Each network is

selected as a source domain or a target domain following |V s|> |Vt | and hdegsi>

hdegti. These selections are shown in Table 4.2.

Table 4.2 CDNR domain selections based on network statistics

Source Domain Target Domain
Blog3 PPI

arXivCit-HepTh PPI
arXivCit-HepPh PPI

Facebook PPI
Blog3 Facebook

arXivCit-HepPh YouTube

4.4.3 Baselines

This experiment evaluates the performance of the unsupervised CDNR on the target

networks. The representation outputs are applied a standard supervised learning

task, i.e., linear SVM classification (Suykens and Vandewalle, 1999), to put less

emphasis on the network representation performance by classifiers and reflect the

performance of CDNR. The baselines are chosen from the previous domain-specific

network representations as follows.

• DeepWalk (Perozzi et al., 2014) is the first random walk-based network

representation algorithm. By choosing DeepWalks, we exclude the matrix

factorization approaches which have already been demonstrated to be inferior

to DeepWalk.

• LINE (Tang et al., 2015) learns latent feature representations from large-scale

information networks by an link-sampling strategy in two separate phases of
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first- and second-order proximities. We excluded a recent Graph Factorization

algorithm (Ahmed et al., 2013) because LINE demonstrated better performance

in the previous experiment.

• Node2Vec (Grover and Leskovec, 2016) learns continuous feature representa-

tions of nodes using a biased random walk procedure to capture the diversity

of connectivity patterns observed in networks with the biased parameter a

which is controlled by parameters of p and q.

• Struc2Vec (Ribeiro et al., 2017) learns node representations from structural

identity by constructing a hierarchical graph to encode structural similarities

and generating a structural context for nodes.

4.4.4 Parameters Setting

The parameters of CDNR are set in line with typical values used for DeepWalk,

LINE, Node2Vec and Struc2Vec. For networks in both the source domain and

the target domain, let the dimensions of feature representation be d = 128, the

walk length be l = 80, the number of walks of every source node be k = 10, the

window size be r = 10, workers = 8, and the search bias a be with p = 1 and q = 1,

which comprehensively follows previous settings in DeepWalk (Perozzi et al., 2014),

Node2Vec (Grover and Leskovec, 2016) and LINE (Tang et al., 2015). Let the

learning rate r start from 0.025 as in (Tang et al., 2015) and the convergence track

on 0.1 in our experiment. For Struc2Vec as used in (Ribeiro et al., 2017), let OPT1

(reducing the length of degree sequences), OPT2 (reducing the number of pairwise

similarity calculations) and OPT3 (reducing the number of layers) all in values of

True, and the maximum number of layers be 6. The parameters of the node-mapping



4.4 Experiments 99

is set as g = 100 and l = 100. In these settings, the total number of random walks

over an input network is w = SampleSize⇥ k and the size of the random walks is

w⇥ l.

4.4.5 Result Analysis

In the multi-label classification setting, every node is assigned one or more labels

from a finite set Y . In the training phase of the CDNR node feature representations,

we observe a fraction of the nodes and all their labels, and predict the labels for

the remaining nodes. This is a challenging task, especially if the |V | and |E| are

large. The multi-label classification in our experiment inputs d = 128 network

representations to a one-against-all linear SVM classifier (Hsu and Lin, 2002). We

use the F1 score of Macro-F1 and Micro-F1 to compare performance (Yang and Liu,

1999) in Tables 4.3-4.8.

Experiment results from the algorithmic perspective. A general observation

drawn from the results is that the learned feature representations from other networks

improve or maintain performance compared to the domain-specific network repre-

sentation baseline algorithms. CDNR outperforms DeepWalk, LINE and Struc2Vec

in all datasets with a gain of 12.95%, 47.66% and 52.21% respectively. CDNR

outperforms Node2Vec on the PPI dataset and the YouTube dataset in 72% of the

experiment, and outperforms Node2Vec on the Facebook dataset in 94% of the

experiment. The losses of CDNR with Node2Vec on all networks average only

0.12%.

Experiment results from the dataset perspective. The general results on the

PPI dataset (Tables 4.3 and 4.4) reflect the difficulty of cross-domain learning. Con-
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Table 4.3 CDNR classification results of Micro-F1 on the target domain network of PPI

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 0.2849 0.2854 0.2845 0.2803 0.2725 0.2736 0.2629 0.2778 0.2621
±0.0181 ±0.0116 ±0.0193 ±0.0170 ±0.0168 ±0.0200 ±0.0241 ±0.0215 ±0.0344

LINE 0.2900 0.2772 0.2807 0.2715 0.2702 0.2649 0.2710 0.2494 0.2398
±0.0062 ±0.0077 ±0.0083 ±0.0104 ±0.0113 ±0.0166 ±0.0163 ±0.0251 ±0.0195

Node2Vec 0.3073 0.2955 0.3024 0.3028 0.3028 0.2995 0.3021 0.2967 0.3005
±0.0171 ±0.0104 ±0.0139 ±0.0120 ±0.0102 ±0.0186 ±0.0288 ±0.0197 ±0.0283

Struc2Vec 0.2693 0.2713 0.2696 0.2515 0.2603 0.2499 0.2493 0.2419 0.2338
±0.0228 ±0.0187 ±0.0188 ±0.0187 ±0.0133 ±0.0212 ±0.0148 ±0.0156 ±0.0287

CDNR 0.3020 0.3027 0.2980 0.2989 0.2979 0.3016 0.2974 0.2839 0.2843Blog3 ±0.0109 ±0.0120 ±0.0120 ±0.0064 ±0.0077 ±0.0113 ±0.0142 ±0.0191 ±0.03752PPI
CDNR

arXivCit 0.2971 0.3068 0.3060 0.3001 0.3037 0.3042 0.2897 0.2921 0.2978
-HepPh ±0.0132 ±0.0119 ±0.0164 ±0.0079 ±0.0098 ±0.0092 ±0.0177 ±0.0126 ±0.0349

2PPI
CDNR

arXivCit 0.3074 0.2949 0.3017 0.3024 0.2995 0.3005 0.2979 0.3008 0.2999
-HepTh ±0.0136 ±0.0140 ±0.0125 ±0.0097 ±0.0136 ±0.0105 ±0.0263 ±0.0195 ±0.0387

2PPI
CDNR 0.3064 0.3082 0.3051 0.3024 0.2970 0.2857 0.2915 0.2840 0.2652Facebook ±0.0128 ±0.0137 ±0.0135 ±0.0092 ±0.0135 ±0.0163 ±0.0192 ±0.0142 ±0.02492PPI
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Table 4.4 CDNR classification results of Macro-F1 on the target domain network of PPI

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 0.3416 0.3378 0.3364 0.3406 0.3306 0.3336 0.2949 0.2825 0.2041
±0.0140 ±0.0138 ±0.0208 ±0.0171 ±0.0159 ±0.0241 ±0.0288 ±0.0185 ±0.0386

LINE 0.3058 0.3003 0.3008 0.2940 0.2868 0.2826 0.2733 0.2462 0.1822
±0.0094 ±0.0113 ±0.0069 ±0.0120 ±0.0138 ±0.0176 ±0.0173 ±0.0262 ±0.0198

Node2Vec 0.3490 0.3442 0.3510 0.3500 0.3432 0.3414 0.3274 0.3006 0.2310
±0.0193 ±0.0141 ±0.0205 ±0.0126 ±0.0140 ±0.0201 ±0.0240 ±0.0248 ±0.0385

Struc2Vec 0.2892 0.2926 0.3019 0.2784 0.2851 0.2626 0.2589 0.2399 0.1712
±0.0197 ±0.0232 ±0.0227 ±0.0267 ±0.0152 ±0.0202 ±0.0177 ±0.0287 ±0.0262

CDNR 0.3490 0.3421 0.3468 0.3408 0.3353 0.3385 0.3171 0.2888 0.2154Blog3 ±0.0182 ±0.0097 ±0.0165 ±0.0095 ±0.0209 ±0.0098 ±0.0247 ±0.0298 ±0.03992PPI
CDNR

arXivCit 0.3494 0.3501 0.3550 0.3425 0.3484 0.3371 0.3122 0.2893 0.2194
-HepPh ±0.0111 ±0.0091 ±0.0186 ±0.0132 ±0.0154 ±0.0226 ±0.0150 ±0.0199 ±0.0463

2PPI
CDNR

arXivCit 0.3533 0.3502 0.3494 0.3492 0.3387 0.3444 0.3233 0.3076 0.2301
-HepTh ±0.0168 ±0.0159 ±0.0173 ±0.0119 ±0.0154 ±0.0186 ±0.0230 ±0.0229 ±0.0517

2PPI
CDNR 0.3503 0.3519 0.3435 0.3464 0.3272 0.3216 0.3282 0.2789 0.2060Facebook ±0.0115 ±0.0141 ±0.0067 ±0.0176 ±0.0185 ±0.0186 ±0.0172 ±0.0229 ±0.03272PPI
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Table 4.5 CDNR classification results of Micro-F1 on the target domain network of Facebook

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 0.8078 0.8727 0.8933 0.9050 0.9153 0.9198 0.9307 0.9301 0.9334
±0.0449 ±0.0177 ±0.0062 ±0.0059 ±0.0060 ±0.0061 ±0.0039 ±0.0103 ±0.0175

LINE 0.4627 0.4654 0.4719 0.4739 0.4765 0.4761 0.4760 0.4787 0.4755
±0.0026 ±0.0104 ±0.0026 ±0.0035 ±0.0035 ±0.0033 ±0.0067 ±0.0066 ±0.0075

Node2Vec 0.9352 0.9401 0.9398 0.9419 0.9442 0.9454 0.9468 0.9466 0.9502
±0.0072 ±0.0032 ±0.0051 ±0.0047 ±0.0057 ±0.0063 ±0.0092 ±0.0079 ±0.0098

Struc2Vec 0.4152 0.4521 0.4716 0.4994 0.5161 0.5381 0.5461 0.5639 0.5530
±0.0237 ±0.0144 ±0.0061 ±0.0059 ±0.0078 ±0.0096 ±0.0115 ±0.0241 ±0.0175

CDNR 0.9373 0.9420 0.9422 0.9434 0.9461 0.9468 0.9499 0.9529 0.9510Blog3 ±0.0071 ±0.0048 ±0.0050 ±0.0040 ±0.0043 ±0.0064 ±0.0063 ±0.0098 ±0.01052Facebook
Table 4.6 CDNR classification results of Macro-F1 on the target domain network of Facebook

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 0.7655 0.7915 0.7858 0.8052 0.7902 0.8138 0.8213 0.7678 0.7822
±0.0185 ±0.0242 ±0.0331 ±0.0308 ±0.0306 ±0.0327 ±0.0504 ±0.0317 ±0.0378

LINE 0.5063 0.5040 0.5083 0.5129 0.5091 0.5040 0.5020 0.4981 0.4961
±0.0053 ±0.0189 ±0.0093 ±0.0061 ±0.0092 ±0.0077 ±0.0137 ±0.0117 ±0.0109

Node2Vec 0.8310 0.8331 0.8206 0.8373 0.8343 0.8214 0.8192 0.8018 0.8104
±0.0256 ±0.0226 ±0.0262 ±0.0359 ±0.0354 ±0.0479 ±0.0487 ±0.0277 ±0.0498

Struc2Vec 0.3701 0.3937 0.3926 0.4160 0.4377 0.4525 0.4532 0.4755 0.4583
±0.0156 ±0.0157 ±0.0174 ±0.0155 ±0.0235 ±0.0131 ±0.0144 ±0.0260 ±0.0347

CDNR 0.8329 0.8383 0.8405 0.8372 0.8355 0.8265 0.8234 0.8163 0.8108Blog3 ±0.0251 ±0.0320 ±0.0366 ±0.0338 ±0.0368 ±0.0272 ±0.0531 ±0.0458 ±0.05082Facebook
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Table 4.7 CDNR classification results of Micro-F1 on the target domain network of YouTube

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 0.3471 0.3382 0.3425 0.3490 0.3509 0.3552 0.3608 0.3586 0.3511
±0.0068 ±0.0064 ±0.0144 ±0.0071 ±0.0037 ±0.0112 ±0.0067 ±0.0124 ±0.0176

LINE 0.2785 0.2732 0.2726 0.2703 0.2703 0.2633 0.2648 0.2654 0.2558
±0.0129 ±0.0088 ±0.0080 ±0.0106 ±0.0117 ±0.0091 ±0.0059 ±0.0161 ±0.0133

Node2Vec 0.4183 0.4134 0.4136 0.4118 0.4117 0.4118 0.4106 0.4106 0.4119
±0.0036 ±0.0063 ±0.0067 ±0.0020 ±0.0031 ±0.0034 ±0.0076 ±0.0069 ±0.0124

Struc2Vec 0.3232 0.3268 0.3260 0.3261 0.3276 0.3289 0.3276 0.3285 0.3327
±0.0049 ±0.0039 ±0.0040 ±0.0030 ±0.0049 ±0.0054 ±0.0046 ±0.0032 ±0.0126

CDNR
arXivCit 0.4195 0.4152 0.4150 0.4128 0.4107 0.4124 0.4113 0.4094 0.4041
-HepPh ±0.0056 ±0.0045 ±0.0037 ±0.0025 ±0.0047 ±0.0045 ±0.0073 ±0.0089 ±0.0111

2YouTube
Table 4.8 CDNR classification results of Macro-F1 on the target domain network of YouTube

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 0.3471 0.3382 0.3389 0.4356 0.4393 0.4367 0.4412 0.4302 0.3994
±0.0097 ±0.0117 ±0.0127 ±0.0109 ±0.0078 ±0.0136 ±0.0100 ±0.0135 ±0.0190

LINE 0.2592 0.2610 0.2618 0.2629 0.2611 0.2640 0.2587 0.2501 0.2410
±0.0076 ±0.0073 ±0.0044 ±0.0047 ±0.0067 ±0.0055 ±0.0098 ±0.0117 ±0.0115

Node2Vec 0.4254 0.4285 0.4338 0.4338 0.4411 0.4397 0.4478 0.4403 0.4309
±0.0077 ±0.0082 ±0.0080 ±0.0051 ±0.0043 ±0.0067 ±0.0110 ±0.0144 ±0.0178

Struc2Vec 0.2976 0.2984 0.3020 0.3060 0.3078 0.3106 0.3095 0.3009 0.2990
±0.0043 ±0.0055 ±0.0042 ±0.0052 ±0.0047 ±0.0054 ±0.0131 ±0.0103 ±0.0122

CDNR
arXivCit 0.4256 0.4310 0.4358 0.4361 0.4452 0.4438 0.4370 0.4414 0.4073
-HepPh ±0.0074 ±0.0070 ±0.0088 ±0.0072 ±0.0053 ±0.0095 ±0.0091 ±0.0074 ±0.0269

2YouTube
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sidering the domain similarities, a cross-domain adaption from either the social

networks or the citation networks to the biological network as shown in our experi-

ment would not be recommended in transfer learning. However, CDNR is capable

of capturing useful structural information from network topologies and removing

noise from the source domain networks in an unsupervised feature-learning envi-

ronment, so CDNR on PPI still shows a slight improvement and almost retains its

representation performances. Therefore, cross-domain network knowledge transfer

learning works in unsupervised network representations. CDNR is less influenced

by domain selections when the transferable knowledge is mainly contributed by

network topologies.

The general results on the Facebook dataset (Tables 4.5 and 4.6) show promising

improvements by CDNR compared to other baseline algorithms. Examining the

results in detail shows that the source domain networks of Blog3, arXivCit-HepPh

and arXivCit-HepTh provide a larger volume of information to the Facebook target

domain network than other pairs of CDNR experiments, which promote knowledge

transfer across domains. The social network of Blog3 transfers 39 categories of

Interests with the network average degree of 64.776 to the Facebook social network

(10 categories of Groups, network average degree of 43.691). The citation networks

of arXivCit-HepPh and arXivCit-HepTh transfer 11 categories of Years to Facebook

with a network average degree of 24.407 and 25.409 respectively. The above results

show that unsupervised CDNR works especially well in dense networks.

The YouTube dataset in this experiment is an example of a sparse network that

lacks connections and contains large numbers of isolated nodes. It can be seen from

the general results on the YouTube dataset (Tables 4.7 and 4.8) that CDNR can

transfer knowledge from a directed network to an undirected network. Unsupervised



4.4 Experiments 105

representations of CDNR allow learning from small categories to large categories,

and in a heterogeneous label space. In addition, CDNR uses its CD2LRW learning

algorithm to capture the useful topologies in a large-scale information network.

To demonstrate that CDNR is indeed statistically superior to the baselines, we

summarize our results for all classification evaluation tasks in Table 4.9 by pairwise

t-test at a confidence level of a = 0.05. The statistical significance is validated on

every paired CDNR and baseline. On the single-label datasets, for example FTLSIN

from the DBLP dataset to the M10 dataset (FTLSINDBLP2M10) is compared with

DeepWalk, LINE, Node2Vec and Struc2Vec by pairwise t-test. 1.37E-17 in line 3

column 2 of Table 4.9 is a mean significance value averaged from nine significance

values on {10%, · · · ,90%} training percentages. Each of these significance values is

t-tested between FTLSINDBLP2M10 and DeepWalk. Since the CDNR multi-label

dataset experiment is conducted across six datasets,the statistical significance is

validated for each scenario; for example CDNRBlog32PPI is CDNR from Blog3 to

PPI, and 3.14E-02 in line 3 column 6 is averaged from the nine significance values

by pairwise t-testing CDNRBlog32PPI and DeepWalk.

In Table 4.9, each value less than a = 0.05 indicates that the difference is

statistically significant. The results in Table 4.9 confirm that CDNR statistically

outperforms DeepWalk, LINE, Node2Vec and Struc2Vec in all cases.
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Table 4.9 Pairwise t-test results of FTLSIN/CDNR versus baselines

FTLSINDBLP2M10 CDNRBlog32PPI
DeepWalk LINE Node2Vec Struc2Vec DeepWalk LINE Node2Vec Struc2Vec

Micro-F1 1.37E-17 7.23E-14 1.74E-02 1.60E-09 3.14E-02 2.65E-03 4.14E-02 8.60E-04
Macro-F1 1.08E-15 5.89E-10 1.20E-02 8.70E-08 4.41E-02 4.83E-03 4.08E-02 1.65E-03

CDNRarXivCit-HepPh2PPI CDNRarXivCitHepTh2PPI
DeepWalk LINE Node2Vec Struc2Vec DeepWalk LINE Node2Vec Struc2Vec

Micro-F1 4.57E-02 2.16E-02 4.99E-02 7.22E-04 3.79E-02 2.84E-03 4.42E-02 9.89E-04
Macro-F1 2.70E-02 4.54E-03 4.77E-02 1.62E-03 4.32E-02 2.03E-03 4.22E-02 7.77E-04

CDNRFacebook2PPI CDNRBlog32Facebook
DeepWalk LINE Node2Vec Struc2Vec DeepWalk LINE Node2Vec Struc2Vec

Micro-F1 2.02E-02 8.08E-03 3.91E-02 2.78E-03 4.40E-02 7.46E-28 4.11E-02 6.15E-21
Macro-F1 2.29E-02 9.92E-03 3.69E-02 3.06E-03 1.99E-02 1.22E-13 4.11E-02 1.49E-13

CDNRarXivCit-HepPh2YouTube
DeepWalk LINE Node2Vec Struc2Vec

Micro-F1 1.95E-09 1.45E-15 4.47E-02 2.09E-11
Macro-F1 9.52E-03 1.16E-12 3.85E-02 2.25E-10



4.5 Summary 107

4.5 Summary

In this chapter, we propose the CDNR algorithm for FTLSIN. Compared to previous

network representation approaches, CDNR enables knowledge transfer from the

external domains using a two-layer design. A bottom layer is designed for knowledge

preparation and a top layer is designed for CDNR in the target domain. The CD2LRW

solves the key problems of unbalanced scales across networks by a cross-domain

node mapping procedure that balances the node scales and a cross-domain walk

mapping procedure that balances the random walk scales, in which the random

walks are the knowledge transferred by CDNR. The experiment results show that

CDNR improves the performance of latent feature learning in large-scale information

networks.



Chapter 5

Cross-domain Similarity Learning

based on Network Patterns

5.1 Introduction

In the last decade, research works on network representation for complex data-

based learning tasks have been conducted from a domain-specific point of view

(Li et al., 2018a; Ma et al., 2018; Zhou et al., 2018). The main disadvantages of

network sparsity and computational complexity have been studied from the aspects

of sampling strategy and representation optimization. However, the information

scale is still too small to support a satisfying representation that compares with the

node scale (Xue et al., 2018). Therefore, it is effective to input external knowledge

for the target network representation task.

In this chapter, we use a simple network structure in which the nodes have no

additional attributes, and the links are unweighted and undirected. Networks conduct

the representation learning task based on two pieces of information, i.e., their own



5.1 Introduction 109

network structures and the adapted knowledge from the external related networks. To

address the similarity determine two independent networks for the CDNR problem,

we consider the following challenges: 1) How are domain similarities calculated

based on network structure patterns? and 2) Will the domain selection based on

domain similarities contribute to CDNR?

To this end, we propose a CDSL algorithm to learn the domain similarity for

cross-domain large-scale networks based on the network pattern analysis of node

centralities. The main contributions are as follows:

• Contribution 1: We design a novel algorithm to learn the cross-domain simi-

larities, starting from the node centralities. We identify the node centralities

from two aspects, i.e., centrality: the ability to spread information, such as the

closeness centrality; and power: the ability to control information, such as the

betweenness centrality.

• Contribution 2: We design a principle that calculates the similarity between

cross-domain networks using dual centrality-based biased random walks, and

considers the centrality and power properties. The principle shows the effec-

tiveness by implementing in the CDNR process.

• Contribution 3: To evaluate the proposed algorithm, we conduct extensive

experiments on similarity-parameter g training and node classification testing.

The experiment results show that our proposed algorithm CDSL significantly

outperforms the state-of-the-art algorithms.
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5.2 Problem Statement

Definition 5.1. Cross-domain Similarity Learning (CDSL) for Network Repre-

sentation Given a set of undirected networks G = {G}, one of these networks

belongs to D t and the others are in D s where one network will be chosen to provide

knowledge to the target domain. The learning process of choosing the most relevant

source domain network denotes the cross-domain similarity learning for network

representation.

In each network, vi 2 V is the ith node (i = 1,2, · · · ,N) and the link (i, j) 2 E

connects the nodes vi and v j. Each node vi has a neighborhood N(vi) which includes

the node vi, the links (i, j) connecting with vi and the nodes v j at the other side.

The degree ki of vi denotes the number of links in N(vi). The random walk-based

network representation aims to maximize the likelihood of N(vi) when searching

over the whole network. The random walk is described as a path shape in G where

the path starts from node vs and ends at node vt . Path Pst consists of a sequence of

nodes. The number of steps along Pst denotes d(vs,vt), which is called the distance

between vs and vt . Of all Pst , the shortest path P⇤st is in the smallest d(vs,vt). In this

paper, ePst denotes the probability of random walks in a fixed length l that start form

vs and end at vt . ePre f
st is the reference path probability. Considering the cost ec, let

ec(Pst) = Â(i, j)2Pst ci j and ci j =
1

wi j
where wi j is the weight on link (i, j).

The biased random walk strategy introduces a biased parameter apq to leverage

a second-order search with p and q to identify the local connections in N(vi). When

a walk passes vt and stands on vi to determine the next step to vx, the biased random

walk sets the walk probability P(vx|vi) =
pxi
Z if (i,x) 2 E, otherwise 0, where pxi =

apq(vt ,vx) ·wix; apq(vt ,vx) =
1
p if d(vt ,vx) = 0, apq(vt ,vx) = 1 if d(vt ,vx) = 1, and
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apq(vt ,vx) =
1
q if d(vt ,vx) = 2; and Z is the normalizing constant. In this paper, we

only consider the case of (i,x) 2 E.

5.2.1 Node Centralities

Node centrality Ci reflects the impact of network structures in spreading and control-

ling information. The bi-directional information flows are evaluated by centrality

indicators of closeness and betweenness in this paper. Closeness, as shown in Eq.

(5.1), describes a node centrality property of spreading information outward from

neighborhood N(vi).

Ccol
i =

N�1
ÂN

j=1P
⇤
i j

(5.1)

Betweenness, as shown in Eq. (5.2), describes a node centrality property of

controlling information inside the neighborhood of N(vi).

Cbet
i =

n

Â
s,t=1

n(i 2 P⇤st)

|P⇤st |
(5.2)

where |P⇤st | is the number of shortest paths between node vs and node vt , and n(i2P⇤st)

is the number of shortest paths between vs and vt that go through node vi.

5.2.2 Cross-domain Network Representations

FTLSIN (Xue et al., 2018) offers a solution for the CDNR problem by designing a

CD2LRW to transfer the useful information along the biased random walks, as shown

in Figure 5.1. FTLSIN is completed by a cross-domain node mapping procedure and

a cross-domain walk mapping procedure. In this chapter, we keep the procedures
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Figure 5.1 An illustration of CDNR in FTLSIN
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in FTLSIN and update the mappings with the novel dual centrality indicator. The

cross-domain node mapping clusters a group of nodes in the source domain network

as the super node V s
i and maps it to node vt in the target domain network if their node

degree is in the same deg(vt) = deg(V s
i ). The cross-domain walk mapping maps

weights of the Gs biased random walk knowledge on the Gt links so that the biased

random walk on the Gt is guided by source domain knowledge.

In this chapter, we propose a novel CDSL algorithm for FTLSIN and CDNR.

CDSL selects the most relevant external network in D s by learning the parameter g ,

which weights dual centrality in Ci = gCclo
i +(1� g)Cbet

i . The candidatures of the

source domain networks Gs 2 G are ranked by the similarity learning with the target

domain network Gt in the biased random walk training procedure. When we obtain

the optimized g⇤, the corresponding Gs which shows the most similarity pattern of

dual centrality in (Gs,Gt) is selected as the source domain D s. Dual Centrality based

Biased Random Walk (DCBRW) works with CDSL and is trained in the FTLSIN.

5.3 Cross-domain Similarity Learning based on Net-

work Patterns

In this section, we integrate the two node centrality indicators of closeness centrality

and betweenness centrality into a dual centrality in a biased random walk learning.

The biased random walk has a randomized shortest path framework and aims to

minimize the walk cost along the paths. In finding the likelihood of shortest paths,

the goal of our proposed algorithm, i.e., to minimize cost of searching the first- and
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second order neighborhood, has the same function as the goal of previous works that

to maximize the neighborhood likelihood.

5.3.1 Dual Centrality

The dual centrality consists of two node centrality indicators as shown in Eqs. (5.1)

and (5.2). A parameter g is weighted for these two indications and is trained for

biased random walk.

Ci = gCclo
i +(1� g)Cbet

i

= Ân
s,t=1,t 6=i

h
gn(n�1)

P⇤it
+

(1�g)|P⇤it |
|P⇤st |

i (5.3)

where Ci is the dual centrality of node vi, P⇤it is the shortest path from node vi to

node vt , P⇤st is the shortest path from node vs to node vt , and |P⇤it | and |P⇤st | are the

numbers of P⇤it and P⇤st respectively.

Lemma 1. Suppose n(i 2 P⇤st) 6= 0, n(i 2 P⇤st) = |P⇤it |.

Proof. Let |P⇤it |= n(minÂ(u,v)2Pit wuv), and

n(i 2 P⇤st) = n(minÂ(u,v)2Psi wuv�minÂ(u,v)2Pit wuv).

� denotes that n(minÂ(u,v)2Psi wuv�minÂ(u,v)2Pit wuv) = 0, if either Psi or Pit is

?; and otherwise n(minÂ(u,v)2Psi wuv�minÂ(u,v)2Pit wuv) = n(minÂ(u,v)2Psi wuv) =

n(minÂ(u,v)2Pit wuv).

Because n(i 2 P⇤st) 6= 0, Psi 6= ? (n(minÂ(u,v)2Psi wuv) 6= 0). Therefore, n(i 2

P⇤st) = n(minÂ(u,v)2Pit wuv) = |P⇤it |.

Theorem 5.1. Let 0 <Ci < 1 in Eq. (5.3), we have |g|< min(Cbet
i ,1�Cbet

i )

|Cclo
i �Cbet

i | .

Proof. In Eq. (5.1), 0 < |P⇤it |  n� 1 for each j, so 0 < Cclo
i < 1. Similarly, 0 <

Cbet
i < 1 in Eq. (5.1) by Lemma 1 that n(i 2 P⇤st)< |P⇤st |.
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Figure 5.2 An example of DCBRW

Then, we let 0 < gCclo
i + (1� g)Cbet

i < 1, |r| < 1�Cbet
i )

|Cclo
i �Cbet

i | , if Cbet
i > 1

2 ; and

|r|< Cbet
i )

|Cclo
i �Cbet

i | , if Cbet
i < 1

2 .

Therefore, |g|< min(Cbet
i ,1�Cbet

i )

|Cclo
i �Cbet

i | under 0 <Ci < 1.

5.3.2 Dual Centrality based Biased Random Walk

Parameters p and q for biased random walk parameter apq as shown in Eq. (5.4) and

apq is discussed in the following cases.

P(vi = x|vi�1 = v) =
apq(vt ,vx) ·wvx

Z
(5.4)

where we only consider (v,x) 2 E.

• If d(vt ,vx) = 0, p is set at a high value to ensure that it does not link back to

node vt , which reflects a high value of Cclo
x .
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• If d(vt ,vx) = 0, p is set at a low value that tends to revisit node vt , which

reflects a high value of Cbet
t .

• If d(vt ,vx) = 2, q > 1 is set to stand for the random walk that is biased towards

nodes close to vt , which reflects a high value of Cbet
v .

• If d(vt ,vx) = 2, q < 1 is set to stand for the random walk that is biased towards

nodes far away from vt , which reflects a high value of Cclo
v .

In DCBRW, we summarize the above rules with Cclo
i and Cbet

i and also analyze

the cases for d(vt ,vx).

• Case 1: If Cclo
i and Cbet

i are both in high values, Ci is in a high value which

means that there is a high probability that node vi will be connected.

• Case 2: If Cclo
i is in a high value and Cbet

i is in a low value, node vi is spreading

information outwards from N(vi).

• Case 3: If Cclo
i is in a low value and Cbet

i is in a high value, node vi is

controlling information inside N(vi).

• Case 4: If Cclo
i and Cbet

i are both in low values, Ci is in a low value which

means that there is a small probability that node vi will be connected.

For the above cases, DCBRW first describes Case 1 and Case 4 that P(vi =

x|vi�1 = v) is in a high value if Cx is high. To this end, biased parameter a multiples

Cx for all cases in d(vt ,vx). For Case 2 and Case 3, it is more likely that vt will be

revisited when Ct > Cv; and it is in a high probability to go far away for vx when

Cv >Ct . In summary, the probability on a with Ci in DCBRW as shown in Figure

5.2 is as follows,
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P(vi = x|vi�1 = v) =
a(vt ,vx) ·wvx

Z
=

8
>>>><

>>>>:

1
Z · Ct

Cv
·Cx ·wvx if d(vt ,vx) = 0

1
Z ·Cx ·wvx if d(vt ,vx) = 1

1
Z · Cv

Ct
·Cx ·wvx if d(vt ,vx) = 2

(5.5)

5.3.3 Dual Centrality based Randomized Shortest Path

The randomized shortest path is based on the probability distribution over the set

Pst of absorbing s-t random walks. It expects the minimal cost of the walks to be as

follows,

min
ePst

Â
Pst

ePst(Pst) ·ec(Pst)

subject to

8
>><

>>:

J(ePst ||ePre f
st ) = J0

ePst = 1

(5.6)

where J(ePst ||ePre f
st ) is KL divergence and J0 is a desired level.

The solution of Eq. (5.6) with the dual centrality Ci is,

ePst(Pst) =

ePre f
st exp(�Â(i, j)2Pst pre f

i j ci j)

ÂPst
ePre f
st exp(�Â(i, j)2Pst pre f

i j ci j)

(5.7)

where pre f
i j = P(v j|= vi).

ePst(Pst) is normalized by the sum of likelihood of all paths in minimizing costs,

and optimized by J(ePst ||ePre f
st )! J0.
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Lemma 2. The desired level J0 is constrained by fixed repeated times of each rooted

node in the random walks, denoted as r, in �(lnr+2)< J0 < 0.

Proof. J(ePst ||ePre f
st )=ÂPst

ePst ln ePst
ePre f
st

by KL divergence. Let ePre f
st exp(�Â(i, j)2Pst pre f

i j ci j)=

A, J(ePst ||ePre f
st ) =�

ÂPst

h
AÂ(i, j)2Pst pre f

i j ci j

i

ÂPst A �
ÂPst

h
A lnÂPst A

i

ÂPst A .

Because 0< pre f
i j < 1 and 0< ci j < 1, 0< pre f

i j ci j < 1 leads to 0<Â(i, j)2Pst pre f
i j ci j <

1. Because A> 0,�A<�Â(i, j)2Pst pre f
i j ci j < 0 so that�1<�

ÂPst

h
AÂ(i, j)2Pst pre f

i j ci j

i

ÂPst A <

0. Furthermore, 0 < exp[Â(i, j)2Pst pre f
i j ci j]< e and 0 < A < eePre f

st < e which leads to

0 < lnÂPst A < lnre = lnr+1, so �(lnr+1)�
ÂPst

h
A lnÂPst A

i

ÂPst A < 0.

This completes the proof that �(lnr+2)< J0 < 0 when J(ePst ||ePre f
st )! J0.

5.3.4 Algorithm of DCBRW-based CDSL

Algorithm 5.1 of DCBRW-based CDSL is formed by a DCBRW Algorithm and a

CDSL Algorithm.

In this algorithm, we first focus on the dual centrality parameter g learning

for all the networks, which includes the network in the target domain and the

networks in the source domain. Dual centrality Ci reflects the network pattern in

information distributions in two aspects, i.e., the control of information and the

spread of information on nodes. It is influenced by the local structures of N(vi)

and is also determined by the global structure of node importance on centralities.

To this end, g(t) is updated with biased random walks in the randomized shortest

paths. When the KL divergence is close to the desired level, J0, g⇤ is optimized

with DCBRW. CDSL then calculates the dense similarity for each pair of optimized
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(g⇤t ,g⇤s). The network in the source domain that has the smallest dense similarity is

chosen as the source network to perform the CDNR.

In summary, the main advantage of the proposed DCBRW-based CDSL is that

1) when the network structure lacks the information to generate a good network

representation, the external network can offer knowledge of random walks; and 2)

the external network is chosen by domain similarity learning instead of trials or

expertise experience previous works, which may lead to negative transfer in domain

adaptations.

The computational complexity of DCBRW-based CDSL is in line with closeness

centrality and betweenness centrality in O(N3).

5.4 Experiments

This section evaluates the effectiveness of DCBRW-based CDSL compared to the

baselines of domain-specific network representation and CDNR. The experiment

in this paper consists of two parts: the DCBRW parameter g-learning and the node

classification testing.

5.4.1 Datasets

The datasets chosen for the source domain are four real-world large-scale networks

(Blog3, Facebook, PPI and wiki), and the dataset of the target domain network is

a classic dataset in the graph research domain, LesM. The statistical details of the

datasets are as shown in Table 5.1. The datasets in the source domain are in the

multi-label classification setting, in which every node is assigned one or more labels
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Algorithm 5.1: DCBRW-based CDSL
Input:

Gt = (Vt ,Et) in the target domain and a group of networks Gs = (V s,Es) 2 G s

in the source domain; and random walk repeated times r.
Output:

g⇤t ! Optimized dual centrality parameter of target domain network; and
{g⇤s}! a set of optimized dual centrality parameters of source domain
networks.

DCBRW
1: for G s and Gt do
2: Cclo

i ! Node closeness centrality by Eq. (5.1).
3: Cbet

i ! Node betweenness centrality by Eq. (5.2).
4: g(0)! Initial g by Lemma 1.
5: Ci! Dual centrality by Eq. (5.3).
6: Pre f = [pre f

i j ]! Reference transition probability matrix on biased random
walks by Eq. (5.5).

7: J0! Set desired level by Lemma 2.
8: while J(ePst ||ePre f

st )! J0 do
9: ePst(Pst) DCBRW probability in minimizing costs by Eqs. (5.6)-(5.7).

10: end while
11: return g⇤ ! Optimized DCBRW parameter.
12: end for
CDSL

1: for (g⇤t ,g⇤s) do
2: |dense(g⇤t)�dense(g⇤s)| Dense similarity.
3: end for
4: R Rank dense similarities.
5: return Gs⇤  The most relevant source domain network from G who is with

min(R).

from a finite set. The dataset in the target domain has only one label for each node.

All the datasets have multi-class labels.

Diameter is the shortest distance between the two most distant nodes in the

network. When the shortest path length from every node to all other nodes has been

calculated, the diameter is the longest path length of all the calculated path lengths.
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Table 5.1 CDSL dataset statistics

Networks Num. of Num. of Label Labels Network Ave.
Nodes Links Categories Diameter Degree

Blog Citation Network 10,312 333,983 39 Interests 5 64.776
Facebook Social Network 3,959 84,243 10 Groups 17 42.558

PPI Biological Network 3,860 37,845 50 States 8 19.609
wiki WWW 4,733 32,026 40 POS Tags 6 13.533

LesM Novel Character Network 77 254 8 Appearance 5 6.597
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• Blog31 dataset (Source domain network 1) is a social blog directory which

manages bloggers and their blogs. Information about both the contact network

and selected group membership is included. The network has 10,312 nodes,

333,983 undirected links, and 39 different labels, which excludes the isolated

nodes and unlabeled nodes.

• Facebook2 dataset (Source domain network 2) consists of circles (or friends

lists) from Facebook. This dataset includes node features (profiles), circles

and ego networks. The network has 3,959 nodes, 84,243 undirected links, and

10 different labels, which excludes the isolated nodes and unlabeled node.

• PPI3 dataset (Source domain network 3) in this experiment is a subgraph of

the PPI network for Homo Sapiens. The subgraph corresponds to the graph

induced by nodes for which we could obtain labels from the hallmark gene

sets and represent biological states. The network has 3,860 nodes, 37,845

undirected links, and 50 different labels, which excludes the isolated nodes

and unlabeled node.

• Wikipedia (wiki)4 dataset (Source domain network 4) is a co-occurrence

network of words appearing in the first million bytes of the Wikipedia dump.

The labels represent the POS tags. The network has 4,733 nodes, 32,026

undirected links, and 40 different labels, which excludes the isolated nodes

and unlabeled node.
1http://socialcomputing.asu.edu/datasets/BlogCatalog3
2https://snap.stanford.edu/data/egonets-Facebook.html
3https://downloads.thebiogrid.org/BioGRID
4http://www.mattmahoney.net/dc/text.html
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• Les Misérables (LesM)5 dataset (Target domain network) is a network con-

taining the co-occurances of characters in Victor Hugo’s novel ’Les Mis-

érables’. A node represents a character and a link between two nodes shows

that these two characters appear in the same chapter of the book. The labels

represent the appearance of the character. The network has 77 nodes, 254

links, and 8 different labels, which excludes the isolated nodes and unlabeled

node.

5.4.2 Baselines

We implement the following algorithms for comparison. There are three domain-

specific network representation algorithms and a CDNR algorithm.

• DeepWalk (Perozzi et al., 2014) is the first random walk-based network

representation algorithm. By choosing DeepWalk, we exclude the matrix

factorization approaches which have already been demonstrated to be inferior

to DeepWalk.

• Node2Vec (Grover and Leskovec, 2016) learns continuous feature representa-

tions of nodes using a biased random walk procedure to capture the diversity

of connectivity patterns observed in networks with the biased parameter a ,

which is controlled by the parameters of p and q.

• Struc2Vec (Ribeiro et al., 2017) learns node representations from structural

identity by constructing a hierarchical graph to encode structural similarities

and generating a structural context for nodes.
5https://github.com/gephi/gephi/wiki/Datasets
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• CDNR learns node embeddings using the external random walk knowledge

from the manually selected source domain and extends the biased random

walk with parameter apq.

5.4.3 Setups

Our experiment evaluates the latent feature representations on a standard supervised

learning task, i.e., linear SVM classification (Fung and Mangasarian, 2005). We

choose the linear classifier instead of a non-linear classifier or sophisticated relational

classifiers to reduce the impact of complicated learning approaches on classification

performance. For the evaluations, we randomly partition the dataset in the target

domain into two non-overlapping sets for training and testing by five groups of

training percentages, {0.3,0.4, · · · ,0.7}. We repeat the above steps ten times and thus

obtain ten copies of the training data and the testing data. The reported experiment

results are the average of the ten runs. The random walk parameters are set as

follows. Let the dimensions of feature representation be d = 128, the walk length

be l = 80, the number of walks of every source node be r = 10, the window size

be k = 10, workers = 8, and the search bias apq be with p = 1 and q = 1, which

comprehensively follows previous settings in DeepWalk (Perozzi et al., 2014) and

Node2Vec (Grover and Leskovec, 2016). For Struc2Vec as used in (Ribeiro et al.,

2017), let OPT1 (reducing the length of degree sequences), OPT2 (reducing the

number of pairwise similarity calculations) and OPT3 (reducing the number of

layers) all be True values, and the maximum number of layers be six.
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5.4.4 DCBRW Parameter g-Learning

The g-Learning results of the source network candidature networks and the target

network are shown in Figures 5.3-5.7. The learning rate of g is calculated based on

g(0) = 20 which is large enough for learning convergence. The learning results are

evaluated by J(ePst ||ePre f
st )� J0 where J0 is set as r = 10. The convergence point g⇤

is calculated by dense function dense(g). The rank results for the source domain

network candidates on |dense(g⇤t)� dense(g⇤s)| are R = {PPI, Facebook, wiki,

Blog3} in ascending order. The PPI dataset is selected as the source domain network

according to the DCBRW g-learning result, which is a little different from the usual

practice, in which PPI and LesM are in quite different domains, such that PPI will

not be chosen as the source domain network. However, g learns their similarity on

the information distributions, which reflects that the network structure pattern is

difficult to acquire in the usual way. The performance of the CDSL (source domain

selection) is tested in the next section.

5.4.5 Result Analysis

The F1 score is designed to evaluate the effectiveness of category assignments by

classifiers. We use Macro-F1 and Micro-F1 (Yang and Liu, 1999) to compare perfor-

mance and the results are shown in Table 5.2. We make the following observations:

• The algorithms of CDNR and CDSL on FTLSIN outperform the domain-

specific network representations of DeepWalk, Struc2Vec and Node2Vec.

DeepWalk cannot output a latent feature space that the linear SVM classifier

can work with.
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Table 5.2 CDSL classification results on the target domain network of LesM

Macro-F1 0.3 0.4 0.5 0.6 0.7
Struc2Vec 0.345 0.384 0.389 0.357 0.582
Node2Vec 0.403 0.653 0.664 0.692 0.768
CDNR-Facebook 0.442 0.822 0.837 0.893 0.914
CDNR-wiki 0.369 0.693 0.749 0.855 0.882
CDNR-Blog3 0.389 0.725 0.739 0.823 0.835
CDNR-PPI 0.432 0.730 0.778 0.843 0.845
CDSL-Facebook 0.339 0.844 0.857 0.915 0.939
CDSL-wiki 0.357 0.452 0.532 0.780 0.790
CDSL-Blog3 0.311 0.517 0.675 0.726 0.757
CDSL-PPI 0.483 0.923 0.937 0.948 0.962
Micro-F1 0.3 0.4 0.5 0.6 0.7
Struc2Vec 0.345 0.385 0.389 0.357 0.496
Node2Vec 0.604 0.653 0.664 0.692 0.768
CDNR-Facebook 0.427 0.822 0.837 0.893 0.914
CDNR-wiki 0.470 0.693 0.749 0.855 0.882
CDNR-Blog3 0.419 0.725 0.739 0.823 0.835
CDNR-PPI 0.487 0.730 0.778 0.843 0.845
CDSL-Facebook 0.362 0.844 0.857 0.915 0.939
CDSL-wiki 0.363 0.521 0.617 0.780 0.790
CDSL-Blog3 0.246 0.417 0.675 0.726 0.757
CDSL-PPI 0.457 0.923 0.937 0.948 0.962

• The node classification results on CDSL and CDNR, which adapt knowledge

from the wiki dataset and Blog3 dataset, are lower than the results gained by

Node2Vec in some training percentages. According to the usual practice, these

two datasets may have some similarities with the LesM dataset because they

are all in the publication domain. However, CDNR leads to negative transfers

based on these experiment results.
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5.5 Summary

In this chapter, we propose a solution of DCBRW-based CDSL. In contrast to

previous network representation approaches, CDSL enables knowledge transfer from

the external domains in the learned source network. A dual centrality is proposed

to train the parameter g and the domain similarity is learned based on g . The

experiment results show that DCBRW-based CDSL improves the performance of

latent feature learning in real-world information networks compared to the state-of-

the-art baselines, and the performance rank is in line with the similarity rank.



Chapter 6

Conclusion and Future Research

This chapter concludes the thesis and provides further research directions for this

topic.

6.1 Conclusions

Random walk-based network representation has attracted much attention in the areas

of data mining and machine learning due to its powerful knowledge representation

and its flexible latent feature learning, especially for large-scale real-world informa-

tion networks with structural sparsity. Transfer learning contributes to knowledge

transfer across different datasets which differs in data distribution or feature spaces.

It is powerful in learning efficiency compared with traditional machine learning

approaches and requires less training data for the target domain hence avoiding the

need to rebuild models for each learning task. The random walk-based network

representations with knowledge adaptations is a newly emerging area, which we

study in this thesis. The findings of this study are summarized as follows:
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1. The development of a novel framework of transferring structures across large-

scale information networks (FTLSIN).

FTLSIN is proposed for a new scenario in network representation of the target

domain sparse network. It is designed on a two-layer random walk which includes a

bottom layer for the network in the source domain and a top layer for the network in

the target domain. The links are predicted between these two layers which construct

the paths so that knowledge of the source domain network can be transferred to the

target domain network. Knowledge adaptation across domains reduces learning diffi-

culties caused by data sparsity and noise; and effectively improves the performance

of latent feature learning in large-scale information networks.

2. The development of a novel cross-domain network representation algorithm

(CDNR) consists of a cross-domain node mapping procedure and a cross-domain

walk mapping procedure.

CDNR extends FTLSIN, especially in relation to the procedures developed for

cross-domain node mapping and cross-domain walk mapping. The main advan-

tage of CDNR is that when the network structure lacks information to generate

good network representation, the two layers share knowledge by overcoming the

challenges presented by the unbalanced scale of nodes and random walks. The

cross-domain mappings incur a relatively low computational cost due to the node

clustering process. The computational complexity of top-layer feature learning is in

line with the domain-specific baselines which is challenging work for cross-domain

learning tasks. The experiment results on the multi-label multi-class real-world

datasets show that CDNR improves the performance of latent feature learning in

large-scale information networks.
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3. The development of a novel cross-domain similarity learning algorithm (CDSL)

is based on network patterns of node importance.

Compared to previous network representation approaches, the proposed CDSL

algorithm increases the flexibility of CDNR due to the intelligent calculation of the

similarity for each pair of source domain network and target domain network. The

proposed dual centrality indicator plays an important role in CDSL and network

pattern mining. It is formed by a closeness centrality and a betweenness centrality

which describes node importance in spreading and controlling the information flows

over the global and local networks. By embedding dual centrality evaluation in biased

random walk learning and optimizing the randomized shortest path search costs,

the patterns of the networks in both domains are acquired so that the most relevant

source domain network is selected for CDNR. The experiment results show that

CDSL improves the performance of latent feature learning in real-world information

networks compared to the state-of-the-art baselines, and the performance rank is in

line with the performance rank of CDSL.

6.2 Future Study

This thesis identifies the following directions as future work:

• The current research focus on the transfer learning problem which is largely

dependent on the exact network structure. If the network is sparse, large-scale,

dynamically changing, hierarchical and even heterogeneous, then it might be

challenging to apply traditional graph theory and machine learning algorithms,

and some further research required in this aspect. Therefore, network pattern
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analysis is required in many applications, e.g. node classification, recom-

mender system and data visualization. A dynamical model with time-varying

parameters can be considered and tested by using the developed algorithms in

order to show the generality.

• The network patterns based on the node importance mining method, especially

in transmission mechanisms, should fully consider the negative spread of

information in cross-domain network representations. However, node power

importance is rarely discussed. Power analysis of network patterns helps

measure the negative transfer in cross-domain learning for network represen-

tations and controls the cross-domain knowledge adaption process. In future

applications, power implemented algorithms will also be able to rank negative

node importance, such as rumor spreading in social networks.

• Computational complexity is a crucial issue in applications that are related to

cross-domain learning for network representations. The bad data problems,

such as outliers, noisy, high-dimensional, stochastic, nonlinear, sparse and

missing, exist universally in the real-world. It’s highly desired to further

explore the network modeling issues from bad or incomplete data structure.

When applying multiple measurements to achieve cross-domain knowledge

adaptation, computational complexity dramatically increases, which directly

influences the method-application transform. Future work should address the

algorithm optimizations to reduce costs in cross-domain network sampling

and learning.

In summary, handling cross-domain learning for network representation is an ur-

gent and important issue. It is a key technique in accomplishing artificial intelligence
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learning tasks. Future research on transferable network representation techniques,

especially for large-scale systems, has great prospects. Real-time experiments are

going to be examined along with the simulation examples.
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