THE ROLE OF RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS (RAGE)— AMYLOID BETA AXIS IN RETINAL GANGLION CELL DEATH IN GLAUCOMA

Nafiseh A. S. Hosseini Fin

BSc., MSc. Biotechnology

A Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Philosophy

University of Technology Sydney
August 2018

Declaration

I declare that:

This thesis presents work carried out by me and does not incorporate without

acknowledgment any material previously submitted for a degree or diploma in any

university.

To the best of my knowledge it does not contain any materials previously published or

written by another person except where due reference is made in the text; and all

substantive contributions by others to the work presented, including jointly authored

publications, is clearly acknowledged.

Nafiseh A. S. Hosseini Fin

August 2018

2

Dedication

To My Beloveds

Acknowledgement

Completion of this thesis is not only because of my hard work, but also because of the support and assistance of many special people. One of the most important of these people is my principal supervisor, Dr. Mojtaba Golzan. Over the last two years, Dr. Golzan has spent countless hours discussing research, training me, troubleshooting scientific challenges, and proofreading this thesis.

I am also very grateful to my co-supervisors, Prof. Kathryn Rose and Dr. Maria Sukkar. They have been spent much time attending meetings with me and advising me. Although occupied with many commitments, Prof. Rose has been so kind and supportive to me. Her helpful advice encouraged me to confront problems and go through them.

In addition, many thanks to University of Technology Sydney for providing me with the full scholarship to complete my degree.

I would like to thank Ms. Dana Georgevsky from vision sciences research group, for her contribution to animal work particularly my second experiment. Dr. Hussein Mansour who worked in our group also assisted with preparation and optimization of used protocols, particularly molecular techniques. This thesis was copyedited by Dr. Laurel Mackinnon, PhD, ELS.

Finally, I dedicate my deepest gratitude to my lovely husband, parents and brother. Without their continued love and constant encouragement, I could not have reached this point in life.

Overview of Thesis

The current work is structured as a "thesis by compilation" and is presented in the following format. Chapter 1 provides a comprehensive review of the literature. This chapter discusses the role of RAGE and its ligand amyloid beta in Alzheimer's disease, the known epidemiological and pathological similarities between Alzheimer's disease and glaucoma, and the current evidence of the involvement of RAGE in retinal pathology and its potential role in glaucoma. A summarised version of this chapter will be submitted as an invited review paper to the Journal of Experimental Eye Research with the title 'Receptor for advanced glycation end product mediates retinal ganglion cell loss in glaucoma'.

Chapter 2 describes how RAGE-/- mice are protected against retinal ganglion cell loss and retinal dysfunction in experimental glaucoma. Chapter 3 reports how RAGE-/- mice are protected against retinal ganglion cell loss after exogenous amyloid beta oligomers injection into the vitreous. Finally, Chapter 4 summarises the findings and discusses how RAGE and its ligand amyloid beta may mediate retinal ganglion cell loss in glaucoma. This thesis also includes two separate supplementary sections of figures and details of the protocols used in the thesis, which have been added to the Appendix.

List of Publications

1. Hosseini N, Sukkar M, Golzan SM, "Receptor for advanced glycation end product (RAGE) mediates retinal ganglion cell loss in experimental glaucoma", Investigative Ophthalmology and Visual Science, 59(9), 3726; 2018 (Conference abstract).

Contribution of authors

1. Nafiseh A.S. Hosseini Fin

Ethics application preparation, experimental setup and implementation, data acquisition and analysis

2. Maria Sukkar

Experiment Design, data analysis, manuscript preparation

3. Mojtaba Golzan

Overview of ethics approval, experiment Design, data acquisition and analysis, manuscript preparation

Table of Contents

ABST	'RAC	Т	16	
Introd	luctio	on	17	
Staten	tatement of the problem18			
Hypot	hesis		19	
Resea	rch ai	ims	19	
1. C	hapte	er 1—Review of the literature	21	
1.1.	Th	e eye and the retina	21	
1.2.	Gla	aucoma	22	
1.	2.1.	Glaucoma risk factors	23	
1.	2.2.	Glaucoma pathophysiology	24	
1.	2.3.	Clinical presentation	24	
1.	2.4.	Glaucoma as a neurodegenerative disorder	25	
1.3.	Sin	nilarities between glaucoma and AD	26	
1.4.	RA	GE	28	
1.	4.1.	RAGE structure and function	29	
1.	4.2.	RAGE and Aβ in AD	30	
1.5.	RA	GE and Aβ in retinal pathology	32	
1.6.	Ro	le of RAGE in glaucoma	34	
1.7.	Th	e role of the RAGE– Aβ axis in glaucoma: potential hypothesis	38	
2. Cha	pter	2— Methods	41	
2.1. prot		dium dodecyl sulfate polyacrylamide (SDS-PAGE) and western blotting	41	
2.	1.1.	Preparation of protein sample and protein concentration assay	41	
2.	.1.2.	Gel Electrophoresis	44	
2.2.	Ge	l Removal and Preparation of Protein Transfer		
2.3.	Μe	embrane Blocking	46	
2.4.	An	tibody Incubation	46	
2.5.		yssey Protein Detection System		
2.6.	His	stology	47	
2.	6.1.	Tissue Fixation	47	
2.	6.2.	Tissue Processing, embedding and sectioning		
2.7.	Tis	sue staining	48	

	2.7.1.	H&E staining	48
	2.7.2.	Immunostaining	50
	2.7.3.	Thioflavin S staining	51
	2.8. Ind	uction of experimental glaucoma	52
	2.9. Αβ	injection	···· 53
	2.9.1.	Preparation of oligomeric $A\beta_{1-42}$	···· 53
	2.9.2.	Intravitreal injection of $A\beta$	54
	2.10.1.	pSTR protocol	56
	2.11. Opt	tical Coherence Tomography (OCT)	57
	2.11.1.	OCT protocol	57
3.	Chapter 3	3— RAGE Knockout mice are protected against RGC loss in glaucoma	59
	3.1. Int	roduction	59
	3.2. Ma	terials and Methods	60
	3.2.1.	Animals	60
	3.2.2.	Animal model of AOH and histology work	61
	3.2.3.	Statistics	62
	3.3. Res	sults	62
	3.3.1.	RAGE-/- mice are protected against RGC loss after AOH	63
	3.3.2.	Aβ deposition increases in the GCL after AOH	66
	3.3.3.	RAGE and Aβ co-localise in the GCL after AOH	68
	3.3.4.	RGC loss occurs because of apoptosis	69
	3.3.5.	Retinal function is partially preserved in RAGE-/- after AOH	71
	3.4. Dis	cussion	72
4.	Chapte	r 4— RAGE–Aβ signalling mediates RGC loss in glaucoma	79
	4.1. Int	roduction	79
	4.2. Ma	terials and Methods	80
	4.3. Res	sults	80
	4.3.1.	Intravitreal injection of Aβ leads to RGC loss	81
	4.3.2.	Aβ is internalised in RGCs of WT mice but not in RAGE ^{-/-} mice	83
	4.3.3.	Aβ mediates RGC loss via apoptosis	85
	4.3.4.	Exogenous Aβ disrupts inner retinal function	
		cussion	

5. Ch	apter 5— Conclusion and Future Directions	93
5.1.	Conclusion	93
5.2.	Limitations and future directions	97
Appendix — Supplementary results101		
References		

List of figures

Figure 1. Alterations in normal vision with glaucoma [4]. The loss of sight in glaucoma
is generally continuous and peripheral vision might be lost without any symptoms18
Figure 2. Eye components and their role in vision
Figure 3. Retina layers and cells
Figure 4. Left) The eye-drainage pathway that regulates IOP, Right) Increase in the cup-
to-disc ratio in glaucoma patients. The "cup" forms a small portion of the disc in the
normal optic nerve, but this portion increases in the optic nerve of glaucoma patients. 25
Figure 5. The proteolytic processing of APP [47]. APP is processed in two distinctive
amyloidogenic and non-amyloidogenic pathways. Though, A β is generated in
amyloidogenic pathway by successive action of $β$ - and $γ$ -secretase, its production is
prevented in non-amyloidogenic pathway. 27
Figure 6. Schematic depiction of RAGE structure and model of sRAGE [61]. RAGE is
composed of three extracellular domains of C1, C2 and V all of which participate in RAGE-
ligand interactions. The receptor is also anchored in the cell membrane by its
transmembrane alpha helical domain and extended to an attached cytosolic domain which takes part in signal transduction
1 0
Figure 7. Trigger of the extrinsic and intrinsic apoptotic pathways by RAGE activation, which leads to RGC loss
Figure 8. Effect of TGF upregulation on IOP. RAGE activation is presumed to cause
trabecular meshwork damage via upregulation of ECM/MMP which is followed by TGF
over expression leading to IOP elevation. Trabecular meshwork damage is linked to the
.1
Figure 9. Schematic showing the principle of immunostaining. In direct
immunostaining (left image), the fluorophore is attached to the primary antibody, and
the secondary antibody is not required. In indirect immunostaining (right image), the
secondary antibody
Figure 10. Schematic design of AOH induction
Figure 11. Intravitreal injection method [159]
Figure 12. STR equipments [166]
Figure 13. Investigation of RGC loss and alterations in retina structure after AOH. (A–
E) H&E staining of RAGE-/- and WT retinal sections at 10 μm thickness; A. WT control;
B. WT AOH (glaucoma); C. RAGE-/- control; D. RAGE-/- AOH (glaucoma); E. Graph
representing quantitative measure of RGCs per 300 µm linear retina and their alterations
after AOH (n=8); (F-L) SD-OCT of mouse retina; F. Representative example of en face
eye scan which shows optic nerve head in WT control using SD-OCT devise. G. WT; H.
WT AOH; I. RAGE-/- (control); J. RAGE-/- AOH; K. Quantitative comparison of TRT
alteration using in vivo OCT imaging (n=8); L. Quantitative comparison of GCL/IPL
alteration using in vivo OCT imaging (n=8); (M-Q) Brn3a immunostaining to label RGCs
(red); M. WT control; N. WT AOH; O. RAGE-/- control; P. RAGE-/- AOH; Q. Number of
Brn3a+ RGCs in a 1 mm linear region of the GCL layer from the optic nerve head (n=3);
R. Western blotting of WT and RAGE-/- mice using Brn3a antibody showing the Brn3a
band around 42 kDa. GAPDH was used as a control: S. Densitometric analysis was

performed using ImageJ software (n=3). Data are represented as the Brn3a/GAPDH fold
change. There ratio of Brn3a expression in all tissue samples was compared with WT
Control66
Figure 14. Investigation of $A\beta$ deposition in mouse retina after AOH. A. Immunostaining
of WT AOH and RAGE-/- AOH retina using Aβ antibody (red), DAPI (blue), and thioflaving
S staining (green) (n=3) B. Western blotting of Aβ antibody in WT and RAGE-/- retinas
show the $A\beta$ band at 110 kDa. GAPDH was used as a control; C. Densitometric analysis of
$A\beta$ alteration after AOH in WT and RAGE-/- was performed using ImageJ software. Data
are represented as A β /GAPDH fold change (n=3). The ratio of A β expression in all tissue
samples was compared with WT Control
Figure 15. Immunostaining of WT retinas using RAGE antibody. Immunostaining was
performed on WT Control and WT AOH retinas at 10 μm thickness using RAGE antibody
(red) followed by thioflavin S dyeing for $A\beta$ labelling. Arrows show RAGE and $A\beta$
colocalization in the GCL 1 week following AOH (n=3)69
Figure 16. Immunostaining of WT retinas using caspase 3 antibody. A. Immunostaining
of retina sections in WT AOH and RAGE-/- AOH at 10 μm thickness using caspase 3
antibody (red) and DAPI (blue). Later $A\beta$ deposits were detected in the GCL with
thioflavin S (green); B. Intensity of the caspase 3 (red) signal was quantified using ImageJ
software (n=3)
Figure 17. Western blotting of WT and RAGE-/- retinas using caspase 3 antibody. A.
Immunoblotting of tissues from mice using caspase 3 antibody shows cleaved caspase 3
band around 19 kDa. GAPDH was used as control (n=3); B. Graph representing
densitometric analysis of cleaved caspase 3 expression in WT and RAGE-/- mice (n=3).
Data are represented as cleaved caspase 3/GAPDH fold change. The ratio of cleaved
caspase3 expression in all tissue samples was compared with WT Control
Figure 18. Data analysis of pSTR raw traces in WT and RAGE-/- mice after AOH. Graph
representing the comparison of the pSTR amplitude in WT and RAGE ^{-/-} mice (n=3). A significant decrease in pSTR amplitude was occurred in WT AOH compared with WT
control and RAGE-/- AOH
Figure 19. H&E staining of WT and RAGE-/- retina. H&E staining was performed on
paraffin-embedded retina sections of WT and RAGE-/- mice at 10 µm thickness 72 h and
1 week after A β injection (n=3). RGCs were measured manually around the optic nerve
head in increments of 300μm. RGC numbers in Aβ injected eyes of each mice were
normalized to that of the saline injected eye and presented as percentage loss. Significant
RGC loss was observed in WT at 1 week after A β injection compared with RAGE-/- mice.
This suggested that RGCs in the retina of RAGE-/- mice were protected against
neurotoxicity induced by the injected $A\beta$ 82
Figure 20. OCT in vivo imaging of WT and RAGE-/- mice. OCT imaging was performed
in both the A β -injected and vehicle-injected eye (as control). Quantification of TRT and
GCL/IPL using octseg.exe software showed significant TRT and GCL/IPL thinning in the
WT 1 week after A β injection compared with RAGE-/- mice (n=4). TRT and GCL/IPL

thinning in $A\beta$ injected eyes of each mice were normalized to that of the saline injected
eye and presented as the percentage83
Figure 21. Immunostaining of WT and RAGE-/- mice. Brn3a (red) was used to label
RGCs. Thioflavin S (green) was used to stain $A\beta$. Arrows indicate the strong colocalization
of Brn3a and A β in WT retina 1 week after A β injection (n=3)84
Figure 22. Immunostaining of WT mice using RAGE antibody. Immunostaining was
performed on paraffin-embedded retinas of WT mice at 10 μm thickness. Strong RAGE
upregulation (red) was observed in the GCL of WT mice 1 week after Aß injection.
Thioflavin S (green) was also used to stain AB and DAPI was used for nuclei
immunostaining (blue). Colocalization of RAGE, thioflavin S and DAPI (shown by arrows)
was observed in the GCL of WT retina 1 week after A β injection (n=3)85
Figure 23. Western blotting of WT and RAGE-/- retinas. Brn3a and caspase 3 antibodies
were used in western blotting of retinas; GAPHD was used as a control (n=3). A.
Significant loss of RGCs was observed in WT 1 week after $A\beta$ injection compared with
$RAGE^{-/-}$ mice; B. In contrast to the significant Brn3a downregulation in WT 1 week after
$A\beta$ injection, cleaved caspase 3 were significantly upregulated, which suggested activation
of apoptosis in RGCs following Aβ injection (n=3). Brn3q downregulation and cleaved
caspase 3 upregulation in $A\beta$ injected eyes of each mice were normalized to that of the
saline injected eye and presented as percentage decrease/increase86
Figure 24. Immunostaining of WT and RAGE-/- retinas using caspase 3 antibody.
Immunostaining was performed on paraffin-embedded retinas of WT mice at 10 μ m
thickness. Strong co-localization of caspase 3 and thioflavin S (indicator of $A\beta$) was
observed mainly in the GCL of WT mice. Nuclei were labelled using DAPI (n=3) 87
Figure 25. pSTR analysis of dark-adapted WT and RAGE ^{-/-} mice. Graph representing
pSTR analysis of WT and RAGE-/- mice retinas showed a significant decline of the pSTR
in WT mice 1 week after A β injection compared with RAGE-/- mice. WT mice also showed
a significant decline of pSTR compared with WT mice 72 h after $A\beta$ injection. This
suggested an increase in inner retinal disruption including RGCs 1 week after $\ensuremath{\mathrm{A}\beta}$
injection89
Figure 26. Immunostaining of WT and RAGE-/- retinas using Brn3a antibody. Brn3a
(red) was used as a specific marker of RGCs. Following Brn3a immunostaining, retinas
were stained with thioflavin S (green) for Aβ labelling (n=3)101
Figure 27. Immunostaining of RAGE antibody in RAGE-/- retinas. Immunostaining of
RAGE retinas was performed along with immunostaining of WT retinas, as discussed in
Chapter 2. Unsurprisingly, no RAGE signal was observed in RAGE-/- tissues. RAGE
antibody (red channel) and thioflavin S (green channel) were used for labelling RAGE and
A β , respectively (n=3).
Figure 28. Immunostaining of Aβ in WT control and RAGE-/-control retinas.
Immunostaining of control retinas from WT and RAGE-/- mice was performed along with
immunostaining of AOH retinas using A β antibody (red channel) followed by thioflaving β (respectively) striving DARI was used for reveloidable like β (respectively).
S (green channel) staining. DAPI was used for nuclei labelling (n=3) 103

Figure 29. Immunostaining of caspase 3 antibody in WT control and RAGE-/- control
retinas. Immunostaining of control retinas using caspase 3 antibody in WT and RAGE-/-
mice was performed along with immunostaining of AOH retinas. Thioflavin S (green
channel) staining was used for A β labelling. DAPI was used for nuclei labelling (n=3).
Figure 30. Immunostaining of Brn3a antibody in control retinas. Immunostaining of
control retinas from WT and RAGE-/- mice was performed along with immunostaining
of injected retinas using Brn3a antibody (red). Brn3a was used as a specific marker of
RGCs. Following Brn3a immunostaining, thioflavin S staining (green channel) was used
for Aβ immunostaining (n=3) 104
Figure 31. Immunostaining of RAGE antibody in WT control retinas. Immunostaining
of WT control retinas was performed along with immunostaining of injected retinas using
RAGE antibody (red channel). The tissues, were then subjected to thioflavin S (green
channel) staining for Aβ labelling (n=3) 105
Figure 32. Immunostaining of caspase 3 antibody in control retinas. Immunostaining of
WT control and RAGE -/- control retinas was performed along with immunostaining of
injected retinas using caspase 3 antibody (red channel). The tissues were then subjected
to thioflavin S (green channel) staining for A β labelling (n=3) 106

List of tables

Table 1. RAGE ligands and their presence in glaucoma patients and animal models of
glaucoma38
Table 2. Lysis buffer preparation recipe for homogenising tissues41
Table 3. Concentration of solutions used for the standard curve of the BCA assay 42
Table 4. Sample buffer preparation recipe for SDS-PAGE
Table 5. 1× Tank buffer preparation recipe for SDS-PAGE
Table 6. Recipe for preparation of 4 % PFA48
Table 7. List of primary antibodies61
Table 8. List of secondary antibodies62
Table 9. pSTR alterations in WT and RAGE-/- mice after AOH. pSTR was measured in
dark-adapted mice using very dim light that was sufficient to stimulate inner retinal cells
including RGCs (n=3)71
Table 10. pSTR measurements in WT and RAGE-/- mice. Vehicle-injected eye was used
as a control. Animals were dark adapted overnight. pSTR traces were obtained using the
Multi-species ElectroRetinoGraph. pSTR traces in both WT and RAGE-/- mice showed a
significant decline in WT 1 week after intravitreal A β injection (n=3)88

List of abbreviations

AD Alzheimer's Disease

AGE Advanced Glycation End products
AMD Age-related Macular Degeneration

AOH Acute Ocular Hypertension APP Amyloid Precursor Protein

Aβ Amyloid Beta

BBB Blood-Brain Barrier Blood-Retinal Barrier BRB Cell Adhesion Molecules **CAMs** Central Nervous System CNS **DMSO** Dimethylsulfoxide Diabetic Retinopathy DR **ECM** Extracellular Matrix Electroretinogram **ERG**

GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase

GCL Ganglion Cell layer

HFIP 1,1,1,3,3,3-Hexafluoro-2-Propanol

HMGB1 High Mobility Group Box 1
IOP Intra Ocular Pressure
IPL Inner Plexiform Layer

LBP Lycium Barbarum Polysaccharides

LGN Lateral Geniculate Nucleus

MAPK Mitogen Activated Protein Kinase MHC Major Histocompatibility Complex

MMP Matrix Metalloprotease

NADPH Nicotinamide Adenine Dinucleotide Phosphate-oxidase

NF-κB Nuclear Factor-kappaB NFL Nerve Fiber Layer

OCT Optical Coherence Tomography

OHT Ocular Hypertension ONH Optic Nerve Head

pSTR Positive Scotopic Threshold Response

RAGE Receptor for Advanced Glycation End products

RGC Retinal Ganglion Cell
ROS Reactive Oxygen Species
RPE Retinal Pigment Epithelium
SAPK Stress Activated Protein Kinase

SDS-PAGE Sodium Dodecvl Sulfate Polyacrylamide

TGF Transforming Growth Factor
TNF Tumor Necrosis Factor
TRT Total Retinal Thickness

WT Wild Type

ABSTRACT

Glaucoma encompasses a heterogeneous group of neurodegenerative processes associated with progressive damage to the resident neurons within the retina known as retinal ganglion cells (RGCs). The early stages of glaucoma are not associated with any symptoms, pain or change in sight. As a result, up to 40% of RGC loss occurs before a clinical diagnosis is made. Current treatments are effective at reducing intraocular pressure (IOP), the major risk factor for the disease, but a significant proportion of patients still experience vision loss despite treatment. Identifying new treatments that prevent RGC death caused by glaucomatous pathology is a major unmet need.

The receptor for advanced glycation end products (RAGE) is implicated in the pathogenesis of many chronic diseases, particularly neurodegenerative diseases such as Alzheimer's disease (AD) in which RAGE and its ligand, amyloid beta (A β), have been shown to mediate neuronal loss. Interestingly, higher RAGE expression and A β deposits have also been identified in the RGC layer in glaucoma. Given the current evidence for the involvement of similar underlying pathophysiological mechanisms in AD and glaucoma and that both RAGE and A β are linked to cell death pathways, I hypothesised that RAGE–A β signalling underlies RGC loss in glaucoma.

To address this hypothesis, RAGE knockout (RAGE-/-) mice and wild-type (WT) control mice were exposed to acute IOP elevation. Further, the time-dependent effects of intravitreal injection of A β on RGC loss, retinal dysfunction and structural damage in RAGE-/- and WT mice were also investigated. In this study, RAGE-/- mice were protected against RGC loss in experimental glaucoma compared with WT mice. The potent effects of A β on RGC loss was significantly diminished in RAGE-/- mice compared with WT mice.

These findings suggest that RAGE-A β is involved in RGC loss in an acute model of glaucoma. Similar experiments in other animal models of glaucoma are needed to confirm whether inhibition of RAGE-A β binding helps to slow the development of glaucoma.

Introduction

Glaucoma is a neurodegenerative disease with no significant symptoms or signs indicative of disease activity. It is a leading cause of preventable blindness that currently affects 300,000 Australians. Studies suggest that over 50% of people with glaucoma are unaware [1] of their disease and more than 72% of new cases are detected incidentally during examination for another reason unrelated to glaucoma [2], [3]. Despite numerous pharmacological attempts to lower intraocular pressure (IOP), the single most significant risk factor for the disease, glaucoma can continue to progress and eventually lead to retinal ganglion cell (RGC) loss and subsequent vision loss.

During normal vision, light passes through the cornea and lens before reaching the retina, the light-sensitive layer of the eye. The retina is divided into two main structures: the *outer* and *inner* retina. The outer retina houses the photoreceptors, the cells that receive light and transmit it through electrical signals, which are then transmitted to RGCs located within the inner retina. RGCs are responsible for relaying visual signal from the inner retina to the brain. The cell body of RGCs is located within the inner layer of the retina, and their axons extend to the brain via the optic nerve.

In glaucoma, it is believed that elevated IOP induces haemodynamic stress at the optic nerve head, which leads to optical nerve axonal compression and subsequent RGC loss via apoptosis [4]. As a progressive neurodegenerative disease, glaucoma affects peripheral vision in its early stages and can cause central visual dysfunction later in the disease process (Figure 1).

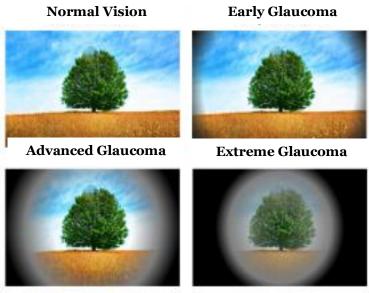


Figure 1. Alterations in normal vision with glaucoma [4]. The loss of sight in glaucoma is generally continuous and peripheral vision might be lost without any symptoms.

Statement of the problem

Elevated IOP is considered to be a prime factor for glaucomatous damage to the optic nerve head, which leads to RGC loss. Management of IOP, the sole modifiable risk factor, is at the centre of most pharmacological interventions targeted at halting disease progression. However, a significant proportion of patients experience some degree of vision loss despite the therapeutic management [5]. As a result, the focus of recent research has shifted from IOP management to devising strategies that delay or halt RGC loss as potentially the most beneficial approach to preserve vision in glaucoma.

A variety of molecular signalling pathways have been investigated to understand better the mechanisms that mediate RGC loss. The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor that binds many molecules involved in tissue injury and is involved in various chronic diseases associated with aging. RAGE binds a number of ligands and is highly expressed in RGCs. Prominent among the various

ligands amyloid beta (A β), the central player in Alzheimer's disease (AD), has a potent neurotoxic effect on RGCs [6]–[8]. Although RAGE–A β -mediated neuronal cell death has been widely studied in AD, its potential role in RGC death in glaucoma has not been investigated.

Hypothesis

That in glaucoma, 1) RAGE takes part in RGC loss and 2) the RAGE-A β axis is involved in RGC loss.

Research aims

To address this hypothesis, IOP was increased in RAGE-/- and wild-type (WT) control mice to replicate a model of retinal ischaemia-reperfusion injury and experimental glaucoma. Following on from the results of the first experiment, in the second experiment, the RAGE ligand, $A\beta$, was intravitreally injected in to the vitreous of RAGE-/- and WT control mice. The specific aims of the project were as follows.

AIM 1: Determine whether RAGE mediates RGC loss and retinal dysfunction in a model of acute retinal ischaemia.

AIM 2: Determine whether RAGE–Aβ activation exacerbates RGC loss.