
UNIVERSITY OF TECHNOLOGY SYDNEY

DOCTORAL THESIS

Fundamental Solutions for Linear
Parabolic Systems and Matrix Processes

Author:
Alba SANTÍN GARCIA

Supervisor:
Dr. Mark CRADDOCK

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

School of Mathematical and Physical Sciences

January 21, 2019

http://www.uts.edu.au
https://www.uts.edu.au/about/faculty-science/school-mathematical-and-physical-sciences




Production Note:
Signature removed prior to publication.





v

“Mathematics is the music of reason. To do mathematics is to engage in an act of discovery
and conjecture, intuition and inspiration; to be in a state of confusion—not because it makes
no sense to you, but because you gave it sense and you still don’t understand what your
creation is up to; to have a break-through idea; to be frustrated as an artist; to be awed and
overwhelmed by an almost painful beauty; to be alive, damn it.”

Paul Lockhart

“Questa cosí vana prosunzione d’intendere il tutto non può aver principio da altro che
dal non avere inteso mai nulla, perché, quando altri avesse esperimentato una volta sola
a intender perfettamente una sola cosa ed avesse gustato veramente come è fatto il sapere,
conoscerebbe come dell’infinità dell’altre conclusioni niuna ne intende.”

Galileo Galilei
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Fundamental Solutions for Linear Parabolic Systems and Matrix Processes

by Alba SANTÍN GARCIA

In this thesis we use Lie symmetry methods and integral transforms to obtain fun-
damental matrices for systems of PDEs of the formut = uxx + g1(x)v

vt = vxx + g2(x)u
and

vt = σxγvxx + f1(x)vx − f2(x)wx

wt = σxγwxx + f2(x)vx + f1(x)wx,
x, t > 0

for functions gi(x), and fi(x) satisfying some necessary conditions. We also provide
the methodology to obtain these matrices for a wider range of systems.

We then turn to the Lie symmetry study of the Kolmogorov Backwards equation
associated to the process of the eigenvalues of a Wishart process. We focus on 2-
dimensional Wishart processes with eigenvalues Xt > Yt ≥ 0 for most of our work.
We obtain the cosine transform of the transition density function of the difference
Xt − Yt, as well as some integral expressions for E[Xt], E[Yt]. We also obtain some
bounds for the variances of Xt and Yt and the expected values for a wide range of
functions of these eigenvalues including, among many others, the expected value
for any symmetric polynomial in the variables Xt, Yt. These results are all new, to
the best of our knowledge.
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Chapter 1

Introduction

Linear Parabolic Partial Differential Equations, such as the so called heat equation,
ut(x, t) = αuxx(x, t), are fundamental in the modelling of many kinds of phenom-
ena arising in areas such as Physics or Finance. In particular, they play an essen-
tial role in the study of diffusion processes (see Section 2.2) . It turns out that the
transition probability density for a diffusion process is given by a fundamental so-
lution of a particular parabolic PDE associated with the diffusion, the so called
Kolmogorov backwards equation.

The transition probability density is essentially what allows us to determine the
probability of the process transitioning between two states in a given time interval.
An important example is the transition density for Brownian motion, which as it
turns out, is given by a fundamental solution to the heat equation, widely known
as the "heat kernel".

A lot of research has been done in developing methods for finding fundamental
solutions for a given PDE. Some of the most widely spread techniques over the last
50 years include the obtention of such fundamental solutions as group invariant so-
lutions of the relevant PDE. Authors like Bluman et al. [10, 7, 4, 5, 9] or Ibragimov et
al. [41, 42, 43, 44, 45, 3] developed successful methods based on this group theoretic
approach. They studied a wide range of boundary value problems including the
heat equation, the wave equation and the Laplace equation, as well as some other
examples like the one-dimensional Fokker-Planck equation, studied by Bluman in
[5, 9]. Many examples of PDEs arising from financial Mathematics have also been
studied using this range of techniques [32, 56].

Another approach to such problem is the reduction of the given PDE to some
canonical form for which these fundamental solutions are known. Very interesting
results have been published in this line of research by different authors such as
Bluman [6], Goard [34] or Ibragimov [42].

The main limitations of the previously mentioned approaches often have to do
with boundary conditions. Moreover, the fundamental solutions that can be ob-
tained using these methods usually do not possess the required characteristics to
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be regarded as transition densities for an appropriate diffusion process.
Pioneering work by Craddock and his coauthors [17, 18, 19, 24, 25, 22, 20, 21,

26], particularly for one dimensional problems, offers an approach to the problem
of finding fundamental solutions that indeed satisfy the necessary conditions to be
regarded as transition densities for a given process. This new perspective relies on
the fact that for a large class of PDEs, we can identify fundamental solutions with
inverse integral transforms of a particular solution to the PDE, obtained through
the application of an element of the Lie algebra of the PDE to a stationary solution
that can be often obtained by inspection.

As an extension of the methods used for one-dimensional problems, some re-
cent research has been conducted by Craddock and Lennox [21, 47] on the construc-
tion of explicit fundamental solutions for multi-dimensional parabolic equations of
second order. In addition, in his recent research [18], Craddock also shows that
fundamental solutions for certain parabolic systems of PDEs can be found by us-
ing only a scaling symmetry. However, the amount of existing work done in higher
dimensional cases and systems of PDEs is very limited and it is definitely an area
in which there is still room for further investigation.

Another limitation that we come across when trying to use Lie Symmetry meth-
ods for the computation of transition densities using integral transforms is that we
rely on the fact that the relevant PDE has enough symmetries and that they are
complex enough to allow us to obtain time-dependent solutions from stationary
ones. However, this is not always the case, and there does not seem to be much
research available that focuses on dealing with such cases.

The idea of this project is to follow up on the existing study of Lie symmetry
methods and to extend its scope in two different directions:

• First, we wish to extend the use of these methods as a tool for computing fun-
damental solutions for single PDEs to one that allows us to deal with systems
of PDEs.

• Second, we aim to provide a set of tools that allow us to obtain enough infor-
mation about a particular diffusion process, even when the existing methods
fail to produce a transition density due to lack of enough symmetry in the
associated Kolmogorov Backward equation.

1.1 Overview and structure

In order to cover the aspects specified above, we have organised this thesis into
different chapters, according to the following structure:
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• Chapter 2 provides the reader with the necessary background knowledge and
an overview of the research conducted up to date on the topics that will be
later on covered in following chapters. This chapter also presents some ex-
amples to illustrate the main methodologies that have been used in this area
of research throughout the past few years.

• Chapter 3 and Chapter 4 both deal with finding fundamental matrices for
particular types of systems of PDEs.
In particular, in Chapter 3 we study a family of systems for which we compute
the Lie Algebra in different cases. We then proceed to develop a methodology
to obtain fundamental matrices for the systems in each case.
In Chapter 4, instead, we use the existing theory available for single PDEs to
develop a method that deals with the computation of fundamental matrices
for real systems arising from single PDEs concerning complex-valued func-
tions.
The results presented in these two chapters are all new unless otherwise spec-
ified. As far as we know, the techniques we develop in this thesis for the com-
putation of fundamental matrices for systems of linear parabolic PDEs have
not been used before.

• Lastly, in Chapter 5 we present a wide range of tools that we have developed
to deal with diffusion processes for which the associated Kolmogorov Back-
ward equation does not have enough symmetries to allow us to compute a
fundamental solution. We illustrate all these tools through an example of a
matrix diffusion process: the Wishart Process. These processes turn out to be
of great interest in many areas such as financial Mathematics, where they are
widely used as a tool to model stochastic volatility.
In particular, we focus on the eigenvalues of such processes to present the
research we have conducted. We compute the expected value for these eigen-
values, as well as some bounds for their variance. We also obtain an infi-
nite series expression for the Fourier cosine transform of the density function
of the difference of the eigenvalues for 2-dimensional Wishart processes. In
addition, we compute the expected value of all sorts of functions of these
eigenvalues, such as any symmetric polynomial in these eigenvalues. The
techniques we use to compute all these expectations rely mostly on Lie sym-
metries and classical integral transforms.
Again, to the best of our knowledge, all the results obtained in this chapter
for the eigenvalues of a Wishart Process are new unless otherwise specified.





5

Chapter 2

Theoretical Background and
Literature Review

For the purpose of giving a self-contained overview of our study, this chapter pro-
vides a brief explanation of the main topics on which our research is based, as well
as an outline of the methodology we use to approach the problem of finding fun-
damental solutions for a parabolic PDE.

We also review some of the methods that have historically been used to obtain
fundamental solutions through the computation of Lie symmetries. These meth-
ods include, for example, the use of group-invariant solutions or the reduction by
symmetry to a canonical form.

We then focus on a completely different approach that allows us to obtain fun-
damental solutions for some classes of PDEs by simply inverting a classical integral
transform such as the Laplace transform, the Fourier transform or the Mellin trans-
form. It is precisely this method that we will mostly be concerned with and it relies
on the fact that transforming a stationary solution of these PDEs via an appropri-
ate Lie symmetry yields a new solution that can be expressed as a classical integral
transform of the fundamental solution.

In order to make sense of all these methods, we will first give a brief intro-
duction to Lie symmetries and how to compute them. We will then proceed to
present some examples of the different methods we can use to obtain fundamental
solutions and, after a very brief explanation on a few basic concepts in the field of
Stochastic Processes, we will explain how we relate the computation of fundamen-
tal solutions of PDEs to the obtention of transition densities for a given Stochastic
Process.

The main definitions in section 2.1 regarding the computations of Lie symme-
tries for a given system of differential equations have been taken from Olver’s book
[52] unless otherwise stated. Similarly, in section 2.2, the main theorems on Stochas-
tic Differential Equations are from Øksendal’s book [51] unless otherwise specified.
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2.1 Lie Symmetries for Partial Differential Equations: com-
putation and obtention of fundamental solutions

Given a PDE or a system of PDEs, one might be interested in computing their sym-
metries. It turns out Lie’s method for the systematic computation of symmetries is
a rather powerful and relatively simple method to do so. A detailed explanation
on this subject can be found in Olver’s book [52], as well as [4, 8, 40].

In what follows, we provide a general picture of how this method works. How-
ever, we do not include some proofs or go too much into detail, since these results
can be easily found in the literature. Note that this method can be used for single
PDEs but also for systems, as well as for ordinary differential equations.

Suppose we have a system S of n-th order differential equations in p indepen-
dent and q dependent variables defined by

∆ν(x, u(n)) = 0, ν = 1, . . . , l,

involving x = (x1, . . . , xp) (the independent variables), u = (u1, . . . , uq) (the de-
pendent variables) and the derivatives of u with respect to x up to order n, where
∆(x, u(n)) = (∆1(x, u(n)), . . . ,∆l(x, u

(n))) can be regarded as a smooth map from
the jet space X × U (n) to some l-dimensional Euclidean space

∆ : X × U (n) → Rl

Observe that the differential equations determine a subvariety where the map
∆ vanishes:

S∆ = {(x, u(n)) : ∆(x, u(n)) = 0} ⊂ X × U (n)

Our goal is to determine explicitly the symmetry group for the system S (or,
in particular, the infinitesimal generators of such symmetry group). That is, we
are looking for a local group of transformations G acting on the independent and
dependent variables of the system that maps solutions of S to other solutions of
the system. More precisely, let H∆ denote the space of all solutions of the system
S :

∆ν(x, u(n)) = 0, ν = 1, . . . , l,

we are looking for a mapping S of H∆ into itself, so that if u ∈ H∆ then Su ∈ H∆.
Such a mapping S : H∆ → H∆ is called a symmetry.

It turns out that the symmetries we will be looking for can be proved to possess
group properties. In particular, they typically form a Lie group. We again refer
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the reader to Olver’s book [52] for a more thorough explanation on this particular
subject.

We will only deal with symmetries in which the transformations act solely on
the independent and dependent variables x and u. These type of symmetries are
known as point symmetries. However, there exist more complex generalized sym-
metries, which involve transformations acting on the derivatives of the dependent
variables. We do not discuss these in this work.

For the computation of point symmetries, we will be dealing with right-invariant
vector fields of the form:

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
, (2.1)

defined on an open subset M ⊂ X × U .

It is convenient to refresh the formal definition of the Lie bracket of two vector
fields as well as the notion of a Lie algebra:

Definition 2.1.1. Let v and w be smooth vector fields on a manifold M . The Lie
bracket [v,w] of v and w is the vector field defined as

[v,w](f) := v(w(f))−w(v(f))

for all f ∈ C∞(M).

Definition 2.1.2. A Lie algebra g is a vector space over a field F with an operation
[·, ·] : g × g → g called the Lie bracket (definition 2.1.1), which has the following
properties:

(i) It is bilinear

(ii) It is skew symmetric: [v,v] = 0, which implies [v,w] = −[w,v] for all v, w ∈ g

(iii) It satisfies the Jacobi Identity: [u, [v,w]] + [v, [w,u]] + [w, [u,v]] = 0 for all
u,v,w ∈ g

The Lie algebra g of a Lie group G can be identified with the tangent space
to G at the identity element, i.e. g ' TG|e. It can be shown that there is a one-
to-one correspondence between one-dimensional subspaces of g and (connected)
one-parameter subgroups of G.

It is important to mention that, as remarked in Olver’s book [52], although
the usual approach to Lie algebras requires the vector fields defining g to be left-
invariant under the action of G, the fact that we are using right-invariant vector
fields will not have any consequences for our purposes.
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It is well known that the flow of a sufficiently well behaved vector field v =∑
ξi(x) ∂

∂xi
(usually denoted as exp(εv)) is a one-parameter local Lie group. We can

recover the action generated by v by summing the so-called Lie series:

exp(εv)x = x+ εξ(x) +
ε2

2
v(ξ)(x) + · · · =

∞∑
k=0

εk

k!
vk(x)

However, this is not a practical way to do so. A much more convenient and efficient
way to recover the action generated by a vector field of the form (2.1) on (x, u) is to
think of the flow as a transformation of (x, u) into (x̃, ũ) = exp(εv)(x, u) and solve
the following system of differential equations:

dx̃i

dε
= ξi(x̃, ũ), x̃i(0) = xi, i = 1, . . . p (2.2)

dũα

dε
= φα(x̃, ũ), ũα(0) = uα, α = 1, . . . q (2.3)

In this case, the parameter of the group action generated by v is ε.
Let us now denote by G the group generated by a vector field v. We need to

introduce the notion of the n-th prolongation of G, pr(n)G as the natural extension
of the action of G to not only the dependent and independent variables x and u,
but also the derivatives of u up to order n. The n-th prolongation of G is defined in
such a way that applying pr(n)G to (x, u(n)) is the same as first transforming (x, u)

through the action of G and then computing the derivatives of the transformed
dependent variables up to order n.

In a similar way to how a vector field generates a one-parameter group action,
the n-th prolongation of G, pr(n)G, also has an infinitesimal generator, usually de-
noted by pr(n)v. Its technical definition is the following:

Definition 2.1.3 ([52]). Let M ⊂ X × U be open and suppose v is a vector field on
M , with corresponding local one-parameter group exp(εv). The n-th prolongation
of v, denoted by pr(n)v, will be a vector field on the n-jet space M (n) ⊂ X × U (n),
and is defined to be the infinitesimal generator of the corresponding prolonged
one-parameter group pr(n)[exp(εv)], i.e.

pr(n)v|(x,u(n)) =
d

dε

∣∣∣∣
ε=0

pr(n)[exp(εv)](x, u(n)), (2.4)

for any (x, u(n)) ∈M (n)

There exists a specific formula for the computation of pr(n)v, which is often
referred to as the General Prolongation Formula. The following result determines
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this specific expression for pr(n)v, which makes its calculation only an exercise of
computing a few derivatives:

Theorem 2.1.1 ([52]). Let

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα

be a vector field defined on an open subset M ⊂ X × U . The n-th prolongation of v is the
vector field

pr(n)v = v +

q∑
α=1

∑
J

φJα(x, u(n))
∂

∂uαJ
(2.5)

defined on the corresponding jet space M (n) ⊂ X × U (n), the second summation being
over all (unordered) multi-indices J = (j1, . . . , jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n. The
coefficient functions φJα of pr(n)v are given by the following formula:

φJα(x, u(n)) = DJ

φα − p∑
i=1

ξiuαi

+

p∑
i=1

ξiuαJ,i, (2.6)

where uαi = ∂uα/∂xi, uαJ,i = ∂uαJ/∂x
i and DJ is the total differentiation operator.

With the above definitions, let us go back to our initial problem of computing
explicit symmetries for a system of differential equations. We are now ready to
present the main theorem that will allow us to systematically do so. This theorem,
as well as its proof, can again be found in Olver’s book [52] and it provides nec-
essary and sufficient conditions for a Lie group with infinitesimal generator of the
form (2.1) to be a symmetry group:

Theorem 2.1.2. (Lie’s Theorem)
Suppose

∆ν(x, u(n)) = 0, ν = 1, . . . , l,

is a non-degenerate system of differential equations defined over M ⊂ X × U . If G is a
connected local group of transformations acting on M , then G is a symmetry group of the
system if and only if

pr(n)v[∆ν(x, u(n))] = 0, ν = 1, . . . , l whenever ∆ν(x, u(n)) = 0, (2.7)

for every infinitesimal generator v of G.

Note. We often refer to the vector fields satisfying (2.7) as infinitesimal symmetries.
It turns out that the set of all infinitesimal symmetries of the system forms a Lie
algebra of vector fields on M ([52])
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In light of this result, the computation of the symmetries of a system of differen-
tial equations is reduced to applying Theorem 2.1.2 to our particular system, thus
yielding a set of determining equations for ξi, φα that can usually be solved by in-
spection. Each of the Lie group symmetries will produce a continuous family of
solutions parametrized by the group variable.

The next step of our work is to compute fundamental solutions. Let us begin by
defining the concept of a fundamental solution:

Definition 2.1.4. Let L be a linear differential operator on a domain Ω. A funda-
mental solution for L is a distribution p defined on Ω with the property that

Lp = δ(x).

Here δ refers to the so called Dirac Delta function. However, the Dirac Delta is
technically speaking not a function but a distribution or a generalised function. More
information on this topic can be found in [39, 33, 49]
There exist equivalent definitions of fundamental solutions for particular types of
PDEs. For example, for parabolic PDEs the definition of a fundamental solution
can be formulated as follows

Definition 2.1.5. Let ∂
∂t − L be a parabolic differential operator. A fundamental

solution pt of ∂
∂t − L can be defined to be a solution of the PDE(

∂

∂t
− L

)
u = 0,

subject to the initial condition p0 = δ(x).

A very useful property of fundamental solutions can be derived from definition
2.1.4. Observe that knowing a fundamental solution p for a differential operator L
one may solve the equation Lu = f for any appropriate function f . It is clear that
u = f ∗ p will satisfy Lu = f :

Lu = L(f ∗ p) = L

(∫
Ω
f(y)p(x− y)dy

)
=

∫
Ω
f(y)Lp(x− y)dy (2.8)

=

∫
Ω
f(y)δ(x− y)dy = f(x)

Here f ∗ p refers to the convolution1of f and p, defined as
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Definition 2.1.6. Let f, g ∈ L1(Rn). The convolution of f and g is defined by

f ∗ g(x) =

∫
Rn
f(y)g(x− y)dx.

The methodology we will use in most of our work to compute fundamental
solutions consists essentially in using trivial or rather simple solutions of a system
to ultimately construct complex solutions. Roughly speaking, the way we approach
this problem is by transforming these trivial solutions through the action of an
appropriate Lie group symmetry in order to produce other solutions which are
non-trivial.

It has been seen that there are many effective approaches to the use of symmetry
methods to compute fundamental solutions for a given PDE. One such approach is
to use the fact that fundamental solutions to many PDEs can be obtained as group
invariant solutions. In [25] for example, the authors first use the method of char-
acteristics to find group invariant solutions for the particular PDE that is being
considered and then use it to construct the fundamental solution for such PDE.

One possible method of obtaining fundamental solutions as group invariant
solutions for a given boundary value problem (BVP) is described by Bluman and
Cole in their joint work [10] or by Bluman and Anco in [7]. They deal with BVPs of
the following form

Definition 2.1.7. Solve the n-th order PDE

P (x, u(n)) = 0, x ∈ Ω ⊂ Rm (2.9)

subject to the boundary conditions

Bj(x, u, u
(n−1)) = 0, (2.10)

when ωj(x) = 0, j = 1, . . . , k.

For a BVP defined as above they present the following definition and result

Definition 2.1.8. A vector field v is admitted by an n−th order boundary value
problem if

(i) pr(n)v[P (x,Dαu)] = 0 when P (x,Dαu) = 0.

(ii) v(ωj(x)) = 0 when ωj(x) = 0

(iii) pr(n−1)v[Bj(x, u, u
(n−1))] = 0 whenBj(x, u, u(n−1)) = 0 on the surface ωj(x) =

0.
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Proposition 2.1.3. Suppose that a boundary value problem admits a vector field v. Then
the solution of the boundary value problem is a group invariant solution with respect to the
symmetries generated by v.

In [43], one may also find a group theoretic approach to finding fundamental
solutions.

Let us now present a very basic but illustrative example of this first approach
to finding fundamental solutions:

Example 2.1.1. Consider the one-dimensional heat equation ut = uxx on the real
line with t ≥ 0, which has a well-known fundamental solution known as the heat
kernel:

k(x, t) =
1√
4πt

e−
x2

4t (2.11)

One may obtain this fundamental solution as a group invariant solution of the
problem

ut = uxx, x ∈ R, t ≥ 0 (2.12)

u(x, 0) = δ(x) (2.13)

lim
x→±∞

u(x, t) = 0 (2.14)

Using Lie’s method for the systematic computation of symmetries one obtains that
for this particular PDE (2.12) the finite dimensional part of the Lie algebra of point
symmetries is six dimensional and is spanned by the vector fields

v1 = ∂
∂x , v4 = 2t ∂∂x − xu

∂
∂u ,

v2 = ∂
∂t , v5 = x ∂

∂x + 2t ∂∂t ,

v3 = u ∂
∂u , v6 = 4xt ∂∂x + 4t2 ∂∂t − (x2 + 2t)u ∂

∂u .

(2.15)

Note that there is also an infinite dimensional ideal2within the Lie algebra consist-
ing of vector fields of the form vf = f(x, t) ∂

∂u , where ft = fxx. This ideal simply
generates superposition of solutions.

However, not all the elements of the Lie algebra for this PDE will be admitted
by our BVP. In their work [10],[7] Bluman et al. describe some methods that allow
us to find the largest subalgebra admitted by our BVP, that is, the most general
form of a Lie point symmetry of the heat equation that will preserve the boundary
conditions of our BVP. But we won’t do that in this example, since we are not here

2 An ideal in a Lie algebra g is a vector subspace I ⊂ g so that for all X ∈ g and Y ∈ I we have
[X ,Y] ∈ I.



2.1. Lie Symmetries for Partial Differential Equations: computation and obtention
of fundamental solutions

13

concerned about the general case. For our purposes it will suffice to pick a suitable
element in (2.15) that is indeed admitted by our BVP.

Let us turn our focus to the point symmetry generated by the vector field v6.
It is not excessively hard to show that this vector field is admitted by our BVP.
Note for example that v6(t) = 4t2, which is equal to zero when t = 0. Note also
that v6(u − δ) = −4xtδ′(x) − (x2 + 2t)u, which on the surface t = 0 simplifies to
v6(u− δ)|t=0 = −x2u(x, 0), which is zero when u(x, 0) = δ(x)3.

Again, there are many different methods to find the invariants under the action
of the group generated by this particular vector field, one of which is to solve

dx

4xt
=

dt

4t2
= − du

(x2 + 2t)u

Some simple calculations yield the functionally independent invariants y = x
t and

v = e
x2

4t

√
tu. Note that the first equality gives

∫
dx
x =

∫
dt
t , from which we obtain

that log x = log t + C1 or C1 = log x − log t = log x
t . Then, if C1 is a constant, so is

y = eC1 = x
t . Similarly, to find the second invariant, v, we must solve the second

equality, which gives
∫

(y
2

4 + 1
2t)dt = −

∫
du
u , yielding y2

4 t+ log t
1
2 = − log u+C2 or

C2 = y2t
4 + log

√
t+ log u = x2

4t + log
√
tu. Again, exponentiation gives v = e

x2

4t

√
tu.

Applying the chain rule to u = e−
x2

4t√
t
v gives

ut =
e−

x2

4t

t
5
2

(x2

4
− t

2

)
v(y)− xv′(y)



uxx =
e−

x2

4t

t
5
2

(x2

4
− t

2

)
v(y)− xv′(y) + v′′(y)


So the heat equation becomes simply v′′(y) = 0. Therefore we must have v(y) =

Ay +B and so

u(x, t) =
e−

x2

4t

√
t
v

(
x

t

)
=
e−

x2

4t

√
t

(
A
x

t
+B

)
Observe that in order to satisfy the boundary condition (2.13) we need

∫ ∞
−∞

e−
x2

4t

√
t

(
A
x

t
+B

)
dx = 1,

thus yielding the choice B = 1√
4π

. The choice of A = 0 comes from the behaviour
and the properties of the delta function as a distribution. Note for example that

3See [49] for properties and further explanation on the Dirac delta function
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the delta function is an even function (in the distribution sense), whereas u(x, t)

is odd unless we take A = 0. So with this choices of A and B our fundamental
solution becomes u(x, t) = 1√

4πt
exp

(
−x2

4t

)
, which is exactly the expression for the

heat kernel (2.11).

It is important to point out that in the above example the boundary and initial
conditions were not given in the form that definitions 2.1.7 and 2.1.8 contemplate.
Nevertheless, in this particular case the methodology described in [10],[7] does not
fail to produce a fundamental solution. However, one must be very careful when
generalizing these methods to more complicated forms of boundary conditions.
Cherniha et al. consider extensions of the method presented by Bluman and his
co-authors to more general and complicated boundary value problems in [14, 16,
15]. They look into problems with free boundaries and, in particular, they focus
on BVPs of the Stefan type. Arrigo et al. [1] also discuss and extend the study of
some invariance methods used by Bluman and Cole for a wider notion of invariant
solutions, known as nonclassical solutions.

The method of using group-invariant solutions in the construction of funda-
mental solutions has been widely explored in the last 50 years (see for example
[52, 41, 42, 43, 45]). In [3], Berest and Ibragimov explore these methods for the
heat equation and in [44], Ibragimov studies the heat equation, the wave equation
and the Laplace equation through this method. In [28], Finkel classifies the sym-
metries of the Fokker–Planck equation in two spatial dimensions with a constant
positive-definite diffusion matrix. For the 1-dimensional case, in [9, 5], Bluman ob-
tained fundamental solutions for the Fokker-Planck equation ut = uxx + (f(x)u)x

in the case where f satisfies a certain Riccati equation. He also studied the n-
dimensional wave equation and the Laplace equation amongst other examples in
[4]. The method of group-invariant solutions has also been applied for finding fun-
damental solutions to some PDEs arising in financial mathematics, such as the so
called Black-Scholes equation (see [32]). Laurence and Wang explored this method
for a multi-dimensional case in [46], only obtaining fundamental solutions for some
special cases.

Other methods obtain fundamental solutions through the reduction by symme-
try of the given equation to a canonical form (see for example [6], where Bluman
shows how to reduce a type of PDE to the heat equation by symmetry). Goard also
used this approach to finding fundamental solutions in [34], where she reduces
equations to either the heat equation or the equation ut = uxx − A

x2u. A very thor-
ough explanation on the method of reduction to canonical form can also be found
in [42]. Using these methods it is possible to determine general types of differential
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equations that can be reduced to a particular canonical form. Nevertheless, this re-
quires some additional background knowledge that is not relevant to our purposes
so we will omit it here. We will however provide an example of how this method
allows us to study rather complex PDEs by reducing them to one of the canonical
forms. There are several known results that study particular types of PDEs and
determine under what circumstances those PDEs can be reduced to one canonical
form or another. One of such results is the following (see [42] or Goard’s paper
[34]):

Proposition 2.1.4. Let the functions P (x, t) and R(x, t) be non-zero functions and con-
sider the following evolution equation for an appropriate function u(x, t):

P (x, t)ut +Q(x, t)ux +R(x, t)uxx + S(x, t)u = 0 (2.16)

Then there exists a suitable transformation of the dependent and independent variables (i.e.
x, t and u) that reduces equation (2.16) to

vt̄ = vx̄x + Z(t̄, x̄)v. (2.17)

Furthermore, knowing the symmetry operators admitted by the PDE (2.16) (aside from the
trivial ones ∂

∂u and φ(x, t) ∂
∂u , where φ is any solution of (2.16)) we can further reduce this

PDE to one of the following forms:

(i) If the PDE (2.16) admits the additional symmetry operator ∂
∂t then it is reducible to

vt̄ = vx̄x + Z(x̄)v.

(ii) If the PDE has at least three additional symmetries is reducible to

vt̄ = vx̄x +
α

x̄2
v,

where α is constant.

(iii) If it has at least five extra symmetries, the PDE (2.16) can be reduced to

vt̄ = vx̄x.

Let us now move on to show one illustrative example that can be derived from
some of the results in Goard’s paper:

Example 2.1.2. Suppose we are looking for a function p(x, t; y, t′) satisfying the PDE

pt +
1

2
xpxx + px = 0, (2.18)
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subject to
p(x, t; y, t′) = δ(x− y), (2.19)

and such that for x, y ≥ 0, the condition∫ ∞
0

p(x, t; y, t′)dy = 1 (2.20)

is satisfied. It turns out that this particular problem arises from the problem of
finding the transition density function (TDF) of the the following Itô diffusion :

dXt = dt+
√
XtdWt, (2.21)

We will explain with more detail what an Itô diffusion is and how to derive such
PDE later on in this chapter, but the main idea is that the expectations of any
function of an Itô diffusion always satisfy a particular PDE that is known as the
backward Kolmogorov equation. It turns out that for a diffusion of the type (2.21)
the PDE we end up having to deal with is (2.18). With this, the density function
p(x, t; y, t′) we are looking for will have the following meaning:

Pr(a < Xt′ < b | Xt = x) =

∫ b

a
p(x, t; y, t′)dy. (2.22)

In [6] Bluman shows that equation (2.18) can be reduced to the form

qη = qξξ + α(ξ, η)q (2.23)

through a transformation of the type
ξ = ξ(x, t)

η = η(x, t)

q = Φ(x, t)p.

(2.24)

In particular, it can be seen that in our case, the transformation
ξ = 2

√
x

η = t′−t
2

q = x
3
4 p =⇒ q(ξ, η; y, t′) = ξ3/2

2
√

2
p
(
ξ2

4 , t
′ − 2η; y, t′

) (2.25)

reduces our initial problem to :

qη = qξξ −
3

4

1

ξ2
q, (2.26)
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subject to

q(ξ, 0; y, t′) =
ξ3/2

2
√

2
δ

(
ξ2

4
− y

)
. (2.27)

It turns out that the solution to the Cauchy problem (2.26)-(2.27) is known to be

q(ξ, η; y, t′) =

√
ξ

2η
e
− ξ

2

4η

∫ ∞
0

e
− s

2

4η
s2

2
√

2
I1

(
ξs

2η

)
δ

(
s2

4
− y

)
ds

=

√
ξ

2η
e
− ξ

2

4η e
− y
η
√

2
√
yI1

(
ξ
√
y

η

)
=

√
ξ
√
y

√
2η

e
− ξ

2

4η
− y
η I1

(
ξ
√
y

η

)
,

i.e. the solution to our problem will be

p

(
ξ2

4
, t′ − 2η; y, t′

)
=

2
√

2

ξ3/2

√
ξ
√
y

√
2η

e
− ξ

2

4η
− y
η I1

(
ξ
√
y

η

)
=

2
√
y

ηξ
e
− ξ

2

4η
− y
η I1

(
ξ
√
y

η

)
.

One need only transform the independent variables back to the original ones to get

p(x, t; y, t′) =
2

(t′ − t)

√
y

x
exp

(
−2

x+ y

t′ − t

)
I1

(
4
√
xy

t′ − t

)
(2.28)

as the fundamental solution for (2.18) satisfying (2.19) and (2.20). It can be checked
that this is precisely the transition density function for an Itô diffusion defined ac-
cording to (2.21).

So by knowing the form solutions take for some canonical PDEs, we can derive
fundamental solutions for a wide range of PDEs that can be reduced to such canon-
ical forms via some transformation of the dependent and independent variables.
However, these methods sometimes produce issues with the boundary conditions
for the reduced equation. We illustrate this with some examples in what follows:

Example 2.1.3. Consider the problem
ut = x4uxx + 2x3ux

u(x, 0) = f(x)

ux(0, t) = 0.

(2.29)



18 Chapter 2. Theoretical Background and Literature Review

Let y = 1
x and v(y, t) = u(x, t). Observe that

ut = vt

ux = − 1
x2 vy = −y2vy

uxx = 1
x4 vyy + 2 1

x3 vy = y4vyy + 2y3vy

Hence the PDE in (2.29) in the new variables becomes vt = vyy, but the conditions
become: f(x) = u(x, 0) = v(y, 0) = f

(
1
y

)
ux(0, t) = 0 ⇐⇒ − limy→∞ y

2vy(y, t) = 0

Therefore, we must now consider the problem
vt = vyy, y ∈ (0,∞)

v(y, 0) = f
(

1
y

)
limy→∞ y

2vy(y, t) = 0,

which is not very convenient.

Example 2.1.4. Consider the problem
ut = xuxx + 1

2ux, x > 0

u(x, 0) = f(x)

ux(0, t) = 0.

Let y = 2
√
x and v(y, t) = u(x, t). We now have

ut = vt

ux = 1√
x
vy = 2

vy
y

uxx = 1
xvyy −

1
2x3/2 vy = 4

y2 vyy − 2
y3 vy

Therefore, the initial PDE in the new variables becomes vt = vyy, but the conditions
become: f(x) = u(x, 0) = v(y, 0) = f

(
y2

4

)
ux(0, t) = 0 ⇐⇒ limy→0+

vy(y,t)
y = 0



2.1. Lie Symmetries for Partial Differential Equations: computation and obtention
of fundamental solutions

19

The new problem to consider is
vt = vyy

v(y, 0) = f
(
y2

4

)
limy→0+

vy(y,t)
y = 0,

which, again, is not very convenient.

Example 2.1.5. The equation ut = uxx−xu can be reduced to vτ = vyy by a number
of different variable changes. Some of these have quite ugly effects. For example,
one possible choice for the new time variable is τ = − 1

16t . This maps t = 0 to
τ = −∞ and t =∞ to τ = 0.

After some experimentation with the various choices of the constants of inte-
gration, the simplest choice we have found is

u = F (x, t)v

(
4T (x− t2)

1 + 16Tt
,

16tT 2

1 + 16Tt

)
, (2.30)

where F (x, t)eA(t)x2+B(t)x+C(t), and A, B and C are rather complex, but not rele-

vant here. Let y =
4T (x− t2)

1 + 16Tt
and τ =

16tT 2

1 + 16Tt
.

Then t =
τ

16T (T − τ)
and x =

τ2 + 64T 2y(T − τ)

256T 2(T − τ)2
.

The problem 
ut = uxx − xu, x > 0

u(x, 0) = f(x)

u(0, t) = φ(t)

(2.31)

becomes 
vτ = vyy, y > −τ2

64T 2(T−τ)
, τ ∈ [0, T )

v(y, 0) = f(y4 )

v( −τ2

64T 2(T−τ)
, τ) = φ( τ

16T (T−τ))

(2.32)

This is a moving boundary problem which is much harder than the original prob-
lem.

A recent different approach to the same problem of finding fundamental solu-
tions is linked to the fact that for some families of PDEs, we can apply an appro-
priate Lie symmetry to a stationary solution to obtain an integral transform of a
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fundamental solution. Then we can recover the fundamental solution by inverting
the integral transform. Of course, to be able to do so, we must be dealing with an
integral transform possessing a known inversion integral. This method has been
explored by Craddock and his co-authors in [18, 25, 20, 22, 19, 24].
In order to demonstrate how this method works, we first need to introduce a theo-
retical result for linear PDEs of the type

P (x,Dα)u =
∑
|α|≤n

aα(x)Dαu, x ∈ Ω ⊆ Rm, (2.33)

with α = (α1, . . . , αm), αi ∈ N, |α| = α1 + · · ·+ αm and

Dα =
∂|α|

∂xα1
1 . . . ∂xαmm

.

For such PDEs, the following theorem holds:

Theorem 2.1.5. (see theorem and its proof in [19]) Let ũε(x) be the continuous one-
parameter family of solutions of (2.33) obtained through the action of a one parameter group
of symmetries G on a solution u of the system. Then for ϕ defined on an appropriate region
and with sufficiently rapid decay, we have by continuity and linearity that

U(x) =

∫
Ω
ϕ(ε)ũε(x)dε (2.34)

is a solution of (2.33) for a suitable region of integration Ω. Further, if the PDE is time-
dependent and ũε(x, t) is the family of symmetry solutions, then

u(x, t) =

∫
Ω
ϕ(ε)ũε(x, t)dε (2.35)

and
u(x, 0) =

∫
Ω
ϕ(ε)ũε(x, 0)dε. (2.36)

Further dnũε(x)
dεn is also a solution for all n = 1, 2, 3, . . .

The idea is to identify (2.34) with an integral transform of a fundamental solu-
tion of the PDE. In [20, 25], for instance, the following methodology is suggested:

• Consider a linear PDE of the form

ut = P (x, u(n)), x ∈ Ω ⊆ R (2.37)
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• First, we note that the action of G (generated by v) on any solution u, can
typically be expressed as

ũε(x, t) = ρ(exp(εv))u(x, t) = σ(x, t; ε)u(a1(x, t; ε), a2(x, t; ε)), (2.38)

for some functions σ, a1, a2. The functions a1 and a2 are called the change of
variables of the symmetry, and σ is called the multiplier.

• Next, recall that by property (2.8) of fundamental solutions, if p(t, x, y) is a
fundamental solution of (2.37), then

u(x, t) =

∫
Ω
f(y)p(t, x, y)dy (2.39)

solves the initial value problem for (2.37) with appropriate initial data u(x, 0) =

f(x)

• Then we take a stationary (time independent) solution u = u0(x). So in this
case

ρ(exp(εv))u0(x) = σ(x, t; ε)u0(a1(x, t; ε)) (2.40)

• Finally, setting t = 0 and considering (2.39) yields∫
Ω
σ(y, 0; ε)u0(a1(y, 0; ε))p(t, x, y)dy = σ(x, t; ε)u0(a1(x, t; ε)) (2.41)

It turns out that for large classes of PDEs (see [20]), this integral transform is a clas-
sic one such as the Fourier or Laplace transforms as well as the Whittaker, Hankel
and other transforms that possess a known inversion formula. Therefore, we can
recover the fundamental solution by inverting the transform.

In [26], Craddock and Dooley build up on the work from [19] regarding a PDE
of the general type

ut = A(x, t)uxx +B(x, t)ux + C(x, t)u, u ∈ Ω

thus proving a result that yields two theorems which ensure that if the lie algebra of
a PDE of this particular type is at least four-dimensional, then we can use integral
transform methods to compute a fundamental solution. In particular, for this type
of PDEs and depending on the dimension of the lie algebra, the Fourier and Laplace
transforms arise. Let us present here these two theorems that can be found in [26]
and that will be relevant to our upcoming work:
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Theorem 2.1.6. Let

ut = A(x, t)uxx +B(x, t)ux + C(x, t)u, x ∈ Ω (2.42)

have a six-dimensional Lie algebra of symmetries and suppose that
u(x, t) =

∫
Ω u0(z)p(x, z, t)dz is a non-zero solution of (2.42). Then there is a Lie symmetry

which maps solutions u(x, t) to a generalised Fourier transform of a product of u0 and a
fundamental solution p(x, z, t).

Similarly, we have

Theorem 2.1.7. Let

ut = A(x, t)uxx +B(x, t)ux + C(x, t)u, x ∈ Ω (2.43)

have a four-dimensional Lie algebra of symmetries and suppose that
u(x, t) =

∫
Ω u0(z)p(x, z, t)dz is a non-zero solution of (2.43). Then there is a Lie symmetry

which maps solutions u(x, t) to a generalised Laplace transform of a product of u0 and a
fundamental solution p(x, z, t).

Let us now illustrate these integral transform methods with some examples
where the Fourier, Laplace and Mellin transforms arise respectively.

Example 2.1.6. Consider the PDE

ut = uxx −
1

x2
u, x > 0 (2.44)

Although we do not include all the calculations in this example, it can be seen that
applying Lie’s theorem 2.1.2 to this example produces the following basis for the
lie algebra of (2.44):

v1 = ∂
∂t , v3 = u ∂

∂u ,

v2 = t ∂∂t + x
2
∂
∂x , v4 = t2 ∂∂t + tx ∂

∂x − u
(
x2

4 + t
2

)
∂
∂u ,

vα = α(x, t) ∂
∂u ,

(2.45)

where α(x, t) is an arbitrary solution of (2.44).
Note that by Theorem 2.1.7, we can expect that this example can be dealt with using
a generalised Laplace transform.
Consider the symmetry generated by the vector field v4. To find the specific form
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of such symmetry we need to solve the system
dt̄
dε = t̄2, t̄(0) = t,

dx̄
dε = t̄x̄, x̄(0) = x,

dū
dε = −ū

(
x̄2

4 + t̄
2

)
, ū(0) = u,

(2.46)

The first equation in the above system gives∫
dt̄

t̄2
=

∫
dε

⇔ −1

t̄
= ε+ C1

⇔ t̄ =
1

−C1 − ε

But the initial condition gives t̄(0) = 1
−C1

= t, so we must have−C1 = 1
t or t̄ = t

1−εt .
Next we have ∫

dx̄

x̄
=

∫
t̄dε =

∫
t

1− εt
dε

⇔ log x̄ = − log(1− εt) + C2

⇔ x̄ =
C3

1− εt

In this case, the initial condition translates to x̄(0) = C3 = x, so we get x̄ = x
1−εt .

Finally, the last equation can be solved as

∫
dū

ū
= −

∫ (
x̄2

4
+
t̄

2

)
dε = −

∫ (
x2

4(1− εt)2
+

t

2(1− εt)

)
dε

⇔ log ū = − x2

4t(1− εt)
+

1

2
log(1− εt) + C4

⇔ ū = C5e
− x2

4t(1−εt)
√

1− εt,

and applying the initial condition ū(0) = C5e
−x

2

4t = u gives C5 = e
x2

4t u and there-

fore ū = u(x, t)e
− εx2

4(1−εt)
√

1− εt.
Observe that in terms of the new independent variables, x̄ and t̄, this can be written
as:

ū(x̄, t̄) = u

(
x̄

1 + εt̄
,

t̄

1 + εt̄

)
1√

1 + εt̄
exp

(
− εx̄2

4(1 + εt̄)

)
(2.47)

Let us make the change ε → 4ε and drop the bars in the new variables for the sake
of convenience in notation. We can make this change for ε because it is an arbitrary
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constant. We then have the symmetry:

u(x, t) = u

(
x

1 + 4εt
,

t

1 + 4εt

)
1√

1 + 4εt
exp

(
− εx2

1 + 4εt

)
(2.48)

This symmetry has multiplier σ(x, t; ε) = (1 + 4εt)−1/2 exp
(
− εx2

1+4εt

)
and changes

of variables a1(x, t; ε) = x(1 + 4εt)−1 and a2(x, t; ε) = t(1 + 4εt)−1.
Now, to be able to use the relationship in (2.41), we need to find a stationary so-
lution to our PDE (2.44), i.e. we need to solve 0 = uxx(x) − 1

x2u(x). This is an
Euler-type equation, so we look for solutions of the form u(x) = xα. We must have
0 = x2uxx(x) − u(x) = (α2 − α − 1))xα, so α needs to be a root of the polynomial
α2 − α − 1, thus giving α1 = 1

2 +
√

5
2 or α2 = 1

2 −
√

5
2 . So we have two linearly

independent stationary solutions, u1(x) = x
1
2

+
√

5
2 and u2(x) = x

1
2
−
√

5
2 .

Let us use u1(x) and the symmetry (2.48) in the integral equation (2.41):

∫ ∞
0

e−εy
2
u1(y)p(t, x, y)dy =

1√
1 + 4εt

exp

(
− εx2

1 + 4εt

)
u1

(
x

1 + 4εt

)
(2.49)

or ∫ ∞
0

e−εy
2
y

1
2

+
√

5
2 p(t, x, y)dy = exp

(
− εx2

1 + 4εt

)
x

1
2

+
√

5
2

(1 + 4εt)1+
√

5
2

. (2.50)

We realise that making the change of variables z = y2 we get

∫ ∞
0

e−εz
1

2
z−

1
4

+
√

5
4 q(t, x, z)dz = exp

(
− εx2

1 + 4εt

)
x

1
2

+
√

5
2

(1 + 4εt)1+
√

5
2

, (2.51)

so we can recover the fundamental solution q(t, x, z) as an inverse Laplace trans-
form as follows:

1

2
z−

1
4

+
√

5
4 q(t, x, z) = L−1

exp

(
− εx2

1 + 4εt

)
x

1
2

+
√

5
2

(1 + 4εt)1+
√

5
2



= x
1
2

+
√

5
2 L−1


exp

(
− (ε+ 1

4t
− 1

4t
)x2

4t(ε+ 1
4t

)

)
(4t)1+

√
5

2 (ε+ 1
4t)

1+
√

5
2



=
x

1
2

+
√

5
2

(4t)1+
√

5
2

exp

(
−x

2

4t

)
L−1


exp

(
x2

(4t)2(ε+ 1
4t

)

)
(ε+ 1

4t)
1+
√

5
2


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=
x

1
2

+
√

5
2

(4t)1+
√

5
2

exp

(
−x

2

4t

)
exp

(
− z

4t

)
L−1

exp
(

x2

ε(4t)2

)
ε1+

√
5

2


=

x
1
2

+
√

5
2

(4t)1+
√

5
2

exp

(
−x

2 + z

4t

)
2
√

5

(
t

x

)√5
2

z
√

5
4 I√5

2

(
x
√
z

2t

)

=

√
x

4t
exp

(
−x

2 + z

4t

)
z
√

5
4 I√5

2

(
x
√
z

2t

)
,

where L−1 denotes the classical inverse Laplace transform. Hence

q(t, x, z) =

√
x

2t
exp

(
−x

2 + z

4t

)
z

1
4 I√5

2

(
x
√
z

2t

)
,

or

p(t, x, y) = exp

(
−x

2 + y2

4t

) √
xy

2t
I√5

2

(
xy

2t

)
is a fundamental solution of our PDE.

However, as we will remark later, fundamental solutions are not unique. To
illustrate the non-uniqueness of fundamental solutions, let us see what would have
happened if instead of the stationary solution u1(x) we had chosen u2(x):

∫ ∞
0

e−εy
2
y

1
2
−
√

5
2 p̄(t, x, y)dy = exp

(
− εx2

1 + 4εt

)
x

1
2
−
√

5
2

(1 + 4εt)1−
√

5
2

. (2.52)

The same change of variables we used before would produce

∫ ∞
0

e−εz
1

2
z−

1
4
−
√

5
4 q̄(t, x, z)dz = exp

(
− εx2

1 + 4εt

)
x

1
2
−
√

5
2

(1 + 4εt)1−
√

5
2

, (2.53)

Therefore

1

2
z−

1
4
−
√

5
4 q̄(t, x, z) = L−1

exp

(
− εx2

1 + 4εt

)
x

1
2
−
√

5
2

(1 + 4εt)1−
√

5
2



=
x

1
2
−
√

5
2

(4t)1−
√

5
2

exp

(
−x

2

4t

)
L−1


exp

(
x2

(4t)2(ε+ 1
4t

)

)
(ε+ 1

4t)
1−
√

5
2


=

x
1
2
−
√

5
2

(4t)1−
√

5
2

exp

(
−x

2

4t

)
exp

(
− z

4t

)
L−1

exp
(

x2

ε(4t)2

)
ε1−

√
5

2

 (2.54)
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The inverse Laplace transform we are left with in (2.54) does not exist as an ordi-
nary function but it does exist as a distribution (or generalised function). Therefore
we need to consider a broader notion for the Laplace transform than that we usu-
ally deal with. We need to extend the notion of the classical Laplace transform
to one that deals with not ordinary functions but distributions. Some background
for this particular construction is given in Appendix A. For a much more detailed
study of the distributional Laplace transform, see [58]. We will need to use the fol-
lowing result from [23] by Craddock and Platen in order to compute this particular
distributional inverse Laplace transform:

Proposition 2.1.8. The following Laplace transform inversion formula holds when n is a
non-negative integer:

L−1(λnek/λ) =
n∑
l=0

kl

l!
δ(n−l)(y) +

(
k

y

)n+1
2

In+1(2
√
ky). (2.55)

If n− 1 < µ < n then

L−1(λµek/λ) = y

(
k

y

)µ+1
2

I−µ−1(2
√
ky), (2.56)

and the inverse Laplace transforms are to be regarded as distributions in the sense of
Hadamard [37].

The proof of this result can be found in [23].
Using the above proposition we have that by (2.56) with µ =

√
5

2 − 1, k =
(
x
4t

)2

L−1

(
ε
√

5
2
−1e

x2

ε(4t)2

)
= z

(x/4t)2
z


√

5
4

I−
√

5
2

(
x
√
z

2t

)
. (2.57)

Then, substituting this generalised inverse Laplace transform we are left with the
following result:

1

2
z−

1
4
−
√

5
4 q̄(t, x, z) =

x
1
2
−
√

5
2 e−

x2

4t e−
z
4t

(4t)1−
√

5
2

L−1

e x2

ε(4t)2

ε1−
√

5
2


=
x

1
2
−
√

5
2 exp

(
−x2+z

4t

)
(4t)1−

√
5

2

z( x2

z(4t)2

)√5
4

I−
√

5
2

(
x
√
z

2t

)
= exp

(
−x

2 + z

4t

)√xz1−
√

5
4

4t

 I−
√

5
2

(
x
√
z

2t

)
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or

q̄(t, x, z) = exp

(
−x

2 + z

4t

)(
z
√
x
√
z

2t

)
I−
√

5
2

(
x
√
z

2t

)
And going back to the y variable we get

p̄(t, x, y) = y2

√
xy

2t
exp

(
−x

2 + y2

4t

)
I−
√

5
2

(
xy

2t

)
(2.58)

as a second fundamental solution.

Example 2.1.7. Consider the PDE

ut = uxx − x2u (2.59)

Lie’s method for the computation of the symmetries for this PDE produces the
following spanning set for its Lie algebra:

v1 = ∂
∂t , v4 = u ∂

∂u ,

v2 = e2t ∂
∂x − uxe

2t ∂
∂u , v5 = e4t ∂

∂t + 2xe4t ∂
∂x − ue

4t(1 + 2x2) ∂
∂u ,

v3 = e−2t ∂
∂x + uxe−2t ∂

∂u , v6 = e−4t ∂
∂t − 2xe−4t ∂

∂x + ue−4t(1− 2x2) ∂
∂u ,

vα = α(x, t) ∂
∂u ,

(2.60)

where α(x, t) is an arbitrary solution of (2.59).
Note that the form of these infinitesimal generators suggests that it might be con-
venient to combine v2 with v3 and v5 with v6 for the sake of simplicity in the
calculations. Consider now the vector field

w =
v2 − v3

2

=

(
e2t − e−2t

2

)
∂

∂x
− ux

(
e2t + e−2t

2

)
∂

∂u

= sinh(2t)
∂

∂x
− ux cosh(2t)

∂

∂u
, (2.61)

which is clearly in the lie algebra of (2.59).
We need to solve the system

dt̄
dε = 0, t̄(0) = t,

dx̄
dε = sinh(2t̄), x̄(0) = x,

dū
dε = −ūx̄ cosh(2t̄), ū(0) = u,

(2.62)
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From the first equation in (2.62) it is clear we must have t̄ = t. Substitution in the
next equation gives:

dx̄

dε
= sinh(2t̄) = sinh(2t)⇔

∫
dx̄ =

∫
sinh(2t)dε⇔ x̄ = ε sinh(2t) + C1

and the initial condition x̄(0) = x gives x̄ = x+ ε sinh(2t).
The last equation in (2.62) is then

dū

dε
= −ūx̄ cosh(2t̄) = −ū(x+ ε sinh(2t)) cosh(2t)

= −ū(x cosh(2t) + ε sinh(2t) cosh(2t))

= −ū
(
x cosh(2t) +

ε sinh(4t)

2

)
⇔
∫
dū

ū
= −

∫ (
x cosh(2t) +

ε sinh(4t)

2

)
dε

⇔ log ū = −xε cosh(2t)− ε2 sinh(4t)

4
+ C2

⇔ ū = C3 exp

(
−xε cosh(2t)− ε2

4
sinh(4t)

)

Again, the condition ū(0) = u gives the result ū = u exp
(
−xε cosh(2t)− ε2

4 sinh(4t)
)

,
which can be expressed in terms of the new independent variables x̄ and t̄ as

ū(x̄, t̄) = exp

(
−x̄ε cosh(2t̄) +

ε2

4
sinh(4t̄)

)
u(x̄− ε sinh(2t̄), t̄).

To avoid complicating the notation we will drop the bars from this point on.
According to (2.38) we can express the action of w on any solution u as

ρ(exp(εw))u(x, t) = σ(x, t; ε)u(a1(x, t; ε), a2(x, t; ε)),

so in our case it is clear that the changes of variables are a1(x, t; ε) = x− ε sinh(2t),
a2(x, t; ε) = t and the multiplier is σ(x, t; ε) = exp

(
−xε cosh(2t) + ε2

4 sinh(4t)
)

.

Observe that u(x, t) = exp

(
−
(
x2

2 + t
))

is a solution of our initial PDE (2.59), with

initial condition u(x, 0) = exp
(
−x2

2

)
.



2.1. Lie Symmetries for Partial Differential Equations: computation and obtention
of fundamental solutions

29

So on the one hand we have∫ ∞
−∞

σ(y, 0; ε)u(a1(y, 0; ε), a2(y, 0; ε))p(t, x, y)dy =

∫ ∞
−∞

e−yεu(y, 0)p(t, x, y)dy

=

∫ ∞
−∞

e−yεe−
y2

2 p(t, x, y)dy,

while on the other hand we have

σ(x, t; ε)u(a1(x, t; ε), a2(x, t; ε)) = exp

(
ε2 sinh(4t)

4
− xε cosh(2t)

)
u(x− ε sinh(2t), t)

= exp

(
−xε cosh(2t) +

ε2

4
sinh(4t)

)
exp

−((x− ε sinh(2t))2

2
+ t

)
= exp

−xε cosh(2t) +
ε2

4
sinh(4t)−

(
x2

2
+ t

)
+ εx sinh(2t)− ε2

2
sinh2(2t)


= exp

−(x2

2
+ t

)
− xε(cosh(2t)− sinh(2t)) +

ε2

4

e4t − e−4t

2
− ε2

2

(e2t − e−2t)2

4


= exp

−(x2

2
+ t

)
− xε

(
e2t + e−2t − e2t + e−2t

2

)
+
ε2

4
(−e−4t + 1)


= exp

−(x2

2
+ t

)
− xεe−2t +

ε2

4
(−e−4t + 1)

 (2.63)

We now aim to identify the above transformed solution with an integral transform
of the fundamental solution p(t, x, y). We have that:

∫ ∞
−∞

e−yεe−
y2

2 p(t, x, y)dy = exp

−(x2

2
+ t

)
− xεe−2t +

ε2

4
(−e−4t + 1)


So by making the change of parameter ε → iλ we will easily recognise a Fourier
transform:

∫ ∞
−∞

e−iλye−
y2

2 p(t, x, y)dy = exp

−(x2

2
+ t

)
− iλxe−2t +

λ2

4
(e−4t − 1)

 ,
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and we need only invert this Fourier transform to get:

e−
y2

2 p(t, x, y) =
1

2π

∫ ∞
−∞

eiλy exp

−(x2

2
+ t

)
− iλxe−2t +

λ2

4
(e−4t − 1)

 dλ

=
1√

π(1− e−4t)
exp

(
−x

2 − 2t+ e4t(2t+ x2 + 2y2)− 4e2txy

2(−1 + e4t)

)

Finally, dividing by e−
y2

2 and after some algebraic manipulation we obtain the fun-
damental solution

p(t, x, y) =
1√

2π sinh(2t)
exp

(
xy

sinh(2t)
− x2 + y2

2 tanh(2t)

)
. (2.64)

Example 2.1.8. Consider the Cauchy problem given by the forward-propagating Black-
Scholes PDE, with constant risk-free rate r and constant volatility σ

ut = −ru+ rxux +
1

2
σ2x2uxx, (2.65)

subject to the initial condition u(x, 0) = f(x). This problem is also considered in
[25]. As remarked by Craddock et al. in their paper, this is not the usual form in
which option-pricing problems are set up in financial mathematics since instead of
a terminal value corresponding to the payoff at expiry, we are providing an initial
condition and solving the PDE forward in time.
Using Lie’s method for the systematic computation of symmetries one can obtain
the following spanning set for the Lie algebra of (2.65)

v1 = x ∂
∂x , v4 = 2t ∂∂t + (lnx− (r − 1

2σ
2)t)x ∂

∂x − 2rtu ∂
∂u ,

v2 = ∂
∂t , v5 = −σ2tx ∂

∂x + (lnx+ (r − 1
2σ

2)t)u ∂
∂u ,

v3 = u ∂
∂u , v6 = σ2tx

2 lnx ∂
∂x + 2σ2t2 ∂∂t − ((lnx+ (r − 1

2σ
2)t)2 + σ2t(1 + 2rt))u ∂

∂u ,

vα = α(x, t) ∂
∂u ,

(2.66)

where α(x, t) is an arbitrary solution of (2.65).
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In order to find a fundamental solution to this PDE, we will use a symmetry gener-
ated by the vector field v5 in (2.66). We need to solve the system:

dx̄
dε = −σ2t̄x̄, x̄(0) = x,

dt̄
dε = 0, t̄(0) = t,

dū
dε = (ln x̄+ (r − 1

2σ
2)t̄)ū, ū(0) = u,

(2.67)

so we must have t̄ = t as well as∫
dx̄

x̄
= −

∫
σ2t̄dε = −

∫
σ2tdε,

ln x̄ = −σ2tε+ C

x̄ = eCe−σ
2tε.

Using the initial condition x̄(0) = x gives x̄ = xe−σ
2tε.

Lastly, we must have

∫
dū

ū
=

∫ (
ln x̄+

(
r − 1

2
σ2

)
t̄

)
dε =

∫ (
lnx− σ2tε+

(
r − 1

2
σ2

)
t

)
dε,

ln ū = ε lnx− 1

2
σ2tε2 +

(
r − 1

2
σ2

)
tε+ C

ū = eC exp

(
lnxε − 1

2
σ2tε2 +

(
r − 1

2
σ2

)
tε

)

= eCxε exp

((
−1

2
σ2ε+ r − 1

2
σ2

)
tε

)
.

Again, setting ū(0) = u gives ū = xε exp

((
−1

2σ
2ε+ r − 1

2σ
2
)
tε

)
u(x, t). So the

new solution ū in terms of the new variables x̄ and t̄ is

ū(x̄, t̄) = (x̄eσ
2 t̄ε)ε exp

((
−1

2
σ2ε+ r − 1

2
σ2

)
t̄ε

)
u(x̄eσ

2 t̄ε, t̄)

= x̄εeσ
2 t̄ε2 exp

((
−1

2
σ2ε+ r − 1

2
σ2)t̄ε

))
u(x̄eσ

2 t̄ε, t̄)

= x̄ε exp

((
1

2
σ2ε+ r − 1

2
σ2

)
t̄ε

)
u(x̄eσ

2 t̄ε, t̄).
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For the sake of simplicity in notation, let us just write:

u(x, t; ε) = xε exp

((
σ2(ε− 1) + 2r

) tε
2

)
u(xeσ

2tε, t). (2.68)

It is then clear that using the notation in (2.38), the changes of variables are

a1(x, t; ε) = xeσ
2tε, a2(x, t; ε) = t

and the multiplier is σ(x, t; ε) = xε exp
((
σ2(ε− 1) + 2r

)
) tε2

)
.

Observe now that a very simple stationary solution to the Black-Scholes PDE (2.65)
is u0(x) = x. Applying the symmetry (2.68) to this stationary solution we obtain
the new solution

u(x, t; ε) = x1+ε exp

((
σ2(ε+ 1) + 2r

) tε
2

)
,

which has initial state
u(x, 0; ε) = x1+ε

and substituting into (2.41) we get∫ ∞
0

σ(y, 0; ε)︸ ︷︷ ︸
=yε

u0(a1(y, 0; ε))︸ ︷︷ ︸
=y

p(t, x, y)dy = σ(x, t; ε)u0(a1(x, t; ε))︸ ︷︷ ︸
=x1+ε exp

(
(σ2(ε+1)+2r) tε2

),

so we are left with the integral equation∫ ∞
0

y1+εp(t, x, y)dy = x1+ε exp

((
σ2(ε+ 1) + 2r

) tε
2

)
. (2.69)

We wish to identify the left-hand side of the above equation with a classical integral
transform. To do so, we make the change ε→ s− 2 to obtain∫ ∞

0
ys−1p(t, x, y)dy = xs−1 exp

((
σ2(s− 1) + 2r

) t(s− 2)

2

)
. (2.70)

With this notation we easily recognise the left-hand side as the Mellin Transform
(see Appendix A) of the fundamental solution p(t, x, y) with respect to y, i.e.

M{p(t, x, y)}(s) = xs−1 exp

((
σ2(s− 1) + 2r

) t(s− 2)

2

)
Hence we only need to perform a Mellin inversion from s to y to recover the fun-
damental solution. To do so, we use the relationship (A.6) obtained in Appendix
A between the Mellin and Fourier transforms that allows us to convert the Inverse
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Mellin transform into an appropriate Inverse Fourier Transform:

p(t, x, y) =M−1

{
xs−1 exp

((
σ2(s− 1) + 2r

) t(s− 2)

2

)}
(y)

=
1√
2π
F−1

{
x−iω−1 exp

((
σ2(−iω − 1) + 2r

) t(−iω − 2)

2

)}
(− ln y)

=
e−rt

σy
√

2πt
exp

(
−

(ln( yx)− (r − 1
2σ

2)t)2

2σ2t

)

This final expression is precisely the transition probability density function for a
Geometrical Brownian Motion. This result is well-known in classical Financial Math-
ematics.

We will mainly use this technique throughout this thesis, though other methods
are also used in some sections. In particular, we use this approach in the next
chapter to compute fundamental solutions for systems of PDEs.

2.2 Stochastic Processes and Stochastic Calculus: how to find
transition density functions

Another fundamental topic on which our research is based is the theory of Stochas-
tic Processes [38] and Stochastic Calculus [51]. We exploit a very interesting link
between the study of fundamental solutions and the computation of transition den-
sities for a given diffusion process. We will not present general results on Stochastic
Calculus, since the reader can consult the extensive literature written on this sub-
ject. We only wish to remark some key concepts that relate our work in constructing
fundamental solutions using symmetry methods with the study of diffusion pro-
cesses. In particular, symmetry methods for the computation of fundamental so-
lutions have proven to be very useful in the calculation of expectations for a wide
range of diffusion processes (see [22, 19])

We will briefly give an idea of how these two concepts relate to each other in
what follows. Suppose we have an Itô diffusion X = {Xt : t ≥ 0}, which satisfies
the Stochastic Differential Equation (SDE)

dXt = b(Xt, t)dt+ σ(Xt, t)dWt X0 = x, (2.71)

where W = {Wt : t ≥ 0} is a standard Wiener process.
The following result, which can be found with its proof in [51], tells us what

conditions b and σ must satisfy so that the SDE (2.71) has a unique strong solution:
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Theorem 2.2.1 (Existence and uniqueness theorem for SDEs [51]). Let T > 0 and
b(x, t), σ(x, t) be measurable functions with b(·, ·) : Rn × [0, T ] → Rn, σ(·, ·) : Rn ×
[0, T ]→ Rn×m and 0 ≤ t ≤ T satisfying

|b(x, t)|+ |σ(x, t)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ] (2.72)

for some constant C, where |σ|2 =
∑
|σij |2, and such that

|b(x, t)− b(y, t)|+ |σ(x, t)− σ(y, t)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ] (2.73)

for some constant D. Let Z be a random variable which is independent of the σ-algebra
F (m)
∞ generated by Bs(·), s ≥ 0 and such that

E[|Z|2] <∞.

Then the SDE dXt = b(Xt, t)dt + σ(Xt, t)dBt, with 0 ≤ t ≤ T , X0 = Z has a unique
t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to the filtration FZt
generated by Z and Bs(·); s ≤ t and

E

[∫ T

0
|Xt|2dt

]
<∞

Now imagine that we have functions b and σ satisfying the conditions in Theo-
rem 2.2.1, so that (2.71) has a unique strong solution, then the expectations

u(x, t) = Ex[φ(Xt)] := E[φ(Xt)|X0 = x] (2.74)

are solutions to a specific Cauchy problem given by the so called Kolmogorov’s Back-
ward Equation

Theorem 2.2.2 (Kolmogorov’s Backward Equation). Let f ∈ C2
0 (Rn)

(a) Define u(x, t) = Ex[f(Xt)], then u(·, t) ∈ DA for each t and

∂u

∂t
= Au, t > 0, x ∈ Rn (2.75)

u(x, 0) = f(x); x ∈ Rn (2.76)

where DA denotes the set of functions for which the generator A of Xt is defined for
all x ∈ Rn, and Au is interpreted as A applied to the function x→ u(x, t)

(b) Moreover, if w(x, t) ∈ C2,1(Rn × R) is a bounded function satisfying (2.75), (2.76)
then w(x, t) = u(x, t) = Ex[f(Xt)]
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We refer the reader to [51] for a proof of this result.
In the above theorem the infinitesimal generator A of the process Xt is men-

tioned. Recall (see for example Theorem 7.3.3 in [51]) the expression for the gener-
ator A of an Itô diffusion of the form

dXt = b(Xt)dt+ σ(Xt)dBt.

We know that if f ∈ DA then

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂f

∂xi∂xj
. (2.77)

It can be easily seen from the previous expression that for a diffusion given
as the solution to the SDE (2.71) the generator A can be expressed as Atf(x) =

b(x)f ′(x) + 1
2σ

2(x)f ′′(x).
The combination of the two previous results yields the Cauchy problem that u,

defined as in (2.74), solves

ut = b(x)ux +
1

2
σ2(x)uxx (2.78)

u(x, 0) = φ(x) (2.79)

It is in this context where the study of fundamental solutions can be applied.
Note that if p(x, y, t) is an appropriate fundamental solution of the above Cauchy
problem, then we can compute the expectations as an integral transform of such
fundamental solution, i.e.

Ex[φ(Xt)] =

∫
Ω
φ(y)p(x, y, t)dy (2.80)

With this expression, the fundamental solution p(x, y, t) is the probability tran-
sition density for the process. Note, however, that our Cauchy problem may in
general have many different fundamental solutions, from which only one can be
regarded as the probability transition density for the process. For instance, ob-
serve that in order for p(x, y, t) to be a probability transition density, we need that∫

Ω p(x, y, t)dy = 1

This tells us that finding fundamental solutions to the given Cauchy problem
is in general not enough to obtain probability transition densities. This is precisely
one of the main problems of using group-invariant solution methods or reduction
to canonical form which, in a wide number of cases, produce fundamental solutions
but fail to produce probability transition densities.
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In [19], Craddock developed a method for finding fundamental solutions that
are indeed probability transition densities. He observed that integral transform
methods for finding transition densities could potentially produce two non equiva-
lent fundamental solutions when applied to the Kolmogorov forward equation for
a squared Bessel process of dimension 2n (see theorem 2.2.4). Interestingly, both
fundamental solutions satisfied the conditions one would look for in a TDF a priori
(i.e. they both integrated to 1, were positive functions, etc), but only one could in-
deed be the TDF, since the TDF for a squared Bessel process is known to be unique.
He introduced the following result for a particular type of stochastic process that
ensures uniqueness of solutions and thus guarantees that integral transform meth-
ods will produce a TDF:

Proposition 2.2.3. Let X = {Xt : t ≥ 0} be an Itô diffusion which is the unique strong
solution of

Xt = X0 +

∫ t

0
f(Xs)ds+

∫ t

0

√
2σXtdWt;

where W = {Wt : t ≥ 0} is a standard Wiener process. Suppose further that f is measur-
able and there exist constants K > 0; a > 0 such that |f(x)| ≤ Keax for all x. Then there
exists a T > 0 such that u(x, t, λ) = Ex[e−λXt ] is the unique solution of the first order
PDE

∂u

∂t
+ λ2σ

∂u

∂λ
+ λEx[f(Xt)e

−λXt ] = 0

subject to u(x, 0, λ) = e−λx, for 0 ≤ t < T ; λ > a.

A proof of this result can be found in [19]. Similar results can be derived for
other kinds of stochastic processes.

Let us proceed with an example to illustrate the above theory. A similar study
for this example can also be found in [19]

Example 2.2.1. We wish to obtain the transition density for the Cox- Ingersoll-Ross
(CIR) process of interest rate modelling. Let X = {Xt : t ≥ 0} satisfying the SDE

dXt = (a− bXt)dt+
√

2σXtdWt, X0 = x (2.81)

Note that the Kolmogorov Backwards equation gives us

ut = σxuxx + (a− bx)ux (2.82)

as the PDE we need to work with to find the TDF for a CIR process of the above
type. We start working with the trivial solution u(x, t) = 1. Computation of the
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symmetries of the PDE (2.82) gives the following solution (see [19] to consult ele-
ments of the Lie algebra of this equation):

uε(x, t) =
b
a
σ exp

(
ab
σ t
)

(εσ(ebt − 1) + bebt)
a
σ

exp

(
− εbx

εσ(ebt − 1) + bebt

)
(2.83)

Observe that uε(x, 0) = e−εx. Now take U(x, t) =
∫∞

0 φ(ε)uε(x, t)dε, which is a
solution according to Theorem 2.1.5. We can see how the initial condition for this
new solution is precisely the Laplace transform of the function φ:

U(x, 0) =

∫ ∞
0

φ(ε)uε(x, 0)dε =

∫ ∞
0

φ(ε)e−εxdε = Φ(x)

Here Φ denotes the Laplace transform of φ. Therefore if we can express the trans-
formed solution uε(x, t) as the Laplace transform of some suitable function p(x, y, t),
it is easy to see that

U(x, t) =

∫ ∞
0

φ(ε)uε(x, t)dε =

∫ ∞
0

φ(ε)

(∫ ∞
0

p(x, y, t)e−εydy

)
dε

=

∫ ∞
0

∫ ∞
0

φ(ε)p(x, y, t)e−εydεdy =

∫ ∞
0

p(x, y, t)

∫ ∞
0

φ(ε)e−εydεdy

=

∫ ∞
0

Φ(y)p(x, y, t)dy

So we have that U(x, t) =
∫∞

0 Φ(y)p(x, y, t)dy with U(x, 0) = Φ(x). Hence, if p
satisfies all the appropriate conditions (namely it is a positive function, it integrates
to 1, etc.), it is potentially the transition density for the CIR process Xt satisfying
(2.81).
The inverse Laplace transform of uε can be calculated to be the following

p(x, y, t) =
b exp

(
b( aσ + 1)t

)
σ(ebt − 1)

(
y

x

) a
σ−1

2

exp

(
−b(x+ ebty)

σ(ebt − 1)

)
I a
σ
−1

(
b
√
xy

σ sinh( bt2 )

)
(2.84)

Observe that
∫∞

0 p(x, y, t)dy = 1. Proposition 2.2.3 guarantees that this is indeed
the TDF for our process.

It is important to point out that, even though throughout this thesis we will
always be obtaining transition densities for a process using the Kolmogorov back-
ward equation, we could have decided to use the Kolmogorov forward equation
instead. We have chosen the former because it suits our purposes better, but the
latter could work equally well. The Kolmogorov forward equation theorem states
the following:
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Theorem 2.2.4 (Kolmogorov’s Forward Equation). Let Xt be an Itô diffusion in Rn

with generator

Af(y) =
∑
i,j

aij(y)
∂2f

∂yi∂yj
+
∑
i

bi(y)
∂f

∂yi
; f ∈ C2

0 (2.85)

where aij ∈ C2(Rn) and bi ∈ C1(Rn) for all i, j and assume that the transition measure
of Xt has a density pt(x, y), i.e. that

Ex[f(Xt)] =

∫
Rn
f(y)pt(x, y)dy; f ∈ C2

0 . (2.86)

Assume that y → pt(x, y) is smooth for each t, x. Then pt(x, y) satisfies the Kolmogorov
forward equation

d

dt
pt(x, y) = A∗ypt(x, y) for all x, y, (2.87)

where A∗y operates on the variable y and is given by

A∗yφ(y) =
∑
i,j

∂2

∂yi∂yj
(aijφ)−

∑
i

∂

∂yi
(biφ); φ ∈ C2, (2.88)

i.e. A∗y is the adjoint of Ay.

Another very useful result and one we will extensively use is a generalization
of the Kolmogorov backward equation theorem: The Feynman-Kac formula.

Theorem 2.2.5 (Feynman-Kac Formula [51]). Let f ∈ C2
0 (Rn) and q ∈ C(Rn). As-

sume that q is lower bounded.

(a) Put

v(x, t) = Ex

exp

(
−
∫ t

0
q(Xs)ds

)
f(Xt)

 (2.89)

Then

∂v

∂t
= Av − qv; t > 0, x ∈ Rn (2.90)

v(x, 0) = f(x); x ∈ Rn (2.91)

(b) Moreover, if w(x, t) ∈ C2,1(Rn×R) is bounded on Rn×K for each compactK ⊂ R
and solves (2.90), (2.91), then w(x, t) = v(x, t), given by (2.89).

This theorem will allow us to compute the expectations of some functionals of
a diffusion process. In particular, we will be using this theorem in Chapter 5 to
compute functionals of the eigenvalues of a 2× 2 Wishart process.
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Chapter 3

Integral transform methods for the
computation of fundamental
solutions for a system of PDEs

In this chapter we explore the computation of fundamental solutions via integral
transform methods as described in chapter one. However, instead of focusing in
single PDEs we extend the scope of our study to linear parabolic systems of PDEs.
In particular, we study one family of 2-dimensional systems. We include the com-
putation of symmetries of some specific subfamilies as well as the computation of
their fundamental solutions in each case.

Many authors have considered the problem of finding lie symmetries for par-
ticular systems of PDEs. For example, Olver computes the lie symmetries of the
Euler equations in [52]; the Navier-Stokes equations are treated in [13] or [50], and
these and some other examples are also considered by Ibragimov in [42]. There
doesn’t seem to be much literature available on the use of these symmetries for the
computation of fundamental solutions. However, Ortner and Wagner use Fourier
analysis to compute fundamental solutions for linear systems of PDEs with con-
stant coefficients in [55]. Craddock provides an example of a computation of a
fundamental matrix for a particular system in [18], which turns out to be incorrect.
We will correct this here.

Let u(x, t) : R × R+ → R, v(x, t) : R × R+ → R. Consider a system of PDEs of
the form ut = uxx + f(x)v

vt = vxx + g(x)u
(3.1)

The aim is to find functions f(x) and g(x) for which the system has non-trivial
symmetries. This is not a simple question to address, and most of the times we will
not be able to find all the possible classes of functions f and g for which we can
find symmetries. In section 2.1 we have shown how to compute symmetries for
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a given system of differential equations. However, a more complicated step is to
find a general class of functions for which we can find non-trivial symmetries of a
system of PDEs with some undetermined coefficient functions. Some work along
these lines has been done for a single PDE by Craddock and his co-authors in [25,
24], for example.

We will address this problem for this particular system (3.1) by first using Lie’s
method to find the symmetries of the system (3.1) for general functions f and g.
This will produce a set of determining equations in terms of f(x) and g(x) for the
symmetry group of this system. Looking at these equations we will then analyse
what conditions our coefficient functions must satisfy and hence determine (if pos-
sible) the class of functions for which the system has non-trivial symmetries. Once
these symmetries have been obtained, we will focus on each case separately to pro-
duce an expression for a fundamental matrix. Note that the problem of finding a
fundamental solution described as in Definition 2.1.4 or Definition 2.1.5 for a single
PDE extends in this case to the following:
Let L = (Li,j), be the 2× 2 matrix linear differential operator defined by

L =

 ∂
∂t −

∂2

∂x2 −f(x)

−g(x) ∂
∂t −

∂2

∂x2

 (3.2)

on an appropriate domain Ω. We are looking for a 2 × 2 matrix P (t, x, y) = (pi,j)

with the property that
LP = 0

and
lim
t→0

P (t, x, y) = δy(x)I2.

In the above expressions, 0 refers to the 2×2 zero matrix and I2 is the 2-dimensional
identity matrix. That is, we are looking for a matrix

P (t, x, y) =

 p1,1(t, x, y) p1,2(t, x, y)

p2,1(t, x, y) p2,2(t, x, y)

 , (3.3)

whose columns are solutions to the system

L

 u

v

 =

 0

0

 ,
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and with the property that∫
 p1,1(t, x, y) p1,2(t, x, y)

p2,1(t, x, y) p2,2(t, x, y)

 f1(y)

f2(y)

 dy


t=0

=

 f1(x)

f2(x)

 (3.4)

Remark. Note that both the matrix P and the integral (3.4) must be defined over an
appropriate domain.

3.1 Computation of symmetries

Let us look for a vector field of the form

w = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
+ η

∂

∂v
(3.5)

that will map any solution of our system (3.1) to another solution of such system.
We need to know how the derivatives of u and v behave under the action of w,

so we need to compute the second prolongation of w (see section 2.1 or [52]), which
will act not only on the independent variables x, t and the dependent variables
u(x, t), v(x, t) but also on the derivatives of u and v up to second order. Therefore,
pr(2)w will be of the form

pr(2)w = w + φx
∂

∂ux
+ φt

∂

∂ut
+ φxx

∂

∂uxx
+ φxt

∂

∂uxt
+ φtt

∂

∂utt
+

ηx
∂

∂vx
+ ηt

∂

∂vt
+ ηxx

∂

∂vxx
+ ηxt

∂

∂vxt
+ ηtt

∂

∂vtt
,

(3.6)

where the expressions for the coefficient functions will later be calculated using the
formula (2.6). We want w to map solutions of the system to other solutions so,
according to Lie’s theorem (Theorem 2.1.2), we must have that

pr(2)w

 ut − uxx − f(x)v

vt − vxx − g(x)u

 = 0 (3.7)

whenever
ut − uxx − f(x)v = 0

vt − vxx − g(x)u = 0
(3.8)

Therefore, the following equations must be satisfied



42
Chapter 3. Integral transform methods for the computation of fundamental

solutions for a system of PDEs

φ
t = φxx + ξf ′(x)v + f(x)η

ηt = ηxx + ξg′(x)u+ g(x)φ
(3.9)

Recall now the formula for the coefficient functions (2.6), which can be found in
[52], and which in our case translates to the following:

φt = Dt(φ− ξux − τut) + ξuxt + τutt

φxx = Dxx(φ− ξux − τut) + ξuxxx + τuxxt

ηt = Dt(η − ξvx − τvt) + ξvxt + τvtt

ηxx = Dxx(η − ξvx − τvt) + ξvxxx + τvxxt

Computation of the appropriate derivatives gives the following expression for
these coefficient functions:

φt = φt − ξtux + (φu − τt)ut + φvvt − ξuuxut − ξvuxvt − τuu2
t − τvutvt

φxx = φxx + (2φxu − ξxx)ux − τxxut + 2φxvvx + (φuu − 2ξxu)u2
x − 2τxuutux

+ (2φuv − 2ξxv)uxvx − 2τxvutvx + φvvv
2
x − ξuuu3

x − 2ξuvu
2
xvx − τuuu2

xut

− 2τuvuxutvx − τvvutv2
x − ξvvuxv2

x + (φu − 2ξx)uxx − 2τxuxt + φvvxx

− 3ξuuxuxx − τuutuxx − 2τuuxuxt − 2ξvvxuxx − 2τvvxuxt − ξvuxvxx
− τvutvxx

ηt = ηt − ξtvx + (ηv − τt)vt + ηuut − ξvvxvt − ξuvxut − τvv2
t − τuvtut

ηxx = ηxx + (2ηxv − ξxx)vx − τxxvt + 2ηxuux + (ηvv − 2ξxv)v
2
x − 2τxvvxvt

+ (2ηuv − 2ξxu)vxux − 2τxuvtux + ηuuu
2
x − ξvvv3

x − 2ξuvv
2
xux − τvvv2

xvt

− 2τuvvxvtux − τuuvtu2
x − ξuuvxu2

x + (ηv − 2ξx)vxx − 2τxvxt + ηuuxx

− 3ξvvxvxx − 2τvvxvxt − 2ξuuxvxx − τvvtvxx − 2τuuxvxt − ξuvxuxx
− τuvtuxx (3.10)

The next step is to substitute the above expressions (3.10) into the system (3.9)
and equate the coefficients of u, v and their respective derivatives.

The coefficients of uxt and vxt give:0 = −2τx − 2τuux − 2τvvx

0 = −2τx − 2τvvx − 2τuux,
(3.11)

which means that τx = τv = τu = 0, so the coefficient function τ only depends on t:
τ = τ(t)
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Next, the coefficients of uxx and vxx produce:φu − τt − ξuux = φu − 2ξx − 3ξuux − 2ξvvx

ηv − τt − ξvvx = ηv − 2ξx − 3ξvvx − 2ξuux,
(3.12)

and hence ξu = ξv = 0 so ξ = ξ(x, t) and τt = 2ξx, giving

ξ(x, t) =
1

2
τtx+ σ(t)

To continue, consider the coefficients of u2
x and v2

x, from which we get φuu =

ηuu = φvv = ηvv = 0. Note that this translates into both φ and η being of the form:

φ(x, t, u, v) = A(x, t) +B(x, t)u+ C(x, t)v +D(x, t)uv

η(x, t, u, v) = α(x, t) + β(x, t)u+ γ(x, t)v + δ(x, t)uv

We will now proceed to look at the coefficients of ux and vx, producing the
following equations: 

ξt = −2φxu − 2φuvvx

0 = 2ηxu

ξt = −2ηxv − 2ηuvux

0 = 2φxv,

(3.13)

and so we must have D(x, t) = δ(x, t) = 0 and Cx = βx = 0 (meaning that C =

C(t), β = β(t)). Note also that

φxu = Bx(x, t) = −1

2
ξt = −1

2

(
1

2
τttx+ σ′(t)

)
= γx(x, t) = ηxv,

which yields the following expression for B(x, t) and γ(x, t):

B(x, t) = −x
2

8
τtt −

1

2
xσ′(t) +K1(t)

γ(x, t) = −x
2

8
τtt −

1

2
xσ′(t) +K2(t)
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So, at the moment we have the following information regarding the coefficient
functions τ , ξ, φ and η:

τ = τ(t)

ξ = ξ(x, t) = τt
2 x+ σ(t)

φ = φ(x, t, u, v) = A(x, t) +
(
− τtt

8 x
2 − σ′(t)

2 x+K1(t)
)
u+ C(t)v

η = η(x, t, u, v) = α(x, t) +
(
− τtt

8 x
2 − σ′(t)

2 x+K2(t)
)
v + β(t)u

(3.14)

Finally, equating the remaining terms produces the following system:φt + (φu − τt)f(x)v + φvg(x)u = φxx + ξf ′(x)v + f(x)η

ηt + (ηv − τt)g(x)u+ ηuf(x)v = ηxx + ξg′(x)u+ g(x)φ.
(3.15)

The reader may check that substitution of the coefficient functions τ , ξ, φ and η and
their respective derivatives, according to the forms in (3.14), yields the following
system of equations:

At(x, t) + u

(
−τttt

8
x2 − σ′′(t)

2
x+K ′1(t)

)
+ C ′(t)v + f(x)v

(
K1(t)− τt

)
+ C(t)g(x)u

= Axx(x, t)− τtt
4
u+ f ′(x)v

(
τt
2
x+ σ(t)

)
+ f(x)

(
vK2(t) + uβ(t) + α(x, t)

)
(3.16)

αt(x, t) + v

(
−τttt

8
x2 − σ′′(t)

2
x+K ′2(t)

)
+ β′(t)u+ g(x)u

(
K2(t)− τt

)
+ β(t)f(x)v

= αxx(x, t)− τtt
4
v + g′(x)u

(
τt
2
x+ σ(t)

)
+ g(x)

(
uK1(t) + vC(t) +A(x, t)

)
(3.17)

If we consider the terms in (3.16), (3.17) not involving neither u nor v, we realise
that  A(x, t)

α(x, t)


must be a solution of the initial system (3.1), since (3.16) and (3.17) giveAt(x, t)−Axx(x, t)− f(x)α(x, t) = 0

αt(x, t)− αxx(x, t)− g(x)A(x, t) = 0.
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Also, by separately looking at the terms involving u and the terms involving v,
we obtain the following system of equations

− τttt
8
x2 − σ′′(t)

2
x+

τtt
4

+K ′1(t) + C(t)g(x)− f(x)β(t) = 0 (3.18)

C ′(t) + f(x)
(
K1(t)− τt −K2(t)

)
− f ′(x)

(
τt
2
x+ σ(t)

)
= 0 (3.19)

− τttt
8
x2 − σ′′(t)

2
x+

τtt
4

+K ′2(t) + β(t)f(x)− g(x)C(t) = 0 (3.20)

β′(t) + g(x)
(
K2(t)− τt −K1(t)

)
− g′(x)

(
τt
2
x+ σ(t)

)
= 0 (3.21)

As it can be seen from the above system of equations, it is not easy to determine
a general class of functions for f(x) and g(x) for which the initial system of PDEs
(3.1) has non-trivial symmetries. For any system of PDEs with undetermined func-
tions, this will be the case in general: we are left with a rather complicated system
of equations for which it is not an easy task to find the most general solution.

However, the above system can be simplified by adding (3.18) and (3.20):

− τttt
4
x2 − σttx+

τtt
2

+K ′1(t) +K ′2(t) = 0, (3.22)

which gives
τttt = 0, σtt = 0,

τtt
2

+K ′1(t) +K ′2(t) = 0.

Hence

τ = C1t
2 + C2t+ C3, σ = C4t+ C5, K1(t) +K2(t) = −C1t+ C6 (3.23)

where Ci, i = 1, . . . 6 are arbitrary constants. Substitution into the remaining equa-
tions (3.19), (3.21) gives:

C ′(t) + f(x)
(
2K1(t)− C1t− C2 − C6

)
− f ′(x)

(
(2C1t+ C2)

2
x+ C4t+ C5

)
= 0

(3.24)

β′(t) + g(x)
(
−2K1(t)− 3C1t+ C6 − C2

)
− g′(x)

(
(2C1t+ C2)

2
x+ C4t+ C5

)
= 0

(3.25)

Differentiation with respect to t twice yields

C ′′′(t) + 2f(x)K ′′1 (t) = 0 (3.26)

β′′′(t)− 2g(x)K ′′1 (t) = 0 (3.27)
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and further differentiation of the above equations with respect to x produces:

2f ′(x)K ′′1 (t) = 0 (3.28)

−2g′(x)K ′′1 (t) = 0 (3.29)

The choice of K ′′1 = 0 or K ′′1 6= 0 will then result in different cases of functions
f(x) and g(x) for which it is possible to compute the symmetries of the system.
However, since the main purpose here is to ultimately compute fundamental solu-
tions, we will only include a few cases for which the Lie algebra contains enough
symmetries to compute these fundamental matrices.

3.1.1 Case A: τ quadratic and σ ≡ 0

In this case, we have τ(t) = C1t
2 + C2t+ C3 and equations(3.18)-(3.21) become

C1

2
+K ′1(t) + C(t)g(x)− f(x)β(t) = 0 (3.30)

C ′(t) + f(x)
(
K1(t)− 2C1t− C2 −K2(t)

)
− xf ′(x)

(
C1t+

C2

2

)
= 0 (3.31)

C1

2
+K ′2(t) + β(t)f(x)− g(x)C(t) = 0 (3.32)

β′(t) + g(x)
(
K2(t)− 2C1t− C2 −K1(t)

)
− xg′(x)

(
C1t+

C2

2

)
= 0 (3.33)

Note from (3.31) that we must have kf(x) = xf ′(x), so the function f must be
f(x) = ρ1x

k. This particular form of f transforms equation (3.31) into:

C ′(t) + ρ1x
k
(
K1(t)− 2C1t− C2 −K2(t)

)
− ρ1kx

k

(
C1t+

C2

2

)
= 0

Hence C ′(t) = 0 and thus we can write C(t) = γ1. Moreover, we must have

K1(t)−K2(t) = C1t(2 + k) + C2

(
1 +

k

2

)
(3.34)

Similarly, (3.33) gives g(x) = ρ2x
q and so it becomes

β′(t) + ρ2x
q
(
K2(t)− 2C1t− C2 −K1(t)

)
− ρ2qx

q

(
C1t+

C2

2

)
= 0,

giving β(t) = γ2 and

K2(t)−K1(t) = C1t(2 + q) + C2

(
1 +

q

2

)
(3.35)
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The combination of equations (3.34) and (3.35) yields q = −(4 + k).
Next, substitution of the previously obtained forms for f and g into equations

(3.30) and (3.32) produces the following equations:

C1

2
+K ′1(t) + γ1ρ2x

−(4+k) − γ2ρ1x
k = 0 (3.36)

C1

2
+K ′2(t) + γ2ρ1x

k − γ1ρ2x
−(4+k) = 0 (3.37)

One must distinguish now between 3 cases that will produce different sets of
symmetries:

Case A.1: The case k = −(4 + k), i.e. k = q = −2

This case corresponds to the systemut = uxx + ρ1

x2 v

vt = vxx + ρ2

x2u
(3.38)

For this particular case, the reader may check that the combination of equations
(3.36), (3.37) and (3.35) yields

K1(t) = −C1
2 t+ C4

K2(t) = −C1
2 t+ C4

γ1ρ2 − γ2ρ1 = 0,

(3.39)

and thus, the coefficient functions must be of the form:

τ(t) = C1t
2 + C2t+ C3

ξ(x, t) = C1tx+ C2
2 x

φ(x, t, u, v) =

(
−C1

(
x2

4 + 1
2 t
)

+ C4

)
u+ γ1v +A(x, t)

η(x, t, u, v) =

(
−C1

(
x2

4 + 1
2 t
)

+ C4

)
v + γ1

ρ2

ρ1
u+ α(x, t),

(3.40)

with the pair (A(x, t), α(x, t)) any solution of the system (3.38).

Note. In this case, since f and g differ only by a constant, we have found similar
coefficient functions φ and η and, therefore, these will produce similar transforma-
tions for u and v.
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Substituting these coefficient functions obtained in (3.40) into the expression for
our general infinitesimal symmetry

w = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
+ η

∂

∂v

gives a general form for an element of the lie algebra of (3.38). Therefore, we can
conclude that the lie algebra of our system (3.38) is spanned by the following in-
finitesimal generators

w1 = t2 ∂∂t + tx ∂
∂x − u

(
x2

4 + t
2

)
∂
∂u − v

(
x2

4 + t
2

)
∂
∂v

w2 = t ∂∂t + x
2
∂
∂x

w3 = ∂
∂t

w4 = u ∂
∂u + v ∂

∂v

w5 = v ∂
∂u + uρ2

ρ1

∂
∂v

wAα = A(x, t) ∂
∂u + α(x, t) ∂∂v ,

(3.41)

where the pair (A,α) is a solution of (3.38).
It therefore follows that our system has the following symmetry groups:

G1 : ( x
1−εt ,

t
1−εt , u(1− εt)1/2 exp

(
−εx2

4(1−εt)

)
, v(1− εt)1/2 exp

(
−εx2

4(1−εt)

)
)

G2 : (eε/2x, eεt, u, v)

G3 : (x, t+ ε, u, v)

G4 : (x, t, eεu, eεv)

G5 : (x, t, u cosh
(√
ρε
)

+ 1
ρv sinh

(√
ρε
)
, v cosh

(√
ρε
)

+ ρu sinh
(√
ρε
)
)

GAα : (x, t, u+ εA(x, t), v + εα(x, t)),

(3.42)

where ρ = ρ2

ρ1
and where the pair (A,α) is a solution of (3.38).

The above symmetry groups have been obtained by simply solving the system
of equations (2.2)-(2.3) for each of the vector fields in (3.41).
One may now recover the action of these symmetry groups to conclude the follow-
ing:
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Proposition 3.1.1. Let U = (u(x, t), v(x, t)) be a solution of (3.38), then

U1 = (u

(
x

1 + εt
,

t

1 + εt

)
(1 + εt)−1/2 exp

(
−εx2

4(1 + εt)

)
,

v

(
x

1 + εt
,

t

1 + εt

)
(1 + εt)−1/2 exp

(
−εx2

4(1 + εt)

)
)

U2 = (u(e−ε/2x, e−εt), v(e−ε/2x, e−εt))

U3 = (u(x, t− ε), v(x, t− ε))

U4 = (eεu(x, t), eεv(x, t))

U5 = (u(x, t) cosh

(√
ρ2

ρ1
ε

)
+
ρ1

ρ2
v(x, t) sinh

(√
ρ2

ρ1
ε

)
,

v(x, t) cosh

(√
ρ2

ρ1
ε

)
+
ρ2

ρ1
u(x, t) sinh

(√
ρ2

ρ1
ε

)
)

UAα = (u(x, t) + εA(x, t), v(x, t) + εα(x, t))

are also solutions of the given system. Here (A(x, t), α(x, t)) is any arbitrary solution of
(3.38).

Case A.2: The case k = 0 and q = −4 (or, equivalently, q = 0 and k = −4)
In this case the relevant system of PDEs isut = uxx + ρ1v

vt = vxx + ρ2

x4u
(3.43)

Note that for this case, equation (3.36) gives

C1

2
+K ′1(t) + γ1ρ2x

−4 − γ2ρ1 = 0

Thus we must have γ1 = 0 and K ′1(t) = −C1

2
+ γ2ρ1. That is,

K1(t) =

(
γ2ρ1 −

C1

2

)
t+ C4.

Then, equation (3.35) yields the expression for K2(t)

K2(t) = K1(t)− 2C1t− C2 =

(
γ2ρ1 −

5

2
C1

)
t+ C4 − C2
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And substitution of K ′2(t) into (3.37) gives

C1

2
+ γ2ρ1 −

5

2
C1 + γ2ρ1 = 2γ2ρ1 − 2C1 = 0

or, equivalently, γ2 = C1
ρ1

. Hence the forms of our coefficient functions are

τ(t) = C1t
2 + C2t+ C3

ξ(x, t) = C1tx+ C2
2 x

φ(x, t, u, v) =

(
C1

(
−x2

4 + 1
2 t
)

+ C4

)
u+A(x, t)

η(x, t, u, v) =

(
−C1

(
x2

4 + 3
2 t
)

+ C4 − C2

)
v + C1

ρ1
u+ α(x, t).

(3.44)

Therefore, a spanning set for the lie algebra of the system (3.43) is given by

w1 = t2 ∂∂t + tx ∂
∂x + u

(
−x2

4 + t
2

)
∂
∂u +

(
u
ρ1
− v

(
x2

4 + 3
2 t
))

∂
∂v

w2 = t ∂∂t + x
2
∂
∂x − v

∂
∂v

w3 = ∂
∂t

w4 = u ∂
∂u + v ∂

∂v

wAα = A(x, t) ∂
∂u + α(x, t) ∂∂v ,

(3.45)

where the pair (A,α) is an arbitrary solution of the given system. In a similar way
as in the previous case, one need only solve a relatively simple system of differential
equations to obtain the following symmetry groups for the system (3.43):

G1 : ( x
1−εt ,

t
1−εt , u exp

(
−εx2

4(1−εt)

)
1√

1−εt , exp
(
−εx2

4(1−εt)

)(
v(1− εt)3/2 + ε

ρ1
u
√

1− εt
)

)

G2 : (eε/2x, eεt, u, e−εv)

G3 : (x, t+ ε, u, v)

G4 : (x, t, eεu, eεv)

GAα : (x, t, u+ εA(x, t), v + εα(x, t)).

(3.46)
Recovering the action of these groups to any particular solution (u(x, t), v(x, t)) one
may obtain the following result:
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Proposition 3.1.2. Let U = (u(x, t), v(x, t)) be a solution of (3.43), then

U1 = (u

(
x

1 + εt
,

t

1 + εt

)
(1 + εt)1/2 exp

(
−εx2

4(1 + εt)

)
,(

v

(
x

1 + εt
,

t

1 + εt

)
1

(1 + εt)3/2
+

ε

ρ1
u

(
x

1 + εt
,

t

1 + εt

)
1√

1 + εt

)
exp

(
−εx2

4(1 + εt)

)
)

U2 = (u(e−ε/2x, e−εt), e−εv(e−ε/2x, e−εt))

U3 = (u(x, t− ε), v(x, t− ε))

U4 = (eεu(x, t), eεv(x, t))

UAα = (u(x, t) + εA(x, t), v(x, t) + εα(x, t))

are also solutions of the given system. Here (A,α) is any solution of (3.43).

Case A.3: The case k 6= −(4 + k) and k, q 6= 0 i.e. k, q 6= −2, 0,−4

In this case, we are dealing with a system of PDEs of the form:ut = uxx + ρ1x
kv

vt = vxx + ρ2x
−(4+k)u

(3.47)

Observe that according to (3.36) and (3.37) and because we want the functions f(x)

and g(x) to be non-zero, we must have γ1 = γ2 = 0. Furthermore, equations (3.35)-
(3.37) give C1 = 0 and K1(t) = C4

K2(t) = C4 − C2

(
1 + k

2

) (3.48)

Putting all these conditions together we get that the coefficient functions for this
case are of the form

τ(t) = C2t+ C3

ξ(x, t) = C2
2 x

φ(x, t, u, v) = A(x, t) + C4u

η(x, t, u, v) = α(x, t) +

(
C4 − C2

(
1 + k

2

))
v,

(3.49)

so the lie algebra of the system (3.47) is spanned by the following vector fields:
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w1 = t ∂∂t + x
2
∂
∂x − v(1 + k

2 ) ∂∂v

w2 = ∂
∂t

w3 = u ∂
∂u + v ∂

∂v

wAα = A(x, t) ∂
∂u + α(x, t) ∂∂v

(3.50)

Here, the pair (A,α) is again a solution of (3.47).
The reader may check that exponentiation of the above vector fields generates

the following symmetry groups for our system (3.47), where the entries give the
transformed point (x̃, t̃, ũ, ṽ) = exp(εwi)(x, t, u, v):

G1 : (eε/2x, eεt, u, e−ε(1+ k
2

)v)

G2 : (x, t+ ε, u, v)

G3 : (x, t, eεu, eεv)

GAα : (x, t, u+ εA(x, t), v + εα(x, t))

(3.51)

Once more, this result can be translated into the following:

Proposition 3.1.3. Let U = (u(x, t), v(x, t)) be a solution of (3.47), then

U1 = (u(e−ε/2x, e−εt), e−ε(1+ k
2

)v(e−ε/2x, e−εt))

U2 = (u(x, t− ε), v(x, t− ε))

U3 = (eεu(x, t), eεv(x, t))

UAα = (u(x, t) + εA(x, t), v(x, t) + εα(x, t))

are also solutions of the given system. The pair (A,α) denotes any solution of (3.47).

3.1.2 Case B: τ quadratic and σ linear

By assuming that τ is a quadratic function of t and σ a linear function of t, i.e.

τ(t) = C1t
2 + C2t+ C3, σ(t) = C4t+ C5,

equations (3.18) - (3.21) simplify to the following:

C1

2
+K ′1(t) + C(t)g(x)− f(x)β(t) = 0 (3.52)

C ′(t) + f(x)
(
K1(t)− 2C1t− C2 −K2(t)

)
− f ′(x)

(
2C1t+ C2

2
x+ C4t+ C5

)
= 0

(3.53)
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C1

2
+K ′2(t) + β(t)f(x)− g(x)C(t) = 0 (3.54)

β′(t) + g(x)
(
K2(t)− 2C1t− C2 −K1(t)

)
− g′(x)

(
2C1t+ C2

2
x+ C4t+ C5

)
= 0

(3.55)

Just as in the previous case, a thorough analysis of the above system of DEs
allows us to determine the type of functions that f and g can be. For the above
equations, one obtains that in order to satisfy conditions (3.52)-(3.55) we can only
have constant functions f and g, say f = ρ1, g = ρ2. The system of PDES arising
from this choice of f and g is ut = uxx + ρ1v

vt = vxx + ρ2u.
(3.56)

Substitution of these particular forms of f and g, into equations (3.53) and (3.55)
yields

K1(t)−K2(t) = −C
′(t)

ρ1
+ 2C1t+ C2 (3.57)

K2(t)−K1(t) = −β
′(t)

ρ2
+ 2C1t+ C2. (3.58)

Therefore
β′(t) = −ρ2

ρ1
C ′(t) + 4C1ρ2t+ 2C2ρ2

or, integrating the above equation,

β(t) = −ρ2

ρ1
C(t) + 2C1ρ2t

2 + 2C2ρ2t+ C6.

Next, equations (3.52) and (3.54) respectively give

C1

2
+K ′1(t) + 2ρ2C(t)− 2C1ρ1ρ2t

2 − 2C2ρ1ρ2t− ρ1C6 = 0

C1

2
+K ′2(t)− 2ρ2C(t) + 2C1ρ1ρ2t

2 + 2C2ρ1ρ2t+ ρ1C6 = 0, (3.59)

and hence K ′1(t) + K ′2(t) = −C1. Therefore, we must have that K1(t) = −K2(t) −
C1t+ C7. Substituting this form for K1(t) into (3.57) gives

K2(t) =
C ′(t)

2ρ1
− 3

2
C1t−

C2

2
+
C7

2

and differentiation of K2(t) and substitution into (3.59) yields the following ODE
for the function C(t):
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C ′′(t)

2ρ1
− 2ρ2C(t) + 2C1ρ1ρ2t

2 + 2C2ρ1ρ2t+ ρ1C6 − C1 = 0.

This ODE has solution

C(t) =
ρ1

ρ2

C6

2
+ ρ1C1t

2 + ρ1C2t+ C8e
2
√
ρ1ρ2t + C9e

−2
√
ρ1ρ2t

and therefore

β(t) = −ρ2

ρ1
C(t) + 2C1ρ2t

2 + 2C2ρ2t+ C6

=
C6

2
+ ρ2C1t

2 + ρ2C2t− C8
ρ2

ρ1
e2
√
ρ1ρ2t − C9

ρ2

ρ1
e−2
√
ρ1ρ2t

K2(t) =
C ′(t)

2ρ1
− 3

2
C1t−

C2

2
+
C7

2

= C8

√
ρ2

ρ1
e2
√
ρ1ρ2t − C9

√
ρ2

ρ1
e−2
√
ρ1ρ2t − C1

2
t+

C7

2

K1(t) = −K2(t)− C1t+ C7

= −C8

√
ρ2

ρ1
e2
√
ρ1ρ2t + C9

√
ρ2

ρ1
e−2
√
ρ1ρ2t − C1

2
t+

C7

2
.

So our coefficient functions τ , ξ, φ and η will be of the form

τ(t) = C1t
2 + C2t+ C3

ξ(x, t) = C1tx+ C2
2 x+ C4t+ C5

φ(x, t, u, v) = A(x, t) +
(
ρ1

ρ2

C6
2 + ρ1C1t

2 + ρ1C2t+ C8e
2
√
ρ1ρ2t + C9e

−2
√
ρ1ρ2t

)
v

+

(
−C1

4 x
2 − C4

2 x− C8

√
ρ2

ρ1
e2
√
ρ1ρ2t + C9

√
ρ2

ρ1
e−2
√
ρ1ρ2t − C1

2 t+ C7
2

)
u

η(x, t, u, v) =α(x, t) +
(
C6
2 + ρ2C1t

2 + ρ2C2t−C8
ρ2

ρ1
e2
√
ρ1ρ2t− C9

ρ2

ρ1
e−2
√
ρ1ρ2t

)
u

+

(
−C1

4 x
2 − C4

2 x+ C8

√
ρ2

ρ1
e2
√
ρ1ρ2t − C9

√
ρ2

ρ1
e−2
√
ρ1ρ2t − C1

2 t+ C7
2

)
v,

(3.60)

This gives the following infinitesimal generators as a spanning set of the lie algebra
of (3.56):

w1 = t2 ∂∂t + tx ∂
∂x +

(
ρ1t

2v − u
(
t
2 + x2

4

))
∂
∂u +

(
ρ2t

2u− v
(
t
2 + x2

4

))
∂
∂v

w2 = t ∂∂t + x
2
∂
∂x + ρ1tv

∂
∂u + ρ2tu

∂
∂v

w3 = ∂
∂t

w4 = t ∂∂x −
xu
2

∂
∂u −

xv
2

∂
∂v
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

w5 = ∂
∂x

w6 = ρ1v
∂
∂u + ρ2u

∂
∂v

w7 = u ∂
∂u + v ∂

∂v

w8 = e2
√
ρ1ρ2t

(
−√ρ1ρ2u+ ρ1v

)
∂
∂u + e2

√
ρ1ρ2t

(√
ρ1ρ2v − ρ2u

)
∂
∂v

w9 = e−2
√
ρ1ρ2t

(√
ρ1ρ2u+ ρ1v

)
∂
∂u + e−2

√
ρ1ρ2t

(
−√ρ1ρ2v − ρ2u

)
∂
∂v

wAα = A(x, t) ∂
∂u + α(x, t) ∂∂v ,

(3.61)

where the pair (A,α) is a solution of the given system.
Exponentiation of the above vector fields produces the following symmetry

groups (in the usual notation) for (3.56):

G1 :
(

x
1−εt ,

t
1−εt ,

√
1− εt

(
u cosh

(
ε
√

16ρ1ρ2t4+x4

4(1−εt)

)
+

(4ρ1t2v−ux2)√
16ρ1ρ2t4+x4

sinh

(
ε
√

16ρ1ρ2t4+x4

4(1−εt)

))
,

√
1− εt

(
v cosh

(
ε
√

16ρ1ρ2t4+x4

4(1−εt)

)
+

(4ρ2t2u+vx2)√
16ρ1ρ2t4+x4

sinh

(
ε
√

16ρ1ρ2t4+x4

4(1−εt)

))
G2 : (eε/2x, eεt, u cosh(µt(eε − 1)) + v

√
ρ1

ρ2
sinh(µt(eε − 1)),

v cosh(µt(eε − 1)) + u
√

ρ2

ρ1
sinh(µt(eε − 1)))

G3 : (x, t+ ε, u, v)

G4 : (x+ εt, t, u exp
(
− ε

2

(
x+ tε

2

))
, v exp

(
− ε

2

(
x+ tε

2

))
G5 : (x+ ε, t, u, v)

G6 : (x, t, u cosh(µε) +
√

ρ1

ρ2
v sinh(µε),

√
ρ2

ρ1
u sinh(µε) + v cosh(µε))

G7 : (x, t, eεu, eεv)

G8 : (x, t, (1− εµe2µt)u+ ερ1e
2µtv, (1 + εµe2µt)v − ερ2e

2µtu)

G9 : (x, t, (1 + εµe−2µt)u+ ερ1e
−2µtv, (1− εµe−2µt)v − ερ2e

−2µtu)

GAα : (x, t, u+ εA(x, t), v + εα(x, t)),

(3.62)

where µ =
√
ρ1ρ2.

From the above result, the next proposition naturally follows by simply recovering
the action of these symmetry groups on any given solution of the system (3.56):
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Proposition 3.1.4. Let U = (u(x, t), v(x, t)) be a solution of (3.56), then

U1 =

u( x
1+εt ,

t
1+εt)√

1 + εt
cosh

(
ε
√

16ρ1ρ2t4 + x4

4(1 + εt)

)

+

(
4ρ1t

2v( x
1+εt ,

t
1+εt)− x

2u( x
1+εt ,

t
1+εt)

)
√

(16ρ1ρ2t4 + x4)(1 + εt)
sinh

(
ε
√

16ρ1ρ2t4 + x4

4(1 + εt)

)
,

v( x
1+εt ,

t
1+εt)√

1 + εt
cosh

(
ε
√

16ρ1ρ2t4 + x4

4(1 + εt)

)

+

(
4ρ2t

2u( x
1+εt ,

t
1+εt) + x2v( x

1+εt ,
t

1+εt)
)

√
(16ρ1ρ2t4 + x4)(1 + εt)

sinh

(
ε
√

16ρ1ρ2t4 + x4

4(1 + εt)

)
U2 = (u(xe−ε/2, te−ε) cosh(µt(1− e−ε)) + v(xe−ε/2, te−ε)

√
ρ1

ρ2
sinh(µt(1− e−ε)),

v(xe−ε/2, te−ε) cosh(µt(1− e−ε)) + u(xe−ε/2, te−ε)

√
ρ2

ρ1
sinh(µt(1− e−ε)))

U3 = (u(x, t− ε), v(x, t− ε))

U4 = (u(x− εt, t) exp

(
− ε

2

(
x− tε

2

))
, v(x− εt, t) exp

(
− ε

2

(
x− tε

2

))
)

U5 = (u(x− ε, t), v(x− ε, t))

U6 = (u(x, t) cosh(µε) +

√
ρ1

ρ2
v(x, t) sinh(µε),

√
ρ2

ρ1
u(x, t) sinh(µε) + v(x, t) cosh(µε))

U7 = (eεu(x, t), eεv(x, t))

U8 = ((1− εµe2µt)u(x, t) + ερ1e
2µtv(x, t), (1 + εµe2µt)v(x, t)− ερ2e

2µtu(x, t))

U9 = ((1 + εµe−2µt)u(x, t) + ερ1e
−2µtv(x, t), (1− εµe−2µt)v(x, t)− ερ2e

−2µtu(x, t))

UAα = (u(x, t) + εA(x, t), v(x, t) + εα(x, t))

are also solutions of the given system. Here µ =
√
ρ1ρ2 and (A,α) is an arbitrary solution

of (3.56).

Note. The symmetry groups in (3.62) are given in the usual notation for the trans-
formed points (x̃, t̃, ũ, ṽ) = exp(εwi)(x, t, u, v). These are obtained as usual by solv-
ing the system of equations (2.2)-(2.3) for each of the vector fields in (3.61). How-
ever, we do not include all the steps of these computations here, since they do get
quite long and messy for some particular vector fields.
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3.1.3 Case C: τ and σ constant functions

A similar analysis of the system of determining equations to the previous cases can
be done for this case. The reader may check that these case will lead to a choice of
functions f(x) = a + bx and g(x) = k(a + bx) for some constants a and b. With
this, the system of determining equations can be solved to produce the following
coefficient functions:

τ(t) = C1

ξ(x, t) = 2C2t+ C3

φ(x, t, u, v) = A(x, t) + (−C2x+ C4)u+
(
aC2t

2 + C5t+ C6

)
v

η(x, t, u, v) = α(x, t) + (−C2x+ C4) v + k
(
aC2t

2 + C5t+ C6

)
u,

(3.63)

Hence, a spanning set for the Lie algebra of our system will be

w1 = ∂
∂t

w2 = 2t ∂∂x + (−xu+ at2v) ∂
∂u + (−xv + kat2u) ∂∂v

w3 = ∂
∂x

w4 = u ∂
∂u + v ∂

∂v

w5 = tv ∂
∂u + ktu ∂

∂v

w6 = v ∂
∂u + ku ∂

∂v

wAα = A(x, t) ∂
∂u + α(x, t) ∂∂v ,

(3.64)

where the pair (A,α) is a solution of the given system. The usual exponentiation of
the above vector fields produces the following symmetry groups for the system:

G1 : (x, t+ ε, u, v)

G2 : (x+ 2εt, t, e−ε(tε+x)(u cosh(a
√
kt2ε) + 1√

k
v sinh(a

√
kt2ε)),

e−ε(tε+x)(
√
ku sinh(a

√
kt2ε) + v cosh(a

√
kt2ε)))

G3 : (x+ ε, t, u, v)

G4 : (x, t, eεu, eεv)

G5 : (x, t, u cosh(
√
ktε) + 1√

k
v sinh(

√
ktε),

√
ku sinh(

√
ktε) + v cosh(

√
ktε))

G6 : (x, t, u cosh(
√
kε) + 1√

k
v sinh(

√
kε),
√
ku sinh(

√
kε) + v cosh(

√
kε))

GAα : (x, t, u+ εA(x, t), v + εα(x, t)),

(3.65)
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Hence it follows that

Proposition 3.1.5. For the systemut = uxx + (ax+ b)v

vt = vxx + k(ax+ b)u,
(3.66)

if the pair U = (u(x, t), v(x, t)) is a solution of (3.66), then

U1 = (u(x, t− ε), v(x, t− ε))

U2 = (e−xε+tε
2
(u(x− 2εt, t) cosh(a

√
kt2ε) +

1√
k
v(x− 2εt, t) sinh(a

√
kt2ε)),

e−xε+tε
2
(√

ku(x− 2εt, t) sinh(a
√
kt2ε) + v(x− 2εt, t) cosh(a

√
kt2ε)

)
)

U3 = (u(x− ε, t), v(x− ε, t))

U4 = (eεu(x, t), eεv(x, t))

U5 = (u(x, t) cosh(
√
ktε) +

1√
k
v(x, t) sinh(

√
ktε),

√
ku(x, t) sinh(

√
ktε) + v(x, t) cosh(

√
ktε))

U6 = (u(x, t) cosh(
√
kε) +

1√
k
v(x, t) sinh(

√
kε),

√
ku(x, t) sinh(

√
kε) + v(x, t) cosh(

√
kε))

UAα = (u(x, t) + εA(x, t), v(x, t) + εα(x, t))

are also solutions of the given system. Here (A,α) is an arbitrary solution of (3.66).

3.2 Fundamental solutions

In this section we show how the symmetries found in Section 3.1 can be used to
find fundamental solutions of the given systems of PDEs via the use of Integral
Transform methods. We separate our study into the same cases we distinguished
in the previous section. To the best of our knowledge, the results we present here
are new.

3.2.1 Case A.1: The Laplace Transform

The first step is to look for stationary solutions of the system (3.38), which can be
done solving the system: 0 = uxx + ρ1

x2 v

0 = vxx + ρ2

x2u.
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This gives v = −x2

ρ1
uxx and so vxx = − 1

ρ1
(2uxx + 4xuxxx + x2uxxxx). Substitution of

vxx in the second equation yields the following differential equation for u:

x4uxxxx + 4x3uxxx + 2x2uxx − ρ1ρ2u = 0. (3.67)

This is an Euler-type equation and, therefore, we look for a solution of the type
u = xα. We have ux = αxα−1, uxx = α(α− 1)xα−2, uxxx = α(α− 1)(α− 2)xα−3 and
uxxxx = α(α − 1)(α − 2)(α − 3)xα−4. Substitution into equation (3.67) gives that α
must satisfy

α(α− 1)(α− 2)(α− 3) + 4α(α− 1)(α− 2) + 2α(α− 1)− ρ1ρ2 = 0. (3.68)

Note that

α1 =
1

2
+

√
1 + 4

√
ρ1ρ2

2
and α2 =

1

2
+

√
1− 4

√
ρ1ρ2

2

are both solutions of (3.68) and let µ =

√
1+4
√
ρ1ρ2

2 , ν =

√
1−4
√
ρ1ρ2

2 respectively.
For the sake of simplicity, suppose that µ, ν ∈ R, that is, suppose that either

• ρ1 = 0,

• ρ1 < 0 and 1
16ρ1

< ρ2 ≤ 0, or

• ρ1 > 0 and 0 ≤ ρ2 <
1

16ρ1
.

Separate analysis is needed for different values of ρ1 and ρ2.
Then u1 = x

1
2

+µ and u2 = x
1
2

+ν are solutions of (3.67), which produce the following
two pairs of stationary solutions for our system (3.38):u1 = xµ+ 1

2

v1 = −x2

ρ1
(µ+ 1

2)(µ− 1
2)xµ−

3
2 = −µ2− 1

4
ρ1

xµ+ 1
2 = −

√
ρ2

ρ1
xµ+ 1

2

(3.69)

and
u2 = xν+ 1

2

v2 = −x2

ρ1
(ν + 1

2)(ν − 1
2)xν−

3
2 = −ν2− 1

4
ρ1

xν+ 1
2 =

√
ρ2

ρ1
xν+ 1

2

(3.70)

We know by Proposition 3.1.1 that if (u(x, t), v(x, t))> is a solution of (3.38), so is

Ũε(x, t) =

 ũε(x, t)

ṽε(x, t)

 =

 u
(

x
1+εt ,

t
1+εt

)
(1 + εt)−1/2 exp

(
−εx2

4(1+εt)

)
v
(

x
1+εt ,

t
1+εt

)
(1 + εt)−1/2 exp

(
−εx2

4(1+εt)

)
 .



60
Chapter 3. Integral transform methods for the computation of fundamental

solutions for a system of PDEs

Applying this transformation to our stationary solutions (u1, v1)> and (u2, v2)>,
respectively, produces the time dependent solutions:

Ũ1(x, t, ε) =

 xµ+ 1
2

(1+εt)µ+1 exp
(
−εx2

4(1+εt)

)
−
√

ρ2

ρ1

xµ+ 1
2

(1+εt)µ+1 exp
(
−εx2

4(1+εt)

)
 ,

Ũ2(x, t, ε) =

 xν+ 1
2

(1+εt)ν+1 exp
(
−εx2

4(1+εt)

)
√

ρ2

ρ1

xν+ 1
2

(1+εt)ν+1 exp
(
−εx2

4(1+εt)

)
 .

for our system (3.38).
Now, for convenience, let us make the change ε → 4ε in the expressions of Ũ1

and Ũ2, which is a valid change since ε is an arbitrary constant. Thus we obtain the
new expressions:

Ũ1(x, t, ε) =

 xµ+ 1
2

(1+4εt)µ+1 exp
(
−εx2

1+4εt

)
−
√

ρ2

ρ1

xµ+ 1
2

(1+4εt)µ+1 exp
(
−εx2

1+4εt

)


and

Ũ2(x, t, ε) =

 xν+ 1
2

(1+4εt)ν+1 exp
(
−εx2

1+4εt

)
√

ρ2

ρ1

xν+ 1
2

(1+4εt)ν+1 exp
(
−εx2

1+4εt

)
 .

These satisfy the initial conditions

Ũ1(x, 0, ε) =

 ũ1(x, 0, ε)

ṽ1(x, 0, ε)

 =

 xµ+ 1
2 e−εx

2

−
√

ρ2

ρ1
xµ+ 1

2 e−εx
2


and

Ũ2(x, 0, ε) =

 ũ2(x, 0, ε)

ṽ2(x, 0, ε)

 =

 xν+ 1
2 e−εx

2√
ρ2

ρ1
xν+ 1

2 e−εx
2

 .

The next step is to express ũ1, ṽ1, ũ2 and ṽ2 as Laplace transforms of certain
functions. To do so, we rewrite ũ1 as

ũ1(x, t, ε) =
xµ+ 1

2

(4t)µ+1

1

(ε+ 1
4t)

µ+1
exp

(
−

(ε+ 1
4t −

1
4t)x

2

4t(ε+ 1
4t)

)

=
xµ+ 1

2

(4t)µ+1
exp

(
−x

2

4t

)
1

(ε+ 1
4t)

µ+1
exp

(
( x4t)

2

ε+ 1
4t

)
, (3.71)

and, similarly, we express ṽ1 as

ṽ1(x, t, ε) = −
√
ρ2

ρ1

xµ+ 1
2

(4t)µ+1
exp

(
−x

2

4t

)
1

(ε+ 1
4t)

µ+1
exp

(
( x4t)

2

ε+ 1
4t

)
. (3.72)
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Taking inverse Laplace transform of ũ1 and ṽ1 with respect to ε yields

L−1(ũ1(x, t, ε)) = L−1

 xµ+ 1
2

(4t)µ+1
exp

(
−x

2

4t

)
1

(ε+ 1
4t)

µ+1
exp

(
( x4t)

2

ε+ 1
4t

)
=

xµ+ 1
2

(4t)µ+1
exp

(
−x

2

4t

)
L−1

 1

(ε+ 1
4t)

µ+1
exp

(
( x4t)

2

ε+ 1
4t

)
=

xµ+ 1
2

(4t)µ+1
exp

(
−x

2 + z

4t

)
L−1

 1

εµ+1
exp

(
( x4t)

2

ε

)
=

xµ+ 1
2

(4t)µ+1
exp

(
−x

2 + z

4t

)(
x

4t

)−µ
z
µ
2 Iµ

(
x
√
z

2t

)

=
x

1
2

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
, (3.73)

and, similarly, for ṽ1 we get

L−1(ṽ1(x, t, ε)) = L−1

−√ρ2

ρ1

xµ+ 1
2

(4t)µ+1
exp

(
−x

2

4t

)
1

(ε+ 1
4t)

µ+1
exp

(
( x4t)

2

ε+ 1
4t

)
= −

√
ρ2

ρ1
L−1

 xµ+ 1
2

(4t)µ+1
exp

(
−x

2

4t

)
1

(ε+ 1
4t)

µ+1
exp

(
( x4t)

2

ε+ 1
4t

)
= −

√
ρ2

ρ1

x
1
2

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
. (3.74)

The reader may check that a similar computation for ũ2 and ṽ2 yields:

L−1(ũ2(x, t, ε)) =
x

1
2

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
, (3.75)

L−1(ṽ2(x, t, ε)) =

√
ρ2

ρ1

x
1
2

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
. (3.76)

These expressions allow us to write Ũ1(x, t, ε) and Ũ2(x, t, ε) as Laplace transforms:

Ũ1(x, t, ε) =

 ũ1(x, t, ε)

ṽ1(x, t, ε)



=


L
(
x

1
2

4t exp
(
−x2+z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

))
L
(
−
√

ρ2

ρ1

x
1
2

4t exp
(
−x2+z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

))

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=

∫ ∞
0

 x
1
2

4t exp
(
−x2+z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
e−εz

−
√

ρ2

ρ1

x
1
2

4t exp
(
−x2+z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
e−εz

 dz. (3.77)

and, similarly

Ũ2(x, t, ε) =

 ũ2(x, t, ε)

ṽ2(x, t, ε)


=

∫ ∞
0

 x
1
2

4t exp
(
−x2+z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
e−εz√

ρ2

ρ1

x
1
2

4t exp
(
−x2+z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
e−εz

 dz. (3.78)

Observe now that linearity and Theorem 2.1.5 give that, for appropriate functions
ϕ(ε) and ψ(ε) with sufficiently rapid decay, we can produce a new solution to the
system (3.38) by taking U(x, t)

V (x, t)

 =

∫ ∞
0

(
ϕ(ε)Ũ1(x, t, ε) + ψ(ε)Ũ2(x, t, ε)

)
dε

=

∫ ∞
0

 ϕ(ε)ũ1(x, t, ε) + ψ(ε)ũ2(x, t, ε)

ϕ(ε)ṽ1(x, t, ε) + ψ(ε)ṽ2(x, t, ε)

 dε.

This new solution will satisfy the initial condition U(x, 0)

V (x, 0)

 =

∫ ∞
0

 ϕ(ε)ũ1(x, 0, ε) + ψ(ε)ũ2(x, 0, ε)

ϕ(ε)ṽ1(x, 0, ε) + ψ(ε)ṽ2(x, 0, ε)

 dε

=

∫ ∞
0

 ϕ(ε)xµ+ 1
2 e−εx

2
+ ψ(ε)xν+ 1

2 e−εx
2

−
√

ρ2

ρ1
ϕ(ε)xµ+ 1

2 e−εx
2

+
√

ρ2

ρ1
ψ(ε)xν+ 1

2 e−εx
2

 dε

=

 xµ+ 1
2 Φ(x2) + xν+ 1

2 Ψ(x2)

−
√

ρ2

ρ1
xµ+ 1

2 Φ(x2) +
√

ρ2

ρ1
xν+ 1

2 Ψ(x2)


=

 xµ+ 1
2 xν+ 1

2

−
√

ρ2

ρ1
xµ+ 1

2

√
ρ2

ρ1
xν+ 1

2

 Φ(x2)

Ψ(x2)

 . (3.79)

Note that putting U(x, 0)

V (x, 0)

 =

 xµ+ 1
2 Φ(x2) + xν+ 1

2 Ψ(x2)

−
√

ρ2

ρ1
xµ+ 1

2 Φ(x2) +
√

ρ2

ρ1
xν+ 1

2 Ψ(x2)

 :=

 f(x)

g(x)

 (3.80)
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we can write xµ+ 1
2 xν+ 1

2

−
√

ρ2

ρ1
xµ+ 1

2

√
ρ2

ρ1
xν+ 1

2


︸ ︷︷ ︸

C(x)

 Φ(x2)

Ψ(x2)

 =

 f(x)

g(x)

 ,

which gives  Φ(x2)

Ψ(x2)

 = C−1(x)

 f(x)

g(x)

 . (3.81)

Note. We can choose any pair of sufficiently well behaved functions f(x), g(x) for
the initial state (3.80) due to the known smoothing properties of parabolic differen-
tial operators. This will be the case here and for the rest of examples presented in
this work. However, we will not discuss this topic here, since the details can get
quite technical.

The reader may check that the matrix C−1(x) can easily be calculated to be

C−1(x) =
1

2
√

ρ2

ρ1
xµ+ν+1


√

ρ2

ρ1
xν+ 1

2 −xν+ 1
2√

ρ2

ρ1
xµ+ 1

2 xµ+ 1
2


=

1

2

 x−µ−
1
2 −

√
ρ1

ρ2
x−µ−

1
2

x−ν−
1
2

√
ρ1

ρ2
x−ν−

1
2

 .

We may now write the components U and V using the expressions obtained in
(3.77) and (3.78) for ũ1(x, t, ε), ũ2(x, t, ε), ṽ1(x, t, ε) and ṽ2(x, t, ε):

U(x, t) =

∫ ∞
0

(
ϕ(ε)ũ1(x, t, ε) + ψ(ε)ũ2(x, t, ε)

)
dε

=

∫ ∞
0

ϕ(ε)

∫ ∞
0

√
x

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
e−εzdzdε

+

∫ ∞
0

ψ(ε)

∫ ∞
0

√
x

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
e−εzdzdε

=

∫ ∞
0

∫ ∞
0

ϕ(ε)

√
x

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
e−εzdεdz

+

∫ ∞
0

∫ ∞
0

ψ(ε)

√
x

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
e−εzdεdz
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=

∫ ∞
0

√
x

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)∫ ∞
0

ϕ(ε)e−εzdε︸ ︷︷ ︸
Φ(z)

dz

+

∫ ∞
0

√
x

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)∫ ∞
0

ψ(ε)e−εzdε︸ ︷︷ ︸
Ψ(z)

dz

=

∫ ∞
0

√
x

4t
exp

(
−x

2 + z

4t

)Φ(z)z
µ
2 Iµ

(
x
√
z

2t

)
+ Ψ(z)z

ν
2 Iν

(
x
√
z

2t

) dz

Make the change of variables z → y2 to obtain

U(x, t) =

∫ ∞
0

√
x

2t
exp

(
−x

2 + y2

4t

)(
Φ(y2)yµ+1Iµ

(
xy

2t

)
+ Ψ(y2)yν+1Iν

(
xy

2t

))
dy

=

∫ ∞
0

(
a11(x, y, t) a12(x, y, t)

) Φ(y2)

Ψ(y2)

 dy, (3.82)

where a11(x, y, t) := yµ+ 1
2

√
xy

2t
exp

(
−x

2 + y2

4t

)
Iµ

(
xy

2t

)
,

a12(x, y, t) := yν+ 1
2

√
xy

2t
exp

(
−x

2 + y2

4t

)
Iν

(
xy

2t

)
.

Similarly, the expression for V becomes:

V (x, t) =

∫ ∞
0

(
ϕ(ε)ṽ1(x, t, ε) + ψ(ε)ṽ2(x, t, ε)

)
dε

=

∫ ∞
0

ϕ(ε)

∫ ∞
0
−
√
ρ2

ρ1

√
x

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
e−εzdzdε

+

∫ ∞
0

ψ(ε)

∫ ∞
0

√
ρ2

ρ1

√
x

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
e−εzdzdε

=

∫ ∞
0

∫ ∞
0
−
√
ρ2

ρ1
ϕ(ε)

√
x

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
e−εzdεdz

+

∫ ∞
0

∫ ∞
0

√
ρ2

ρ1
ψ(ε)

√
x

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
e−εzdεdz

=

∫ ∞
0
−
√
ρ2

ρ1

√
x

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)∫ ∞
0

ϕ(ε)e−εzdε︸ ︷︷ ︸
Φ(z)

dz
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+

∫ ∞
0

√
ρ2

ρ1

√
x

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)∫ ∞
0

ψ(ε)e−εzdε︸ ︷︷ ︸
Ψ(z)

dz

=

∫ ∞
0
−
√
ρ2

ρ1
Φ(z)

√
x

4t
exp

(
−x

2 + z

4t

)
z
µ
2 Iµ

(
x
√
z

2t

)
dz

+

∫ ∞
0

√
ρ2

ρ1
Ψ(z)

√
x

4t
exp

(
−x

2 + z

4t

)
z
ν
2 Iν

(
x
√
z

2t

)
dz, (3.83)

and making the change z → y2 yields

V (x, t) =

∫ ∞
0
−
√
ρ2

ρ1
Φ(y2)

√
x

2t
exp

(
−x

2 + y2

4t

)
yµ+1Iµ

(
xy

2t

)
dy

=

∫ ∞
0

√
ρ2

ρ1
Ψ(y2)

√
x

2t
exp

(
−x

2 + y2

4t

)
yν+1Iν

(
xy

2t

)
dy

=

∫ ∞
0

(
a21(x, y, t) a22(x, y, t)

) Φ(y2)

Ψ(y2)

 dy, (3.84)

where
a21(x, y, t) := −

√
ρ2

ρ1
yµ+ 1

2

√
xy

2t
exp

(
−x

2 + y2

4t

)
Iµ

(
xy

2t

)
,

a22(x, y, t) :=

√
ρ2

ρ1
yν+ 1

2

√
xy

2t
exp

(
−x

2 + y2

4t

)
Iν

(
xy

2t

)
.

Observe that we have written U(x, t)

V (x, t)

 =

∫ ∞
0

 a11(x, y, t) a12(x, y, t)

a21(x, y, t) a22(x, y, t)

 Φ(y2)

Ψ(y2)

 dy,

and replace
(

Φ(y2) Ψ(y2)
)>

by the expression obtained in (3.81). This yields

the following expression for (U V )> U(x, t)

V (x, t)

 =

∫ ∞
0

 a11(x, y, t) a12(x, y, t)

a21(x, y, t) a22(x, y, t)


︸ ︷︷ ︸

A(x,y,t)

C−1(y)

 f(y)

g(y)

 dy. (3.85)

Recall that according to (3.80) the initial condition was U(x, 0)

V (x, 0)

 =

 f(x)

g(x)

 ,
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so we can conclude that the matrix P (t, x, y) = (pij(t, x, y)) defined by the product

P (t, x, y) =

 p11(t, x, y) p12(t, x, y)

p21(t, x, y) p22(t, x, y)

 := A(x, y, t)C−1(y)

=
1

2

 a11(x, y, t) a12(x, y, t)

a21(x, y, t) a22(x, y, t)


 y−µ−

1
2 −

√
ρ1

ρ2
y−µ−

1
2

y−ν−
1
2

√
ρ1

ρ2
y−ν−

1
2

 (3.86)

is a fundamental solution of (3.38).
The components pij(t, x, y) can be calculated to be:

p11(t, x, y) :=
1

2

(
y−µ−

1
2a11(x, y, t) + y−ν−

1
2a12(x, y, t)

)
=

√
xy

4t
exp

(
−x

2 + y2

4t

)(
Iµ

(
xy

2t

)
+ Iν

(
xy

2t

))

p12(t, x, y) :=
1

2

(
−
√
ρ1

ρ2
y−µ−

1
2a11(x, y, t) +

√
ρ1

ρ2
y−ν−

1
2a12(x, y, t)

)

=

√
ρ1

ρ2

√
xy

4t
exp

(
−x

2 + y2

4t

)(
−Iµ

(
xy

2t

)
+ Iν

(
xy

2t

))
p21(t, x, y) :=

1

2

(
y−µ−

1
2a21(x, y, t) + y−ν−

1
2a22(x, y, t)

)
=

√
ρ2

ρ1

√
xy

4t
exp

(
−x

2 + y2

4t

)(
−Iµ

(
xy

2t

)
+ Iν

(
xy

2t

))

p22(t, x, y) :=
1

2

(
−
√
ρ1

ρ2
y−µ−

1
2a21(x, y, t) +

√
ρ1

ρ2
y−ν−

1
2a22(x, y, t)

)

=

√
xy

4t
exp

(
−x

2 + y2

4t

)(
Iµ

(
xy

2t

)
+ Iν

(
xy

2t

))
,

thus obtaining the following expression for P (t, x, y):

P (t, x, y) =

√
xy

4t
e−

x2+y2

4t

 Iµ
(xy

2t

)
+ Iν

(xy
2t

) √
ρ1

ρ2

(
Iν
(xy

2t

)
− Iµ

(xy
2t

))√
ρ2

ρ1

(
Iν
(xy

2t

)
− Iµ

(xy
2t

))
Iµ
(xy

2t

)
+ Iν

(xy
2t

)
 .

(3.87)

Remark. The more general problemut = uxx + (η1 + ρ1

x2 )v

vt = vxx + (η2 + ρ2

x2 )u.
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does also possess enough symmetries to be able to compute fundamental solutions
in principle. However, we cannot find the necessary stationary solutions to com-
pute these fundamental matrices.

3.2.2 Case A.2: A more complex case with the Laplace Transform

Similarly to the previous case, we need to start by looking for stationary solutions
of (3.43), i.e. we must solve: 0 = uxx + ρ1v

0 = vxx + ρ2

x4u.

It is clear we must have v = −uxx
ρ1

and hence, substituting vxx = −uxxxx
ρ1

into the
second equation above, we observe that u must solve:

x4uxxxx − ρ1ρ2u = 0, (3.88)

which again is an Euler-type equation. Therefore, solutions will be of the form
u = xα. This will turn equation (3.88) into

α(α− 1)(α− 2)(α− 3)xα − ρ1ρ2x
α = 0, (3.89)

so we need only find roots of the polynomial α(α− 1)(α− 2)(α− 3)− ρ1ρ2.
The reader may check that

α1 =
3

2
+

√
5 + 4

√
1 + ρ1ρ2

2
and α2 =

3

2
+

√
5− 4

√
1 + ρ1ρ2

2

are two of such roots. For simplicity in the notation, let us define µ =

√
5+4
√

1+ρ1ρ2

2

and ν =

√
5−4
√

1+ρ1ρ2

2 . Again, for convenience, we assume that both µ, ν ∈ R, i.e.
either

• ρ1 = 0,

• ρ1 < 0 and 9
16ρ1

< ρ2 ≤ − 1
ρ1

, or

• ρ1 > 0 and − 1
ρ1
≤ ρ2 <

9
16ρ1

.

Other choices of ρ1 and ρ2 can be considered separately in a similar study.
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It is clear that the pairsu1 = x
3
2

+µ

v1 = −uxx
ρ1

= −(µ+ 3
2)(µ+ 1

2)
ρ1

xµ−
1
2

(3.90)

u2 = x
3
2

+ν

v2 = −uxx
ρ1

= −(ν+ 3
2)(ν+ 1

2)
ρ1

xν−
1
2

(3.91)

are two stationary solutions of (3.43). Therefore, using the symmetry U1 in Propo-
sition 3.1.2 and making the change ε → 4ε (just as in the previous case), we know
that

Ũ1(x, t,ε) =

 ũ1(x, t, ε)

ṽ1(x, t, ε)



=

 u1

(
x

1+4εt

)
(1 + 4εt)1/2 exp

(
−εx2

1+4εt

)(
v1

(
x

1+4εt

)
(1 + 4εt)−3/2 + 4ε

ρ1
u1

(
x

1+4εt

)
(1 + 4εt)−1/2

)
exp

(
−εx2

1+4εt

)


=


xµ+ 3

2

(1+4εt)µ+1 exp
(
−εx2

1+4εt

)(
−(µ+ 3

2)(µ+ 1
2)

ρ1

xµ−
1
2

(1+4εt)µ+1 + 4ε
ρ1

xµ+ 3
2

(1+4εt)µ+2

)
exp

(
−εx2

1+4εt

)


and similarly

Ũ2(x, t,ε) =

 ũ2(x, t, ε)

ṽ2(x, t, ε)



=

 u2

(
x

1+4εt

)
(1 + 4εt)1/2 exp

(
−εx2

1+4εt

)(
v2

(
x

1+4εt

)
(1 + 4εt)−3/2 + 4ε

ρ1
u2

(
x

1+4εt

)
(1 + 4εt)−1/2

)
exp

(
−εx2

1+4εt

)


=


xν+ 3

2

(1+4εt)ν+1 exp
(
−εx2

1+4εt

)(
−(ν+ 3

2)(ν+ 1
2)

ρ1

xν−
1
2

(1+4εt)ν+1 + 4ε
ρ1

xν+ 3
2

(1+4εt)ν+2

)
exp

(
−εx2

1+4εt

)


are also solutions, satisfying the initial conditions:

Ũ1(x, 0, ε) =

 xµ+ 3
2 e−εx

2(
−(µ+ 3

2)(µ+ 1
2)

ρ1
xµ−

1
2 + 4ε

ρ1
xµ+ 3

2

)
e−εx

2

 (3.92)
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and

Ũ2(x, 0, ε) =

 xν+ 3
2 e−εx

2(
−(ν+ 3

2)(ν+ 1
2)

ρ1
xν−

1
2 + 4ε

ρ1
xν+ 3

2

)
e−εx

2

 (3.93)

respectively. Recall that by linearity and Theorem 2.1.5, for suitable functions φ(ε)

an ψ(ε), we can produce yet another solution given by

Ũ(x, t) =

∫ ∞
0

(
φ(ε)Ũ1(x, t, ε) + ψ(ε)Ũ2(x, t, ε)

)
dε

=

∫ ∞
0

 φ(ε) xµ+ 3
2

(1+4εt)µ+1 exp
(
−εx2

1+4εt

)
φ(ε)

(
−(µ+ 3

2)(µ+ 1
2)

ρ1

xµ−
1
2

(1+4εt)µ+1 + 4ε
ρ1

xµ+ 3
2

(1+4εt)µ+2

)
exp

(
−εx2

1+4εt

)
 dε

+

∫ ∞
0

 ψ(ε) xν+ 3
2

(1+4εt)ν+1 exp
(
−εx2

1+4εt

)
ψ(ε)

(
−(ν+ 3

2)(ν+ 1
2)

ρ1

xν−
1
2

(1+4εt)ν+1 + 4ε
ρ1

xν+ 3
2

(1+4εt)ν+2

)
exp

(
−εx2

1+4εt

)
 dε,

which has initial condition f(x)

g(x)

 := Ũ(x, 0) =

∫ ∞
0

 φ(ε)xµ+ 3
2 e−εx

2

φ(ε)

(
−(µ+ 3

2)(µ+ 1
2)

ρ1
xµ−

1
2 + 4ε

ρ1
xµ+ 3

2

)
e−εx

2

 dε

+

∫ ∞
0

 ψ(ε)xν+ 3
2 e−εx

2

ψ(ε)

(
−(ν+ 3

2)(ν+ 1
2)

ρ1
xν−

1
2 + 4ε

ρ1
xν+ 3

2

)
e−εx

2

 dε

The reader may check that the first component of the above expression gives

xµ+ 3
2

∫ ∞
0

φ(ε)e−εx
2
dε+ xν+ 3

2

∫ ∞
0

ψ(ε)e−εx
2
dε = f(x)

or, equivalently,
xµ+ 3

2 Φ(x2) + xν+ 3
2 Ψ(x2) = f(x), (3.94)

where Φ and Ψ denote the Laplace transforms of φ and ψ respectively.
Similarly, the second component can be written as

−

(
µ+ 3

2

)(
µ+ 1

2

)
ρ1

xµ−
1
2

∫ ∞
0

φ(ε)e−εx
2
dε− 2

ρ1
xµ+ 1

2

∫ ∞
0
−2xεφ(ε)e−εx

2
dε

−

(
ν + 3

2

)(
ν + 1

2

)
ρ1

xν−
1
2

∫ ∞
0

ψ(ε)e−εx
2
dε− 2

ρ1
xν+ 1

2

∫ ∞
0
−2xεψ(ε)e−εx

2
dε = g(x),
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thus yielding the following differential equation:(
µ+

3

2

)(
µ+

1

2

)
xµ−

1
2 Φ(x2) +

(
ν +

3

2

)(
ν +

1

2

)
xν−

1
2 Ψ(x2)

+2xµ+ 1
2
d

dx
Φ(x2) + 2xν+ 1

2
d

dx
Ψ(x2) = −ρ1g(x).

Therefore we need to solve the system:
xµ+ 3

2 Φ(x2) + xν+ 3
2 Ψ(x2) = f(x)(

µ+ 3
2

)(
µ+ 1

2

)
xµ−

1
2 Φ(x2) +

(
ν + 3

2

)(
ν + 1

2

)
xν−

1
2 Ψ(x2)

+2xµ+ 1
2
d
dxΦ(x2) + 2xν+ 1

2
d
dxΨ(x2) = −ρ1g(x)

(3.95)

The first equation in this system gives

Φ(x2) = x−(µ+ 3
2

)f(x)− xν−µΨ(x2) (3.96)

Differentiation with respect to x produces the following expression for d
dxΦ(x2):

d

dx
Φ(x2) = −(µ+

3

2
)x−(µ+ 5

2
)f(x)+x−(µ+ 3

2
)f ′(x)−(ν−µ)xν−µ−1Ψ(x2)−xν−µ d

dx
Ψ(x2)

(3.97)
Substitution of expressions (3.96) and (3.97) into the second equation in (3.95) re-
sults in the following expression for Ψ(x2):

Ψ(x2) =
1

µ2 − ν2

(
ρ1x
−(ν− 1

2
)g(x) + 2x−(ν+ 1

2
)f ′(x) +

(
µ2 − 9

4

)
x−(ν+ 3

2
)f(x)

)
,

and hence

Φ(x2) = − 1

µ2 − ν2

(
ρ1x
−(µ− 1

2
)g(x) + 2x−(µ+ 1

2
)f ′(x) +

(
ν2 − 9

4

)
x−(µ+ 3

2
)f(x)

)
.

That is, we can write Φ(x2)

Ψ(x2)

 =
1

η

 −
(
ν2 − 9

4

)
x−(µ+ 3

2
) − 2x−(µ+ 1

2
) d
dx −ρ1x

−(µ− 1
2

)(
µ2 − 9

4

)
x−(ν+ 3

2
) + 2x−(ν+ 1

2
) d
dx ρ1x

−(ν− 1
2

)


︸ ︷︷ ︸

C(x)

 f(x)

g(x)

 ,

(3.98)where η = µ2 − ν2.
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Next, let us write the functions ũ1(x, t, ε), ṽ1(x, t, ε) , ũ2(x, t, ε) and ṽ2(x, t, ε) as
Laplace transforms of the following functions:

ũ1(x, t,ε) =
xµ+ 3

2

(1 + 4εt)µ+1
exp

(
−εx2

1 + 4εt

)

= L

x3/2

4t
zµ/2 exp

(
−x

2 + z

4t

)
Iµ

(
x
√
z

2t

)
ṽ1(x, t,ε) =

−
(
µ+ 3

2

)(
µ+ 1

2

)
ρ1

xµ−
1
2

(1 + 4εt)µ+1
+

4ε

ρ1

xµ+ 3
2

(1 + 4εt)µ+2

 exp

(
−εx2

1 + 4εt

)

= L

zµ/2 exp

(
−x

2 + z

4t

) x3/2

4ρ1t2
−

(
µ+ 3

2

)(
µ+ 1

2

)
x−1/2

4ρ1t

 Iµ

(
x
√
z

2t

)

−
√
x

4ρ1t2
z
µ+1

2 exp

(
−x

2 + z

4t

)
Iµ+1

(
x
√
z

2t

)
ũ2(x, t,ε) =

xν+ 3
2

(1 + 4εt)ν+1
exp

(
−εx2

1 + 4εt

)

= L

x3/2

4t
zν/2 exp

(
−x

2 + z

4t

)
Iν

(
x
√
z

2t

)
ṽ2(x, t,ε) =

−
(
ν + 3

2

)(
ν + 1

2

)
ρ1

xν−
1
2

(1 + 4εt)ν+1
+

4ε

ρ1

xν+ 3
2

(1 + 4εt)ν+2

 exp

(
−εx2

1 + 4εt

)

= L

zν/2 exp

(
−x

2 + z

4t

) x3/2

4ρ1t2
−

(
ν + 3

2

)(
ν + 1

2

)
x−1/2

4ρ1t

 Iν

(
x
√
z

2t

)

−
√
x

4ρ1t2
z
ν+1

2 exp

(
−x

2 + z

4t

)
Iν+1

(
x
√
z

2t

) .

Let us write

m1(x, z, t) :=
x3/2

4t
zµ/2 exp

(
−x

2 + z

4t

)
Iµ

(
x
√
z

2t

)
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n1(x, z, t) := zµ/2 exp

(
−x

2 + z

4t

) x3/2

4ρ1t2
−

(
µ+ 3

2

)(
µ+ 1

2

)
x−1/2

4ρ1t

 Iµ

(
x
√
z

2t

)

−
√
x

4ρ1t2
z
µ+1

2 exp

(
−x

2 + z

4t

)
Iµ+1

(
x
√
z

2t

)

m2(x, z, t) :=
x3/2

4t
zν/2 exp

(
−x

2 + z

4t

)
Iν

(
x
√
z

2t

)

n2(x, z, t) := zν/2 exp

(
−x

2 + z

4t

) x3/2

4ρ1t2
−

(
ν + 3

2

)(
ν + 1

2

)
x−1/2

4ρ1t

 Iν

(
x
√
z

2t

)

−
√
x

4ρ1t2
z
ν+1

2 exp

(
−x

2 + z

4t

)
Iν+1

(
x
√
z

2t

)

Then the solution Ũ(x, t) can be writen as

Ũ(x,t) =

 ∫∞
0

(
φ(ε)

∫∞
0 m1(x, z, t)e−εzdz + ψ(ε)

∫∞
0 m2(x, z, t)e−εzdz

)
dε∫∞

0

(
φ(ε)

∫∞
0 n1(x, z, t)e−εzdz + ψ(ε)

∫∞
0 n2(x, z, t)e−εzdz

)
dε



=


∫∞

0

((∫∞
0 φ(ε)e−εzdε

)
m1(x, z, t) +

(∫∞
0 ψ(ε)e−εzdε

)
m2(x, z, t)

)
dz∫∞

0

((∫∞
0 φ(ε)e−εzdε

)
n1(x, z, t) +

(∫∞
0 ψ(ε)e−εzdε

)
n2(x, z, t)

)
dz


=

∫ ∞
0

 Φ(z)m1(x, z, t) + Ψ(z)m2(x, z, t)

Φ(z)n1(x, z, t) + Ψ(z)n2(x, z, t)

 dz

=

∫ ∞
0

 m1(x, z, t) m2(x, z, t)

n1(x, z, t) n2(x, z, t)

 Φ(z)

Ψ(z)

 dz

Make the change of variables z = y2 so that dz = 2ydy and our solution becomes

Ũ(x, t) =

∫ ∞
0

2y

 m1(x, y2, t) m2(x, y2, t)

n1(x, y2, t) n2(x, y2, t)

 Φ(y2)

Ψ(y2)

 dy.

Let us substitute (Φ(y2) Ψ(y2))> by the expression found in (3.98) to obtain

Ũ(x, t) =

∫ ∞
0

2y

 m1(x, y2, t) m2(x, y2, t)

n1(x, y2, t) n2(x, y2, t)

C(y)

 f(y)

g(y)

 dy.
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Therefore, a fundamental matrix for this system is given by:

P (x, t, y) =

 p11(x, t, y) p12(x, t, y)

p21(x, t, y) p22(x, t, y)


:= 2y

 m1(x, y2, t) m2(x, y2, t)

n1(x, y2, t) n2(x, y2, t)

C(y).

The reader may check that the expressions one obtains for each of the components
pij(x, t, y) of the fundamental matrix are respectively:

p11(x, t, y) =
xe−

x2+y2

4t

2t(µ2 − ν2)

√
x

y

((
µ2 − 9

4

)
Iν

(
xy

2t

)
−
(
ν2 − 9

4

)
Iµ

(
xy

2t

))

+
x
√
xye−

x2+y2

4t

t(µ2 − ν2)

(
Iν

(
xy

2t

)
+ Iµ

(
xy

2t

))
d

dy

p12(x, t, y) =
ρ1(xy)

3
2 e−

x2+y2

4t

2t(µ2 − ν2)

(
Iν

(
xy

2t

)
− Iµ

(
xy

2t

))

p21(x, t, y) = −e
−x

2+y2

4t

2ρ1t

√
x

y

((
xy

t
−ABy

x

)
Iµ

(
xy

2t

)
− y2

t
Iµ+1

(
xy

2t

))

×


(
ν2 − 9

4

)
y

− 2
d

dy


+
e−

x2+y2

4t

2ρ1t

√
x

y

((
xy

t
− CDy

x

)
Iν

(
xy

2t

)
− y2

t
Iν+1

(
xy

2t

))

×


(
µ2 − 9

4

)
y

+ 2
d

dy



p22(x, t, y) = −
√
xy

2t
e−

x2+y2

4t

((
xy

t
−ABy

x

)
Iµ

(
xy

2t

)
− y2

t
Iµ+1

(
xy

2t

))

+

√
xy

2t
e−

x2+y2

4t

((
xy

t
− CDy

x

)
Iν

(
xy

2t

)
− y2

t
Iν+1

(
xy

2t

))
,

where A = µ+ 3
2 , B = µ+ 1

2 , C = ν + 3
2 and D = ν + 1

2 .

Note. The fundamental matrix obtained in this case is not a matrix of scalar func-
tions as in the previous example, but a matrix of differential operators. This will
be the case whenever the expressions of the appropriate integral transforms of φ
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and ψ are given in terms of not only the initial conditions f(x) and g(x), but also
their derivatives. This is the case here, as it can be seen in (3.98). Further, we will
see in other examples that these fundamental matrices sometimes include integral
operators as well as differential operators.

3.2.3 Case A.3: Not enough symmetries

Similarly to the previous cases, a stationary solution for this case can be found by
solving the system: 0 = uxx + ρ1x

kv

0 = vxx + ρ2x
−(4+k)u

(3.99)

which will give an Euler type equation for the function u if we take v = − uxx
ρ1xk

, cal-
culate vxx an substitute it into the second equation in the above system. However,
if we look at the set of symmetries obtained for this particular case, it is clear that
we cannot obtain time-dependent solutions from the application of a symmetry to
a stationary solution. There are no symmetries in the Lie algebra for this case that
introduce the time variable "t" from a solution that is time independent. So we can-
not use our usual methodology to obtain fundamental solutions through the action
of a symmetry on a stationary solution and the inversion of a classic integral trans-
form. For these cases, a scaling symmetry often suffices, provided that we can find
a time-dependent solution to the given system. These solutions may be found by
inspection in some cases. However, in most cases it is not easy to find such solu-
tions by inspection. This is the case for this example, where we have not yet found
a suitable time-dependent solution to which we can apply the scaling symmetry in
the lie algebra for this system of PDEs.

In later chapters we will provide a set of tools that can be used when one is
aiming to find a transition density for a given stochastic process as a fundamental
solution for the associated Kolmogorov Backwards equation but the symmetries for
this equation are not "complex" enough to provide such fundamental solution. It
turns out that these methods, while not producing the transition density function,
can be extremely useful to calculate all sorts of expected values for the considered
stochastic processes, as well as for functionals of these. Such tools rely heavily on
the use of symmetries and the classical integral transforms of fundamental solu-
tions.
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3.2.4 Case B: The Fourier Transform

Recall that, for this case, the system of PDEs we are dealing with is of the form:ut = uxx +Av

vt = vxx +Bu,
(3.100)

and recall that the symmetries obtained for this type of system are of the form:

Proposition 3.2.1. Let U = (u(x, t), v(x, t)) be a solution of (3.100), then

U1 =


(

4At2v( x
1+εt ,

t
1+εt)− x

2u( x
1+εt ,

t
1+εt)

)
sinh

(
σ(x, t, ε)

)√
(16ABt4 + x4)(1 + εt)

+
u( x

1+εt ,
t

1+εt) cosh
(
σ(x, t, ε)

)
√

1 + εt
,
v( x

1+εt ,
t

1+εt) cosh
(
σ(x, t, ε)

)
√

1 + εt

+

(
4Bt2u( x

1+εt ,
t

1+εt) + x2v( x
1+εt ,

t
1+εt)

)
sinh

(
σ(x, t, ε)

)√
(16ABt4 + x4)(1 + εt)


U2 = (u(xe−ε/2, te−ε) cosh(µt(1− e−ε)) + v(xe−ε/2, te−ε)

√
A

B
sinh(µt(1− e−ε)),

v(xe−ε/2, te−ε) cosh(µt(1− e−ε)) + u(xe−ε/2, te−ε)

√
B

A
sinh(µt(1− e−ε)))

U3 = (u(x, t− ε), v(x, t− ε))

U4 = (u(x− εt, t) exp

(
− ε

2

(
x− tε

2

))
, v(x− εt, t) exp

(
− ε

2

(
x− tε

2

))
)

U5 = (u(x− ε, t), v(x− ε, t))

U6 = (u(x, t) cosh(µε) +

√
A

B
v(x, t) sinh(µε),

√
B

A
u(x, t) sinh(µε) + v(x, t) cosh(µε))

U7 = (eεu(x, t), eεv(x, t))

U8 = ((1− εµe2µt)u(x, t) + εAe2µtv(x, t), (1 + εµe2µt)v(x, t)− εBe2µtu(x, t))

U9 = ((1 + εµe−2µt)u(x, t) + εAe−2µtv(x, t), (1− εµe−2µt)v(x, t)− εBe−2µtu(x, t))

UCD = (u(x, t) + εC(x, t), v(x, t) + εD(x, t))

are also solutions of the given system. Here µ =
√
AB, σ(x, t, ε) = ε

√
16ABt4+x4

4(1+εt) and
(C,D) is an arbitrary solution of (3.56).

With this, we proceed to look for a stationary solution for (3.100), i.e. we set
ut = vt = 0 and solve the remaining system for u and v. That is, we need to solve
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0 = uxx +Av

0 = vxx +Bu,

which gives v = −uxx
A and so vxx = −uxxxx

A . Substitution of vxx in the second
equation yields the following differential equation for u:

uxxxx −ABu = 0 (3.101)

Note that u1 = e
4√ABx and u2 = ei

4√ABx are both solutions of (3.101), which respec-
tively yield the pairs u1 = e

4√ABx

v1 = −
√
AB
A e

4√ABx = −
√

B
Ae

4√ABx
(3.102)

and u2 = ei
4√ABx

v2 =
√
AB
A ei

4√ABx =
√

B
Ae

i 4√ABx
(3.103)

as stationary solutions of (3.100).
We know by Proposition 3.2.1 that if (u(x, t) v(x, t))> is a solution of (3.100), so is

Ũε(x, t) =

 ũε(x, t)

ṽε(x, t)

 =

 u(x− εt, t) exp
(
− ε

2

(
x− tε

2

))
v(x− εt, t) exp

(
− ε

2

(
x− tε

2

))
 . (3.104)

Applying this transformation to the stationary solutions (3.102) and (3.103) and
letting µ = 4

√
AB produces the following time-dependent pairs of solutions of

(3.100):

Ũ1(x, t, ε) =

 ũ1(x, t, ε)

ṽ1(x, t, ε)

 =

 eµxe−ε(µt+
x
2

)+ε2 t
4

−
√

B
Ae

µxe−ε(µt+
x
2

)+ε2 t
4


Ũ2(x, t, ε) =

 ũ2(x, t, ε)

ṽ2(x, t, ε)

 =

 eiµxe−ε(iµt+
x
2

)+ε2 t
4√

B
Ae

iµxe−ε(iµt+
x
2

)+ε2 t
4


Let us now substitute the constant ε by iε. This substitution yields

Ũ1(x, t, ε) =

 eµxe−iε(µt+
x
2

)−ε2 t
4

−
√

B
Ae

µxe−iε(µt+
x
2

)−ε2 t
4


Ũ2(x, t, ε) =

 eiµxe−iε(iµt+
x
2

)−ε2 t
4√

B
Ae

iµxe−iε(iµt+
x
2

)−ε2 t
4

 .



3.2. Fundamental solutions 77

The reader may check that the inverse Fourier transforms of these solutions with
respect to the variable ε are given respectively by:

F−1
(
Ũ1(x, t, ε)

)
=


√

2
t e
−
(

(µt+y)2

t
+x2

4t
+xy

t

)

−
√

B
A

√
2
t e
−
(

(µt+y)2

t
+x2

4t
+xy

t

)
 (3.105)

F−1
(
Ũ2(x, t, ε)

)
=


√

2
t e
µ2t− (x+2y)2

4t
−2iµy√

B
A

√
2
t e
µ2t− (x+2y)2

4t
−2iµy

 , (3.106)

where we understand the Fourier transform F to be defined in the classical form as

F(g(t))(ω) = G(ω) =
1√
2π

∫ ∞
−∞

g(t)eiωtdt. (3.107)

With this definition, the inverse Fourier transform is given by:

F−1(G(ω))(t) = g(t) =
1√
2π

∫ ∞
−∞

G(ω)e−iωtdω. (3.108)

Next, recall that by linearity and Theorem 2.1.5, for appropriate functions ϕ and
ψ with sufficiently rapid decay, we have that U(x, t)

V (x, t)

 =

∫ ∞
−∞

(
ϕ(ε)Ũ1(x, t, ε) + ψ(ε)Ũ2(x, t, ε)

)
dε

=

∫ ∞
−∞

 ϕ(ε)ũ1(x, t, ε) + ψ(ε)ũ2(x, t, ε)

ϕ(ε)ṽ1(x, t, ε) + ψ(ε)ṽ2(x, t, ε)

 dε (3.109)

will be a new solution of the system (3.100), with initial condition U(x, 0)

V (x, 0)

 =

∫ ∞
−∞

 ϕ(ε)ũ1(x, 0, ε) + ψ(ε)ũ2(x, 0, ε)

ϕ(ε)ṽ1(x, 0, ε) + ψ(ε)ṽ2(x, 0, ε)

 dε

=

∫ ∞
−∞

 ϕ(ε)eµxe−
iεx
2 + ψ(ε)eiµxe−

iεx
2

−ϕ(ε)
√

B
Ae

µxe−
iεx
2 + ψ(ε)

√
B
Ae

iµxe−
iεx
2

 dε

=

 eµx
∫∞
−∞ ϕ(ε)e−

iεx
2 dε+ eiµx

∫∞
−∞ ψ(ε)e−

iεx
2 dε

−
√

B
Ae

µx
∫∞
−∞ ϕ(ε)e−

iεx
2 dε+

√
B
Ae

iµx
∫∞
−∞ ψ(ε)e−

iεx
2 dε


=

 √
2πeµxΦ

(
−x

2

)
+
√

2πeiµxΨ
(
−x

2

)
−
√

2π
√

B
Ae

µxΦ
(
−x

2

)
+
√

2π
√

B
Ae

iµxΨ
(
−x

2

)

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=

 √
2πeµx

√
2πeiµx

−
√

2π
√

B
Ae

µx
√

2π
√

B
Ae

iµx


︸ ︷︷ ︸

C(x)

 Φ
(
−x

2

)
Ψ
(
−x

2

)
 ,

where Φ = F(ϕ) and Ψ = F(ψ).
Putting  U(x, 0)

V (x, 0)

 = C(x)

 Φ
(
−x

2

)
Ψ
(
−x

2

)
 :=

 f(x)

g(x)

 , (3.110)

we obtain the expression Φ
(
−x

2

)
Ψ
(
−x

2

)
 = C−1(x)

 f(x)

g(x)

 . (3.111)

The reader may check that C is a non-singular matrix and that the corresponding
expression for C−1(x) is

C−1(x) =
1

4π

 e−µx −
√

A
B e
−µx

e−iµx
√

A
B e
−iµx

 . (3.112)

Let us now substitute ũ1, ṽ1, ũ2 and ṽ2 in the expression (3.109) of our solution
(U(x, t) V (x, t))> by the Fourier transforms of the expressions obtained in (3.105)
and (3.106). This yields:

 U(x, t)

V (x, t)

 =

 ∫∞
−∞ ϕ(ε) 1√

2π

∫∞
−∞

√
2
t e
− (µt+y)2

t
−x

2

4t
−xy

t eiεydydε

−
∫∞
−∞ ϕ(ε) 1√

2π

∫∞
−∞

√
B
A

√
2
t e
− (µt+y)2

t
−x

2

4t
−xy

t eiεydydε


+

 ∫∞
−∞ ψ(ε) 1√

2π

∫∞
−∞

√
2
t e
µ2t− (x+2y)2

4t
−2iµyeiεydydε∫∞

−∞ ψ(ε) 1√
2π

∫∞
−∞

√
B
A

√
2
t e
µ2t− (x+2y)2

4t
−2iµyeiεydydε


=

 ∫∞
−∞

√
2
t e
− (µt+y)2

t
−x

2

4t
−xy

t

(
1√
2π

∫∞
−∞ ϕ(ε)eiεydε

)
dy

−
∫∞
−∞

√
B
A

√
2
t e
− (µt+y)2

t
−x

2

4t
−xy

t

(
1√
2π

∫∞
−∞ ϕ(ε)eiεydε

)
dy


+

 ∫∞
−∞

√
2
t e
µ2t− (x+2y)2

4t
−2iµy

(
1√
2π

∫∞
−∞ ψ(ε)eiεydε

)
dy∫∞

−∞

√
B
A

√
2
t e
µ2t− (x+2y)2

4t
−2iµy

(
1√
2π

∫∞
−∞ ψ(ε)eiεydε

)
dy



=


∫∞
−∞

√
2
t

(
e−

(µt+y)2

t
−x

2

4t
−xy

t Φ(y) + eµ
2t− (x+2y)2

4t
−2iµyΨ(y)

)
dy

−
∫∞
−∞

√
B
A

√
2
t

(
e−

(µt+y)2

t
−x

2

4t
−xy

t Φ(y)− eµ2t− (x+2y)2

4t
−2iµyΨ(y)

)
dy


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Make the change of variables y = − z
2 to obtain

 U(x, t)

V (x, t)

 =

 −
∫∞
−∞

e−
(x−z)2

4t√
2t

(
e−µ

2t−µzΦ(− z
2) + eµ

2t+iµzΨ(− z
2)
)
dz∫∞

−∞

√
B
A
e−

(x−z)2
4t√
2t

(
e−µ

2t−µzΦ(− z
2)− eµ2t+iµzΨ(− z

2)
)
dz



=

∫ ∞
−∞

 − e−
(x−z)2

4t√
2t

(
e−µ

2t−µzΦ(− z
2) + eµ

2t+iµzΨ(− z
2)
)

√
B
A
e−

(x−z)2
4t√
2t

(
e−µ

2t−µzΦ(− z
2)− eµ2t+iµzΨ(− z

2)
)
 dz

=

∫ ∞
−∞

 − e−
(x−z)2

4t√
2t

e−µ
2t−µz − e−

(x−z)2
4t√
2t

eµ
2t+iµz√

B
A
e−

(x−z)2
4t√
2t

e−µ
2t−µz −

√
B
A
e−

(x−z)2
4t√
2t

eµ
2t+iµz


︸ ︷︷ ︸

A(x,t,z)

 Φ(− z
2)

Ψ(− z
2)

 dz

Use (3.124) to write U(x, t)

V (x, t)

 =

∫ ∞
−∞

A(x, t, z)C−1(z)

 f(z)

g(z)

 dz.

Therefore, a fundamental matrix P (t, x, z) = (pij(t, x, z)) for the system (3.100) is
given by the product:

P (x, t, z) := A(x, t, z)C−1(z)

=
e−

(x−z)2
4t

√
2t

 −e−µ2t−µz −eµ2t+iµz√
B
Ae
−µ2t−µz −

√
B
Ae

µ2t+iµz

 1

4π

 e−µz −
√

A
B e
−µz

e−iµz
√

A
B e
−iµz


= −e

− (x−z)2
4t

+µ2t

4π
√

2t

 1 + e−2µ2t−2µz
√

A
B (1− e−2µ2t−2µz)√

B
A (1− e−2µ2t−2µz) (1 + e−2µ2t−2µz)


(3.113)

Note. If AB 6= 0, it would have also been possible to find fundamental solutions
for the system (3.100) by first transforming the system, via a simple scaling, to the
same system with A,B = ±1 and later decoupling it to

Ut = Uxx, Vt = Vxx, (3.114)

by using either

u = ±(U − V ) sinh t+ (U + V ) cosh t

v = (U − V ) cosh t∓ (U + V ) sinh t (3.115)
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where the positive case is used when A = B = 1 and the negative case when
A = B = −1 or

u = ±(U − V ) sin t+ (U + V ) cos t

v = (U − V ) cos t∓ (U + V ) sin t (3.116)

where the positive case is used when A = −B = 1 and the negative case when
−A = B = 1.

3.2.5 Case C: A more complex case with the Fourier Transform

As in the previous cases, we start by looking for a stationary solution for (3.66), that
is, we look for u and v satisfying:0 = uxx + (ax+ b)v

0 = vxx + k(ax+ b)u.

which gives v = − uxx
ax+b . Computation of vxx and substitution into the second equa-

tion yields the following differential equation for u:

− 2a2u′′(x)

(ax+ b)3
− u(4)(x)

ax+ b
+

2au(3)(x)

(ax+ b)2
= −ku(x)(ax+ b) (3.117)

Without loss of generality take b = 0, since the system with b 6= 0 can be easily
transformed to one with b = 0 via a change of variables. Assume a, x, k > 0 for the
sake of simplicity in the calculations and note that

u1 =
√
ax

(
J 1

3

(
2

3
4
√
kx
√
ax

)
+ I 1

3

(
2

3
4
√
kx
√
ax

))
and

u2 =
√
ax

(
I 1

3

(
2

3
4
√
kx
√
ax

)
− J 1

3

(
2

3
4
√
kx
√
ax

))
are both solutions of (3.117), which respectively yield the pairs

u1 =
√
ax

(
J 1

3

(
2
3

4
√
kx
√
ax
)

+ I 1
3

(
2
3

4
√
kx
√
ax
))

v1 =
√
akx

(
J 1

3

(
2
3

4
√
k
√
ax3
)
− I 1

3

(
2
3

4
√
k
√
ax3
)) (3.118)

and 
u2 =

√
ax

(
I 1

3

(
2
3

4
√
kx
√
ax
)
− J 1

3

(
2
3

4
√
kx
√
ax
))

v2 = −
√
akx

(
J 1

3

(
2
3

4
√
k
√
ax3
)

+ I 1
3

(
2
3

4
√
k
√
ax3
)) (3.119)
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as stationary solutions of the systemut = uxx + (ax+ b)v

vt = vxx + k(ax+ b)u.
(3.120)

We know by Proposition 3.1.5 that if (u(x, t) v(x, t))> is a solution of (3.120), so is

Ũε(x, t) =

 ũε(x, t)

ṽε(x, t)


=

 e−xε+tε
2
(u(x− 2εt, t) cosh(a

√
kt2ε) + 1√

k
v(x− 2εt, t) sinh(a

√
kt2ε))

e−xε+tε
2
(√

ku(x− 2εt, t) sinh(a
√
kt2ε) + v(x− 2εt, t) cosh(a

√
kt2ε)

) 
(3.121)

Applying this transformation to the stationary solutions (3.118) and (3.119) and
letting k = κ2 produces the time-dependent pairs of solutions of (3.120):

Ũ1(x, t, ε) =

 e−xε+tε
2
ũ1(x, t, ε)

e−xε+tε
2
ṽ1(x, t, ε)

 , Ũ2(x, t, ε) =

 e−xε+tε
2
ũ2(x, t, ε)

e−xε+tε
2
ṽ2(x, t, ε)

 ,

where

ũ1(x, t, ε) =
√
a(x− 2tε)J 1

3

(
2
√
aκ(x− 2tε)3

3

)
(sinh(aκt2ε) + cosh(aκt2ε))

+
√
a(x− 2tε)I 1

3

(
2
√
aκ(x− 2tε)3

3

)
(cosh(aκt2ε)− sinh(aκt2ε))

ṽ1(x, t, ε) = κ
√
a(x− 2tε)J 1

3

(
2
√
aκ(x− 2tε)3

3

)
(sinh(aκt2ε) + cosh(aκt2ε))

+ κ
√
a(x− 2tε)I 1

3

(
2
√
aκ(x− 2tε)3

3

)
(sinh(aκt2ε)− cosh(aκt2ε))

ũ2(x, t, ε) =
√
a(x− 2tε)I 1

3

(
2
√
aκ(x− 2tε)3

3

)
(cosh(aκt2ε)− sinh(aκt2ε))

−
√
a(x− 2tε)J 1

3

(
2
√
aκ(x− 2tε)3

3

)
(sinh(aκt2ε) + cosh(aκt2ε))

ṽ2(x, t, ε) = κ
√
a(x− 2tε)I 1

3

(
2
√
aκ(x− 2tε)3

3

)
(sinh(aκt2ε)− cosh(aκt2ε))

− κ
√
a(x− 2tε)J 1

3

(
2
√
aκ(x− 2tε)3

3

)
(sinh(aκt2ε) + cosh(aκt2ε))
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Substitution of the constant ε by iε yields

Ũ1(x, t, ε) =

 e−(xiε+tε2)ũ1(x, t, iε)

e−(xiε+tε2)ṽ1(x, t, iε)

 , Ũ2(x, t, ε) =

 e−(xiε+tε2)ũ2(x, t, iε)

e−(xiε+tε2)ṽ2(x, t, iε)

 .

Construct now the new solution: U(x, t)

V (x, t)

 =

∫ ∞
−∞

(
ϕ(ε)Ũ1(x, t, ε) + ψ(ε)Ũ2(x, t, ε)

)
dε

=

∫ ∞
−∞

 ϕ(ε)e−(xiε+tε2)ũ1(x, t, iε) + ψ(ε)e−(xiε+tε2)ũ2(x, t, iε)

ϕ(ε)e−(xiε+tε2)ṽ1(x, t, iε) + ψ(ε)e−(xiε+tε2)ṽ2(x, t, iε)

 dε,

(3.122)

for appropriate functions ϕ and ψ with sufficiently rapid decay. This solution has
initial condition U(x, 0)

V (x, 0)

 =

∫ ∞
−∞

 ϕ(ε)e−xiεũ1(x, 0, iε) + ψ(ε)e−xiεũ2(x, 0, iε)

ϕ(ε)e−xiεṽ1(x, 0, iε) + ψ(ε)e−xiεṽ2(x, 0, iε)

 dε

=

∫ ∞
−∞


√
axe−ixεϕ(ε)

(
I 1

3

(
2
√
aκx3

3

)
− J 1

3

(
2
3

√
aκx3

))
κ
√
axe−ixεϕ(ε)

(
J 1

3

(
2
√
aκx3

3

)
− I 1

3

(
2
√
aκx3

3

))
 dε

+

∫ ∞
−∞


√
axe−ixεψ(ε)

(
I 1

3

(
2
√
aκx3

3

)
− J 1

3

(
2
3

√
aκx3

))
κ
√
axe−ixεψ(ε)

(
−J 1

3

(
2
√
aκx3

3

)
− I 1

3

(
2
√
aκx3

3

))
 dε

= C(x)

 Φ (−x)

Ψ (−x)

 ,

where

C(x) :=
√

2πax

 I 1
3

(
2
√
aκx3

3

)
− J 1

3

(
2
3

√
aκx3

)
I 1

3

(
2
√
aκx3

3

)
− J 1

3

(
2
3

√
aκx3

)
κ(J 1

3

(
2
√
aκx3

3

)
− I 1

3

(
2
√
aκx3

3

)
) −κ(J 1

3

(
2
√
aκx3

3

)
+ I 1

3

(
2
√
aκx3

3

)
)


and Φ = F(ϕ), Ψ = F(ψ).
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Let us now write U(x, 0)

V (x, 0)

 = C(x)

 Φ (−x)

Ψ (−x)

 :=

 f(x)

g(x)

 . (3.123)

This gives  Φ (−x)

Ψ (−x)

 = C−1(x)

 f(x)

g(x)

 , (3.124)

where the matrix C−1(x) can be computed using Cramer’s formula.
Consider the functions

U1(x, t, z) := F−1
(
e−(xiε+tε2)ũ1(x, t, iε)

)
U2(x, t, z) := F−1

(
e−(xiε+tε2)ũ2(x, t, iε)

)
V1(x, t, z) := F−1

(
e−(xiε+tε2)ṽ1(x, t, iε)

)
V2(x, t, z) := F−1

(
e−(xiε+tε2)ṽ2(x, t, iε)

)
and hence write

e−(xiε+tε2)ũj(x, t, iε) =
1√
2π

∫ ∞
−∞

Uj(x, t, z)e
iεzdz

and
e−(xiε+tε2)ṽj(x, t, iε) =

1√
2π

∫ ∞
−∞

Vj(x, t, z)e
iεzdz.

This gives U(x, t)

V (x, t)

 =

∫ ∞
−∞

 ϕ(ε)e−(xiε+tε2)ũ1(x, t, iε) + ψ(ε)e−(xiε+tε2)ũ2(x, t, iε)

ϕ(ε)e−(xiε+tε2)ṽ1(x, t, iε) + ψ(ε)e−(xiε+tε2)ṽ2(x, t, iε)

 dε

=

 ∫∞
−∞ ϕ(ε) 1√

2π

∫∞
−∞ U1(x, t, z)eiεzdzdε+

∫∞
−∞ ψ(ε) 1√

2π

∫∞
−∞ U2(x, t, z)eiεzdzdε∫∞

−∞ ϕ(ε) 1√
2π

∫∞
−∞ V1(x, t, z)eiεzdzdε+

∫∞
−∞ ψ(ε) 1√

2π

∫∞
−∞ V2(x, t, z)eiεzdzdε


=

 ∫∞
−∞ U1(x, t, z) 1√

2π

∫∞
−∞ ϕ(ε)eiεzdεdz +

∫∞
−∞ U2(x, t, z) 1√

2π

∫∞
−∞ ψ(ε)eiεzdεdz∫∞

−∞ V1(x, t, z) 1√
2π

∫∞
−∞ ϕ(ε)eiεzdεdz +

∫∞
−∞ V2(x, t, z) 1√

2π

∫∞
−∞ ψ(ε)eiεzdεdz


=

 ∫∞
−∞ U1(x, t, z)Φ(z)dz +

∫∞
−∞ U2(x, t, z)Ψ(z)dz∫∞

−∞ V1(x, t, z)Φ(z)dz +
∫∞
−∞ V2(x, t, z)Ψ(z)dz


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The change of variables y = −z then gives: U(x, t)

V (x, t)

 = −
∫ ∞
−∞

 U1(x, t,−y)Φ(−y) + U2(x, t,−y)Ψ(−y)

V1(x, t,−y)Φ(−y) + V2(x, t,−y)Ψ(−y)

 dy

= −
∫ ∞
−∞

 U1(x, t,−y) U2(x, t,−y)

V1(x, t,−y) V2(x, t,−y)

 Φ(−y)

Ψ(−y)

 dy

= −
∫ ∞
−∞

 U1(x, t,−y) U2(x, t,−y)

V1(x, t,−y) V2(x, t,−y)

C−1(y)

 f(y)

g(y)

 dy

Therefore, a fundamental matrix for the system (3.120) is given by

P (x, t, y) := −

 U1(x, t,−y) U2(x, t,−y)

V1(x, t,−y) V2(x, t,−y)

C−1(y).

Remark. A closed-form expression for the inverse Fourier transforms Uj(x, t, z),
Vj(x, t, z) does not seem easy to obtain. However, these can be approximated nu-
merically.
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Chapter 4

Systems of PDEs involving real
functions arising from single PDEs
for a complex-valued function

In this Chapter we further explore Lie Symmetry methods for systems of PDEs. In
this case, these systems arise from separating the real and complex components of
a single PDE involving a complex valued function u. We use known results for that
particular PDE to determine a fundamental solution for the system arising from the
real and imaginary components respectively.

Consider the following Theorem from [23]:

Theorem 4.0.1. Suppose that γ 6= 2 and for a given g, h(x) = x1−γf(x) is a solution of
the Riccati equation

σxh′ − σh+
1

2
h2 + 2σx2−γg(x) = 2σAx2−γ +B. (4.1)

Then the PDE
ut = σxγuxx + f(x)ux − g(x)u, x ≥ 0 (4.2)

has a symmetry of the form

Ūε(t, x) =
1

(1 + 4εt)
1−γ
2−γ

exp

{
−4ε(x2−γ +Aσ(2− γ)2t2)

σ(2− γ)2(1 + 4εt)

}
×

exp


1

2σ

F
 x

(1 + 4εt)
2

2−γ

− F (x)


u

 t

1 + 4εt
,

x

(1 + 4εt)
2

2−γ

 ,

where F ′(x) = f(x)
xγ and u is a solution of (4.2). That is, for ε sufficiently small, Ūε is a

solution of (4.2) whenever u is. If u(t, x) = u0(x) with u0 an analytic, stationary solution,
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then there is a fundamental solution p(t, x, y) of (4.2) such that∫ ∞
0

e−λy
2−γ

u0(y)p(t, x, y)dy = Uλ(t, x). (4.3)

Here Uλ(t, x) = Ū 1
4
σ(2−γ)2λ(t, x). Further, if g = 0, then we may take u0 = 1, and the

fundamental solution arising from this choice satisfies
∫∞

0 p(t, x, y)dy = 1.

This theorem allows us to formulate the following result:

Theorem 4.0.2. Let α(x) and β(x) be real valued functions satisfying:σxα
′(x)− σα(x) + 1

2(α(x)2 − β(x)2) = 2σA1x+B1

σxβ′(x)− σβ(x) + α(x)β(x) = 2σA2x+B2,
(4.4)

for some σ ∈ R and Ai, Bi ∈ C, i = 1, 2. Then the systemvt = σxvxx + α(x)vx − β(x)wx

wt = σxwxx + β(x)vx + α(x)wx,
, x > 0, t > 0 (4.5)

has a fundamental matrix of the form:

P (x, t, z) =

 p11(x, t, z) p12(x, t, z)

p21(x, t, z) p22(x, t, z)

 , (4.6)

with

p11(x, t, z) =
1

σ
ṽ

(
x, t,

z

σ

)
p21(x, t, z) =

1

σ
w̃

(
x, t,

z

σ

)
p12(x, t, z) = ṽ

(
x, t,

z

σ

)(
z
β′(z)

β(z)2
− α(z)

σβ(z)
− z

β(z)

d

dz

)
+

1

σ
ṽ1

(
x, t,

z

σ

)
Iβ

p22(x, t, z) = w̃

(
x, t,

z

σ

)(
z
β′(z)

β(z)2
− α(z)

σβ(z)
− z

β(z)

d

dz

)
+

1

σ
w̃1

(
x, t,

z

σ

)
Iβ,

where Iβ denotes the integral operator defined as

Iβf(x) :=

∫ x

x0

f(s)

β(s)
ds.
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Here, the functions ṽ, w̃, ṽ1 and w̃1 are defined as follows:

ṽ(x, t, y) =

∫ ∞
0

v(x, t, ε)e−εydε ṽ1(x, t, y) =

∫ ∞
0

v1(x, t, ε)e−εydε

w̃(x, t, y) =

∫ ∞
0

w(x, t, ε)e−εydε w̃1(x, t, y) =

∫ ∞
0

w1(x, t, ε)e−εydε, (4.7)

where

v(x, t, ε) = exp(r(x, t, ε)) cos(s(x, t, ε))

w(x, t, ε) = exp(r(x, t, ε)) sin(s(x, t, ε))

v1(x, t, ε) = er(x,t,ε) cos
(
s(x, t, ε)

)(
−2εtA1

1 + εt
+
ε2(x+A1σt

2)

σ(1 + εt)2
−
εα( x

(1+εt)2 )

σ(1 + εt)

)

− er(x,t,ε) sin
(
s(x, t, ε)

)(
−2εtA2

1 + εt
+

ε2A2t
2

(1 + εt)2
−
εβ( x

(1+εt)2 )

σ(1 + εt)

)

w1(x, t, ε) = er(x,t,ε) sin
(
s(x, t, ε)

)(
−2εtA1

1 + εt
+
ε2(x+A1σt

2)

σ(1 + εt)2
−
εα( x

(1+εt)2 )

σ(1 + εt)

)

+ er(x,t,ε) cos(s(x, t, ε))

(
−2εtA2

1 + εt
+

ε2A2t
2

(1 + εt)2
−
εβ( x

(1+εt)2 )

σ(1 + εt)

)
,

with


r(x, t, ε) = − ε(x+A1σt2)
σ(1+εt) + 1

2σ

(
K
(

x
(1+εt)2

)
−K(x)

)
s(x, t, ε) = − εA2t2

1+εt + 1
2σ

(
L
(

x
(1+εt)2

)
− L(x)

)
K ′(x) = α(x)

x

L′(x) = β(x)
x

That is, a solution (V̄ (x, t) W̄ (x, t))> for the system (4.5), with initial condition V̄ (x, 0)

W̄ (x, 0)

 =

 m(x)

n(x)


can be written as V̄ (x, t)

W̄ (x, t)

 =

∫ ∞
0

 p11(x, t, z) p12(x, t, z)

p21(x, t, z) p22(x, t, z)


︸ ︷︷ ︸

P (x,t,z)

 m(z)

n(z)

 dz,

where the components pij(x, t, z) of the fundamental matrix P (x, t, z) are defined as above.
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Proof. Choose γ = 1 and g(x) ≡ 0 in Craddock’s theorem (4.0.1). We have that if f
satisfies the following Riccati equation with A,B ∈ C

σxf ′(x)− σf(x) +
1

2
f(x)2 = 2σAx+B, (4.8)

then the PDE
ut = σxuxx + f(x)ux, x ≥ 0 (4.9)

has a symmetry of the form

Ūε(x, t) = exp

−4ε(x+Aσt2)

σ(1 + 4εt)
+
F
(

x
(1+4εt)2

)
− F (x)

2σ

u

(
x

(1 + 4εt)2
,

t

1 + 4εt

)
,

(4.10)
where F ′(x) = f(x)

x .
Since u0 = 1 is a solution to (4.9) we have that

u(x, t, ε) = exp

(
−4ε(x+Aσt2)

σ(1 + 4εt)

)
exp

 1

2σ

(
F

(
x

(1 + 4εt)2

)
− F (x)

) (4.11)

is also a solution. Let us simplify this expression by taking ε→ ε
4 to get the solution

u(x, t, ε) = exp

(
−ε(x+Aσt2)

σ(1 + εt)

)
exp

 1

2σ

(
F

(
x

(1 + εt)2

)
− F (x)

) . (4.12)

Now, let f(x) = α(x) + iβ(x) and write u(x, t, ε) = v(x, t, ε) + iw(x, t, ε). With this,
equation (4.9) becomes

vt + iwt = σx(vxx + iwxx) + (α(x) + iβ(x))(vx + iwx), x ≥ 0 (4.13)

which translates into the system:vt = σxvxx + α(x)vx − β(x)wx

wt = σxwxx + β(x)vx + α(x)wx
, x ≥ 0 (4.14)

Observe also that the Riccati equation (4.8) becomes:

σx(α′(x)+ iβ′(x))−σ(α(x)+ iβ(x))+
1

2
(α(x)+ iβ(x))2 = 2σ(A1 + iA2)x+B1 + iB2,

(4.15)



Chapter 4. Systems of PDEs involving real functions arising from single PDEs for
a complex-valued function

89

which is equivalent toσxα
′(x)− σα(x) + 1

2(α(x)2 − β(x)2) = 2σA1x+B1

σxβ′(x)− σβ(x) + α(x)β(x) = 2σA2x+B2.
(4.16)

Note that the functions v(x, t, ε) and w(x, t, ε) corresponding to the real and imagi-
nary parts of the function u(x, t, ε) in (4.12) can be written respectively as:

v(x, t, ε) = exp
(
r(x, t, ε)

)
cos
(
s(x, t, ε)

)
w(x, t, ε) = exp

(
r(x, t, ε)

)
sin
(
s(x, t, ε)

)
, (4.17)

where 

r(x, t, ε) = −ε(x+A1σt2)
σ(1+εt) + 1

2σ

(
K
(

x
(1+εt)2

)
−K(x)

)
s(x, t, ε) = − εA2t2

1+εt + 1
2σ

(
L
(

x
(1+εt)2

)
− L(x)

)
K ′(x) = α(x)

x

L′(x) = β(x)
x .

(4.18)

Consider the pair v1(x, t, ε), w1(x, t, ε) given byv1(x, t, ε) = ∂
∂tv(x, t, ε)

w1(x, t, ε) = ∂
∂tw(x, t, ε)

(4.19)

and note that this pair is also a solution to our system.
The reader may check that the explicit expressions for v1 and w1 are given, respec-
tively, by:

v1(x, t, ε) = er(x,t,ε) cos
(
s(x, t, ε)

)(
−2εtA1

1+εt + ε2x
σ(1+εt)2 + ε2A1t2

(1+εt)2 −
εα( x

(1+εt)2
)

σ(1+εt)

)
−er(x,t,ε) sin

(
s(x, t, ε)

)(
−2εtA2

1+εt + ε2A2t2

(1+εt)2 −
εβ( x

(1+εt)2
)

σ(1+εt)

)
w1(x, t, ε) = er(x,t,ε) sin

(
s(x, t, ε)

)(
−2εtA1

1+εt + ε2x
σ(1+εt)2 + ε2A1t2

(1+εt)2 −
εα( x

(1+εt)2
)

σ(1+εt)

)
+er(x,t,ε) cos(s(x, t, ε))

(
−2εtA2

1+εt + ε2A2t2

(1+εt)2 −
εβ( x

(1+εt)2
)

σ(1+εt)

)
,

(4.20)

where the functions r(x, t, ε) and s(x, t, ε) are defined as in (4.18).
Next, for suitable functions φ and ψ, with sufficiently rapid decay, define the new
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solution V̄ (x, t) :=
∫∞

0 (φ(ε)v(x, t, ε) + ψ(ε)v1(x, t, ε))dε

W̄ (x, t) :=
∫∞

0 (φ(ε)w(x, t, ε) + ψ(ε)w1(x, t, ε))dε,
(4.21)

which has initial condition

V̄ (x, 0) :=
∫∞

0 (φ(ε)v(x, 0, ε) + ψ(ε)v1(x, 0, ε))dε

=
∫∞

0 (exp
(
− εx

σ

) (
φ(ε)− ε

σψ(ε)(α(x)− εx)
)
)dε

W̄ (x, 0) :=
∫∞

0 (φ(ε)w(x, 0, ε) + ψ(ε)w1(x, 0, ε))dε

=
∫∞

0 (exp
(
− εx

σ

) (
− ε
σψ(ε)β(x)

)
)dε.

Write the initial condition for each component as

V̄ (x, 0) =

∫ ∞
0

exp

(
−εx
σ

)(
φ(ε)− ε

σ
ψ(ε)(α(x)− εx)

)
dε := m(x) (4.22)

and
W̄ (x, 0) =

∫ ∞
0

exp

(
−εx
σ

)(
− ε
σ
ψ(ε)β(x)

)
dε := n(x) (4.23)

respectively.
The reader may check that expressions (4.22) and (4.23) yield the following pair

of ordinary differential equations for the Laplace transforms of the functions φ and
ψ:∫ ∞

0
φ(ε)e−

εx
σ dε+ α(x)

∫ ∞
0
− ε
σ
ψ(ε)e−

εx
σ dε+ σx

∫ ∞
0

(
ε

σ

)2

ψ(ε)e−
εx
σ dε = m(x)

⇐⇒ Φ

(
x

σ

)
+ α(x)

d

dx
Ψ

(
x

σ

)
+ σx

d2

dx2
Ψ

(
x

σ

)
= m(x),

and
β(x)

∫ ∞
0
− ε
σ
ψ(ε)e−

εx
σ dε = n(x)

⇐⇒ β(x)
d

dx
Ψ

(
x

σ

)
= n(x).

Here Φ and Ψ denote the Laplace transforms of φ and ψ respectively.
Solving the above system of ODEs, one may write the following expression for

the Laplace transforms Φ and Ψ in terms of the initial conditions m(x) and n(x): Φ
(
x
σ

)
Ψ
(
x
σ

)
 =

 1 σx β
′(x)

β(x)2 − α(x)
β(x) −

σx
β(x)

d
dx

0 Iβ

 m(x)

n(x)

 , (4.24)
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where Iβ denotes the integral operator defined by:

Iβf(x) :=

∫ x

x0

f(s)

β(s)
ds. (4.25)

Suppose we can write v, v1, w and w1 as Laplace transforms of some suitable func-
tions, i.e.

v(x, t, ε) = L(ṽ(x, t, y)) =

∫ ∞
0

ṽ(x, t, y)e−εydy,

v1(x, t, ε) = L(ṽ1(x, t, y)) =

∫ ∞
0

ṽ1(x, t, y)e−εydy,

w(x, t, ε) = L(w̃(x, t, y)) =

∫ ∞
0

w̃(x, t, y)e−εydy and

w1(x, t, ε) = L(w̃1(x, t, y)) =

∫ ∞
0

w̃1(x, t, y)e−εydy (4.26)

respectively. Then, using the above expressions, we can write V̄ (x, t)

W̄ (x, t)

 =

 ∫∞
0 φ(ε)v(x, t, ε)dε+

∫∞
0 ψ(ε)v1(x, t, ε)dε∫∞

0 φ(ε)w(x, t, ε)dε+
∫∞

0 ψ(ε)w1(x, t, ε)dε


=

 ∫∞
0 φ(ε)

(∫∞
0 ṽ(x, t, y)e−εydy

)
dε+

∫∞
0 ψ(ε)

(∫∞
0 ṽ1(x, t, y)e−εydy

)
dε∫∞

0 φ(ε)
(∫∞

0 w̃(x, t, y)e−εydy
)
dε+

∫∞
0 ψ(ε)

(∫∞
0 w̃1(x, t, y)e−εydy

)
dε


=

∫ ∞
0


(∫∞

0 φ(ε)e−εydε
)
ṽ(x, t, y) +

(∫∞
0 ψ(ε)e−εydε

)
ṽ1(x, t, y)(∫∞

0 φ(ε)e−εydε
)
w̃(x, t, y) +

(∫∞
0 ψ(ε)e−εydε

)
w̃1(x, t, y)

 dy

=

∫ ∞
0

 ṽ(x, t, y) ṽ1(x, t, y)

w̃(x, t, y) w̃1(x, t, y)

 Φ(y)

Ψ(y)

 dy

The change of variables z = σy and the expression (4.24) for the Laplace transforms
Φ and Ψ give: V̄ (x, t)

W̄ (x, t)

 =

∫ ∞
0

 ṽ(x, t, zσ ) ṽ1(x, t, zσ )

w̃(x, t, zσ ) w̃1(x, t, zσ )

 Φ( zσ )

Ψ( zσ )

 dz

σ

=

∫ ∞
0

 ṽ(x, t, zσ ) ṽ1(x, t, zσ )

w̃(x, t, zσ ) w̃1(x, t, zσ )

 1 σz β
′(z)

β(z)2 − α(z)
β(z) −

σz
β(z)

d
dz

0 Iβ

 m(z)

n(z)

 dz

σ
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That is, the solution can be expressed as V̄ (x, t)

W̄ (x, t)

 =

∫ ∞
0

 p11(x, t, z) p12(x, t, z)

p21(x, t, z) p22(x, t, z)


︸ ︷︷ ︸

P (x,t,z)

 m(z)

n(z)

 dz,

with  V̄ (x, 0)

W̄ (x, 0)

 =

 m(x)

n(n)

 ,

where the components pij(x, t, z) of the fundamental matrix P (x, t, z) are given by

p11(x, t, z) =
1

σ
ṽ

(
x, t,

z

σ

)
p21(x, t, z) =

1

σ
w̃

(
x, t,

z

σ

)
p12(x, t, z) = ṽ

(
x, t,

z

σ

)(
z
β′(z)

β(z)2
− α(z)

σβ(z)
− z

β(z)

d

dz

)
+

1

σ
ṽ1

(
x, t,

z

σ

)
Iβ

p22(x, t, z) = w̃

(
x, t,

z

σ

)(
z
β′(z)

β(z)2
− α(z)

σβ(z)
− z

β(z)

d

dz

)
+

1

σ
w̃1

(
x, t,

z

σ

)
Iβ,

and where Iβ denotes the integral operator defined before as

Iβf(x) :=

∫ x

x0

f(s)

β(s)
ds.

Hence P (x, t, z) defined as above is a fundamental matrix for the system (4.14).

Note. Observe that the above case could not have been handled through reduction
to the heat equation. Lie proved that a linear parabolic PDE in one dimension
can be mapped to the heat equation if and only if its Lie symmetry algebra is six
dimensional. Craddock and his coauthors have shown that this happens for exactly
one choice of the constant B in equation (4.1). Thus although some special cases
might be handled by reducing to the heat equation, the general case that we study
cannot be handled in this manner.

Let us now present two examples of systems of PDEs for which we can explic-
itly calculate a fundamental matrix P (x, t, z) as defined in theorem 4.0.2.

Example 4.0.1. Choice of constant functions α(x) and β(x)

The following result follows naturally from Theorem 4.0.2:
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Corollary. A solution (V̄ (x, t) W̄ (x, t))> for the system:vt = σxvxx + λ1vx − λ2wx

wt = σxwxx + λ2vx + λ1wx,
x, t > 0 (4.27)

with initial condition  V̄ (x, 0)

W̄ (x, 0)

 =

 m(x)

n(x)


can be written as V̄ (x, t)

W̄ (x, t)

 =

∫ ∞
0

 p11(x, t, z) p12(x, t, z)

p21(x, t, z) p22(x, t, z)


︸ ︷︷ ︸

P (x,t,z)

 m(z)

n(z)

 dz,

where the components pij(x, t, z) of the fundamental matrix P (x, t, z) are given by

p11(x, t, z) =
1

σ
ṽ

(
x, t,

z

σ

)
p21(x, t, z) =

1

σ
w̃

(
x, t,

z

σ

)
p12(x, t, z) = −ṽ

(
x, t,

z

σ

)(
λ1

σλ2
+

z

λ2

d

dz

)
+

1

σ
ṽ1

(
x, t,

z

σ

)
Iλ2

p22(x, t, z) = −w̃
(
x, t,

z

σ

)(
λ1

σλ2
+

z

λ2

d

dz

)
+

1

σ
w̃1

(
x, t,

z

σ

)
Iλ2 ,

and

ṽ

(
x, t,

z

σ

)
=
e−

x+z
σt

2t

(x
z

)σ−λ̄
2σ

I λ̄
σ
−1

(
2
√
xz

σt

)
+

(
x

z

)σ−λ
2σ

Iλ
σ
−1

(
2
√
xz

σt

)
w̃

(
x, t,

z

σ

)
=
ie−

x+z
σt

2t

(x
z

)σ−λ̄
2σ

I λ̄
σ
−1

(
2
√
xz

σt

)
−
(
x

z

)σ−λ
2σ

Iλ
σ
−1

(
2
√
xz

σt

)
ṽ1

(
x, t,

z

σ

)
=
e−

x+z
σt

2σt3

(x
z

)− λ̄
2σ

(
λ̄t

z

(
x+ z − λ̄t

)
− 2x

)
I λ̄
σ

(
2
√
xz

σt

)

+

(
x

z

)σ−λ
2σ

(x+ z − λt) Iσ+λ
σ

(
2
√
xz

σt

)
+

(
x

z

)σ−λ̄
2σ (

x+ z − λ̄t
)
Iσ+λ̄

σ

(
2
√
xz

σt

)

+

(
x

z

)− λ
2σ
(
λt

z
(x+ z − λt)− 2x

)
Iλ
σ

(
2
√
xz

σt

)
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w̃1

(
x, t,

z

σ

)
=
ie−

x+z
σt

2σt3

z(x
z

) 1
2
− λ̄

2σ

Iσ+λ̄
σ

(
2
√
xz

σt

)
− z

(
x

z

) 1
2
− λ

2σ

Iσ+λ
σ

(
2
√
xz

σt

)

+
(
λ̄t− 2x

)(x
z

)− λ̄
2σ

I λ̄
σ

(
2
√
xz

σt

)
+ (2x− λt)

(
x

z

)− λ
2σ

Iλ
σ

(
2
√
xz

σt

)

+ (λt− x)

(
x

z

) 1
2
− λ

2σ

Iλ−σ
σ

(
2
√
xz

σt

)
+
(
x− λ̄t

)(x
z

) 1
2
− λ̄

2σ

I λ̄−σ
σ

(
2
√
xz

σt

) ,

where λ = λ1 + iλ2 and λ̄ = λ1 − iλ2.
Hence, the matrix P (x, t, z) defined as above is a fundamental matrix for the system (4.27)

Proof. Let α(x) = λ1 and β(x) = λ2. It is straightforward to check that this choice
of functions α and β satisfies all the necessary conditions for theorem 4.0.2 to apply.
Observe that the system (4.4) is in this case:−σλ1 + 1

2(λ2
1 − λ2

2) = 2σA1x+B1

−σλ2 + λ1λ2 = 2σA2x+B2,
(4.28)

Therefore α and β are solutions of (4.4) for A1 = A2 = 0, B1 = 1
2(λ2

1 − λ2
2) − σλ1

and B2 = λ1λ2 − σλ2. Hence, theorem 4.0.2 holds for this example. That is, a
fundamental solution for the system (4.27) will be of the form given in theorem
4.0.2.

One need only calculate the explicit forms of the functions K(x) and L(x) ap-
pearing in (4.17) to later be able to obtain explicit forms for the functions ṽ, w̃, ṽ1

and w̃1. Observe that he have

K ′(x) =
λ1

x
=⇒ K(x) = λ1 log x,

L′(x) =
λ2

x
=⇒ L(x) = λ2 log x

Therefore the function ṽ = L−1(v) from (4.49) can be calculated to be:

ṽ(x, t, y) = L−1(v(x, t, ε))

= L−1

e−ε(x+A1σt
2)

σ(1+εt)
+

K

(
x

(1+εt)2

)
−K(x)

2σ cos

− εA2t
2

1 + εt
+
L
(

x
(1+εt)2

)
− L(x)

2σ




= L−1

e −εx
σ(1+εt)

+

λ1 log

(
x

(1+εt)2

)
−λ1 log x

2σ cos

λ2 log
(

x
(1+εt)2

)
− λ2 log x

2σ



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= L−1

exp

(
−εx

σ(1 + εt)
+
λ1

2σ
log

(
1

(1 + εt)2

))
cos

(
λ2

2σ
log

(
1

(1 + εt)2

))
= L−1

exp

(
−εx

σ(1 + εt)

)
(1 + εt)−

λ1
σ

1

2

eiλ2
2σ

log

(
1

(1+εt)2

)
+ e
−iλ2

2σ
log

(
1

(1+εt)2

)


= L−1

(
exp

(
−εx

σ(1 + εt)

)
(1 + εt)−

λ1
σ

1

2

(
(1 + εt)−i

λ2
σ + (1 + εt)i

λ2
σ

))

=
1

2
L−1

(
exp

(
−εx

σ(1 + εt)

)(
(1 + εt)−

λ1+iλ2
σ + (1 + εt)

iλ2−λ1
σ

))

=
1

2
L−1

e−(ε+ 1
t−

1
t )x

σt(ε+ 1
t )

t−λ1+iλ2
σ

(
ε+

1

t

)−λ1+iλ2
σ

+ t
iλ2−λ1

σ

(
ε+

1

t

) iλ2−λ1
σ




=
e−

x
σt

2
L−1

e x

σt2(ε+ 1
t )

t−λ1+iλ2
σ

(
ε+

1

t

)−λ1+iλ2
σ

+ t
iλ2−λ1

σ

(
ε+

1

t

) iλ2−λ1
σ




=
e−

x
σt
− y
t

2
L−1

(
exp

(
x

σt2ε

)(
t−

λ1+iλ2
σ ε−

λ1+iλ2
σ + t

iλ2−λ1
σ ε

iλ2−λ1
σ

))

=
e−

x
σt
− y
t

2

(
t−

λ1+iλ2
σ L−1

(
e

x
σt2ε ε−

λ1+iλ2
σ

)
+ t

iλ2−λ1
σ L−1

(
e

x
σt2ε ε

iλ2−λ1
σ

))

=
e−

x
σt
− y
t

2t

(
x

σy

)−λ1+iλ2+σ
2σ

Iλ1−iλ2
σ
−1

(
2

√
xy

t2σ

)

+
e−

x
σt
− y
t

2t

(
x

σy

)−λ1−iλ2+σ
2σ

Iλ1+iλ2
σ
−1

(
2

√
xy

t2σ

)

Using a similar argument one obtains the expression for w̃ = L−1(w):

w̃(x, t, y) = L−1(w(x, t, ε))

= L−1

e−ε(x+A1σt
2)

σ(1+εt)
+

K

(
x

(1+εt)2

)
−K(x)

2σ sin

− εA2t
2

1 + εt
+
L
(

x
(1+εt)2

)
− L(x)

2σ




= L−1

(
− i

2
exp

(
− xε

σ(1 + εt)

)(
(1 + εt)−

λ1+iλ2
σ − (1 + εt)

−λ1+iλ2
σ

))

= − ie
− x
σt

2
L−1

e x

σt2( 1
t+ε)

t−λ1+iλ2
σ

(
1

t
+ ε

)−λ1+iλ2
σ

− t
−λ1+iλ2

σ

(
1

t
+ ε

)−λ1+iλ2
σ






96
Chapter 4. Systems of PDEs involving real functions arising from single PDEs for

a complex-valued function

= − i
2
e−

x
σt
− y
t L−1

(
exp

(
x

σt2ε

)(
t−

λ1+iλ2
σ ε−

λ1+iλ2
σ − t

−λ1+iλ2
σ ε

−λ1+iλ2
σ

))

= − ie
− x
σt
− y
t

2t

(
x

σy

)−λ1−iλ2+σ
2σ

Iλ1+iλ2
σ
−1

(
2

√
xy

t2σ

)

+
ie−

x
σt
− y
t

2t

(
x

σy

)−λ1+iλ2+σ
2σ

Iλ1−iλ2
σ
−1

(
2

√
xy

t2σ

)

Finally, the inverse Laplace transforms ṽ1 = L−1(v1) and w̃1 = L−1(w1) can be
calculated to be the following (note that here we omit most of the algebra for these
two calculations but the arguments used are very similar to those used for ṽ and
w̃):

ṽ1(x, t, y) = L−1(v1(x, t, ε)) = L−1

(
∂

∂t
v(x, t, ε)

)

= L−1

e− xε
σ(1+εt)

ε(1 + εt)−
λ1+iλ2+2σ

σ

2σ

(
xε− (λ1 − iλ2) (1 + εt)

)
(1 + εt)

2iλ2
σ

+ e
− xε
σ(1+εt)

ε(1 + εt)−
λ1+iλ2+2σ

σ

2σ
(xε− (λ1 + iλ2) (1 + εt))


=
e−

x+σy
σt

2σt3

( x

σy

) 1
2
−λ1+iλ2

2σ (
x+ σy − (λ1 + iλ2) t

)
Iσ+λ1+iλ2

σ

(
2

√
xy

t2σ

)

+

(
x

σy

)−λ1+iλ2
2σ

(
(λ1 + iλ2) t

σy

(
x+ σy − (λ1 + iλ2) t

)
− 2x

)
Iλ1+iλ2

σ

(
2

√
xy

t2σ

)

+

(
x

σy

)−λ1−iλ2
2σ

(
(λ1 − iλ2) t

σy

(
x+ σy − (λ1 − iλ2) t

)
− 2x

)
Iλ1−iλ2

σ

(
2

√
xy

t2σ

)

+

(
x

σy

) 1
2
−λ1−iλ2

2σ (
x+ σy − (λ1 − iλ2) t

)
Iσ+λ1−iλ2

σ

(
2

√
xy

t2σ

)

w̃1(x, t, y) = L−1(w1(x, t, ε)) = L−1

(
∂

∂t
w(x, t, ε)

)
= L−1

(
− iε

2σ
e
− xε
σ(1+εt) (1 + εt)−

λ1+iλ2+2σ
σ

(
(λ1 − iλ2) (1 + εt)− xε

)
(1 + εt)

2iλ2
σ

+
iε

2σ
e
− xε
σ(1+εt) (1 + εt)−

λ1+iλ2+2σ
σ ((λ1 + iλ2) (1 + εt)− xε)

)

= − ie
− x
σt
− y
t

2σt3

(−2x+ (λ1 + iλ2) t
)( x

σy

)−λ1+iλ2
2σ

Iλ1+iλ2
σ

(
2

√
xy

t2σ

)
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+
(
2x− (λ1 − iλ2) t

)( x

σy

)−λ1−iλ2
2σ

Iλ1−iλ2
σ

(
2

√
xy

t2σ

)

+
(
x− (λ1 + iλ2) t

)( x

σy

) 1
2
−λ1+iλ2

2σ

Iλ1+iλ2
σ
−1

(
2

√
xy

t2σ

)

+
(
−x+ (λ1 − iλ2) t

)( x

σy

) 1
2
−λ1−iλ2

2σ

Iλ1−iλ2
σ
−1

(
2

√
xy

t2σ

)

+σy

(
x

σy

) 1
2
−λ1+iλ2

2σ

Iσ+λ1+iλ2
σ

(
2

√
xy

t2σ

)
−
(
x

σy

) iλ2
σ

Iσ+λ1−iλ2
σ

(
2

√
xy

t2σ

)


Substitution of these expressions into the general form for the fundamental solution
given in theorem 4.0.2 yields the desired result.

Example 4.0.2. Choice of α(x) = 2σx(c1+x)
(c1+x)2+c22

and β(x) = − 2σxc2
(c1+x)2+c22

The following result follows naturally from Theorem 4.0.2:

Corollary. Consider the systemvt = σxvxx + 2σx(c1+x)
(c1+x)2+c22

vx + 2σxc2
(c1+x)2+c22

wx

wt = σxwxx − 2σxc2
(c1+x)2+c22

vx + 2σx(c1+x)
(c1+x)2+c22

wx,
, x, t > 0 (4.29)

where both v(x, t) and w(x, t) are real-valued functions and where σ > 0, c1, c2 ∈ R. Then
a fundamental matrix for this system is

P (x, t, z) =

 p11(x, t, z) p12(x, t, z)

p21(x, t, z) p22(x, t, z)

 , (4.30)

where

p11(x, t, z) = e−
x+z
σt

(c1 + x)(c1 + z) + c2
2

σt
(
(c1 + x)2 + c2

2

) √x

z
I1

(
2

√
xz

tσ

)
+
c1(c1 + x) + c2

2

(c1 + x)2 + c2
2

δ(z)


p21(x, t, z) =

c2e
−x+z

σt

(c1 + x)2 + c2
2

(x− z)
σt

√
x

z
I1

(
2

√
xz

tσ

)
+ xδ(z)


p12(x, t, z) = ṽ

(
x, t,

z

σ

)(
−(c1 + z) (c1 − 3z) + c2

2

2c2σz
+

(c1 + z)2 + c2
2

2c2σ

d

dz

)

+
1

σ
ṽ1

(
x, t,

z

σ

)
Iβ
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p22(x, t, z) = w̃

(
x, t,

z

σ

)(
−(c1 + z) (c1 − 3z) + c2

2

2c2σz
+

(c1 + z)2 + c2
2

2c2σ

d

dz

)

+
1

σ
w̃1

(
x, t,

z

σ

)
Iβ,

and where Iβ denotes the integral operator defined as

Iβf(x) := −
∫ x

x0

(c1 + s)2 + c2
2

2σsc2
f(s)ds.

In the above expressions,

ṽ(x, t, y) = L−1(v(x, t, ε))

= e−
x
σt
− y
t

(c1 + x)(c1 + σy) + c2
2

y
(
(c1 + x)2 + c2

2

) √
xy

σt2
I1

(
2

√
xy

t2σ

)
+
c1(c1 + x) + c2

2

(c1 + x)2 + c2
2

δ(y)


w̃(x, t, y) = L−1(w(x, t, ε))

=
e−

x
σt
− y
t

(c1 + x)2 + c2
2

(c2(x− σy))

y

√
xy

σt2
I1

(
2

√
xy

t2σ

)
+ c2xδ(y)


ṽ1(x, t, y) = L−1(v1(x, t, ε))

= e−
x
σt
− y
t

xt (c1(c1 + x) + c2
2

)
σt3((c1 + x)2 + c2

2)
δ(y)−

2x
(
c1(c1 + x) + c2

2

)
σt3((c1 + x)2 + c2

2)
I0

(
2

√
xy

t2σ

)

+

(
c1(c1 + x) + c2

2

)
(x+ σy) + σy(c1 + x)(x− 2σt)

σt3((c1 + x)2 + c2
2)

√
x

σy
I1

(
2

√
xy

t2σ

)

+
σy(c1 + x)

√
xσy

σt3((c1 + x)2 + c2
2)
I3

(
2

√
xy

t2σ

)
− 2σy(c1 + x)(x− σt)

σt3((c1 + x)2 + c2
2)
I2

(
2

√
xy

t2σ

)
w̃1(x, t, y) = L−1(w1(x, t, ε))

= e−
x
σt
− y
t

 √
σyxc2

((c1 + x)2 + c2
2)σt3

(2σt+
x2

σy

)
I1

(
2

√
xy

t2σ

)
− σyI3

(
2

√
xy

t2σ

)
+

x2c2

((c1 + x)2 + c2
2)σt3

tδ(y)− 2I0

(
2

√
xy

t2σ

)
+

c2(2σy(x− σt))
((c1 + x)2 + c2

2)σt3
I2

(
2

√
xy

t2σ

)
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That is, a solution (V̄ (x, t) W̄ (x, t))> for the system (4.29) with initial condition V̄ (x, 0)

W̄ (x, 0)

 =

 m(x)

n(x)


can be written as V̄ (x, t)

W̄ (x, t)

 =

∫ ∞
0

 p11(x, t, z) p12(x, t, z)

p21(x, t, z) p22(x, t, z)


︸ ︷︷ ︸

P (x,t,z)

 m(z)

n(z)

 dz,

with the matrix P (x, t, z) defined as above.

Proof. Let α(x) = 2σx(c1+x)
(c1+x)2+c22

and β(x) = − 2σxc2
(c1+x)2+c22

. The reader may check that
this pair of functions solves the system (4.4) for A1 = A2 = B1 = B2 = 0, that is, α
and β are solutions of:σxα

′(x)− σα(x) + 1
2(α(x)2 − β(x)2) = 0

σxβ′(x)− σβ(x) + α(x)β(x) = 0.
(4.31)

Hence a fundamental solution for the system (4.29) will be of the form given in
theorem 4.0.2.
Computation of the functions K and L appearing in (4.17) can be done as follows:

K ′(x) =
α(x)

x
=

σ(2c1 + 2x)

c2
1 + c2

2 + x2 + 2c1x
=⇒ K(x) = σ log((c1 + x)2 + c2

2),

L′(x) =
β(x)

x
= − 2σc2

(c1 + x)2 + c2
2

=⇒ L(x) = −2σ tan−1

(
c1 + x

c2

)
.

Substitution of these expressions into the general for of the functions ṽ, w̃, ṽ1 and
w̃2 gives

ṽ(x, t, y) = L−1(v(x, t, ε))

= L−1

e−ε(x+A1σt
2)

σ(1+εt)
+

K

(
x

(1+εt)2

)
−K(x)

2σ cos

− εA2t
2

1 + εt
+
L
(

x
(1+εt)2

)
− L(x)

2σ




= L−1

exp

 −εx
σ(1 + εt)

+
1

2
log

(c1 + x
(1+εt)2 )2 + c2

2

(c1 + x)2 + c2
2




× cos

tan−1

(
c1 + x

c2

)
− tan−1

(
c1 + x

(1+εt)2

c2

)

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= L−1

exp

(
−εx

σ(1 + εt)

)√(c1 + x
(1+εt)2 )2 + c2

2

(c1 + x)2 + c2
2

× cos

tan−1

(
c1 + x

c2

)
− tan−1

(
c1 + x

(1+εt)2

c2

)


= L−1

(
exp

(
−εx

σ(1 + εt)

)
c1x(2 + εt(2 + εt)) + (c2

1 + c2
2)(1 + εt)2 + x2

(tε+ 1)2
(
(c1 + x)2 + c2

2

) )

=
1(

(c1 + x)2 + c2
2

)L−1

e −εx
σ(1+εt)

(
c1xt

2ε2

(1 + εt)2
+

2c1x

(1 + εt)
+ c2

1 + c2
2 +

x2

(1 + εt)2

)
=

e−
x
σt(

(c1 + x)2 + c2
2

)L−1

e x

σt2(ε+ 1
t )

(
c2

1 + c2
2 +

x2

t2(ε+ 1
t )

2
+ c1x+

c1x

t2(ε+ 1
t )

2

)
=

e−
x
σt
− y
t(

(c1 + x)2 + c2
2

)L−1

(
e

x
σt2ε

(
c2

1 + c2
2 + c1x+

x(c1 + x)

t2ε2

))

= e−
x
σt
− y
t

(c1 + x)(c1 + σy) + c2
2

y
(
(c1 + x)2 + c2

2

) √
xy

σt2
I1

(
2

√
xy

t2σ

)
+
c1(c1 + x) + c2

2

(c1 + x)2 + c2
2

δ(y)

 .

Similarly, the reader may check that we obtain

w̃(x, t, y) = L−1(w(x, t, ε))

= L−1

e−ε(x+A1σt
2)

σ(1+εt)
+

K

(
x

(1+εt)2

)
−K(x)

2σ sin

− εA2t
2

1 + εt
+
L
(

x
(1+εt)2

)
− L(x)

2σ




= L−1

(
exp

(
−εx

σ(1 + εt)

)
c2txε(2 + εt)

(1 + εt)2
(
(c1 + x)2 + c2

2

))

=
e−

x
σt

(c1 + x)2 + c2
2

L−1

e x

σt2(ε+ 1
t )

(
c2x−

c2x

t2(ε+ 1
t )

2

)
=

e−
x
σt
− y
t

(c1 + x)2 + c2
2

L−1

(
e

x
σt2ε

(
c2x−

c2x

t2ε2

))

=
e−

x
σt
− y
t

(c1 + x)2 + c2
2

(c2(x− σy))

y

√
xy

σt2
I1

(
2

√
xy

t2σ

)
+ c2xδ(y)

 ,

and that some basic algebraic manipulation (similar to that used for ṽ and w̃) pro-
duces the following expressions for ṽ1 and w̃1:
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ṽ1(x, t, y) = L−1(v1(x, t, ε))

=
e−

x
σt
− y
t

(c1 + x)2 + c2
2

L−1

e x
σt2ε

x (c2
1 + c2

2

)
+ 2c1x

2 + x3

σt4ε2
−

2
(
x
(
c2

1 + c2
2

)
+ c1x

2
)

σt3ε


+ e

x
σt2ε

(
x
(
c2

1 + c2
2

)
+ c1x

2

σt2
+
x2(c1 + x)

σt6ε4
− 2x2(c1 + x)

σt5ε3

)

+ e
x

σt2ε

(
2x(c1 + x)

t4ε3
− 2x(c1 + x)

t3ε2

))

= e−
x
σt
− y
t

xt (c1(c1 + x) + c2
2

)
σt3((c1 + x)2 + c2

2)
δ(y)−

2x
(
c1(c1 + x) + c2

2

)
σt3((c1 + x)2 + c2

2)
I0

(
2

√
xy

t2σ

)

+

(
c1(c1 + x) + c2

2

)
(x+ σy) + σy(c1 + x)(x− 2σt)

σt3((c1 + x)2 + c2
2)

√
x

σy
I1

(
2

√
xy

t2σ

)

+
σy(c1 + x)

√
xσy

σt3((c1 + x)2 + c2
2)
I3

(
2

√
xy

t2σ

)
− 2σy(c1 + x)(x− σt)

σt3((c1 + x)2 + c2
2)
I2

(
2

√
xy

t2σ

)
and

w̃1(x, t, y) = L−1(w1(x, t, ε))

=
xc2e

− x
σt
− y
t

(c1 + x)2 + c2
2

L−1

(
e

x
σt2ε

(
− 2x

σt3ε
+

x

σt2
− x

σt6ε4
+

2x

σt5ε3
− 2

t4ε3
+

2

t3ε2

))

= e−
x
σt
− y
t

 √
σyxc2

((c1 + x)2 + c2
2)σt3

(2σt+
x2

σy

)
I1

(
2

√
xy

t2σ

)
− σyI3

(
2

√
xy

t2σ

)
+

x2c2

((c1 + x)2 + c2
2)σt3

tδ(y)− 2I0

(
2

√
xy

t2σ

)
+

c2(2σy(x− σt))
((c1 + x)2 + c2

2)σt3
I2

(
2

√
xy

t2σ

)
Again, substitution of these expressions in the general form for the matrix P (x, t, z)

given in theorem 4.0.2 yields the desired result.

4.1 A more general result

The results obtained so far in this chapter can actually be generalised using the
original form of Theorem 4.0.1. We will distinguish between two different cases



102
Chapter 4. Systems of PDEs involving real functions arising from single PDEs for

a complex-valued function

depending on the choice of g in Theorem 4.0.1:

(I) g(x) ≡ 0. For this choice of the function g, equation (4.2) has u0 = 1 as a
stationary solution, so we might develop our techniques from this starting
point. Note that in this case the aim will be to obtain a fundamental matrix
for the system of PDEsvt = σxγvxx + f1(x)vx − f2(x)wx

wt = σxγwxx + f2(x)vx + f1(x)wx,
x ≥ 0 (4.32)

provided that the functions f1 and f2 satisfy−γσx
1−γf1(x) + σx2−γf ′1(x) + 1

2x
2(1−γ)(f1(x)2 − f2(x)2) = 2σA1x

2−γ +B1

−γσx1−γf2(x) + σx2−γf ′2(x) + x2(1−γ)f1(x)f2(x) = 2σA2x
2−γ +B2

(4.33)

(II) g 6= 0. In this case, since u = 1 is not a solution, we will first need to find an
appropriate stationary solution of (4.2) to be able to apply our methodology.
The outcome here will be a method to compute, for appropriate choices of the
function g, a fundamental matrix for the systemvt = σxγvxx + f1(x)vx − f2(x)wx − g1(x)v + g2(x)w

wt = σxγwxx + f2(x)vx + f1(x)wx − g2(x)v − g1(x)w,
x ≥ 0 (4.34)

for any choice of functions f1 and f2 satisfyingσx
2−γ(f ′1(x) + 2g1(x))− γσx1−γf1(x)+ 1

2x
2(1−γ)(f1(x)2−f2(x)2) = 2σA1x

2−γ+B1

σx2−γ(f ′2(x) + 2g2(x))− γσx1−γf2(x) + x2(1−γ)f1(x)f2(x) = 2σA2x
2−γ +B2

(4.35)

4.1.1 Case (I): Starting from the stationary solution u0 = 1

The most general form of theorem 4.0.1 allows us to state the following theorem:

Theorem 4.1.1. Let Ai, Bi ∈ R for i = 1, 2 and let σ, γ ∈ R with γ 6= 2.
Suppose further that v(t, x) and w(t, x) are real-valued functions and that f1(x), f2(x) are
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also real-valued functions, satisfying−γσx
1−γf1(x) + σx2−γf ′1(x) + 1

2x
2(1−γ)(f1(x)2 − f2(x)2) = 2σA1x

2−γ +B1

−γσx1−γf2(x) + σx2−γf ′2(x) + x2(1−γ)f1(x)f2(x) = 2σA2x
2−γ +B2.

(4.36)

Then the system of PDEsvt = σxγvxx + f1(x)vx − f2(x)wx

wt = σxγwxx + f2(x)vx + f1(x)wx,
x, t > 0 (4.37)

has a fundamental matrix P (t, x, y) given by:

y1−γ

σ(2− γ)

 ṽ(t, x, y2−γ

(2−γ)2σ
) ṽ1(t, x, y2−γ

(2−γ)2σ
)

w̃(t, x, y2−γ

(2−γ)2σ
) w̃1(t, x, y2−γ

(2−γ)2σ
)

 1 σyγ
f ′2(y)
f2(y)2 − f1(y)

f2(y) −
σyγ

f2(y)
d
dy

0 If2


︸ ︷︷ ︸

P (t,x,y)

,

(4.38)

where
If2g(y) :=

∫ y

y0

g(s)

f2(s)
ds, (4.39)

and where the functions ṽ, w̃, ṽ1 and w̃1 are given by

ṽ(t, x, z) = L−1(v(t, x, ε)), w̃(t, x, z) = L−1(w(t, x, ε))

ṽ1(t, x, z) = L−1(v1(t, x, ε)), w̃1(t, x, z) = L−1(w1(t, x, ε))

for 

v(t, x, ε) = (1 + εt)
− 1−γ

2−γ cos

− εA2t2

1+εt + 1
2σ

F2

(
x

(1+εt)
2

2−γ

)
− F2(x)




× exp

−ε(x2−γ+A1σ(2−γ)2t2)
σ(2−γ)2(1+εt)

+ 1
2σ

F1

(
x

(1+εt)
2

2−γ

)
− F1(x)




w(t, x, ε) = (1 + εt)
− 1−γ

2−γ sin

− εA2t2

1+εt + 1
2σ

F2

(
x

(1+εt)
2

2−γ

)
− F2(x)




× exp

−ε(x2−γ+A1σ(2−γ)2t2)
σ(2−γ)2(1+εt)

+ 1
2σ

F1

(
x

(1+εt)
2

2−γ

)
− F1(x)



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where F ′1(x) = f1(x)
xγ , F ′2(x) = f2(x)

xγ , andv1(t, x, ε) = ∂
∂tv(t, x, ε)

w1(t, x, ε) = ∂
∂tw(t, x, ε).

(4.40)

That is, a solution (V̄ (x, t) W̄ (x, t))> for the system (4.37) with initial condition V̄ (x, 0)

W̄ (x, 0)

 =

 m(x)

n(x)


can be written as V̄ (x, t)

W̄ (x, t)

 =

∫ ∞
0

 p11(x, t, z) p12(x, t, z)

p21(x, t, z) p22(x, t, z)


︸ ︷︷ ︸

P (x,t,z)

 m(z)

n(z)

 dz,

with the matrix P (x, t, z) defined as above.

Proof. Consider Craddock’s theorem 4.0.1. Suppose σ ∈ R and γ 6= 2. Write A =

A1 + iA2 and B = B1 + iB2.
Let u(t, x) = v(t, x) + iw(t, x) and f(x) = f1(x) + if2(x). Then for g(x) ≡ 0 we have
that equation (4.2) and (4.1) in Theorem 4.0.1 read as:

vt + iwt = σxγ(vxx + iwxx) + (f1(x) + if2(x))(vx + iwx), x ≥ 0 (4.41)

and

σx(x1−γ(f1 + if2))′−σ(x1−γ(f1 + if2))+
1

2
(x1−γ(f1 + if2))2 = 2σAx2−γ +B. (4.42)

This is equivalent to considering the system of PDEs:vt = σxγvxx + f1(x)vx − f2(x)wx

wt = σxγwxx + f2(x)vx + f1(x)wx,
x ≥ 0 (4.43)

subject to the condition that f1 and f2 satisfy−γσx
1−γf1(x) + σx2−γf ′1(x) + 1

2x
2(1−γ)(f1(x)2 − f2(x)2) = 2σA1x

2−γ +B1

−γσx1−γf2(x) + σx2−γf ′2(x) + x2(1−γ)f1(x)f2(x) = 2σA2x
2−γ +B2

(4.44)
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Clearly u0 = 1, i.e. v0 = 1, w0 = 0, is a stationary solution of (4.43).
The symmetry Ūε in Theorem 4.0.1 applied to this stationary solution u0 yields the
new solution:

Ūε(t, x) =
1

(1 + 4εt)
1−γ
2−γ

exp

{
−4ε(x2−γ + (A1 + iA2)σ(2− γ)2t2)

σ(2− γ)2(1 + 4εt)

}
×

exp


1

2σ

F1

 x

(1 + 4εt)
2

2−γ

+ iF2

 x

(1 + 4εt)
2

2−γ

− F1(x)− iF2(x)


 ,

where F ′1(x) = f1(x)
xγ , F ′2(x) = f2(x)

xγ . Or, alternatively, making the change ε → ε/4

we get

Uε(t, x) =
1

(1 + εt)
1−γ
2−γ

exp

{
−ε(x2−γ + (A1 + iA2)σ(2− γ)2t2)

σ(2− γ)2(1 + εt)

}
×

exp


1

2σ

F1

 x

(1 + εt)
2

2−γ

+ iF2

 x

(1 + εt)
2

2−γ

− F1(x)− iF2(x)


 .

That is, the pair

v(t, x, ε) = (1 + εt)
− 1−γ

2−γ cos

− εA2t2

1+εt + 1
2σ

F2

(
x

(1+εt)
2

2−γ

)
− F2(x)




× exp

−ε(x2−γ+A1σ(2−γ)2t2)
σ(2−γ)2(1+εt)

+ 1
2σ

F1

(
x

(1+εt)
2

2−γ

)
− F1(x)




w(t, x, ε) = (1 + εt)
− 1−γ

2−γ sin

− εA2t2

1+εt + 1
2σ

F2

(
x

(1+εt)
2

2−γ

)
− F2(x)




× exp

−ε(x2−γ+A1σ(2−γ)2t2)
σ(2−γ)2(1+εt)

+ 1
2σ

F1

(
x

(1+εt)
2

2−γ

)
− F1(x)




is a solution of (4.43). Clearly, the pair (v1(t, x, ε) w1(t, x, ε))> defined as v1(t, x, ε)

w1(t, x, ε)

 =

 ∂
∂tv(t, x, ε)
∂
∂tw(t, x, ε)

 (4.45)
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is also a solution to our system, where the explicit expressions for the components
v1 and w1 are given by:

v1(t, x, ε) = − ea(t,x,ε) sin(b(t,x,ε))

(1+εt)
3− 1

2−γ

A2tε(2 + εt)−
εx1−γf2

 x

(1+εt)
2

2−γ


(γ−2)σ(1+εt)

− γ
2−γ



− ea(t,x,ε) cos(b(t,x,ε))

(1+εt)
3− 1

2−γ

A1tε(2 + εt) +

εx1−γf1

 x

(1+εt)
2

2−γ


(2−γ)σ(tε+1)

− γ
2−γ

+ ε(1−γ)(1+εt)
2−γ − ε2x2−γ

(γ−2)2σ



w1(t, x, ε) = − ea(t,x,ε) cos(b(t,x,ε))

(1+εt)
3− 1

2−γ

A2tε(2 + εt)−
εx1−γf2

 x

(1+εt)
2

2−γ


(γ−2)σ(1+εt)

− γ
2−γ



+
ea(t,x,ε) sin(b(t,x,ε))

(1+εt)
3− 1

2−γ

A1tε(2 + εt) +

εx1−γf1

 x

(1+εt)
2

2−γ


(2−γ)σ(1+εt)

− γ
2−γ

− ε(γ−1)(1+εt)
2−γ − ε2x2−γ

(γ−2)2σ


with 

a(t, x, ε) := − ε(A1(γ−2)2σt2+x2−γ)
(γ−2)2σ(1+εt)

− 1
2σ

(
F1(x)− F1

(
x

(1+εt)
2

2−γ

))
b(t, x, ε) := A2t2ε

1+εt + 1
2σ

(
F2(x)− F2

(
x

(1+εt)
2

2−γ

))
.

Consider, for suitable functions φ and ψ with sufficiently rapid decay, the usual
construction of a new solution given by V (t, x)

W (t, x)

 =

∫ ∞
0

 φ(ε)v(t, x, ε) + ψ(ε)v1(t, x, ε)

φ(ε)w(t, x, ε) + ψ(ε)w1(t, x, ε)

 dε, (4.46)

which, as the reader may easily check, has initial condition

 V (0, x)

W (0, x)

 =


∫∞

0 e
− εx2−γ

(2−γ)2σ

(
φ(ε)− εψ(ε)

2−γ

(
(1− γ) + f1(x)x1−γ

σ − εx2−γ

(2−γ)σ

))
dε∫∞

0 −e
− εx2−γ

(2−γ)2σ εf2(x)x1−γψ(ε)
(2−γ)σ dε


:=

 m(x)

n(x)

 .
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Such initial condition may be written individually for each component as

∫ ∞
0

φ(ε)e
− εx2−γ

(2−γ)2σ dε+ f1(x)

∫ ∞
0

(
− εx1−γ

σ(2− γ)

)
ψ(ε)e

− εx2−γ
(2−γ)2σ dε

+
σ

x−γ

∫ ∞
0

(
ε2x2−2γ

σ2(2− γ)2
− ε(1− γ)x−γ

σ(2− γ)

)
ψ(ε)e

− εx2−γ
(2−γ)2σ dε = m(x)

⇐⇒ Φ

(
x2−γ

(2− γ)2σ

)
+ f1(x)

d

dx
Ψ

(
x2−γ

(2− γ)2σ

)
+ σxγ

d2

dx2
Ψ

(
x2−γ

(2− γ)2σ

)
= m(x)

and

f2(x)

∫ ∞
0
− εx1−γ

σ(2− γ)
ψ(ε)e

− εx2−γ
(2−γ)2σ dε = n(x)

⇐⇒ f2(x)
d

dx
Ψ

(
x2−γ

(2− γ)2σ

)
= n(x)

respectively. Hence we may write : Φ
(

x2−γ

(2−γ)2σ

)
Ψ
(

x2−γ

(2−γ)2σ

)
 =

 1 σxγ
f ′2(x)
f2(x)2 − f1(x)

f2(x) −
σxγ

f2(x)
d
dx

0 If2


︸ ︷︷ ︸

C(x)

 m(x)

n(x)

 , (4.47)

where If2 denotes the integral operator defined by:

If2g(x) :=

∫ x

x0

g(s)

f2(s)
ds. (4.48)

Then, as usual, suppose we can write

v(t, x, ε) = L(ṽ(t, x, z)) =

∫ ∞
0

ṽ(t, x, z)e−εzdz,

v1(t, x, ε) = L(ṽ1(t, x, z)) =

∫ ∞
0

ṽ1(t, x, z)e−εzdz,

w(t, x, ε) = L(w̃(t, x, z)) =

∫ ∞
0

w̃(t, x, z)e−εzdz and

w1(t, x, ε) = L(w̃1(t, x, z)) =

∫ ∞
0

w̃1(t, x, z)e−εzdz (4.49)

so that  V (t, x)

W (t, x)

 =

∫ ∞
0

 ṽ(t, x, z) ṽ1(t, x, z)

w̃(t, x, z) w̃1(t, x, z)

 Φ(z)

Ψ(z)

 dz
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Then the change of variables z = y2−γ

(2−γ)2σ
, together with expression(4.47), produce

V (t, x)

W (t, x)

 =

∫ ∞
0

ṽ(t, x, y2−γ

(2−γ)2σ
) ṽ1(t, x, y2−γ

(2−γ)2σ
)

w̃(t, x, y2−γ

(2−γ)2σ
) w̃1(t, x, y2−γ

(2−γ)2σ
)


︸ ︷︷ ︸

L

(
t,x, y2−γ

σ(2−γ)2

)

Φ( y2−γ

(2−γ)2σ
)

Ψ( y2−γ

(2−γ)2σ
)

 y1−γ

σ(2− γ)
dy

=

∫ ∞
0

L

(
t, x,

y2−γ

σ(2− γ)2

)
C(y)

 m(y)

n(y)

 y1−γ

σ(2− γ)
dy,

which gives the desired result.

4.1.2 Case (II): Starting from any other stationary solution

Suppose σ ∈ R and γ 6= 2. Write A = A1 + iA2 and B = B1 + iB2.
Let u(t, x) = v(t, x) + iw(t, x) and f(x) = f1(x) + if2(x).
Then for g(x) = g1(x) + ig(x) 6= 0 we have that equation (4.2) and (4.1) in Theorem
4.0.1 read as:

vt+iwt = σxγ(vxx+iwxx)+(f1(x)+if2(x))(vx+iwx)−(g1(x)+ig2(x))(v+iw), x ≥ 0

(4.50)
and

σx(x1−γ(f1 + if2))′ − σ(x1−γ(f1 + if2)) +
1

2
(x1−γ(f1 + if2))2 + 2σx2−γ(g1 + ig2)

= 2σ(A1 + iA2)x2−γ + (B1 + iB2).

This case is equivalent to considering the system of PDEs:vt = σxγvxx + f1(x)vx − f2(x)wx − g1(x)v + g2(x)w

wt = σxγwxx + f2(x)vx + f1(x)wx − g2(x)v − g1(x)w,
x ≥ 0 (4.51)

subject to the condition that f1 and f2 satisfyσx
2−γ(f ′1(x) + 2g1(x))− γσx1−γf1(x)+ 1

2x
2(1−γ)(f1(x)2− f2(x)2) = 2σA1x

2−γ+B1

σx2−γ(f ′2(x) + 2g2(x))− γσx1−γf2(x) + x2(1−γ)f1(x)f2(x) = 2σA2x
2−γ +B2

(4.52)

In this case, v = 1, w = 0 is not a solution, so we cannot proceed as in the previous
case. Here, if we wish to obtain a similar result to Theorem 4.1.1, we need to find
(for our particular choice of g) an analytic stationary solution u0(x) of the PDE
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ut = σxγuxx + f(x)ux − g(x)u, x ≥ 0 (4.53)

and then transform it according to the symmetry in Theorem 4.0.1, that is, construct
the solution

U(t, x, ε) =

exp

(
−4ε(x2−γ+Aσ(2−γ)2t2)

σ(2−γ)2(1+4εt)
+

F

(
x/(1+4εt)

2
2−γ

)
−F (x)

2σ

)
(1 + 4εt)

1−γ
2−γ

u0

 x

(1 + 4εt)
2

2−γ

 ,

(4.54)
where F ′(x) = f(x)

xγ .
With this, by separating the real and imaginary parts in (4.54), we can follow

the argument in the previous case to obtain a fundamental matrix for the system
(4.51) in a similar way as we did in Section 4.1.1 for the system (4.37). However, we
have not yet obtained a stationary solution to this problem with a general function
g. This line of study is open for future work. We would like to consider particular
choices of g for which a stationary solution can be easily found.

4.2 Extension to more complicated cases

The results in the previous section can be extended to the computation of funda-
mental matrices for systems of the type (4.32) and (4.34) for a wider class of func-
tions f1 and f2. We do not write down any results here for these cases. We only
wish to do the preliminaries and we will leave these extensions for future work.
The details for the fundamental matrices for these other cases become extremely
complicated and so we have not pursued this in this work. However, we wish to
indicate what kind of results can be obtained as an extension of those obtained in
the previous section. To do so, we need the following two results from Craddock.
[23]

Theorem 4.2.1. [[23]] Suppose that γ 6= 2 and that for a given g, the drift f in the PDE
(4.2) is such that h(x) = x1−γf(x) satisfies the Riccati equation

σxh′ − σh+
1

2
h2 + 2σx2−γg(x) =

A

2(2− γ)2
x4−2γ +

B

2− γ
x2−γ + C, (4.55)

where A > 0, B and C are arbitraty constants. Let u0 be an analytic, stationary solution
of (4.2). Then for ε sufficiently small (4.2) has a solution
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Ūε(t, x) = (1 + 2ε2(cosh(
√
At)− 1) + 2ε sinh(

√
At))−c

×

∣∣∣∣∣∣cosh(
√
At
2 ) + (1 + 2ε) sinh(

√
At
2 )

cosh(
√
At
2 )− (1− 2ε) sinh(

√
At
2 )

∣∣∣∣∣∣
B

2σ
√
A(2−γ)

e
− 1

2σ
F (x)− Bt

σ(2−γ)

× exp

{
−
√
Aεx2−γ(cosh(

√
At) + ε sinh(

√
At))

σ(2− γ)2(1 + 2ε2(cosh(
√
At)− 1) + 2ε sinh(

√
At))

}

× exp

 1

2σ
F

 x

(1 + 2ε2(cosh(
√
At)− 1) + 2ε sinh(

√
At))

1
2−γ




× u0

 x

(1 + 2ε2(cosh(
√
At)− 1) + 2ε sinh(

√
At))

1
2−γ

 ,

where F ′(x) = f(x)
xγ and c = 1−γ

2−γ . Furthermore, there exists a fundamental solution
p(t, x, y) of (4.2) such that∫ ∞

0
e−λy

2−γ
u0(y)p(t, x, y)dy = Uλ(t, x). (4.56)

in which Uλ(t, x) = Ūσ(2−γ)2λ√
A

(t, x). If g = 0, then we may take u0 = 1, and the funda-

mental solution satisfies
∫∞

0 p(t, x, y)dy = 1.

Theorem 4.2.2. [[23]] Suppose that γ 6= 2 and that for a given g, h(x) = x1−γf(x) is a
solution of the Riccati equation

σxh′ − σh+
1

2
h2 + 2σx2−γg(x) =

Ax4−2γ

2(2− γ)2
+
Bx3− 3

2
γ

3− 3
2γ

+
Cx2−γ

2− γ
− κ, (4.57)

where κ = γ
8 (γ − 4)σ2, γ 6= 2 and A > 0. Let u0 be an analytic stationary solution of

the PDE (4.2). Define the following constants: a = C
2σ(2−γ) , b = (1−γ)

√
A

2(2−γ) , k = 2(2−γ)B

3
√
A

,

d = B2

9Aσ , l = Bγ
3Ak and s = a+d√

A
−

√
Ak2

2σ(2−γ)2 . Let ε be sufficiently small and

X(ε, x, t) =

 x1− γ
2 + k√

1 + 2ε2(cosh(
√
At)− 1) + 2ε sinh(

√
At)
− k


2

2−γ

,

and F ′(x) = f(x)
xγ . Then equation (4.2) has a solution
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Ūε(t, x) =
xl(1 + 2ε2(cosh(

√
At)− 1) + 2ε sinh(

√
At))

− 2b√
A

(k + kx
γ
2 (1−

√
1 + 2ε2(cosh(

√
At)− 1) + 2ε sinh(

√
At)))l

×

∣∣∣∣∣∣cosh(
√
At
2 ) + (1 + 2ε) sinh(

√
At
2 )

cosh(
√
At
2 )− (1− 2ε) sinh(

√
At
2 )

∣∣∣∣∣∣
s

e

√
Ak2

σ(2−γ)2
−2s
√
At

× exp

{
−
√
Aε(x1− γ

2 + k)2(cosh(
√
At) + ε sinh(

√
At))

σ(2− γ)2(1 + 2ε2(cosh(
√
At)− 1) + 2ε sinh(

√
At))

}

× exp

{
1

2σ
(F (X(ε, x, t))− F (x))

}
u0(X(ε, x, t)).

Further, (4.2) has a fundamental solution p(t, x, y) such that∫ ∞
0

e−λ(y2−γ+2ky1− γ2 )u0(y)p(t, x, y)dy = Uλ(t, x), (4.58)

in which Uλ(t, x) = Ūσ(2−γ)2λ√
A

(t, x). If g = 0, then we may take u0 = 1, and∫∞
0 p(t, x, y)dy = 1 for the fundamental solution arising from this choice.

In this work we have focused on systems arising from separating real and imag-
inary parts of a single PDE involving a function f satisfying the Riccati equation
(4.1) given in Theorem 4.0.1. However, using a similar argument to that we used
in the previous section with Theorem 4.0.1 and applying it to either Theorem 4.2.1
or Theorem 4.2.1 will broaden the class of functions f1 and f2 for which we can
compute fundamental solutions of the systems:vt = σxγvxx + f1(x)vx − f2(x)wx

wt = σxγwxx + f2(x)vx + f1(x)wx,
x ≥ 0 (4.59)

and vt = σxγvxx + f1(x)vx − f2(x)wx − g1(x)v + g2(x)w

wt = σxγwxx + f2(x)vx + f1(x)wx − g2(x)v − g1(x)w,
x ≥ 0. (4.60)

Observe that for the choice g(x) = 0, the methodology described in the previous
section applied to Theorem 4.2.1 will produce a fundamental matrix for the system
(4.59) with functions f1 and f2 satisfying−γσx

1−γf1(x) + σx2−γf ′1(x) + 1
2x

2(1−γ)(f1(x)2 − f2(x)2) = A1x4−2γ

2(2−γ)2 + B1x2−γ

2−γ + C1

−γσx1−γf2(x) + σx2−γf ′2(x) + x2(1−γ)f1(x)f2(x) = A2x4−2γ

2(2−γ)2 + B2x2−γ

2−γ + C2,

while, if applied to Theorem 4.2.2, will produce a fundamental solution for the
same system but with functions f1 and f2 satisfying
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a complex-valued function


σx2−γf ′1(x)− γσx1−γf1(x) + 1

2x
2(1−γ)(f1(x)2 − f2(x)2)

= A1x4−2γ

2(2−γ)2 + B1x
3− 3

2 γ

3− 3
2
γ

+ C1x2−γ

2−γ − κ

σx2−γf ′2(x)− γσx1−γf2(x) + x2(1−γ)f1(x)f2(x) = A2x4−2γ

2(2−γ)2 + B2x
3− 3

2 γ

3− 3
2
γ

+ C2x2−γ

2−γ .

In both these cases, u0 = 1 will be a valid stationary solution that we can transform
through the action of the symmetries described in Theorem 4.2.1 and Theorem 4.2.2
to then separate into real and imaginary parts.

Similarly, the choice g(x) 6= 0 will yield fundamental matrices for the system
(4.60) with f1 and f2 satisfying either

σx2−γ(f ′1(x) + 2g1(x))− γσx1−γf1(x) + 1
2x

2(1−γ)(f1(x)2 − f2(x)2)

= A1x4−2γ

2(2−γ)2 + B1x2−γ

2−γ + C1

σx2−γ(f ′2(x) + 2g2(x))− γσx1−γf2(x) + x2(1−γ)f1(x)f2(x)

= A2x4−2γ

2(2−γ)2 + B2x2−γ

2−γ + C2,

(4.61)

when using Theorem 4.2.1, or

σx2−γ(f ′1(x) + 2g1(x))− γσx1−γf1(x) + 1
2x

2(1−γ)(f1(x)2 − f2(x)2)

= A1x4−2γ

2(2−γ)2 + B1x
3− 3

2 γ

3− 3
2
γ

+ C1x2−γ

2−γ − κ

σx2−γ(f ′2(x) + 2g2(x))− γσx1−γf2(x) + x2(1−γ)f1(x)f2(x)

= A2x4−2γ

2(2−γ)2 + B2x
3− 3

2 γ

3− 3
2
γ

+ C2x2−γ

2−γ

(4.62)

if using Theorem 4.2.2 instead. In both these cases we must first find an analytic
stationary solution u0(x) to transform according to the symmetry in Theorem 4.2.1
and Theorem 4.2.1.

Computation of fundamental matrices using the results in these two theorems
is a line of future research we would like to explore.

Note. Since both Theorem 4.2.1 and Theorem 4.2.2 contain expressions in terms of
the
√
A, it is convenient to write

√
A = Ã1 + Ã2i and then substitute A = (Ã2

1 −
Ã2

2) + 2Ā1Ā2i when splitting the solution into real and imaginary parts.

Note. Observe that just like in the examples presented in the first section of this
chapter, these cases cannot be handled by reducing to the heat equation in general.
Craddock and his coauthors have shown that the Lie symmetry algebra of (4.2) is
six dimensional (and hence the equation can be mapped to the heat equation) for
exactly one choice of the constant C in equation (4.55).
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Chapter 5

Wishart Processes and their
Eigenvalues

In this chapter we formally introduce a particular type of stochastic matrix process,
the Wishart process, focusing in particular on its eigenvalues. We show that while
the usual Lie symmetry methods fail to produce a transition density function for
the eigenvalues, the techniques we have developed can produce expressions for
the expected value of a wide range of functionals of these eigenvalues. These tech-
niques still rely heavily on the use of Lie symmetries and integral transforms, but
they combine those with all sorts of results in the area of Mathematical Analysis.
If one tries to simulate the behaviour of the eigenvalues of a Wishart process us-
ing, for example, Monte-Carlo simulation techniques, these expectations we can
obtain using our methodology can be used as our control variables. This is only
an example of how Lie symmetry methods can be extremely useful even when the
symmetries of the PDE are not enough to produce a transition density.

We will start this chapter introducing the theoretical notion of a Wishart process.
We will then show how the usual symmetry analysis of the Kolmogorov Backwards
equation associated to the Wishart process itself produces a set of symmetries that
does not suffice to find a transition density function for the process.
We will then move on to study the stochastic process of the eigenvalues of a Wishart
process. We will see how the methodology that has been used so far can be applied
to study the Kolmogorov Backwards equation associated to this process but how
some issues arise with boundary conditions and with solving a particular Sturm-
Liouville problem for which we do not know the solution.
It is precisely in this context where we introduce a set of tools and methods that will
allow us to compute the expected value of these eigenvalues, as well as all sorts of
functionals of these. As pointed out before, knowledge of all these expected values
gives us a good idea on how these processes behave, and provides us at the same
time with a range of potential control variables for a Monte-Carlo simulation of
these eigenvalues.
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5.1 Introducing Wishart processes

Wishart processes were first introduced by Marie France Bru (see [12] or [11]) in
the field of Biology as a tool to study the perturbation of experimental data but,
since then, they have been studied theoretically by many authors such as Yor et
al. [27] or Pfaffel [54]. Recently, great attention has been paid to these processes
for their applications in Finance. It turns out that these processes are a great tool
to model stochastic volatility. There are a great number of derivative pricing mod-
els that include Wishart processes as the stochastic volatility matrix. For example,
Gourieroux and Sufana (see [35] or [36]) use this approach to create a multiasset
analogue of the well known Cox-Ingersoll-Ross model. They provide in [36] an
example of a multiasset extension of the Heston stochastic volatility model as well
as an extension of the Merton model for credit risk analysis to a framework with
stochastic firm liability, stochastic volatility, and several firms. In [30], Grasselli, Da
Fonseca and Tebaldi further explore the use of a Wishart (multifactor) affine process
to model the volatility of a single risky asset. In [31] they present the Wishart Affine
Stochastic Correlation model (WASC) as the first analytically tractable model that
is consistent with the apparent effects in typical market pricing of plain vanilla op-
tion prices while contemplating non-trivial stochastic volatility of asset returns and
stochastic correlation of cross-sectional asset returns. Later on, in [29], Fonseca et
al. discuss an estimation strategy for this WASC model.
In [2], Asai et al. provide an extensive review of the literature on Multivariate
Stochastic Volatility (MSV) models, in most of which one can see that Wishart pro-
cesses play an essential role. Other work that relies heavily on the use of such
processes includes for example that by Leung et al. in [48].

It is then clear that this particular type of matrix processes seem to be a very
convenient while still rather realistic way of modelling stochastic volatility in mod-
ern financial models. Hence the importance of understanding their behaviour as
well as their main properties.

One may typically define a matrix Wishart process as follows:

Definition 5.1.1. Let n, p ∈ Z+ (not including 0). Consider the n × p matrix Wt,
whose elements are independent scalar valued Brownian motions and whose initial
state is W0 = C. A Wishart process S = {St, t ≥ 0} of dimension p, index n and
initial state S0 (denoted St ∼WIS(n, p, S0)) is defined as

St = W>t Wt, with S0 = C>C
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Moreover, it can be seen that such process St satisfies the SDE

dSt = n I dt+ dW>t
√
St +

√
StdWt (5.1)

Using the common tools of Itô calculus one can compute the infinitesimal gen-
erator for such process to obtain the following:

Proposition 5.1.1. [11] Let Xt ∼ WIS(n, p,X0). The infinitesimal generator of this
process is

AX = Tr[nD + 2XD2], with D = (Dij) = (∂/∂Xij), X ∈ Sp, (5.2)

where Sp denotes the set of all symmetric p× p matrices.

Wishart processes possess the following additivity property:

Proposition 5.1.2. Let (Xt) and (Yt) be two independent Wishart processes
Xt ∼ WIS(n, p,X0) and Yt ∼ WIS(m, p, Y0) respectively. Then the process (Zt) :=

(Xt + Yt) is also a Wishart process with Zt ∼WIS(n+m, p,X0 + Y0).

Proof. Let Xt = W>t Wt and Yt = V >t Vt with Wt and Vt independent Brownian
motions of dimension n× p and m× p respectively. Then, it clearly follows that

Ut =

 Wt

Vt


is an (n+m)× p matrix of independent Brownian motions, and

Zt = Xt + Yt = W>t Wt + V >t Vt = U>t Ut

It is well known that Wishart processes can be generalized to processes with
a non-integer index α and they naturally conserve the above additivity property.
However, we will only consider Wishart processes of integer index throughout this
work.

Just like for any type of matrix process, the behaviour of the eigenvalues will
have a major impact on the overall properties of the Wishart process. There are
some interesting results by Bru ([11]) on these eigenvalues and their characteristics.
Amongst the most important of those properties is the non-colliding property of
the eigenvalues:



116 Chapter 5. Wishart Processes and their Eigenvalues

Theorem 5.1.3. [11] Let St ∼ WIS(n, p, S0), with n ≥ p. If at time t = 0 the p
eigenvalues of S0 = C>C are distinct, labeled

λ1(0) > · · · > λp(0) ≥ 0

then for all t ≥ 0, the p eigenvalues of St are distinct

λ1(t) > · · · > λp(t) ≥ 0 a.s

the process (λ1(t), . . . , λp(t)) is a diffusion, solution of the stochastic differential system

dλi = 2
√
λidBi +

n+
∑
j 6=i

λi + λj
λi − λj

 dt, i = 1, . . . , p, (5.3)

where B1(t), . . . , Bp(t) are p independent Brownian motions, adapted to the natural filtra-
tion (Ft)t≥0 associated to the process (St).

In the rest of this chapter we will try to obtain information about these processes
and their eigenvalues by drawing upon the Lie symmetries of the Kolmogorov
Backwards equation linked to the Itô diffusions defined by (5.1) and (5.3).

5.2 Limitations of the existing techniques

Let us first focus on the study of the associated Kolmogorov backwards equa-
tion for a 2 × 2 Wishart process for the sake of simplicity. Let Wt = (Wij)t ∼
WIS(n, 2,W0), with i, j ∈ {1, 2}. Then, the infinitesimal generator of this process
can easily be calculated to be

AW = n

(
∂

∂W11
+

∂

∂W22

)
+ 2W11

(
∂2

∂W 2
11

+
∂2

∂W 2
12

)

+ 4W12

(
∂2

∂W11∂W12
+

∂2

∂W12∂W22

)
+ 2W22

(
∂2

∂W 2
12

+
∂2

∂W 2
22

)
(5.4)

Note that we have expressed this generator in terms of W11, W12 and W22 only,
since we know that our matrixW is symmetric and soW12 = W21. This means that,
effectively, we are only dealing with 3 variables instead of 4. Let us rename these
variables (W11(t),W12(t),W22(t)) 7→ (Xt, Yt, Zt) to simplify notation. Then, if we
let u(x, y, z, t) = Ex,y,z[f(Xt, Yt, Zt)], the Kolmogorov Backwards equation theorem
(Theorem 2.2.2) yields the following Cauchy problem for u:

ut = n(ux + uz) + 2xuxx + 2zuzz + (2x+ 2z)uyy + 4y(uxy + uyz), (5.5)
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u(x, y, z, 0) = f(x, y, z)

The computation of the symmetries of this PDE is a difficult task. This partic-
ular case yields a rather complex system of determining equations1that produce
only a very trivial set of symmetries that is not enough to work with if we wish to
find fundamental solutions of (5.5) via integral transform methods. These trivial
symmetries we obtain are only the following:

Proposition 5.2.1. Let u(x, y, z, t) be a solution of the PDE (5.5). Then
u1(x, y, z, t) = u(x, y, z, t− ε)

u2(x, y, z, t) = u(e−εx, e−εy, e−εz, e−εt)

uv(x, y, z, t) = u(x, y, z, t) + εv(x, y, z, t),

where v(x, y, z, t) is any solution of (5.5), are also solutions of such equation.

The reader can check that reduction of (5.5) under the symmetry u2 leads to a
3-dimensional PDE that, however, we cannot solve.

Therefore, since we come across the obstacle that we cannot obtain enough sym-
metries to find the desired fundamental solution, one might try to turn to the study
of the eigenvalues instead. The symmetry analysis of the Kolmogorov backwards
equation resulting from the generator of the SDE (5.3) will potentially provide us
with a better understanding of how these matrix processes behave. It is well known
that the eigenvalues of a matrix are one of their most characteristic features. They
are inherent to the matrix and invariant under changes of basis.

Let µt = (µ1(t), . . . , µp(t)) be the vector of the eigenvalues of a p × p Wishart
process with index n ≥ p, such that all the eigenvalues µi are distinct and ordered
from largest to smallest. Then the SDE (5.3) reads as


dµ1

...
dµp


︸ ︷︷ ︸

dµt

= 2



√
µ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0
√
µp


︸ ︷︷ ︸

σ(µt)


dB1

...
dBp

+


n+

∑
j 6=1

µ1+µj
µ1−µj

...
n+

∑
j 6=p

µp+µj
µp−µj


︸ ︷︷ ︸

b(µt)

dt,

(5.6)
1This system of determining equations can actually be simplified by introducing the new variables

t = 4T, x = X2, y = Y 2, z = Z2, u = U
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hence the so called drift function is

b(µt) =


n+

∑
j 6=1

µ1+µj
µ1−µj

...
n+

∑
j 6=p

µp+µj
µp−µj


and the diffusion function is

(σσT )(µt) =


2
√
µ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 2
√
µp




2
√
µ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 2
√
µp



=


4µ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 4µp


These expressions for the drift and diffusion functions can be used to compute
the generator for the process µt via the formula (2.77). Then, taking u(λ, t) =

Eλ[φ(µt)] := E[φ(µt)|µ0 = λ], Kolmogorov’s backward equation (2.2.2) for our
diffusion process yields the following Cauchy problem:

ut(λ, t) =
∑
i

n+
∑
j 6=i

λi + λj
λi − λj

uλi(λ, t) +
∑
i

2λiuλiλi(λ, t) (5.7)

u(λ, 0) = φ(λ); λ ∈ Rp

Our aim this time will be to try to find a fundamental solution to the above
equation. In particular, we are interested in finding the transition density for the
eigenvalues of a Wishart process.

5.2.1 Classical integral transform and Lie symmetry methods: An infi-
nite series expansion for the transition densities of the eigenvalues
of a p× p Wishart process

In this section, we show how the existing results relying on the symmetry analysis
of the Cauchy problem (5.7) potentially produce an infinite series expression for the
transition densities of the eigenvalues of a Wishart process in terms of a set of eigen-
values and eigenfunctions of a particular Sturm-Liouville problem. We show that,
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however, some issues arise with the boundary conditions. Moreover, the Sturm-
Liouville problem that can be obtained through these methods is a rather compli-
cated one and one for which we fail to obtain an exact solution. We first consider
the case of a 2-dimensional Wishart process and then move on to the generalisation
to a process of dimension p. In both cases, however, we need to first transform
the Cauchy problem in (5.7) to one of a more convenient form through a series of
changes of variables.

Let us start by writing λi = λ̄i
2

2 for 1 ≤ i ≤ p. With this transformation, (5.7)
becomes

ut =
∑
i

n+
∑
j 6=i

2λ̄j
2

λ̄i
2 − λ̄j

2

 uλ̄i
λ̄i

+
∑
i

uλ̄iλ̄i︸ ︷︷ ︸
∆u

(5.8)

u(λ̄, 0) = φ

(
λ̄2

2

)
; λ̄ ∈ Rn

Next, define the function

ρ(λ̄1, . . . , λ̄p) = −1

2

(n− 2(p− 1))

p∑
i=1

log(λ̄i) +

p−1∑
i=1

∑
j>i

log(λ̄i
2 − λ̄j

2
)

 (5.9)

and let u(λ̄1, . . . , λ̄p, t) = eρ(λ̄1,...,λ̄p)v(λ̄1, . . . , λ̄p, t). Then the condition that u satis-
fies (5.8) is equivalent to the condition that the function v satisfies the following:

vt = ∆v − 1

4

C p∑
i=1

1

λ̄i
2 − 2

p−1∑
i=1

∑
j>i

{
1

(λ̄i + λ̄j)2
+

1

(λ̄i − λ̄j)2

}
 v, (5.10)

v(λ̄, 0) = e−ρ(λ̄)φ

(
λ̄2

2

)
:= ψ(λ̄); λ̄ ∈ Rn

where C = (n− 2p)(n− 2(p− 1)).
Finally, for the sake of simplicity, let us go back to our initial notation and say

that the problem we need to solve is

ut = ∆u− 1

4

C p∑
i=1

1

λ2
i

− 2

p−1∑
i=1

∑
j>i

{
1

(λi + λj)2
+

1

(λi − λj)2

}
u, (5.11)

u(λ, 0) = ψ(λ); λ ∈ Rn
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with C = (n − 2p)(n − 2(p − 1)). One need only revert the changes of variables to
get the solution to the initial problem.

Observe that the above equation can be written as

ut = ∆u+
1

λ2
1

K

(
λ2

λ1
, . . . ,

λp
λ1

)
u, (5.12)

with

K(ξ1, . . . , ξp−1) = −C
4

1 +

p−1∑
i=1

1

ξ2
i



+
1

2


p−1∑
i=1

{
1

(1 + ξi)2
+

1

(1− ξi)2

}
+

p−2∑
i=1

∑
j>i

{
1

(ξi + ξj)2
+

1

(ξi − ξj)2

}
︸ ︷︷ ︸

(∗)

 ,

C = (n − 2p)(n − 2(p − 1)), and where the term (∗) vanishes for p = 2 . From this
form of our problem, we will proceed to discuss the 2× 2 case and the general case
for a p-dimensional Wishart process separately.

5.2.1.1 The 2× 2 case

Let Wt ∼ WIS(n, 2,W0) with eigenvalues µ1(t) > µ2(t) ≥ 0 and with index n ≥ 2.
Let

ũ((λ1, λ2), t) = E(λ1,λ2)[φ((µ1(t), µ2(t)))]

:= E[φ((µ1(t), µ2(t)))|(µ1(0), µ2(0)) = (λ1, λ2)],

Then recall that the Cauchy problem that such function ũ must satisfy can be recast
as follows, according to (5.12):

ut = ∆u+
1

λ2
1

K

(
λ2

λ1

)
u, (5.13)

u((λ1, λ2), 0) = ψ((λ1, λ2)),
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Theorem 5.2.2. [21] Suppose that K is continuous and that the Sturm–Liouville problem

L′′(θ) + (K(θ) + λ)L(θ) = 0 (5.15a)

α1L(a) + α2L
′(a) = 0 (5.15b)

β1L(b) + β2L
′(b) = 0, (5.15c)

has a complete set of eigenfunctions and eigenvalues, and that the eigenvalues are all posi-
tive. Consider the initial and boundary value problem

ut = urr +
1

r
ur +

1

r2
uθθ +

K (θ)

r2
u, (5.16)

r > 0, a ≤ θ ≤ b, a, b ∈ [0, 2π], (5.17)

u(r, θ, 0) = f(r, θ), f ∈ D(Ω), (5.18)

α1u(r, a, t) + α2uθ(r, a, t) = 0 (5.19)

β1u(r, b, t) + β2uθ(r, b, t) = 0. (5.20)

Here Ω = [0,∞)× [a, b] in polar coordinates. Then there is a solution of the form

u(r, θ, t) =

∫ ∞
0

∫ b

a
f(ρ, φ)p(t, r, θ, ρ, φ)ρdφdρ, (5.21)

where

p(t, r, θ, ρ, φ) =
1

2t
exp

(
−r

2 + ρ2

4t

)∑
n

Ln(φ)Ln(θ)I√λn

(
rρ

2t

)
, (5.22)

in which Ln(θ), λn, n = 1, 2, 3, . . . are the normalized eigenfunctions and corresponding
eigenvalues for the given Sturm-Liouville problem.

Hence, if we set some boundary conditions of the form (5.19)-(5.20) for our
problem, i.e.α1v(r, 0, t) + α2vθ(r, 0, t) = 0

β1v(r, π4 , t) + β2vθ(r,
π
4 , t) = 0

αi, βi constants for i ∈ {1, 2}, (5.23)

we need to consider the Sturm-Liouville problem given by

L”(θ) + (K(θ) + ν)L(θ) = 0 (5.24)

α1L(0) + α2L
′(0) = 0 (5.25)

β1L(π/4) + β2L
′(π/4) = 0. (5.26)
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If one can prove that the above problem satisfies the conditions in Theorem 5.2.2
(i.e. that the S-L problem has a complete set of eigenfunctions and eigenvalues, and
the eigenvalues are all positive), then this theorem gives that there exists a solution
of (5.14) in the considered region and with the chosen boundary conditions (5.23)
of the form

v(r, θ, t) =

∫ ∞
0

∫ π
4

0
δ(ρ, φ)p(t, r, θ, ρ, φ)ρdφdρ, (5.27)

where

p(t, r, θ, ρ, φ) =
1

2t
exp

(
−r

2 + ρ2

4t

)∑
k

Lk(φ)Lk(θ)I√νk

(
rρ

2t

)
. (5.28)

In the expression (5.28) of the fundamental solution p(t, r, θ, ρ, φ), Lk(θ), νk, k =

1, 2, 3, . . . are the normalized eigenfunctions and corresponding eigenvalues for the
Sturm Liouville problem (5.24).

That is, one can potentially obtain fundamental solutions to our initial problem
by solving (5.24) and later reversing the changes of variables applied to the initial
PDE. However, there are a few questions that need to be addressed in order to be
able to apply Craddock and Lennox’s theorem:

• The function K(θ) is continuous everywhere in the interior of our region R
and asymptotically approaches ±∞ at the boundaries δ1 = {(r, θ) : θ = π/4}
and δ2 = {(r, θ) : θ = 0} respectively. −→ This problem could be addressed
by considering the region R̄ := {(r, θ) : r > 0, ε ≤ θ ≤ π

4 − ε} instead, and
then trying to extrapolate the results to the region R by letting ε → 0. This
might, of course, lead to potential divergence problems when taking limits,
so one would need to pay special attention to this.

• To determine the boundary conditions (5.23) one must have some knowledge
of the behaviour of the eigenvalues of a Wishart process and transform the
conditions from the initial variables in (5.7) to those in the transformed prob-
lem (5.13). Setting particular conditions to those eigenvalues might lead to
complicated boundary conditions for the problem in polar coordinates, so
more research needs to be done in regard to what kind of conditions we can
impose if we wish to be able to solve the problem.

We have not yet been able to solve the Sturm-Liouville problem (5.24) analyti-
cally, but potentially the eigenfunctions Lk(θ) and the eigenvalues νk in (5.28) can
be approximated numerically. All these considerations are potential future work
on this topic. More research in this direction is needed to try to extend the scope of
this result.
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Note that Craddock and Lennox obtain the results stated in Theorem 5.2.2 [21]
trough the use of Lie symmetry methods. Although these methods provide a theo-
retical result if one can overcome the difficulties highlighted above, it does no seem
to be a very effective approach for practical purposes in our particular case.

5.2.1.2 The general p× p case

An extension of the work presented above to the general p-dimensional case is in-
troduced in this section through a generalisation to higher dimensions of Theorem
5.2.2 by Craddock and Lennox. This higher dimensional version of Theorem 5.2.2
is due to the same authors and can be found in [21]:

Theorem 5.2.3. Consider the equation

ut = urr +
n− 1

r
ur +

1

r2
(∆Sn−1 +G(Θ))u, (5.29)

u(r,Θ, 0) = f(r,Θ), (5.30)

and α(Θ)Ψ(Θ) + (1 − α(Θ))∂Ψ/∂n = 0, with α a continuous function and ∂Ψ/∂n the
normal derivative on the surface of the unit sphere Sn−1 of dimension n − 1. Here Ψ is u
restricted to Sn−1, ∆Sn−1 is the Laplace–Beltrami operator on the sphere and f ∈ D(Rn).
Let Θ = (θ, φ1, . . . , φm−2). Then there is a solution of the form

U(r,Θ, t) =

∫ ∞
0

∫
Sn−1

f(ρ, ξ)p(t, r,Θ, ρ, ξ)ρdξdρ, (5.31)

where for n ≥ 2,

p(t, r,Θ, ρ, ξ) =
1

2t

(
ρ

r

)n
2
−1

exp

(
−r

2 + ρ2

4t

)∑
λm

Lm(Θ)Lm(ξ)Iµ(m)

(
rρ

2t

)
, (5.32)

where µ(m) = 1
2

√
4λm + (n− 2)2 and Lm(Θ) are normalized eigenfunctions of the prob-

lem ∆SL+ (λ+G)L = 0 and λm are the eigenvalues.

According to the above theorem, and similarly to the 2 × 2 case, we can find
a series expression for the fundamental solution of an equation of the type (5.29)
in terms of the eigenvalues and eigenfunctions of an appropriate Sturm-Liouville
problem. In what follows, we show how equation (5.12) can be recast into one
of the form considered in the above theorem, and we discuss what difficulties we
come across in the process.
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Consider equation (5.12) in the general p-dimensional case and let
λ1 = r

∏p−1
k=1 cos(θk)

λi = r sin(θi−1)
∏p−1
k=i cos(θk), i = 2, . . . , p− 1

λp = r sin(θp−1)

Note that, with this notation, r > 0 is the radius and the angle θi, for i =

1, . . . , p− 2, is the angle from the projection of λ onto the hyperplane in Ri+1 gener-
ated by {λ1, . . . , λi} to the projection of λ onto the hyperplane in Ri+2 generated by
{λ1, . . . , λi + 1}. Similarly, the angle θp−1 is the angle from the projection of λ onto
the hyperplane in Rp generated by {λ1, . . . , λp−1} to the vector λ itself. To illustrate,
see figure [5.2.1.2] for the 3× 3 case.

λ3

λ1

λ2θ2

θ1

λ

Note that this definition for the 3×3 case does not correspond to the usual spherical
coordinates definition.

The reader may check that the following conditions must be imposed on the
angles 

θ1 ∈ (0, π/4)

θi ∈ (0, arctan(sin(θi−1)), i = 2, . . . , p− 2

θp−1 ∈ [0, arctan(sin(θp−2)),

since we must have µ1(t) > · · · > µp(t) ≥ 0.
Putting

v(r, θ1, . . . , θp−1, t) = u(λ1(r, θ1, . . . , θp−1), . . . , λp(r, θ1, . . . , θp−1), t)

= u(r

p−1∏
k=1

cos(θk), . . . , r sin(θp−1), t)
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transforms the problem (5.11) into the following problem for v:

vt = vrr +
p− 1

r
vr +

1

r2

p−1∑
k=1

 p−1∏
j=k+1

sec2(θj)

 vθkθk

− 1

r2

p−1∑
k=1

(k − 1) tan(θk)

p−1∏
j=k+1

sec2(θj)

 vθk +
1

r2
K
(
θ1, . . . , θp−1

)
v, (5.33)

= vrr +
p− 1

r
vr +

1

r2
(L+K(Θ))v, (5.34)

where L is the differential operator defined by

L =

p−1∑
k=1

 p−1∏
j=k+1

sec2(θj)

( ∂2

∂θ2
k

− (k − 1) tan(θk)
∂

∂θk

)

and

K(Θ) := K
(
θ1, . . . , θp−1

)
:= −C

4

p∑
k=1

csc2(θk−1)

p−1∏
j=k

sec2(θj)



+

p−1∑
k=1


p−1∏
l=k+1

sec2(θl)

 sin2(θk) +
∏k
j=1 cos2(θj)(

sin2(θk)−
∏k
j=1 cos2(θj)

)2




+

p−1∑
k=1


p−1∏
l=k+1

sec2(θl)

∑
j<k

sin2(θk) + sin2(θj)
∏k
i=j+1 cos2(θi)(

sin2(θk)− sin2(θj)
∏k
i=j+1 cos2(θi)

)2


 ,

with C = (n− 2p)(n− 2(p− 1)), r > 0 and
θ1 ∈ (0, π/4)

θi ∈ (0, arctan(sin(θi−1)), i = 2, . . . , p− 2

θp−1 ∈ [0, arctan(sin(θp−2))

Moreover, the initial condition in (5.11) can be written in terms of v as:

v(r, θ1, . . . , θp−1, 0) = ψ(r

p−1∏
k=1

cos(θk), . . . , r sin(θp−1)) := δ(r, θ1, . . . , θp−1).

In a similar way as for the 2-dimensional case in the previous section, this problem
can be compared to that considered by Craddock and Lennox in theorem 5.2.3.
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That is, ideally, one could obtain a series expansion for the fundamental solution
of PDE (5.33) in terms of the eigenvalues and eigenfunctions of a particular Sturm-
Liouville problem. However, just as in the 2× 2 case, the boundary conditions that
should be imposed for this problem are not yet clear and we haven’t been able to
analytically solve the associated Sturm-Liouville problem. Further course of study
could be to try to solve this problem numerically.

5.3 An alternative approach to the study of the eigenvalues

In this section we focus mainly in the 2-dimensional case for the sake of simplicity,
although we do provide some results for general p-dimensional Wishart processes.

We first present the results of the lie symmetry study of the Kolmogorov back-
wards equation associated to the eigenvalues of a Wishart process of dimension 2
and then we introduce our approach to the study of these eigenvalue processes.

Let Wt ∼ WIS(n, 2,W0) with n ≥ 2 and with eigenvalues µ1(t) > µ2(t) ≥ 0.
Let

u(λ1, λ2, t) = Eλ1,λ2 [φ(µ1(t), µ2(t))] := E[φ((µ1(t), µ2(t))|µ1(0) = λ1, µ2(0) = λ2]

and recall that Kolmogorov’s backwards equation theorem yields the following
Cauchy problem for the function u:

ut =

(
n+

λ1 + λ2

λ1 − λ2

)
uλ1 +

(
n− λ1 + λ2

λ1 − λ2

)
uλ2 + 2λ1uλ1λ1 + 2λ2uλ2λ2 (5.35)

u(λ, 0) = φ(λ); λ ∈ R2

The reader may check that Lie’s method for the systematic computation of symme-
tries of the above PDE (described in Chapter 2) yields the following result:

Proposition 5.3.1. Let u(λ1, λ2, t) be a solution of the PDE (5.35). Then

u1(λ1, λ2, t) = u(λ1, λ2, t− ε)

u2(λ1, λ2, t) = u(e−ελ1, e
−ελ2, e

−εt)

u3(λ1, λ2, t) = u
(

λ1
(1+εt)2 ,

λ2
(1+εt)2 ,

t
(1+εt)

)
exp

(
− ε

2
(λ1+λ2)
(1+εt)

)
(1 + εt)−n

u4(λ1, λ2, t) = eεu(λ1, λ2, t)

uB(λ1, λ2, t) = u(λ1, λ2, t) + εB(λ1, λ2, t),

are also solutions of such equation. Here B(λ1, λ2, t) is any solution of (5.35).
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Note. This result follows from the exponentiation of the following vector fields

v1 = ∂
∂t

v2 = t ∂∂t + λ1
∂
∂λ1

+ λ2
∂
∂λ2

v3 = t2 ∂∂t + 2λ1t
∂
∂λ1

+ 2λ2t
∂
∂λ2

+ u
(
−λ1

2 −
λ2
2 − nt

)
∂
∂u

v4 = u ∂
∂u

vB = B(λ1, λ2, t)
∂
∂u ,

(5.36)

which are a spanning set for the lie algebra of (5.35).

It turns out that the application of the integral transform methods introduced
in Chapter 2 fails to produce the transition density for the eigenvalues µ1(t) and
µ2(t). These methods do, however, successfully produce the transition density for
the sum µ1(t) + µ2(t), i.e. the trace of the Wishart process. This transition density
is not a new result, since the distribution of the trace of a Wishart process is known
to be that of a squared-Bessel process, but it does provide an alternative proof for
this well-known result.

Recall the following theorem for the probability density function for a squared-
Bessel distribution:

Theorem 5.3.2. Let ρ2 ∼ BESQδ(x). The probability density function for ρ2 is

f δt (x, y) =
1

2t

(
y

x

) ν
2

e−
(x+y)

2t Iν

(√
xy

t

)
1{y>0}, ν =

δ

2
− 1

Let us provide a new proof, based on lie symmetries and integral transforms,
for the following well-known result:

Theorem 5.3.3. The sum of the eigenvalues of a Wishart process is a squared-Bessel process
with parameter ν = n− 1 (or, equivalently δ = 2n)

Proof. Observe that u(λ1, λ2, t) = 1 is a solution of (5.35). The symmetry u3 in
Proposition 5.3.1 gives that

uε(λ1, λ2, t) = u

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

)
exp

(
− ε

2

(λ1 + λ2)

(1 + εt)

)
(1 + εt)−n

= exp

(
− ε

2

(λ1 + λ2)

(1 + εt)

)
(1 + εt)−n

is also a solution. Make the change ε→ 2ε so that uε becomes

uε(λ1, λ2, t) = exp

(
−ε(λ1 + λ2)

(1 + 2εt)

)
(1 + 2εt)−n
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and observe that
uε(λ1, λ2, 0) = exp

(
−ε(λ1 + λ2)

)
Use (2.34) with an appropriate function ϕ to construct a new solution of (5.35) given
by

U(λ1, λ2, t) =

∫ ∞
0

ϕ(ε)uε(λ1, λ2, t)dε (5.37)

=

∫ ∞
0

ϕ(ε) exp

(
−ε(λ1 + λ2)

(1 + 2εt)

)
(1 + 2εt)−ndε,

which has initial condition

U(λ1, λ2, 0) =

∫ ∞
0

ϕ(ε)uε(λ1, λ2, 0)dε

=

∫ ∞
0

ϕ(ε) exp
(
−ε(λ1 + λ2)

)
dε

= Φ(λ1 + λ2).

Here Φ denotes the Laplace transform of ϕ.
We wish to identify uε(λ1, λ2, t) as the Laplace transform of some function, so

we rewrite uε as

uε(λ1, λ2, t) = exp

(
−ε(λ1 + λ2)

(1 + 2εt)

)
1

(1 + 2εt)n

= exp

−(λ1 + λ2)
(
ε+ 1

2t −
1
2t

)
2t(ε+ 1

2t)

 1

(2t)n
1

(ε+ 1
2t)

n

= exp

(
−(λ1 + λ2)

2t

)
exp

(
(λ1 + λ2)

(2t)2

1

(ε+ 1
2t)

)
1

(2t)n
1

(ε+ 1
2t)

n

and compute the inverse Laplace transform with respect to ε:

L−1

 1

(2t)n
1

(ε+ 1
2t)

n
exp

(
−(λ1 + λ2)

2t

)
exp

(
(λ1 + λ2)

(2t)2

1

(ε+ 1
2t)

)
=

1

(2t)n
exp

(
−(λ1 + λ2)

2t

)
L−1

 1

(ε+ 1
2t)

n
exp

(
(λ1 + λ2)

(2t)2

1

(ε+ 1
2t)

)
=

1

(2t)n
exp

(
−(λ1 + λ2)

2t

)
exp

(
− z

2t

)
L−1

(
1

εn
exp

(
(λ1 + λ2)

(2t)2

1

ε

))

=
1

(2t)n
exp

(
−(λ1 + λ2)

2t

)
exp

(
− z

2t

)(
(λ1 + λ2)

z(2t)2

) 1−n
2

In−1

(√
z(λ1 + λ2)

t

)
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=
1

2t
exp

(
−(λ1 + λ2 + z)

2t

)(
(λ1 + λ2)

z

) 1−n
2

In−1

(√
z(λ1 + λ2)

t

)

Hence,

uε(λ1, λ2, t) = L

 1

2t
exp

(
−(λ1 + λ2 + z)

2t

)(
λ1 + λ2

z

) 1−n
2

In−1

(√
z(λ1 + λ2)

t

)
=

∫ ∞
0

exp

(
−(λ1 + λ2 + z)

2t

)
(λ1 + λ2)

1−n
2

2t
z
n−1

2 In−1

(√
z(λ1 + λ2)

t

)
e−εzdz.

Substitution into (5.37) gives

U(λ1, λ2, t) =

∫ ∞
0

ϕ(ε)uε(λ1, λ2, t)dε

=

∫ ∞
0

ϕ(ε)

∫ ∞
0

e
−(λ1+λ2+z)

2t
(λ1 + λ2)

1−n
2

2t
z
n−1

2 In−1

(√
z(λ1 + λ2)

t

)
e−εzdzdε

=

∫ ∞
0

∫ ∞
0

ϕ(ε)e
−(λ1+λ2+z)

2t
(λ1 + λ2)

1−n
2

2t
z
n−1

2 In−1

(√
z(λ1 + λ2)

t

)
e−εzdzdε

=

∫ ∞
0

∫ ∞
0

ϕ(ε)e
−(λ1+λ2+z)

2t
(λ1 + λ2)

1−n
2

2t
z
n−1

2 In−1

(√
z(λ1 + λ2)

t

)
e−εzdεdz

=

∫ ∞
0

e
−(λ1+λ2+z)

2t
(λ1 + λ2)

1−n
2

2t
z
n−1

2 In−1

(√
z(λ1 + λ2)

t

)(∫ ∞
0

ϕ(ε)e−εzdε

)
dz

=

∫ ∞
0

e
−(λ1+λ2+z)

2t
(λ1 + λ2)

1−n
2

2t
z
n−1

2 In−1

(√
z(λ1 + λ2)

t

)
Φ(z)dz

Furthermore, U(λ1, λ2, t) can be written as a function of λ1 + λ2 and t only:

U(λ1, λ2, t) = U(λ1 + λ2, t)

=

∫ ∞
0

Φ(z)︸︷︷︸
f(z)

e
−((λ1+λ2)+z)

2t
(λ1 + λ2)

1−n
2

2t
z
n−1

2 In−1

(√
z(λ1 + λ2)

t

)
︸ ︷︷ ︸

p(t,λ1+λ2,z)

dz,

with U(λ1 + λ2, 0) = Φ(λ1 + λ2) = f(λ1 + λ2).

Let Z(t) := µ1(t) + µ2(t). Then Z(0) = µ1(0) + µ2(0) = λ1 + λ2 := z0. Therefore we
can write
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U(z0, t) = Ez0 [f(Z(t))] := E[f(Z(t))|Z(0) = z0]

=

∫ ∞
0

Φ(z)︸︷︷︸
f(z)

e
−(z0+z)

2t
z

1−n
2

0

2t
z
n−1

2 In−1

(√
zz0

t

)
︸ ︷︷ ︸

p(t,z0,z)

dz

Note that indeed ∫ ∞
0

p(t, z0, z)dz = 1,

and that p(t, z0, z)1{z>0} satisfies all the necessary conditions to be the transition
density for the process Z(t) = µ1(t) + µ2(t) starting at z0 = λ1 + λ2. Compare
the expression for p(t, z0, z)1{z>0} with that in theorem 5.3.2 to conclude that the
processZ(t) = µ1(t)+µ2(t) is distributed according to a squared-Bessel distribution
with parameter ν = n− 1.

Having the transition density function of the sum µ1(t)+µ2(t) allows us to com-
pute expected values of the form Eλ1,λ2 [f(µ1(t) + µ2(t))] via a simple integration:

Eλ1,λ2 [f(µ1(t)+µ2(t))] =

∫ ∞
0
f(z)

e
−(λ1+λ2+z)

2t

2t

(
λ1 + λ2

z

) 1−n
2

In−1

(√
z(λ1 + λ2)

t

)
dz,

but this provides us with very limited information about the overall behaviour of
the eigenvalues µ1(t) and µ2(t). This motivates the following question: can we ex-
tend the existing knowledge about the behaviour of these eigenvalues by extending
the classes of functions for which we can obtain expected values?

Ideally, we would like to be able to compute

Eλ1,λ2

[
f(µ1(t), µ2(t))e−

∫ t
0 g(µ1(s),µ2(s))ds

]
(5.38)

for any function f and g. Knowledge of the transition density function for the
eigenvalues µ1(t), µ2(t) would allow us to compute Eλ1,λ2 [f(µ1(t), µ2(t))] for an
arbitrary f , but as far as we know, this transition density is still unknown. We have
seen that the usual lie symmetry methods for the obtention of transition densities
also fail to produce this result. This naturally leads to the question: for which types
of functions f and g are these expectations computable?

In what follows, we answer this question by providing techniques for the com-
putation of expected values of the above type (5.38) for a wide range of functions.
We start with g = 0 and, in the last section, we provide some results for differ-
ent choices of g. Note that if Eλ1,λ2 [fi(µ1(t), µ2(t))] is computable for i ∈ I , then

Eλ1,λ2

∑
i∈Ij

fi(µ1(t), µ2(t))

, Ij ⊂ I is also computable.
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5.3.1 Expectations of any symmetric polynomial in the eigenvalues of a
Wishart process

Here we present a result that allows us to generate an expression for

Eλ1,λ2 [p(µ1(t), µ2(t))]

for any symmetric polynomial p(µ1, µ2), i.e. any polynomial p such that p(µ1, µ2) =

p(µ2, µ1):

Theorem 5.3.4 (Recursive method for generating the expectations of any symmet-
ric polynomial in the eigenvalues of a 2× 2 Wishart process).
Let Wt ∼ WIS(n, 2,W0) with n ≥ 2 and with eigenvalues µ1(t) > µ2(t) ≥ 0. Let L be
the differential operator defined as

L =

(
n+

λ1 + λ2

λ1 − λ2

)
∂

∂λ1
+

(
n− λ1 + λ2

λ1 − λ2

)
∂

∂λ2
+ 2λ1

∂2

∂λ2
1

+ 2λ2
∂2

∂λ2
2

,

and let p(x1, x2) be a symmetric polynomial of degree k. That is, let p be a polynomial such
that p(x1, x2) = p(x2, x1) with k = deg(p(x1, x2)).
Take

u0(λ1, λ2, t) = p(λ1, λ2)

and

us(λ1, λ2, t) =

∫ t

0
Lus−1(λ1, λ2, r)dr + p(λ1, λ2), for s = 1, . . . , k.

Then
Eλ1,λ2 [p(µ1(t), µ2(t))] = uk(λ1, λ2, t).

Proof. It is clear from the definition of uk that it satisfies uk(λ1, λ2, 0) = p(λ1, λ2).
On the other hand, we need to show that uk solves ut = Lu, which can be verified
by looking at the recursive construction of uk:

u0(λ1, λ2, t) = p(λ1, λ2)

u1(λ1, λ2, t) =

∫ t

0
Lp(λ1, λ2)dr + p(λ1, λ2) = tLp(λ1, λ2) + p(λ1, λ2)

u2(λ1, λ2, t) =

∫ t

0
L(rLp(λ1, λ2) + p(λ1, λ2))dr + p(λ1, λ2)

=

∫ t

0
(rL2p(λ1, λ2) + Lp(λ1, λ2))dr + p(λ1, λ2)

=
t2

2
L2p(λ1, λ2) + tLp(λ1, λ2) + p(λ1, λ2)
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...

uk(λ1, λ2, t) =
tk

k!
Lkp(λ1, λ2) +

tk−1

(k − 1)!
Lk−1p(λ1, λ2) + · · ·+ tLp(λ1, λ2) + p(λ1, λ2)

=
k∑
i=0

(tL)i

i!
p(λ1, λ2)

Hence

∂

∂t
uk(λ1, λ2, t) =

k∑
i=1

ti−1Li

(i− 1)!
p(λ1, λ2)

=
tk−1

(k − 1)!
Lkp(λ1, λ2) +

tk−2

(k − 2)!
Lk−1p(λ1, λ2) + · · ·+ Lp(λ1, λ2)

= Luk−1(λ1, λ2, t) =

k−1∑
i=0

tiLi+1

i!
p(λ1, λ2),

while on the other hand

Luk(λ1, λ2, t) = L
k∑
i=0

(tL)i

i!
p(λ1, λ2) =

k∑
i=0

tiLi+1

i!
p(λ1, λ2). (5.39)

But the last term
tkLk+1

k!
p(λ1, λ2) vanishes due to the symmetry and the order of

the polynomial p. Hence (uk)t = Luk−1 = Luk as claimed.
Therefore, by part (b) of Kolmogorov’s Backward Theorem (2.2.2), we must

have uk(λ1, λ2, t) = Eλ1,λ2 [p(µ1(t), µ2(t))].

The above method, while indeed effective for any symmetric polynomial p, be-
comes quite time-consuming for polynomials of higher degrees. This is due to the
fact that we need to calculate k + 1 iterates in each case. Alternatively, we can
calculate Li for i = 1, . . . , k and use the series expansion definition

uk(λ1, λ2, t) =

k∑
i=0

(tL)i

i!
p(λ1, λ2)

obtained in the proof of the above theorem. This is, however, equally inconvenient
for higher values of k.

It turns out that the lie symmetries of equation (5.35) give us an alternative to
this method:
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Theorem 5.3.5. Let Wt ∼ WIS(n, 2,W0) with n ≥ 2 and with eigenvalues µ1(t) >

µ2(t) ≥ 0. Let L be the differential operator defined as

L =

(
n+

λ1 + λ2

λ1 − λ2

)
∂

∂λ1
+

(
n− λ1 + λ2

λ1 − λ2

)
∂

∂λ2
+ 2λ1

∂2

∂λ2
1

+ 2λ2
∂2

∂λ2
2

.

Suppose u(λ1, λ2, t) ∈ C2,1(R2×R) is a solution of ut = Luwith u(λ1, λ2, 0) = f(λ1, λ2)

and u is bounded for t ∈ K, for each compact K ⊂ R, i.e. suppose that u(λ1, λ2, t) =

Eλ1,λ2 [f(µ1(t), µ2(t))].
Consider

v(λ1, λ2, t) =

 di
dεi

u

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

) exp
(
− ε

2
(λ1+λ2)
(1+εt)

)
(1 + εt)n


ε=0

(5.40)

for any i ∈ N ∪ {0}, and with v(λ1, λ2, 0) = g(λ1, λ2). If v(λ1, λ2, t) ∈ C2,1(R2 × R),
and is bounded for t ∈ K, for each compact K ⊂ R, then

v(λ1, λ2, t) = Eλ1,λ2 [g(µ1(t), µ2(t))].

Proof. Let u(λ1, λ2, t) = Eλ1,λ2 [f(µ1(t), µ2(t))]. Note that Proposition 5.3.1 gives
that

u

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

)
exp

(
− ε

2

(λ1 + λ2)

(1 + εt)

)
(1 + εt)−n

is also a solution of ut = Lu. Further, by Theorem 2.1.5, differentiation of this
symmetry with respect to ε any number of times produces other solutions of the
equation ut = Lu. Hence,

v(λ1, λ2, t) =

 di
dεi

u

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

) exp
(
− ε

2
(λ1+λ2)
(1+εt)

)
(1 + εt)n


ε=0

satisfies vt = Lv. Moreover, if v(λ1, λ2, t) ∈ C2,1(R2 ×R) and is bounded for t ∈ K,
for each compact K ⊂ R and v(λ1, λ2, 0) = g(λ1, λ2), then part (b) of Kolmogorov
Backwards equation theorem yields the desired result.

Note. The above result allows us to compute Eλ1,λ2 [g(µ1(t), µ2(t))] for any function
g that can be obtained as the initial condition of a solution u of ut = Lu that can
be written as a derivative with respect to ε of any known solution ũ transformed
through the action of any of the symmetries of ut = Lu.

In what follows we illustrate how to use this result in the computation of ex-
pected values of symmetric polynomials in the eigenvalues µ1 and µ2. Roughly,
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the idea is that we start with a particular solution u1 of equation (5.35) with initial
condition u1(λ1, λ2, 0) = p1(λ1, λ2), where p1 is a symmetric polynomial. Then, via
the transformation through symmetries of this first solution, we obtain another so-
lution u2 with different initial condition u2(λ1, λ2, 0) = p2(λ1, λ2), where p2 is again
a symmetric polynomial. Thus, we obtain the expectations Eλ1,λ2 [p2(µ1(t), µ2(t))]

from the manipulation through symmetry of Eλ1,λ2 [p1(µ1(t), µ2(t))].

Example 5.3.1. Consider the polynomial µ2
1(t)µ2(t) + µ2

2(t)µ1(t), where µ1(t) and
µ2(t) are the eigenvalues of a paticular Wishart process Wt ∼ WIS(n, 2,W0) and
where µ1(t) > µ2(t) ≥ 0. Our goal here is to calculate the expectations

Eλ1,λ2 [µ2
1(t)µ2(t) + µ2

2(t)µ1(t)]

Method 1: Using the recursive definition of u described in Theorem 5.3.4:
Our polynomial p(x, y) = x2y+y2x is of degree 3, therefore we will have to compute
u0, u1, u2 and u3.
According to the above theorem, we define

u0(λ1, λ2, t) = p(λ1, λ2) = λ2
1λ2 + λ2

2λ1,

u1(λ1, λ2, t) =

∫ t

0
Lu0(λ1, λ2, r)dr + p(λ1, λ2)

=

∫ t

0
((n− 1)(λ2

1 + λ2
2) + 2(3 + 2n)λ1λ2)dr + λ2

1λ2 + λ2
2λ1

= ((n− 1)(λ2
1 + λ2

2) + 2(3 + 2n)λ1λ2)t+ λ2
1λ2 + λ2

2λ1,

u2(λ1, λ2, t) =

∫ t

0
Lu1(λ1, λ2, r)dr + p(λ1, λ2)

=

∫ t

0
((n− 1)(λ2

1 + λ2
2) + 2(3 + 2n)λ1λ2 + 6r(n− 1)(n+ 2)(λ1 + λ2))dr

+ λ2
1λ2 + λ2

2λ1

= ((n− 1)(λ2
1 + λ2

2) + 2(3 + 2n)λ1λ2)t+ 3t2(n− 1)(n+ 2)(λ1 + λ2)

+ λ2
1λ2 + λ2

2λ1

u3(λ1, λ2, t) =

∫ t

0
Lu2(λ1, λ2, r)dr + p(λ1, λ2)

=

∫ t

0
(6n(n− 1)(n+ 2)r2 + (n− 1)(λ2

1 + λ2
2) + 2(3 + 2n)λ1λ2)dr

+

∫ t

0
(6r(n− 1)(n+ 2)(λ1 + λ2))dr + λ2

1λ2 + λ2
2λ1

= 2n(n− 1)(n+ 2)t3 + ((n− 1)(λ2
1 + λ2

2) + 2(3 + 2n)λ1λ2)t

+ 3t2(n− 1)(n+ 2)(λ1 + λ2) + λ2
1λ2 + λ2

2λ1
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So the expectations we are looking for are given by

Eλ1,λ2 [µ2
1(t)µ2(t) + µ2

2(t)µ1(t)] = 2n(n− 1)(n+ 2)t3 + 3t2(n− 1)(n+ 2)(λ1 + λ2)

+ ((n− 1)(λ2
1 + λ2

2) + 2(3 + 2n)λ1λ2)t+ λ2
1λ2 + λ2

2λ1.

Note that an alternative for this method would have been to calculate the first three
powers of L, i.e. L,L2 and L3 and then compute the desired expectations as

Eλ1,λ2 [µ2
1(t)µ2(t) + µ2

2(t)µ1(t)] =
3∑
i=0

(tL)i

i!
(λ2

1λ2 + λ2
2λ1).

Method 2: Using the lie symmetries of equation (5.35) as in Theorem 5.3.5:
Let

u1(λ1, λ2, t) = Eλ1,λ2 [µ2
1(t) + µ2

2(t)] = 2n(n+ 3)t2 + 2(n+ 3)(λ1 + λ2)t+ λ2
1 + λ2

2

u2(λ1, λ2, t) = Eλ1,λ2 [µ3
1(t) + µ3

2(t)] = 2n(n+ 2)(n+ 7)t3

+ 3(n+ 2)(n+ 7)(λ1 + λ2)t2 +
(

3(n+ 5)(λ2
1 + λ2

2) + 6λ1λ2

)
t+ λ3

1 + λ3
2

Observe that u1(λ1, λ2, 0) = λ3
1 + λ3

2 and u2(λ1, λ2, 0) = λ2
1 + λ2

2 respectively. Define

vk(λ1, λ2, t) =

 d
dε
uk

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

) exp
(
− ε

2
(λ1+λ2)
(1+εt)

)
(1 + εt)n


ε=0

,

(5.41)
for any uk solution of (5.35). We know by theorem 5.3.5 that vk solves (5.35). The
reader may check that the explicit expression for vk is

vk(λ1, λ2, t) =

 d
dε
uk

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

) exp
(
− ε

2
(λ1+λ2)
(1+εt)

)
(1 + εt)n


ε=0

=

− exp

(
− ε

2

(λ1 + λ2)

(1 + εt)

)(
t2

(1 + εt)n+2
∂3uk

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

)

+

(
λ1 + λ2

2(1 + εt)n+2
+

nt

(1 + εt)n+1

)
uk

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

)
+

2λ1t

(1 + εt)n+3
∂1uk

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

)

+
2λ2t

(1 + εt)n+3
∂2uk

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

))
ε=0



5.3. An alternative approach to the study of the eigenvalues 137

= −2λ1t∂1uk(λ1, λ2, t)− 2λ2t∂2uk(λ1, λ2, t)− t2∂3uk(λ1, λ2, t)

−
(
λ1 + λ2

2
+ nt

)
uk(λ1, λ2, t)

Hence vk(λ1, λ2, 0) = −λ1+λ2
2 uk(λ1, λ2, 0). That is,

v1(λ1, λ2, 0) = −λ1 + λ2

2
u1(λ1, λ2, 0) = −λ1 + λ2

2
λ2

1+λ2
2 = −λ

3
1 + λ2

1λ2 + λ1λ
2
2 + λ3

2

2

Therefore v1(λ1, λ2, t) = Eλ1,λ2

[
−µ1(t)3 + µ1(t)2µ2(t) + µ1(t)µ2(t)2 + µ2(t)3

2

]
, thus

the linear combination v(λ1, λ2, t) = −2v1(λ1, λ2, t) − u2(λ1, λ2, t) will give us the
desired expected value. The explicit computation of v gives

v(λ1, λ2, t) = −2v1(λ1, λ2, t)− u2(λ1, λ2, t)

= λ3
1 + λ2

1λ2 + λ1λ
2
2 + λ3

2 + 2t((n+ 3)(λ1 + λ2)2 + (n+ 4)(λ2
1 + λ2

2))

+ 6t2(n+ 2)(n+ 3)(λ1 + λ2) + 4n(n+ 2)(n+ 3)t3

− 2n(n+ 2)(n+ 7)t3 − 3(n+ 2)(n+ 7)(λ1 + λ2)t2

−
(

3(n+ 5)(λ2
1 + λ2

2) + 6λ1λ2

)
t− λ3

1 − λ3
2

=2n(n− 1)(n+ 2)t3 + 3t2(n− 1)(n+ 2)(λ1 + λ2)

+ ((n− 1)(λ2
1 + λ2

2) + 2(3 + 2n)λ1λ2)t+ λ2
1λ2 + λ2

2λ1.

Clearly v solves (5.35) since vt = −2(v1)t−(u2)t = −2Lv1−Lu2 = L(−2v1−u2) = Lv

and v(λ1, λ2, 0) = λ2
1λ2 + λ2

2λ1. Therefore

v(λ1, λ2, t) = Eλ1,λ2 [µ1(t)2µ2(t) + µ2(t)2µ1(t)].

Remark. We have seen in this example that transforming any solution uk of (5.35)
through the symmetry given by vk produces another solution with initial condition
vk(λ1, λ2, 0) = −λ1+λ2

2 uk(λ1, λ2, 0). Hence, if uk(λ1, λ2, 0) is a symmetric polyno-
mial of degree m, vk(λ1, λ2, 0) will be a symmetric polynomial of degree m+ 1.

This suggests that, ideally, we would like to be able to compute the expecta-
tions Eλ1,λ2 [p(µ1(t), µ2(t))] for any symmetric polynomial p of degree k in terms of
linear combinations of Eλ1,λ2 [qi(µ1(t), µ2(t))] and the action of lie symmetries on
Eλ1,λ2 [qi(µ1(t), µ2(t))] for some symmetric polynomials qi of degree k′ < k. How-
ever, is this really possible? We answer this question with the following result:
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Proposition 5.3.6. Let Wt ∼ WIS(n, 2,W0) with n ≥ 2 and with eigenvalues µ1(t) >

µ2(t) ≥ 0. Let ui(λ1, λ2, t) = Eλ1,λ2 [(µ1(t)µ2(t))i], for i ∈ N ∪ {0} and let

vji (λ1, λ2, t) =

 dj
dεj

ui

(
λ1

(1 + εt)2
,

λ2

(1 + εt)2
,

t

(1 + εt)

) exp
(
− ε

2
(λ1+λ2)
(1+εt)

)
(1 + εt)n


ε=0

(5.42)
for i, j ∈ N ∪ {0}. Then, for any polynomial p(x, y) with deg(p(x, y)) = k such that
p(x, y) = p(y, x),

Eλ1,λ2 [p(µ1(t), µ2(t))] =
∑

i∈I,j∈J
Cijv

j
i (λ1, λ2, t), I ⊂

{
0, 1, . . . ,

⌊
k

2

⌋}
, J ⊂ {0, 1, . . . , k}

(5.43)
for some constants Cij .

Proof. We will prove this result by induction. First consider the following observa-
tions:

1. Let P kS denote the set of all symmetric polynomials of degree k. To show that
the result holds for any q ∈ P kS , it is enough to show that it holds for each
element of a basis of P kS . That is, let Bk = {bkl }, l ∈ L be a basis of P kS . Then
it is enough to show that Eλ1,λ2 [bkl (µ1(t), µ2(t))] =

∑
i∈I,j∈J

C lijv
j
i (λ1, λ2, t) for

each l ∈ L, for some constants C lij . From this, the result trivially follows for
any q ∈ P kS , since q can be written as q =

∑
l αlb

k
l , for some constants αl and

hence

Eλ1,λ2 [q(µ1(t), µ2(t))] = Eλ1,λ2 [
∑
l∈L

αlb
k
l (µ1(t), µ2(t))]

=
∑
l∈L

αlE
λ1,λ2 [bkl (µ1(t), µ2(t))]

=
∑
l∈L

αl
∑

i∈I,j∈J
C lijv

j
i (λ1, λ2, t)

=
∑

i∈I,j∈J

∑
l∈L

αlC
l
ij

 vji (λ1, λ2, t)

=
∑

i∈I,j∈J
Aijv

j
i (λ1, λ2, t),

for some constants Aij =
∑

l∈L αlC
l
ij .
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2. Observe that if ui(λ1, λ2, t) = E[p(µ1(t), µ2(t))], i.e. ui(λ1, λ2, 0) = p(λ1, λ2)

then vji (λ1, λ2, t) = E

[(
µ1(t) + µ2(t)

−2

)j
p(µ1(t), µ2(t))

]
, since

vji (λ1, λ2, 0) =

(
λ1 + λ2

−2

)j
ui(λ1, λ2, 0) =

(
λ1 + λ2

−2

)j
p(λ1, λ2).

So it follows that if vji (λ1, λ2, t) = E
[
q(µ1(t), µ2(t))

]
then

−2vj+1
i (λ1, λ2, t) = E

[
(µ1(t) + µ2(t))q(µ1(t), µ2(t))

]
.

3. A basis Bk for P kS will consist of
⌈
k+1

2

⌉
elements. That is |Bk| =

⌈
k+1

2

⌉
.

Hence, if k is even |Bk| =
⌈
k+1

2

⌉
= k

2 + 1. However, if k is odd then |Bk| =⌈
k+1

2

⌉
= k+1

2 . For practical purposes, we will define the polynomials in the
basis slightly different for even and odd k.

• Even degrees: A basis Bk = {bk1, . . . , bkk
2

+1
} isb

k
i = xk−i+1yi−1 + xi−1yk−i+1, i = 1, . . . , k2 ,

bkk
2

+1
= x

k
2 y

k
2 .

• Odd degrees: A basis Bk = {bk1, . . . , bkk+1
2

} is{
bki = xk−i+1yi−1 + xi−1yk−i+1, i = 1, . . . , k+1

2 .

We will now prove the result for k = 1 and k = 2 and show that, if the result holds
for k = n − 1, then it must hold for k = n. Then, by induction, the result can be
said to be true for all k. To ease the notation, let us refer to (µ1(t), µ2(t)) as (Xt, Yt)

so that the initial condition (µ1(0), µ2(0)) = (λ1, λ2) becomes (X0, Y0) = (x, y).

• k = 1: B1 = {b11},
b11 = x+ y. Clearly, E[b11(Xt, Yt)] = −2v1

0(x, y, t)

• k = 2: B2 = {b21, b22}
First, for b22 = xy we have that clearly E[b22(Xt, Yt)] = v0

1(x, y, t).
Then b21 = x2 + y2 = (x+ y)(x+ y)− 2xy = (x+ y)b11 − 2b22,
so E[b21(Xt, Yt)] = E[(Xt + Yt)b

1
1(Xt, Yt) − 2b22(Xt, Yt)] = −2(−2v2

0(x, y, t)) −
2v0

1(x, y, t) = 4v2
0(x, y, t)− 2v0

1(x, y, t)

• Induction argument: Suppose the result holds for k = n − 1. Consider the
case k = n:
If n is even: Bn = {bn1 , . . . , bnn

2
+1} and Bn−1 = {bn−1

1 , . . . , bn−1
n
2
},

with E[bn−1
l (Xt, Yt)] =

∑
i,j γ

l
ijv

j
i for each l = 1, . . . , n2

(*) bnn
2

+1 = x
n
2 y

n
2 , for which clearly E[bnn

2
+1(Xt, Yt)] = v0

n
2
(x, y, t).
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(*) bnn
2

= x
n
2

+1y
n
2
−1 + x

n
2
−1y

n
2

+1

= (x+ y)(x
n
2 y

n
2
−1 + x

n
2
−1y

n
2 )− 2x

n
2 y

n
2

= (x+ y)bn−1
n
2
− 2bnn

2
+1,

but E[bn−1
n
2

(Xt, Yt)] =
∑

i,j γ
n
2
ij v

j
i (x, y, t), and E[bnn

2
+1(Xt, Yt)] = v0

n
2
(x, y, t) so

E[bnn
2
(Xt, Yt)] = −2

(∑
i,j γ

n
2
ij v

j+1
i (x, y, t)

)
− 2v0

n
2
(x, y, t) :=

∑
i,j β

n
2
ij v

j
i (x, y, t).

(*) bnn
2
−1 = x

n
2

+2y
n
2
−2 + x

n
2
−2y

n
2

+2

= (x+ y)(x
n
2

+1y
n
2
−2 + x

n
2
−2y

n
2

+1)− (x
n
2

+1y
n
2
−1 + x

n
2
−1y

n
2

+1)

= (x+ y)bn−1
n
2
−1 − b

n
n
2
,

but E[bn−1
n
2
−1(Xt, Yt)] =

∑
i,j γ

n
2
−1

ij vji (x, y, t), E[bnn
2
(Xt, Yt)] =

∑
i,j β

n
2
ij v

j
i (x, y, t)

so
E[bnn

2
−1(Xt, Yt)] = −2

(∑
i,j γ

n
2
−1

ij vj+1
i (x, y, t)

)
−
∑

i,j β
n
2
ij v

j
i (x, y, t)

:=
∑

i,j β
n
2
−1

ij vji (x, y, t)
...
(*) bn1 = xn + yn = (x+ y)(xn−1 + yn−1)− (xn−1y+xyn−1) = (x+ y)bn−1

1 − bn2 ,
but E[bn−1

1 (Xt, Yt)] =
∑

i,j γ
1
ijv

j
i (x, y, t), and E[bn2 (Xt, Yt)] =

∑
i,j β

2
ijv

j
i (x, y, t)

hence
E[bn1 (Xt, Yt)] = −2

(∑
i,j γ

1
ijv

j+1
i (x, y, t)

)
−
∑

i,j β
2
ijv

j
i (x, y, t)

:=
∑

i,j β
1
ijv

j
i (x, y, t)

Note that all the polynomials bns , s = n
2−2, . . . , 2, which have not been written

here can be written as bns = (x + y)bn−1
s − bns+1 and hence, E[bns (Xt, Yt)] =

−2
(∑

i,j γ
s
ijv

j+1
i (x, y, t)

)
−
∑

i,j β
s+1
ij vji (x, y, t), where

∑
i,j β

s+1
ij vji (x, y, t) =

E[bns+1(Xt, Yt)]

If n is odd: Bn = {bn1 , . . . , bnn+1
2

} and Bn−1 = {bn−1
1 , . . . , bn−1

n+1
2

},

with E[bn−1
l (Xt, Yt)] =

∑
i,j γ

l
ijv

j
i for each l = 1, . . . , n+1

2

(*) bnn+1
2

= x
n−1

2
+1y

n−1
2 + x

n−1
2 y

n−1
2

+1

= (x+ y)x
n−1

2 y
n−1

2

= (x+ y)bn−1
n+1

2

but E[bn−1
n+1

2

(Xt, Yt)] =
∑

i,j γ
n+1

2
ij vji , so

E[bnn+1
2

(Xt, Yt)] = −2
∑

i,j γ
n+1

2
ij vj+1

i :=
∑

i,j β
n+1

2
ij vji
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(*) bnn+1
2
−1

= x
n−1

2
+2y

n−1
2
−1 + x

n−1
2
−1y

n−1
2

+2

= (x+ y)(x
n−1

2
+1y

n−1
2
−1 + x

n−1
2
−1y

n−1
2

+1)

− (x
n−1

2
+1y

n−1
2 + x

n−1
2 y

n−1
2

+1)

= (x+ y)bn−1
n+1

2
−1
− bnn+1

2

but E[bn−1
n+1

2
−1

(Xt, Yt)] =
∑

i,j γ
n+1

2
−1

ij vji , E[bnn+1
2

(Xt, Yt)] =
∑

i,j β
n+1

2
ij vji so

E[bnn+1
2

(Xt, Yt)] = −2
∑

i,j γ
n+1

2
−1

ij vj+1
i −

∑
i,j β

n+1
2

ij vji :=
∑

i,j β
n+1

2
−1

ij vji
...
(*) bn1 = xn + yn = (x+ y)(xn−1 + yn−1)− (xn−1y+xyn−1) = (x+ y)bn−1

1 − bn2 ,
but E[bn−1

1 (Xt, Yt)] =
∑

i,j γ
1
ijv

j
i (x, y, t), and E[bn2 (Xt, Yt)] =

∑
i,j β

2
ijv

j
i (x, y, t)

hence
E[bn1 (Xt, Yt)] = −2

(∑
i,j γ

1
ijv

j+1
i (x, y, t)

)
−
∑

i,j β
2
ijv

j
i (x, y, t)

:=
∑

i,j β
1
ijv

j
i (x, y, t)

Note that, again, all the polynomials bns , s = n+1
2 − 2, . . . , 2, which have

not been written here can be written as bns = (x + y)bn−1
s − bns+1 and hence,

E[bns (Xt, Yt)] = −2
(∑

i,j γ
s
ijv

j+1
i (x, y, t)

)
−
∑

i,j β
s+1
ij vji (x, y, t),

where
∑

i,j β
s+1
ij vji (x, y, t) = E[bns+1(Xt, Yt)]

Remark. The above result implies that one need only compute

ui(λ1, λ2, t) = Eλ1,λ2 [(µ1(t)µ2(t))i], for i = 1, . . . ,

⌊
k

2

⌋
using Theorem 5.3.4 to be able to compute Eλ1,λ2 [p(µ1(t), µ2(t))] for any symmetric
polynomial p of degree k through symmetry transformation as described in Theo-
rem 5.3.5.

The following proposition presents only a sample of the results that can be ob-
tained combining Theorem 5.3.4 and Theorem 5.3.5:
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Proposition 5.3.7. Let Wt ∼ WIS(n, 2,W0) with n ≥ 2 and with eigenvalues µ1(t) >

µ2(t) ≥ 0. Then

Eλ1,λ2 [µ1(t)µ2(t)] = n(n− 1)t2 + (n− 1)t(λ1 + λ2) + λ1λ2

Eλ1,λ2 [µ2
1(t)µ2

2(t)] = (n− 1)n(n+ 1)(n+ 2)t4 + 2(n− 1)(n+ 1)(n+ 2)(λ1 + λ2)t3

+
(

(n− 1)(n+ 1)(λ1 + λ2)2 + 2(n+ 1)(n+ 4)λ1λ2

)
t2

+2(n+ 1)(λ1 + λ2)λ1λ2t+ λ2
1λ

2
2

Eλ1,λ2 [µ1(t) + µ2(t)] = 2nt+ λ1 + λ2,

Eλ1,λ2 [µ2
1(t) + µ2

2(t)] = 2n(n+ 3)t2 + 2(n+ 3)(λ1 + λ2)t+ λ2
1 + λ2

2,

Eλ1,λ2 [µ3
1(t) + µ3

2(t)] = 2n(n+ 2)(n+ 7)t3 + 3(n+ 2)(n+ 7)(λ1 + λ2)t2

+
(

3(n+ 5)(λ2
1 + λ2

2) + 6λ1λ2

)
t+ λ3

1 + λ3
2,

Eλ1,λ2 [µ4
1(t) + µ4

2(t)] = 2n(n+ 2)(n2 + 16n+ 47)t4

+4(n+ 2)(n2 + 16n+ 47)(λ1 + λ2)t3

+2((n+ 4)(3n+ 19)(λ2
1 + λ2

2) + (7n+ 27)(λ1 + λ2)2)t2

+4((n+ 7)(λ3
1 + λ3

2) + 2λ1λ2(λ1 + λ2))t+ λ4
1 + λ4

2,

Eλ1,λ2 [µ5
1(t) + µ5

2(t)] = 2n(n+ 2)(n+ 4)(n2 + 24n+ 103)t5

+5(n+ 2)(n+ 4)(n2 + 24n+ 103)(λ1 + λ2)t4

+10((n+ 4)(n+ 6)(n+ 9)(λ2
1 + λ2

2) + 2(n+ 4)(2n+ 11)(λ1 + λ2)2)t3

+5((2n2 + 33n+ 125))(λ3
1 + λ3

2) + 3(3n+ 17)λ1λ2(λ1 + λ2))t2

+5((n+ 9)(λ4
1 + λ4

2) + 2λ1λ2(λ1 + λ2)2 − 2λ2
1λ

2
2)t+ λ5

1 + λ5
2,

Eλ1,λ2 [µ6
1(t) + µ6

2(t)] = 2n(n+ 2)(n+ 4)(n+ 7)(n2 + 32n+ 159)t6

+6(n+ 2)(n+ 4)(n+ 7)(n2 + 32n+ 159)(λ1 + λ2)t5

+3((n+ 4)(n+ 6)(5n2 + 100n+ 479)(λ2
1 + λ2

2))t4

+6(n+ 4)(3n+ 19)(5n+ 33)(λ1 + λ2)2t4

+2(3(n+ 7)(25n+ 153)λ1λ2(λ1 + λ2))t3

+2(10n3 + 285n2 + 2486n+ 6819)(λ3
1 + λ3

2))t3

+3((5n2 + 102n+ 493)(λ4
1 + λ4

2) + 2(11n+ 83)λ1λ2(λ1 + λ2)2)t2

−3(11n+ 85)λ2
1λ

2
2t

2

+6(2λ1λ2(λ1 + λ2)3 − 4(λ1 + λ2)λ2
1λ

2
2 + (n+ 11)(λ5

1 + λ5
2))t+ λ6

1 + λ6
2.

The scope of these techniques extends to any symmetric polynomial in the
eigenvalues, i.e. any polynomial that remains invariant under permutation of the
variables. The symmetry property is essential since it is one of the key aspects that
ensures in the proof of Theorem 5.3.4 that the last term in the series expansion of
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Luk (5.39) vanishes.
However, if one is interested in a large number of expected values of the above

type, while computing these is possible with the described techniques, one may
ask if a general explicit formula may be found for some particular cases. In gen-
eral, this can become quite complex, but there are some examples for which this
is possible. We have obtained a closed expression for the expected value of any
power of the trace of a 2-dimensional Wishart process, i.e. we have obtained an
explicit expression for Eλ1,λ2 [(µ1(t) + µ2(t))k] for any k ∈ N:

Proposition 5.3.8. Let Wt ∼ WIS(n, 2,W0) with n ≥ 2 and with eigenvalues µ1(t) >

µ2(t) ≥ 0, and let k ∈ N. Then

Eλ1,λ2 [(µ1(t) + µ2(t))k] = (λ1 + λ2)k

+
k∑
i=1

(2t)i

i!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (λ1 + λ2)k−i.

Proof. To prove this result one need only observe that

u(λ1, λ2, t) := (λ1 + λ2)k +
k∑
i=1

(2t)i

i!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (λ1 + λ2)k−i

satisfies the initial condition u(λ1, λ2, 0) = (λ1 + λ2)k and that it is a solution to the
Kolmogorv Backwards equation for the proccess of the eigenvalues (µ1(t), µ2(t)),
i.e. u solves

ut = 2λ1uλ1λ1 + 2λ2uλ2λ2 +

(
n+

λ1 + λ2

λ1 − λ2

)
uλ1 +

(
n− λ1 + λ2

λ1 − λ2

)
uλ2

Observe that

ut =

k∑
i=1

2iti−1

(i− 1)!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (λ1 + λ2)k−i

uλ1 = k(λ1 + λ2)k−1 +

k−1∑
i=1

(2t)i

i!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (k − i)(λ1 + λ2)k−i−1

= uλ2

uλ1λ1 = uλ2λ2 = k(k − 1)(λ1 + λ2)k−2

+
k−2∑
i=1

(2t)i

i!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (k − i)(k − i− 1)(λ1 + λ2)k−i−2
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Substitution into the right-hand side (RHS) of the above PDE gives:

RHS = 2k(k − 1)(λ1 + λ2)k−1

+
k−2∑
i=1

2i+1ti

i!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (k − i)(k − i− 1)(λ1 + λ2)k−i−1

+ 2nk(λ1 + λ2)k−1+
k−1∑
i=1

2i+1ti

i!

 i∏
j=1

(k − j + 1)(n+ k − j)

(k − i)n(λ1 + λ2)k−i−1

= 2k(n+ k − 1)(λ1 + λ2)k−1 +
2ktk−1

(k − 1)!

k−1∏
j=1

(k − j + 1)(n+ k − j)

n

+
k−2∑
i=1

2i+1ti

i!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (k − i)(n+ k − i− 1)(λ1 + λ2)k−i−1

= 2k(n+ k − 1)(λ1 + λ2)k−1 +
2ktk−1

(k − 1)!

k−1∏
j=1

(k − j + 1)(n+ k − j)

n

+

k−1∑
i=2

2iti−1

(i− 1)!

i−1∏
j=1

(k − j + 1)(n+ k − j)

 (k − i+ 1)(n+ k − i)(λ1 + λ2)k−i

=
k∑
i=1

2iti−1

(i− 1)!

i−1∏
j=1

(k − j + 1)(n+ k − j)

 (k − i+ 1)(n+ k − i)(λ1 + λ2)k−i

=
k∑
i=1

2iti−1

(i− 1)!

 i∏
j=1

(k − j + 1)(n+ k − j)

 (λ1 + λ2)k−i = ut = LHS

Therefore u is a solution to the Kolmogorov Backwards equation for the process of
the eigenvalues and it has initial condition u(λ1, λ2, 0) = (λ1 + λ2)k, so by part (b)
in Theorem 2.2.2

Eλ1,λ2 [(µ1(t) + µ2(t))k] = u(λ1, λ2, t)

5.3.1.1 Extension to p-dimensional Wishart processes

The methods used in the previous section can be easily proven to be extensible to
any dimension p. For example, Theorem 5.3.4 naturally extends to the following
for a p-dimensional Wishart process.
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Theorem 5.3.9. Let Wt ∼ WIS(n, p,W0) with n ≥ p and with eigenvalues µ1(t) >

· · · > µp(t) ≥ 0. Let Lp be the differential operator defined as

Lp =

p∑
i=1

2λi
∂2

∂λ2
i

+
∑
i

n+
∑
j 6=i

λi + λj
λi − λj

 ∂

∂λi
,

and let p(x1, . . . , xp) be a symmetric polynomial of degree k. That is, let p be a polynomial
with k = deg(p(x1, . . . , xp)) and such that p(x1, . . . , xp) = (p ◦ σ)(x1, . . . , xp), for any
permutation σ : {x1, . . . , xp} → {x1, . . . , xp} .
Take

u0(λ1, . . . , λp, t) = p(λ1, . . . , λp)

and

us(λ1, . . . , λp, t) =

∫ t

0
Lpus−1(λ1, . . . , λp, r)dr + p(λ1, . . . , λp), for s = 1, . . . , k.

Then
Eλ1,...,λp [p(µ1(t), . . . , µp(t))] = uk(λ1, . . . , λp, t).

Proof. The proof of this result is similar to that of the 2-dimensional version (Theo-
rem 5.3.4).

Similarly, Theorem 5.3.5 extends to

Theorem 5.3.10. Let Wt ∼ WIS(n, p,W0) with n ≥ p and with eigenvalues µ1(t) >

· · · > µp(t) ≥ 0. Let Lp be the differential operator defined as

Lp =

p∑
i=1

2λi
∂2

∂λ2
i

+
∑
i

n+
∑
j 6=i

λi + λj
λi − λj

 ∂

∂λi
,

Suppose u(λ1, . . . , λp, t) ∈ C2,1(Rp×R) is a solution of ut = Lpu, with u(λ1, . . . , λp, 0) =

f(λ1, . . . , λp) and u is bounded for t ∈ K, for each compact K ⊂ R, i.e. suppose that
u(λ1, . . . , λp, t) = Eλ1,...,λp [f(µ1(t), . . . , µp(t))].
Consider

v(λ1, . . . , λp, t) =

[
di

dεi
ũε(λ1, . . . , λp, t)

]
ε=0

(5.44)

for any i ∈ N ∪ {0}, where

ũε(λ1, . . . , λp, t) = σ(λ1, . . . , λp, t, ε)u
(
a1(λ1, . . . , λp, t, ε), . . . , ap+1(λ1, . . . , λp, t, ε)

)
denotes any symmetry of the equation ut = Lpu.
Suppose that v(λ1, . . . , λp, 0) = g(λ1, . . . , λp). If v(λ1, . . . , λp, t) ∈ C2,1(Rp ×R), and is
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bounded for t ∈ K, for each compact K ⊂ R, then

v(λ1, . . . , λp, t) = Eλ1,...,λp [g(µ1(t), . . . , µp(t))].

Proof. Again, the proof for this result is similar to that of Theorem 5.3.5.

Through a similar argument, an extension of Proposition 5.3.6 can also be for-
mulated for general dimension p. Therefore we can compute the expected value for
any symmetric polynomial in the eigenvalues of a p× p Wishart process.

Remark. It is important to remark that what we refer to as a symmetric polyno-
mial in the eigenvalues of a p × p Wishart process is any polynomial q such that
q(µ1, µ2, . . . , µp) = (q ◦ σ)(µ1, µ2, . . . , µp), for any permutation σ : {µ1, . . . , µp} →
{µ1, . . . , µp}. Observe that this does not include polynomials like µ2

1µ2 +µ1µ
2
2 if we

are regarding a Wishart process of dimension p > 2, while this polynomial does
indeed fit the definition if we are working with a 2−dimensional Wishart process.

Even though the above results give us all the necessary tools to compute the
expected value for any symmetric polynomial in the eigenvalues µ1, . . . , µp of a
p × p Wishart process, one may observe that these tools involve either calculating
powers of the linear operator

Lp =

p∑
i=1

2λi
∂2

∂λ2
i

+
∑
i

n+
∑
j 6=i

λi + λj
λi − λj

 ∂

∂λi
, (5.45)

computing a large number of iterations involving integrals of Lp applied to some
functions or, alternatively, computing the symmetries of ut = Lpu. As a general
rule, for a fixed p, the higher the degree of the considered polynomial, the more
computationally demanding these tasks become. Moreover, if one wishes to study
the general case p, these methods can become quite messy, since we need to work
with the general form of the operator Lp as well as the general form of the relevant
symmetric polynomial.

It turns out that it is possible to obtain a closed form expression in terms of
the dimension p for the expectations of some symmetric polynomials. This gives a
much more convenient way of evaluating these expected values for these particular
polynomials. We provide a sample of these results in the following propositions:

Proposition 5.3.11. Let Wt ∼WIS(n, p,W0) with n ≥ p, and with eigenvalues µ1(t) >

· · · > µp(t) ≥ 0, the expected values for the sums
∑p

i=1 µ
k
i (t), k = 1, 2, 3, 4 are given

respectively by the following solutions of the associated Kolmogorov Backward Equation :
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(a) k = 1:

Eλ1,...,λp

 p∑
i=1

µi(t)

 : = u1(λ1, . . . , λp, t) :=

p∑
i=1

λi + pnt

(b) k = 2:

Eλ1,...,λp

 p∑
i=1

µ2
i (t)

 := u2(λ1, . . . , λp, t)

:= pn2t2 +

p∑
i=1

λ2
i + 2(p+ 1)t

p∑
i=1

λi + nt

p(p+ 1)t+ 2

p∑
i=1

λi

 (5.46)

(c) k = 3:

Eλ1,...,λp

 p∑
i=1

µ3
i (t)

 := u3(λ1, . . . , λp, t)

:= pn3t3 +

p∑
i=1

λ3
i + 3((p+ 1)(p+ 2) + 2)t2

p∑
i=1

λi

+ 3n2t2

p(p+ 1)t+

p∑
i=1

λi

+ 3t

(p+ 3)

p∑
i=1

λ2
i + 2

∑
j 6=i

λiλj


+ nt

(p(p+ 1)(p+ 2) + 2p)t2 + 9(p+ 1)t

p∑
i=1

λi + 3

p∑
i=1

λ2
i

 (5.47)

(d) k = 4:

Eλ1,...,λp

 p∑
i=1

µ4
i (t)

 := u4(λ1, . . . , λp, t)

:= A

npt4 + 4t3
p∑
i=1

λi

+ 2Bt2
p∑
i=1

λ2
i + 4Ct2

∑
j 6=i

λiλj

+ 4Dt

p∑
i=1

λ3
i + 8t

p∑
i=1

λ2
i

∑
j 6=i

λj

+

p∑
i=1

λ4
i , (5.48)

where

A := n3+6(p+1)n2+n[6(p+1)(p+2)−(p−9)]+[(p+1)(p+2)(p+3)+10(p+1)+4],

B := 3n2 + 2n(4p+ 11)[3(p+ 3)(p+ 4) + (p+ 11)],

C := 7n+ (7p+ 13) and
D := n+ (p+ 5)
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Proof. We need to show that for each k = 1, 2, 3, 4, uk(λ1, . . . , λp, t) has initial con-
dition uk(λ1, . . . , λp, 0) =

∑p
i=1 λ

k
i and solves the PDE ut = Lpu, where the linear

operator Lp is defined as in (5.45).
It is straightforward that for each k ∈ {1, 2, 3, 4}, uk satisfies the required initial

condition: one need only substitute t = 0 in the given expressions and the result
trivially follows. Therefore it only remains to show that uk is a solution of the
mentioned PDE in each case:

(a) k=1: On the one hand, we have (u1)t = np and, on the other hand

Lpu1 =

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj

 (u1)λi +

p∑
i=1

2λi(u1)λiλi

=

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj

× 1 +

p∑
i=1

2λi × 0

=

p∑
i=1

n+

p∑
i=1

∑
j 6=i

λi + λj
λi − λj


=np,

Therefore the PDE (u1)t = Lpu1 is indeed satisfied.
Note that the sum

∑p
i=1

(∑
j 6=i

λi+λj
λi−λj

)
= 0 since λi+λj

λi−λj = −λj+λi
λj−λi , ∀i, j

(b) k=2: The left-hand side of our PDE is

(u2)t = 2pn2t+ 2(p+ 1)

p∑
i=1

λi + 2np(p+ 1)t+ 2n

p∑
i=1

λi

= 2pnt(n+ p+ 1) + 2(p+ 1 + n)

p∑
i=1

λi

= 2(p+ 1 + n)

pnt+

p∑
i=1

λi


On the other hand, we have that the right-hand side is

Lpu2 =

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj

 (u2)λi +

p∑
i=1

2λi(u2)λiλi

=

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj

(2λi + 2(p+ 1)t+ 2nt
)

+

p∑
i=1

2λi × 2
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=

p∑
i=1

n
(
2λi + 2(p+ 1)t+ 2nt

)
+ 4

p∑
i=1

λi

+

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

(2λi + 2(p+ 1)t+ 2nt
)

=(2n+ 4)

p∑
i=1

λi + 2np(p+ 1)t+ 2n2pt+ 2

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λi

=(2n+ 4)

p∑
i=1

λi + 2ntp(p+ 1 + n) + 2(p− 1)

p∑
i=1

λi

=(2n+ 4 + 2p− 2)

p∑
i=1

λi + 2ntp(p+ 1 + n)

=2(n+ 1 + p)

p∑
i=1

λi + 2ntp(p+ 1 + n)

=2(p+ 1 + n)

pnt+

p∑
i=1

λi

 .

So we have verified that u2 satisfies (u2)t = Lpu2 as required.

(c) k=3: In this case, on the one hand we have:

(u3)t = 3pn3t2 + 6((p+ 1)(p+ 2) + 2)t

p∑
i=1

λi

+ 9n2p(p+ 1)t2 + 6n2t

p∑
i=1

λi + 3

(p+ 3)

p∑
i=1

λ2
i + 2

∑
j 6=i

λiλj


+ 3nt2(p(p+ 1)(p+ 2) + 2p) + 18nt(p+ 1)

p∑
i=1

λi + 3n

p∑
i=1

λ2
i

= t2
[
3np3 + 9n(n+ 1)p2 + 3np(n2 + 3n+ 4)

]
+ t

p∑
i=1

λi

[
6p2 + 18(n+ 1)p+ 6(n2 + 3n+ 4)

]
+

p∑
i=1

λ2
i (3p+ 3(n+ 3)) + 6

∑
j 6=i

λiλj ,

while on the other hand, the RHS of the PDE is



150 Chapter 5. Wishart Processes and their Eigenvalues

Lpu3 =

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj

 (u3)λi +

p∑
i=1

2λi(u3)λiλi

=

p∑
i=1

2λi
[
6λi + 6t(p+ (n+ 3))

]︸ ︷︷ ︸
(u3)λiλi

+

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj



×

3λ2
i + 6tλi(p+ (n+ 3)) + 6t

∑
j 6=i

λj + 3t2
(
p2 + 3p(n+ 1) + n2 + 3n+ 4

)
︸ ︷︷ ︸

(u3)λi

=12

p∑
i=1

λ2
i + 12t(p+ (n+ 3))

p∑
i=1

λi + 3n

p∑
i=1

λ2
i + 6tn(p+ (n+ 3))

p∑
i=1

λi

+6tn

p∑
i=1

∑
j 6=i

λj + 3t2np
(
p2 + 3p(n+ 1) + n2 + 3n+ 4

)
+

p∑
i=1

∑
j 6=i

λi + λj
λi − λj


×

3λ2
i + 6tλi(p+ (n+ 3)) + 6t

∑
j 6=i

λj + 3t2
(
p2 + 3p(n+ 1) + n2 + 3n+ 4

)
=(12 + 3n)

p∑
i=1

λ2
i + 6t((n+ 2)p+ (n2 + 5n+ 6))

p∑
i=1

λi + 6tn(p− 1)

p∑
i=1

λi

+t2
(

3np3 + 9np2(n+ 1) + 3np(n2 + 3n+ 4)
)

+

p∑
i=1

∑
j 6=i

λi + λj
λi − λj


×

3λ2
i + 6tλi(p+ (n+ 3)) + 6t

∑
j 6=i

λj


=(12 + 3n)

p∑
i=1

λ2
i + 6t(2(n+ 1)p+ (n2 + 4n+ 6))

p∑
i=1

λi+

+t2
(

3np3 + 9np2(n+ 1) + 3np(n2 + 3n+ 4)
)

+ 3

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λ2
i

+6t(p+ (n+ 3))

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λi + 6t

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

∑
j 6=i

λj


=(12 + 3n)

p∑
i=1

λ2
i + 6t(2(n+ 1)p+ (n2 + 4n+ 6))

p∑
i=1

λi+

+t2
(

3np3 + 9np2(n+ 1) + 3np(n2 + 3n+ 4)
)

+ 3(p− 1)

p∑
i=1

λ2
i

+6
∑
j 6=i

λiλj + 6t(p+ (n+ 3))(p− 1)

p∑
i=1

λi − 6t(p− 1)

p∑
i=1

λi



5.3. An alternative approach to the study of the eigenvalues 151

=t2
(

3np3 + 9np2(n+ 1) + 3np(n2 + 3n+ 4)
)

+6t

p∑
i=1

λi(p
2 + 3(n+ 1)p+ (n2 + 3n+ 4))

+

p∑
i=1

λ2
i (3p+ 3(n+ 3)) + 6

∑
j 6=i

λiλj

Again, it is verified that (u3)t = Lpu3 as claimed.

(d) k=4: Let us first compute the appropriate partial derivatives of u4:

(u4)t = 4Anpt3 + 12At2
∑p

i=1 λi + 4Bt
∑p

i=1 λ
2
i + 8Ct

∑
j 6=i λiλj

+4D
∑p

i=1 λ
3
i + 8

∑p
i=1 λ

2
i

(∑
j 6=i λj

)
(u4)λi = 4At3 + 4Bt2λi + 4Ct2

∑
j 6=i λj + 12Dtλ2

i + 16tλi
∑

j 6=i λj

+8t
∑

j 6=i λ
2
j + 4λ3

i

(u4)λiλi = 4Bt2 + 24Dtλi + 16t
∑

j 6=i λj + 12λ2
i ,

where A, B, C and D are defined as in the statement of the proposition.
Then, the RHS of our PDE becomes:

Lpu4 =

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj

 (u4)λi +

p∑
i=1

2λi(u4)λiλi

=

p∑
i=1

n4At3 + 4Bt2
p∑
i=1

nλi + 4Ct2
p∑
i=1

n
∑
j 6=i

λj + 12Dt

p∑
i=1

nλ2
i

+ 16t

p∑
i=1

nλi
∑
j 6=i

λj + 8t

p∑
i=1

n
∑
j 6=i

λ2
j + 4

p∑
i=1

nλ3
i

+ 4At3
p∑
i=1

∑
j 6=i

λi + λj
λi − λj

+ 4Bt2
p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λi

+ 4Ct2
p∑
i=1

∑
j 6=i

λi + λj
λi − λj

∑
j 6=i

λj + 12Dt

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λ2
i

+ 16t

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λi
∑
j 6=i

λj + 8t

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

∑
j 6=i

λ2
j

+ 4

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λ3
i + 4Bt2

p∑
i=1

2λi + 24Dt

p∑
i=1

2λiλi
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+ 16t

p∑
i=1

2λi
∑
j 6=i

λj + 12

p∑
i=1

2λiλ
2
i

= 4npAt3 + 4Bnt2
p∑
i=1

λi + 4Cnt2
p∑
i=1

∑
j 6=i

λj︸ ︷︷ ︸
(p−1)

∑p
i=1 λi

+12nDt

p∑
i=1

λ2
i

+ 16nt

p∑
i=1

λi
∑
j 6=i

λj︸ ︷︷ ︸
2
∑
j 6=i λiλj

+8nt

p∑
i=1

∑
j 6=i

λ2
j︸ ︷︷ ︸

(p−1)
∑p
i=1 λ

2
i

+4n

p∑
i=1

λ3
i

+ 4At3
p∑
i=1

∑
j 6=i

λi + λj
λi − λj


︸ ︷︷ ︸

=0

+4Bt2
p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λi︸ ︷︷ ︸
(p−1)

∑p
i=1 λi

+ 4Ct2
p∑
i=1

∑
j 6=i

λi + λj
λi − λj

∑
j 6=i

λj︸ ︷︷ ︸
−(p−1)

∑p
i=1 λi

+12Dt

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λ2
i︸ ︷︷ ︸

(p−1)
∑p
i=1 λ

2
i+2

∑
j 6=i λiλj

+ 16t

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λi
∑
j 6=i

λj︸ ︷︷ ︸
2(p−2)

∑
j 6=i λiλj

+8t

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

∑
j 6=i

λ2
j︸ ︷︷ ︸

−(p−1)
∑p
i=1 λ

2
i−2

∑
j 6=i λiλj

+ 4

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

λ3
i︸ ︷︷ ︸

(p−1)
∑p
i=1 λ

3
i+2

∑p
i=1 λ

2
i

(∑
j 6=i λj

)
+8Bt2

p∑
i=1

λi + 48Dt

p∑
i=1

λ2
i

+ 32t

p∑
i=1

λi
∑
j 6=i

λj︸ ︷︷ ︸
2
∑
j 6=i λiλj

+24

p∑
i=1

λ3
i

= t2
p∑
i=1

λi
[
4Bn+ 4B(p− 1) + 8B + 4Cn(p− 1)− 4C(p− 1)

]
+ t

p∑
i=1

λ2
i

[
12nD + 48D + 12D(p− 1) + 8n(p− 1)− 8(p− 1)

]
+ t
∑
j 6=i

λiλj
[
32n+ 32(p− 2)− 16 + 64 + 24D

]

+

p∑
i=1

λ3
i

[
4n+ 4(p− 1) + 24

]
+ 8

p∑
i=1

λ2
i

∑
j 6=i

λj

+ 4npAt3
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= 4t2
p∑
i=1

λi
[
B(n+ p+ 1) + C(n− 1)(p− 1)

]
+ 4t

p∑
i=1

λ2
i

[
D(3n+ 3p+ 9) + 2(n− 1)(p− 1)

]
+ 8t

∑
j 6=i

λiλj [4n+ 4p− 2 + 3D] + 4

p∑
i=1

λ3
i [n+ p+ 5]

+ 8

p∑
i=1

λ2
i

∑
j 6=i

λj

+ 4npAt3

= (u4)t,

since it can be easily shown that:
12A = 4

[
B(n+ p+ 1) + C(n− 1)(p− 1)

]
4B = 4

[
D(3n+ 3p+ 9) + 2(n− 1)(p− 1)

]
8C = 8 [4n+ 4p− 2 + 3D]

Hence the PDE (u4)t = Lpu4 is satisfied.

So for each case, we have verified that (uk)t = Lpuk, k ∈ {1, 2, 3, 4} and
uk(λ1, . . . , λp, 0) =

∑p
i=1 λ

k
i . Hence, by part (b) of Theorem 2.2.2, we have that for

each k

uk(λ1, . . . , λp, t) = Eλ1,...,λp

 p∑
i=1

µki (t)


as claimed.

Note. The case k = 1 in the above proposition gives the expected value of the trace
of Wt. That is, for Wt ∼ WIS(n, p,W0) with n ≥ p and eigenvalues µ1(t) > · · · >
µp(t) ≥ 0 with µi(0) = λi, i = 1, . . . , p we have

E
[
Tr(Wt)

]
=

p∑
i=1

λi + pnt

We now provide an explicit expression for the expected value of the determi-
nant of a p-dimensional Wishart process:

Proposition 5.3.12. Let J = {1, . . . , p} and let Wt ∼ WIS(n, p,W0) with n ≥ p and
with eigenvalues µ1(t) > · · · > µp(t) ≥ 0. Then, the expected value for the product of the
eigenvalues (that is, the expected value of the determinant of the process Wt) is given by the
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following solution of the Kolmogorov’s Backward Equation:

Eλ1,...,λp

 p∏
i=1

µi(t)

 = Eλ
[
det(Wt)

]
= u(λ1, . . . , λp, t)

=

p∏
i=1

λi +

p∑
i=1

ti

 i∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−i

∏
r∈Jm

λr

 (5.49)

Proof. As in the previous proposition, we must only check that the given expression
u is indeed a solution of ut = Lpu with initial condition u(λ1, . . . , λp, 0) =

∏p
i=1 λi.

Again, it is trivial that the initial condition is satisfied since:

u(λ1, . . . , λp, 0) =

p∏
i=1

λi +

p∑
i=1

0i

 i∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−i

∏
r∈Jm

λr

 =

p∏
i=1

λi.

Now, to check that u is indeed a solution to the required PDE, we have :

ut =

p∑
i=1

iti−1

 i∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−i

∏
r∈Jm

λr



= (n− p+ 1)
∑
Jm⊂J,
|Jm|=p−1

∏
r∈Jm

λr

︸ ︷︷ ︸
I

+

p∑
i=2

iti−1

 i∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−i

∏
r∈Jm

λr


︸ ︷︷ ︸

II

and

Lpu =

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj

uλi +

p∑
i=1

2λi uλiλi︸ ︷︷ ︸
=0

=

p∑
i=1

n+
∑
j 6=i

λi + λj
λi − λj




p∏
j=1
j 6=i

λj +

p−1∑
j=1

tj

 j∏
k=1

(n− p+ k)


 ∑

Jm⊂J\{i},
|Jm|=p−j−1

∏
r∈Jm

λr






5.3. An alternative approach to the study of the eigenvalues 155

=

p∑
i=1

n

p∏
j=1
j 6=i

λj

︸ ︷︷ ︸
A

+

p∑
i=1

∑
j 6=i

λi + λj
λi − λj



p−1∑
j=1

tj

 j∏
k=1

(n− p+ k)


 ∑

Jm⊂J\{i},
|Jm|=p−j−1

∏
r∈Jm

λr




︸ ︷︷ ︸
B

+

p∑
i=1

∑
j 6=i

λi + λj
λi − λj

 p∏
j=1
j 6=i

λj

︸ ︷︷ ︸
C

+

p∑
i=1

n


p−1∑
j=1

tj

 j∏
k=1

(n− p+ k)


 ∑

Jm⊂J\{i},
|Jm|=p−j−1

∏
r∈Jm

λr




︸ ︷︷ ︸
D

Observe that the individual terms A, B, C and D can be expressed respectively as
follows:

A =n
∑
Jm⊂J,
|Jm|=p−1

∏
r∈Jm

λr,

C =− (p− 1)
∑
Jm⊂J,
|Jm|=p−1

∏
r∈Jm

λr,

B =−
p−1∑
j=1

(p− (j + 1))(j + 1)tj

 j∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j−1

∏
r∈Jm

λr



=−
p∑
j=2

(p− j)jtj−1

j−1∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j

∏
r∈Jm

λr

 ,

D =

p−1∑
j=1

n(j + 1)tj

 j∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j−1

∏
r∈Jm

λr



=

p∑
j=2

njtj−1

j−1∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j

∏
r∈Jm

λr


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Substitution back into Lp gives:

Lpu =n
∑
Jm⊂J,
|Jm|=p−1

∏
r∈Jm

λr − (p− 1)
∑
Jm⊂J,
|Jm|=p−1

∏
r∈Jm

λr

+

p∑
j=2

njtj−1

j−1∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j

∏
r∈Jm

λr



−
p∑
j=2

(p− j)jtj−1

j−1∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j

∏
r∈Jm

λr


=(n− (p− 1))

∑
Jm⊂J,
|Jm|=p−1

∏
r∈Jm

λr

+

p∑
j=2

(n− (p− j))jtj−1

j−1∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j

∏
r∈Jm

λr



=(n− p+ 1)
∑
Jm⊂J,
|Jm|=p−1

∏
r∈Jm

λr +

p∑
j=2

jtj−1

 j∏
k=1

(n− p+ k)


 ∑

Jm⊂J,
|Jm|=p−j

∏
r∈Jm

λr

 ,

which is exactly the same as expressions I and II in ut.
Therefore, we have that the function u defined as in (5.49) is a solution of

ut = Lpu with initial condition u(λ1, . . . , λp, 0) =
∏p
i=1 λi and so, by part (b) of

the Kolmogorov Backward equation theorem (Theorem 2.2.2),

u(λ1, . . . , λp, t) = Eλ1,...,λp

 p∏
i=1

µi(t)


as claimed.

It can be easily appreciated that the general expressions for the expectations in
the p−dimensional case get substantially more complicated as we increase the de-
gree of the polynomials. Thus, we have not included any more cases in this work.
Theorems 5.3.9 and 5.3.10 will produce the expected value for any particular sym-
metric polynomial we wish to consider.
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5.3.2 A method to extend the computations of expected values to a wider
class of functions in the eigenvalues of a Wishart process

In this section we present some results that allow us to extend the range of func-
tions f for which we can compute E[f(µ1(t), µ2(t))]. Note that Theorem 5.3.5 in the
previous section does precisely this through the use of lie symmetries. This partic-
ular theorem is not only valid to obtain expected values of symmetric polynomials,
but for a much wider range of functions.

Similarly to the above mentioned theorem, the results in this section extend the
scope of our results to a wider class of functions f but, in this case, by making
use of a combination of the basic tools of Itô calculus and the results obtained in
the previous section. The results presented here are for the 2-dimensional case for
simplicity.

Remark. From this point on, we will typically refer to the eigenvalues of a Wishart
process as Xt and Yt to ease the notation. Even though this new notation looks
somewhat less natural for eigenvalues, it will make all the upcoming expressions a
lot simpler. In this and the upcoming sections, we will considerWt ∼WIS(n, 2,W0),
with n ≥ 2 and with eigenvalues X(t) > Y (t) ≥ 0, that we will usually denote by
Xt := X(t), Yt := Y (t).

Theorem 5.3.13. Let Wt ∼ WIS(n, 2,W0) with index n ≥ 2 and with eigenvalues
X(t) > Y (t) ≥ 0. Let P denote the set of all polynomials in two variables with coefficients
in R and let PS = {p(x, y) ∈ P |p(x, y) = p(y, x)}, i.e. PS denotes the set of all symmetric
polynomials in 2 variables with real coefficients. Let L be the linear operator defined as:

L = 2x
∂2

∂x2
+ 2y

∂2

∂y2
+

(
n+

x+ y

x− y

)
∂

∂x
+

(
n− x+ y

x− y

)
∂

∂y
(5.50)

Then, for any function f such that

Lf = g, g ∈ PS

we have that

E[f(Xt, Yt)] = f(x, y) +

∫ t

0
E[g(Xs, Ys)]ds,

where the integrand in the above expression can be calculated using the methodology de-
scribed in Theorems 5.3.4 and 5.3.5.

Proof. Let g ∈ PS . Theorems 5.3.4 and 5.3.5 have been proven to produce an ex-
pression for E[g(Xt, Yt)] for all g ∈ PS .
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Now let f be a function satisfying Lf = g. Then, by Itô’s formula, we have that

f(Xt, Yt) = f(x, y) +

∫ t

0
(Lf)(Xs, Ys)ds+Mt, (5.51)

where the term Mt is a martingale. Therefore, taking expectations yields

E[f(Xt, Yt)] = f(x, y) +

∫ t

0
E[g(Xs, Ys)]ds+ E[Mt]

= f(x, y) +

∫ t

0
E[g(Xs, Ys)]ds

as claimed. Furthermore the integrand in the above expression is known since
g ∈ PS .

Corollary. Let Wt ∼ WIS(n, 2,W0) with index n ≥ 2 and with eigenvalues X(t) >

Y (t) ≥ 0. Let L be the linear operator defined as:

L = 2x
∂2

∂x2
+ 2y

∂2

∂y2
+

(
n+

x+ y

x− y

)
∂

∂x
+

(
n− x+ y

x− y

)
∂

∂y
(5.52)

Then, for any function f such that

Lkf = g, g ∈ PS

we have that

E[f(Xt, Yt)] =
k−1∑
n=0

tn

n!
Lnf(x, y) +

∫ t

0

∫ tk−1

0
· · ·
∫ t1

0
E[g(Xs, Ys)]dsdt1 . . . dtk−1,

where the integrand in the above expression can be calculated using the methodology de-
scribed in Theorems 5.3.4 and 5.3.5.

Proof. To prove this Corollary one need only use Theorem 5.3.14 iteratively k times.
Note that for k = 1 we have that Lf = g and we get exactly the statement of
Theorem 5.3.14:

E[f(Xt, Yt)] = f(x, y) +

∫ t

0
E[g(Xs, Ys)]ds,

which has already been proved.
For k = 2, we have that L2f = g. Let us denote Lf := f1. We then have L2f =

L(Lf) = Lf1 = g. Similarly to the proof of Theorem 5.3.14, Itô’s formula yields:
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f(Xt, Yt) = f(x, y) +

∫ t

0
(Lf)(Xs, Ys)ds+Mt,

= f(x, y) +

∫ t

0
f1(Xs, Ys)ds+Mt,

where Mt is a martingale. Hence, taking expectations:

E[f(Xt, Yt)] = f(x, y) +

∫ t

0
E[f1(Xs, Ys)]ds+ E[Mt],

= f(x, y) +

∫ t

0

(
f1(x, y) +

∫ t1

0
E[g(Xs, Ys)]ds

)
dt1

= f(x, y) + tf1(x, y)

∫ t

0

∫ t1

0
E[g(Xs, Ys)]dsdt1,

as claimed. Observe that the expression used forE[f1(Xs, Ys)] above comes directly
from Theorem 5.3.14, or form the case k = 1 in this Corollary.

We need only show that if the result is true for k = n − 1, i.e. if for any h such
that Ln−1h = g, g ∈ PS it is satisfied that

E[h(Xt, Yt)] =

n−2∑
i=0

ti

i!
Lih(x, y) +

∫ t

0

∫ tn−2

0
· · ·
∫ t1

0
E[g(Xs, Ys)]dsdt1 . . . dtn−2,

then the result also holds for k = n. Hence, by induction, the result will be proven
to be true for all k. Observe that for k = n we have Lnf = g. If we denote Lf :=

fn−1 we have that Lnf = Ln−1(Lf) = Ln−1(fn−1) = g. Then, as in the previous
cases, Itô’s formula gives

f(Xt, Yt) = f(x, y) +

∫ t

0
(Lf)(Xs, Ys)ds+Mt,

= f(x, y) +

∫ t

0
fn−1(Xs, Ys)ds+Mt,

where Mt is a martingale. And again, computing the expectations yields

E[f(Xt, Yt)] = f(x, y) +

∫ t

0
E[fn−1(Xs, Ys)]ds+ E[Mt],

= f(x, y) +

∫ t

0

n−2∑
i=0

tin−1

i!
Lifn−1(x, y)dtn−1

+

∫ t

0

∫ tn−1

0

∫ tn−2

0
· · ·
∫ t1

0
E[g(Xs, Ys)]dsdt1 . . . dtn−2dtn−1
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But note that

f(x, y) +

∫ t

0

n−2∑
i=0

tin−1

i!
Lifn−1(x, y)dtn−1 = f(x, y) +

∫ t

0

n−2∑
i=0

tin−1

i!
Li(Lf)(x, y)dtn−1

= f(x, y) +

n−2∑
i=0

ti+1

(i+ 1)!
Li+1f(x, y) = f(x, y) +

n−1∑
i=1

ti

i!
Lif(x, y)

=
n−1∑
i=0

ti

i!
Lif(x, y)

So we have that

E[f(Xt, Yt)] =
n−1∑
i=0

ti

i!
Lif(x, y) +

∫ t

0

∫ tn−1

0
· · ·
∫ t1

0
E[g(Xs, Ys)]dsdt1 . . . dtn−1,

as required. Hence, by induction, we have that for all k ∈ N, if Lkf = g, g ∈ PS
then

E[f(Xt, Yt)] =
k−1∑
n=0

tn

n!
Lnf(x, y) +

∫ t

0

∫ tk−1

0
· · ·
∫ t1

0
E[g(Xs, Ys)]dsdt1 . . . dtk−1,

where the integrand E[g(Xs, Ys)] can be calculated according to Proposition 5.3.4.

We will illustrate this methodology by presenting an example in what follows:

Example 5.3.2. Consider the PDE:

Lf(x, y) = x+ y, (5.53)

where the differential operator L is defined as in (5.58).
To solve this PDE let z = x+ y. Then equation (5.53) becomes:

2xfxx + 2yfyy +

(
n+

x+ y

x− y

)
fx +

(
n− x+ y

x− y

)
fy = x+ y

⇔ 2zfzz + 2nfz = z (5.54)

Note that equation (5.54) has solution:

f(z) = C1 + C2
z1−n

1− n
+

z2

4(n+ 1)
, (5.55)

which can be expressed in terms of x and y as:
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f(x, y) = C1 + C2
(x+ y)1−n

1− n
+

(x+ y)2

4(n+ 1)
. (5.56)

Therefore using Theorem 5.3.14 we have that

E

[
C1 + C2

(Xt + Yt)
1−n

1− n
+

(Xt + Yt)
2

4(n+ 1)

]
= C1 + C2

(x+ y)1−n

1− n
+

(x+ y)2

4(n+ 1)

+

∫ t

0
E[Xs + Ys]ds

But we know from the previous sections that E[Xs + Ys] = 2ns+ x+ y so we have

E

[
C1 + C2

(Xt + Yt)
1−n

1− n
+

(Xt + Yt)
2

4(n+ 1)

]
= C1 + C2

(x+ y)1−n

1− n
+

(x+ y)2

4(n+ 1)

+

∫ t

0
(2ns+ x+ y)ds

= C1 + C2
(x+ y)1−n

1− n
+

(x+ y)2

4(n+ 1)

+ nt2 + (x+ y)t

This allows us to calculate the expectations E
[
(Xt + Yt)

1−n] in terms of
E
[
(Xt + Yt)

2
]

as follows:

E[(Xt + Yt)
1−n] = (x+ y)1−n + (1− n)

(
(x+ y)2 − E[(Xt + Yt)

2]

4(n+ 1)
+ nt2 + (x+ y)t

)

Note that (x+y)1−n with n ≥ 2 is not a polynomial, so this was not a function of the
eigenvalues for which we could calculate the expectations using the methodology
presented in previous sections. However, E[(Xt + Yt)

2] is indeed something we
already know how to calculate. Therefore, using this method we are extending the
class of functions of the eigenvalues of a Wishart process for which we can calculate
the expectations. Note that in this case:

Ex,y[(Xt + Yt)
2] = 4n(n+ 1)t2 + 4(n+ 1)t(x+ y) + (x+ y)2 (5.57)

Hence

E[(Xt + Yt)
1−n] = (x+ y)1−n + (1− n)(nt2 + (x+ y)t)

+ (1− n)
(x+ y)2 − 4n(n+ 1)t2 − 4(n+ 1)t(x+ y)− (x+ y)2

4(n+ 1)

= (x+ y)1−n + (1− n)(nt2 + (x+ y)t)− (1− n)(nt2 + t(x+ y))

= (x+ y)1−n
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Remark. This particular example deals with the expectations of a function that can
be expressed in terms of the sum Xt + Yt, for which we know the density function.
So this particular expected value could have been obtained by simply integrating
against the transition density function of the process Xt +Yt. However, we use this
example here to illustrate how it can be done using symmetries.

An even wider range of possibilities can be explored by the combination of
these results with those we can obtain using Theorem 5.3.5. In the previous section,
the mentioned theorem produced expected values of some symmetric polynomials
through the transformation by symmetry of the expected value of a different sym-
metric polynomial but, when applied to different kinds of functions, it can produce
expected values for other classes of functions.

Let us show how theorem 5.3.5 can, for instance, be used in Example 5.3.2 to
obtain the expectations for (Xt + Yt)

−k, k ∈ N for every k ∈ [0, n− 2]:

Example 5.3.3. In the previous example we obtained that for a Wishart process
Wt ∼WIS(n, 2,W0) with index n ≥ 2 and with eigenvalues X(t) > Y (t) ≥ 0

E[(Xt + Yt)
1−n] = (x+ y)1−n

Let u(x, y, t) := (x+ y)1−n, which is a solution of ut = Lu, where L the generator of
the eigenvalue process (Xt, Yt), i.e. L is defined as in (5.58). Define

v(x, y, t) =

 d
dε
u

(
x

(1 + εt)2
,

y

(1 + εt)2
,

t

(1 + εt)

) exp
(
− ε

2
(x+y)
(1+εt)

)
(1 + εt)n


ε=0

as in theorem 5.3.5. Observe that the new solution is

v(x, y, t) = −(x+ y)2−n

2
− (2− n)t(x+ y)1−n,

which has initial condition v(x, y, 0) = − (x+y)2−n

2 . Thus, multiplying by −2 we get
the new solution ṽ(x, y, t) = (x+ y)2−n + (2− n)2t(x+ y)1−n, which, according to
Theorem 5.3.5 satisfies

E[(Xt + Yt)
2−n] = ṽ(x, y, t).

We could use derivatives of higher orders too, for example:

w(x, y, t) =

 d2

dε2
u

(
x

(1 + εt)2
,

y

(1 + εt)2
,

t

(1 + εt)

) exp
(
− ε

2
(x+y)
(1+εt)

)
(1 + εt)n


ε=0

=
1

4
(x+ y)3−n + t(3− n)(x+ y)2−n + t2(2− n)(3− n)(x+ y)1−n,
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which is a solution with initial condition w(x, y, 0) = (x+y)3−n

4 . Hence w̃(x, y, t) =

4w(x, y, t) = (x + y)3−n + 4t(3 − n)(x + y)2−n + 4t2(2 − n)(3 − n)(x + y)1−n will
satisfy, according to Theorem 5.3.5,

E[(Xt + Yt)
3−n] = w̃(x, y, t)

We can repeat this for higher orders of the derivative to obtain the explicit expres-
sion of E[(Xt + Yt)

−k] for each k ∈ N such that k ∈ [0, n− 2].

We must remark that Theorem 5.3.14 and its associated Corollary could have
been formulated in the general form:

Theorem 5.3.14. Let Wt ∼ WIS(n, 2,W0) with index n ≥ 2 and with eigenvalues
X(t) > Y (t) ≥ 0. Let L be the linear operator defined as:

L = 2x
∂2

∂x2
+ 2y

∂2

∂y2
+

(
n+

x+ y

x− y

)
∂

∂x
+

(
n− x+ y

x− y

)
∂

∂y
(5.58)

Suppose E[g(Xt, Yt)] is a known integrable function. Then, for any function f such that
Lf = g, we have that

E[f(Xt, Yt)] = f(x, y) +

∫ t

0
E[g(Xs, Ys)]ds.

Furthermore, if E[g(Xs, Ys)] is k times integrable with respect to the time variable, then
for any h such that Lkh = g, we have

E[h(Xt, Yt)] =

k−1∑
n=0

tn

n!
Lnh(x, y) +

∫ t

0

∫ tk−1

0
· · ·
∫ t1

0
E[g(Xs, Ys)]dsdt1 . . . dtk−1.

5.3.3 Integral transform methods for the computation of the expectations
of the eigenvalues of a 2× 2 Wishart process and a bound for their
variance

In previous sections we have presented a proof of the well known result that Zt =

Xt + Yt ∼ BESQ2n(z), so the probability density function for the process Zt is a
known function. Hence, if pt(z, ξ) is the transition density function for a Bessel-
squared distribution, any expected value of the form E[f(Xt + Yt)] may be calcu-
lated as

E[f(Xt + Yt)] =

∫ ∞
0

f(ξ)pt(x+ y, ξ)dξ.

But, as preciously remarked, this is very limited if one wishes to understand the
behaviour of the eigenvalues of a Wishart process.
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We have already seen in previous sections how there are other types of func-
tions of the eigenvalues for which it is possible to obtain the expected value. In this
section, we produce an expression for E[Xt] and E[Yt] via the use of integral trans-
form methods. We obtain the Fourier cosine transform of the transition density of
the difference Xt − Yt and hence obtain an integral expression for such transition
density function. Moreover, we give some bounds for the variances of Xt and Yt.

We will refer to the following well known definitions and results throughout
this section:

Definition 5.3.1. The Schwartz space or, alternatively, the space of rapidly decreasing
functions on Rn is the function space

S(Rn) = {f ∈ C∞(Rn) :‖f‖α,β <∞ ∀α, β ∈ Nn}, (5.59)

where α, β are multi-indices, C∞(Rn) is the set of smooth functions f : Rn → C,
and

‖f‖α,β = sup
x∈Rn

∣∣∣xαDβf(x)
∣∣∣ .

Note that S(Rn) is a subspace of the function space C∞(Rn).
We say that a function f : R → C is a Schwartz function if it is an infinitely differ-
entiable function such that ∀n ∈ N ∪ {0}, f (n)(x) −−−−→

x→±∞
0 faster than 1

xk
∀k. That

is, f must be a C∞ function such that for all n ∈ N ∪ {0}

lim
|x|→∞

f (n)(x)

x−k
= 0, ∀k.

Next we present a well known result regarding the classical Fourier transform of
the Schwartz class:

Theorem 5.3.15. The Fourier transform F and its inverse F−1 are homeomorphisms of
S(Rn) onto itself.

With this results, we are ready to present the following theorem:

Theorem 5.3.16. Let Wt ∼WIS(n, 2,W0), with n ≥ 2 and with eigenvalues Xt > Yt ≥
0. Let St = Xt − Yt and let qt(ξ, s) be the transition density function of the process St.
Then

q̂t(λ, s) =

√
2

π

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(St)

2k],

where q̂ denotes the classical Fourier cosine transform of the function q. Further, the ex-
pected values E[(St)

2k] appearing in the above expression are computable for all k, since
S2k
t is a symmetric polynomial in the eigenvalues Xt, Yt for each k.
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Proof. Let us start defining Zt = Xt + Yt and let pt(z, ξ) be the transition density
function for a Bessel-squared distribution. Then, clearly,

E[cos(λZt)] =

∫ ∞
0

cos(λξ)pt(z, ξ)dξ

=

∫ ∞
0

eλξi + e−λξi

2

e
−(z+ξ)

2t

2t

(
z

ξ

) 1−n
2

In−1

(√
ξz

t

)
dξ

=
z

1−n
2 e−

z
2t

4t

∫ ∞
0

(eξ(λi−
1
2t

) + e−ξ(λi+
1
2t

))ξ
n−1

2 In−1

(√
ξz

t

)
dξ

Making the change of variables ξ = y2 we have that dξ = 2ydy, so our integral
becomes

E[cos(λZt)] =
z

1−n
2 e−

z
2t

2t

∫ ∞
0

(ey
2(λi− 1

2t
) + e−y

2(λi+ 1
2t

))ynIn−1

(
y
√
z

t

)
dy

=
z

1−n
2 e−

z
2t

2t

(
z

t2

)n−1
2

((
1

t
+ 2iλ

)−n
e

iz
−4λt2+2it +

(
1

t
− 2iλ

)−n
e

iz
4λt2+2it

)

=
e−

z
2t

2
(1 + 4λ2t2)−n

(
(1− 2iλt)n e

iz
−4λt2+2it + (1 + 2iλt)n e

iz
4λt2+2it

)
(5.60)

Expand this result as a series around λ = 0 to get

E[cos(λZt)] ∼ 1− 1

2
λ2
(

4(n+ 1)nt2 + 4(n+ 1)tz + z2
)

+
1

24
λ4
(

16(n+ 1)(n+ 2)(n+ 3)nt4 + 32(n+ 1)(n+ 2)(n+ 3)t3z

+ 24(n+ 2)(n+ 3)t2z2 + 8(n+ 3)tz3 + z4
)

− 1

720
λ6
(

64(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)nt6

+ 192(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)t5z

+ 240(n+ 2)(n+ 3)(n+ 4)(n+ 5)t4z2

+ 160(n+ 3)(n+ 4)(n+ 5)t3z3 + 60(n+ 4)(n+ 5)t2z4

+ 12(n+ 5)tz5 + z6
)

+ . . .

= 1− λ2

2
E[Z2

t ] +
λ4

24
E[Z4

t ]− λ6

720
E[Z6

t ] + · · · =
∞∑
n=0

(−1)n
λ2n

(2n)!
E[Z2n

t ],

where E[Z2k
t ] = z2k +

2k∑
i=1

(2t)i

i!

 i∏
j=1

(2k − j + 1)(n+ 2k − j)

 z2k−i,

as computed in previous sections. But observe also that
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E[cos(λZt)] =

∫ ∞
0

cos(λξ)pt(z, ξ)dξ =

√
π

2
p̂t(z, λ),

where p̂ denotes the classical Fourier cosine transform defined as

f̂(ω) =

√
2

π

∫ ∞
0

f(t) cos(ωt)dt.

Therefore, by the Paley-Wiener theorem we have that E[cos(λZt)] is an analytic
function and hence it is equal to its Taylor series expansion. So we have that

E[cos(λZt)] = E

 ∞∑
n=0

(−1)n
λ2n

(2n)!
Z2n
t

 =

∞∑
n=0

(−1)n
λ2n

(2n)!
E[Z2n

t ]

Now observe that ∣∣cos(λ(Xt − Yt))− cos(λ(Xt + Yt))
∣∣ ≤ 2

and hence

−2 + cos(λ(Xt + Yt)) ≤ cos(λ(Xt − Yt)) ≤ 2 + cos(λ(Xt + Yt))

Taking expectations one gets:

−2 + E[cos(λ(Xt + Yt))] ≤ E[cos(λ(Xt − Yt))] ≤ 2 + E[cos(λ(Xt + Yt))]

Therefore the expectations E[cos(λ(Xt − Yt))] exist since we have shown before
that E[cos(λ(Xt + Yt))] exist. Let g(z) = cos(λz) and observe that we can expand
g(Xt + Yt) and g(Xt − Yt) as Taylor series as:

cos(λ(Xt + Yt)) =
N∑
k=0

(−1)k
λ2k

(2k)!
(Xt + Yt)

2k +R+
N ,

cos(λ(Xt − Yt)) =
N∑
k=0

(−1)k
λ2k

(2k)!
(Xt − Yt)2k +R−N ,

where the error terms are

R+
N =

g(2N+1)(ξ)

(2N + 1)!
(Xt + Yt)

2N+1, ξ ∈ (0, Xt + Yt)

R−N =
g(2N+1)(η)

(2N + 1)!
(Xt − Yt)2N+1, η ∈ (0, Xt − Yt)

and where R+
N , R

−
N → 0 as N →∞.

The expectations for the cos(λ(Xt − Yt)) are thus given by:
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E[cos(λ(Xt − Yt))] = E[

N∑
k=0

(−1)k
λ2k

(2k)!
(Xt − Yt)2k +R−N ]

=
N∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k] + E[R−N ]

by linearity. Take limits as N →∞ to obtain

E[cos(λ(Xt − Yt))] = lim
N→∞

N∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k] + lim

N→∞
E[RN ] (5.61)

=
∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k] + E[ lim

N→∞
RN ] (5.62)

=

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k].

The reader may have observed that the expectations and the limit have been swapped
in the error term from (5.61) to (5.62). Observe that this is possible because∣∣∣∣∣R−NR+

N

∣∣∣∣∣ =

∣∣∣∣∣g(2N+1)(η)(Xt − Yt)2N+1

g(2N+1)(ξ)(Xt + Yt)2N+1

∣∣∣∣∣ ≤ 1

|g(2N+1)(ξ)|

∣∣∣∣∣(Xt − Yt)2N+1

(Xt + Yt)2N+1

∣∣∣∣∣ ≤ 1

|g(2N+1)(ξ)|
,

hence |R−N | ≤ K|R
+
N |, with K =

1

|g(2N+1)(ξ)|
.

But we have seen before that limN→∞E[R+
N ] = 0 < ∞, so by the Dominated Con-

vergence Theorem we have that

lim
N→∞

E[RN ] = E[ lim
N→∞

RN ] = 0.

Therefore, we have proved that

Kt(λ, x− y) := E[cos(λ(Xt − Yt))] =

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k]

But

Kt(λ, x− y) = E[cos(λ(Xt − Yt))] =

∫ ∞
0

cos(λξ)qt(ξ, x− y)dξ =

√
π

2
q̂t(λ, x− y),

where the function q is the transition density function of the process Xt − Yt and q̂

denotes the Fourier cosine transform of q. Hence, writing q̂t(λ, x−y) =
√

2
πKt(λ, x−

y) and putting St = Xt − Yt gives the desired result. Note that (x − y)2k is a sym-
metric polynomial for every k ∈ N, so E[(Xt − Yt)2k] is a computable function for
each k ∈ N.
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Note. In a similar way to how we have proved that

E[cos(λ(Xt − Yt))] =
∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k],

one may obtain E[cos(λp(Xt, Yt))] =
∞∑
k=0

(−1)k
λ2k

(2k)!
E[p(Xt, Yt)

2k] for any polyno-

mial p such that p(Xt, Yt)
2k is a symmetric polynomial in Xt, Yt. This includes

expectations such as E[cos(λ(X2
t + Y 2

t ))] among many others.

Corollary. Let Wt ∼WIS(n, 2,W0), with n ≥ 2 and with eigenvalues Xt > Yt ≥ 0. Let
St = Xt − Yt and let qt(ξ, s) be the transition density function of the process St. Then

qt(ξ, s) =
2

π

∫ ∞
0

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(St)

2k] cos(λξ)dλ. (5.63)

Proof. This is just an exercise of inverting the Fourier cosine transform obtained in
the proof of the previous theorem, i.e.

qt(ξ, x− y) =
2

π

∫ ∞
0

Kt(λ, x− y) cos(λξ)dλ

=
2

π

∫ ∞
0

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k] cos(λξ)dλ.

Remark. The integral in (5.63) cannot be calculated term by term but it can be dealt
with as:

qt(ξ, x− y) =
2

π

∞∑
k=0

(−1)k

(2k)!
lim
ε→0

∫ ∞
0

e−ελ
2
λ2kE[(Xt − Yt)2k] cos(λξ)dλ. (5.64)

Hence the density function q can be approximated by calculating as many terms
as desired in the above expression. The amount of terms needed for a particular
accuracy is something we would like to investigate in future work.

We proceed now to present a result that provides us with an expression for
E[Xt] and E[Yt] respectively.
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Theorem 5.3.17. Let Wt ∼WIS(n, 2,W0), with n ≥ 2 and with eigenvalues Xt > Yt ≥
0. Then

E[Xt] = nt+
x+ y

2
− 1

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ (5.65)

E[Yt] = nt+
x+ y

2
+

1

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ, (5.66)

where the expected values E[(Xt − Yt)2k] are computable for all k.

Proof. We will obtain E[Xt] and E[Yt] as E[Xt] = 1
2(E[Xt + Yt] + E[Xt − Yt]) and

E[Yt] = 1
2(E[Xt+Yt]−E[Xt−Yt]) respectively. We know thatE[Xt+Yt] = 2nt+x+y,

so we need only compute E[Xt − Yt].
Let qt be the transition density function for the difference Xt − Yt, then

E[Xt − Yt] =

∫ ∞
0

zqt(z, x− y)dz

=

∫ ∞
0

z
2

π

∫ ∞
0

Kt(λ, x− y) cos(λz)dλdz

=

∫ ∞
0

Kt(λ, x− y)

√
2

π

(√
2

π

∫ ∞
0

z cos(λz)dz

)
︸ ︷︷ ︸

Fc(z)

dλ,

where Fc(z) denotes the Fourier cosine transform of z, and where the function
Kt(λ, x − y) is defined as in the previous proofs. Note that this Fourier cosine
transform does not exist in the usual sense, since the integral is not convergent.
However, it can be defined as a distribution. Let the pseudo-function Pf

(
1
λ2

)
be

defined by ∫ ∞
0

Pf

(
1

λ2

)
φ(λ)dλ = −

∫ ∞
0

φ(λ)− φ(0)− φ′(0)λ

λ2
dλ (5.67)

and take φ(λ) = cos(λz). Note that

F−1
c

(
Pf

(
1

λ2

))
=

√
2

π

∫ ∞
0

Pf

(
1

λ2

)
cos(λz)dλ = −

√
2

π

∫ ∞
0

cos(λz)− 1

λ2
dλ

=

√
π

2
z
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So we have that Fc(z) =
√

2
πPf

(
1
λ2

)
. Using this, and the definition (5.67) of

Pf
(

1
λ2

)
in the expresion for E[Xt − Yt] one gets:

E[Xt − Yt] =

∫ ∞
0

Kt(λ, x− y)

√
2

π

√
2

π
Pf

(
1

λ2

)
dλ

= − 2

π

∫ ∞
0

Kt(λ, x− y)− 1

λ2
dλ,

since Kt(0, x− y) = 1 and (Kt)λ(0, x− y) = 0.

Therefore E[Xt − Yt] is given by

E[Xt − Yt] = − 2

π

∫ ∞
0

Kt(λ, x− y)− 1

λ2
dλ (5.68)

= − 2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ (5.69)

With this expression one can obtain E[Xt] and E[Yt] as

E[Xt] =
1

2
(E[Xt + Yt] + E[Xt − Yt])

=
1

2

2nt+ x+ y − 2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


(5.70)

E[Yt] =
1

2
(E[Xt + Yt]− E[Xt − Yt])

=
1

2

2nt+ x+ y +
2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ

 ,

(5.71)

as claimed.

Remark. The evaluation problem for the integrals appearing in (5.70) and (5.71) can
be treated in a similar way as to how expression (5.64) is used to evaluate (5.63).

Recall that E[(Xt − Yt)2k can be calculated using the results presented in pre-
vious sections for symmetric polynomials in the eigenvalues. As an example, we
provide a few of these for lower degrees:
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E[(Xt − Yt)2 = 8nt2 + 8t(x+ y) + (x− y)2

E[(Xt − Yt)4 = 128n(n+ 2)t4 + 256t3(n+ 2)(x+ y)

+ 32t2
(

(n+ 4)(x− y)2 + 4(x+ y)2
)

+ 32t(x− y)2(x+ y) + (x− y)4

E[(Xt − Yt)6 = 3072n(n+ 2)(n+ 4)t6 + 9216(n+ 2)(n+ 4)t5(x+ y)

+ 1152(n+ 4)t4
(

(n+ 6)(x− y)2 + 8(x+ y)2
)

+ 768t3(x+ y)
(

3(n+ 6)(x− y)2 + 4(x+ y)2
)

+ 72t2(x− y)2
(

(n+ 8)(x− y)2 + 16(x+ y)2
)

+ 72t(x− y)4(x+ y)

+ (x− y)6

E[(Xt − Yt)8 = 98304n(n+ 2)(n+ 4)(n+ 6)t8

+ 393216(n+ 2)(n+ 4)(n+ 6)t7(x+ y)

+ 49152(n+ 4)(n+ 6)t6
(

(n+ 8)(x− y)2 + 12(x+ y)2
)

+ 49152(n+ 6)t5(x+ y)
(

3(n+ 8)(x− y)2 + 8(x+ y)2
)

+ 1536t4
(

3(n+ 8)(n+ 10)(x− y)4
)

+ 1536t4
(

96(n+ 8)(x+ y)2(x− y)2 + 64(x+ y)4
)

+ 3072t3(x− y)2(x+ y)
(

3(n+ 10)(x− y)2 + 16(x+ y)2
)

+ 128t2(x− y)4
(

(n+ 12)(x− y)2 + 36(x+ y)2
)

+ 128t(x− y)6(x+ y) + (x− y)8

An alternative expression can be obtained for E[Xt] and E[Yt]:

Theorem 5.3.18. Let Wt ∼WIS(n, 2,W0), with n ≥ 2 and with eigenvalues Xt > Yt ≥
0. Then

E[Xt] = 2nt+ x+ y +
1

π

∫ ∞
0

∑∞
k=0(−1)k λ2k

(2k)!E[(Xt + Yt)
2k − (Xt − Yt)2k]

λ2
dλ

(5.72)

E[Yt] = − 1

π

∫ ∞
0

∑∞
k=0(−1)k λ2k

(2k)!E[(Xt + Yt)
2k − (Xt − Yt)2k]

λ2
dλ, (5.73)

where the expected values E[(Xt + Yt)
2k − (Xt − Yt)2k] are computable for all k.
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Proof. This proof relies on the following identity for a, b ∈ R:∫ ∞
0

cos(λa)− cos(λb)

λ2
dλ =

π

2
(|b| − |a|). (5.74)

Note that taking a = Xt + Yt and b = Xt − Yt we have that∫ ∞
0

cos(λ(Xt + Yt))− cos(λ(Xt − Yt))
λ2

dλ =
π

2
((Xt−Yt)−(Xt+Yt)) = −πYt (5.75)

Hence
E[Yt] = − 1

π
E

[∫ ∞
0

cos(λ(Xt + Yt))− cos(λ(Xt − Yt))
λ2

dλ

]
(5.76)

Observe that

I :=

∫ ∞
0

cos(λ(Xt + Yt))− cos(λ(Xt − Yt))
λ2

dλ

≤
∫ ∞

0

∣∣∣∣cos(λ(Xt + Yt))− cos(λ(Xt − Yt))
λ2

∣∣∣∣ dλ
=

∫ 1

0

∣∣∣∣cos(λ(Xt + Yt))− cos(λ(Xt − Yt))
λ2

∣∣∣∣ dλ
+

∫ ∞
1

∣∣∣∣cos(λ(Xt + Yt))− cos(λ(Xt − Yt))
λ2

∣∣∣∣ dλ
≤
∫ 1

0

∣∣∣∣∣−2XtYt +
λ2XtYt(X

2
t + Y 2

t )

3
− λ4((Xt + Yt)

6 − (Xt − Yt)6)

6!
+O(λ6)

∣∣∣∣∣ dλ
+

∫ ∞
1

2

λ2
dλ

<∞

So we can write

E[Yt] = − 1

π

∫ ∞
0

E[cos(λ(Xt + Yt))]− E[cos(λ(Xt − Yt))]
λ2

dλ

= − 1

π

∫ ∞
0

∑∞
k=0(−1)k λ2k

(2k)!E[(Xt + Yt)
2k]−

∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]

λ2
dλ

= − 1

π

∫ ∞
0

∑∞
k=0(−1)k λ2k

(2k)!(E[(Xt + Yt)
2k]− E[(Xt − Yt)2k])

λ2
dλ

= − 1

π

∫ ∞
0

∑∞
k=0(−1)k λ2k

(2k)!E[(Xt + Yt)
2k − (Xt − Yt)2k]

λ2
dλ,

and, therefore,
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E[Xt] = E[Xt + Yt]− E[Yt]

= 2nt+ x+ y +
1

π

∫ ∞
0

∑∞
k=0(−1)k λ2k

(2k)!E[(Xt + Yt)
2k − (Xt − Yt)2k]

λ2
dλ.

The expectations E[(Xt + Yt)
2k − (Xt − Yt)

2k] are clearly computable for each k

since (Xt + Yt)
2k − (Xt − Yt)

2k is a symmetric polynomial in Xt, Yt. Note that
E[(Xt + Yt)

2k − (Xt − Yt)2k] = E[4XtYt + 8XtYt(X
2
t + Y 2

t ) + . . . ]

so the k = 0 term in the above expressions for E[Yt], E[Xt] is zero, and hence the
integral has no singularity at 0.

The integrals expressions (5.72) and (5.73) can once again be treated similarly to
those in (5.64) and (5.69).

Note. The eigenvalues Xt and Yt are related to each other by their initial values.
The expected values for Xt and Yt are by definition

E[Xt] =

∫
Ω
x̄pt(x̄, x, ȳ, y)dx̄dȳ E[Xt] =

∫
Ω
ȳpt(x̄, x, ȳ, y)dx̄dȳ, (5.77)

for a suitable region Ω, and where the function pt(x̄, x, ȳ, y) is the transition density
for the eigenvalue process (Xt, Yt). Therefore, the expected values E[Xt] and E[Yt]

naturally depend on both the initial values X(0) = x and Y (0) = y, as can be seen
in the expressions in both Theorems 5.3.17 and 5.3.18.

Having an expression for E[Xt] and E[Yt], the next natural question to ask is:
can we obtain expressions for V ar[Xt] and V ar[Yt]? We have not yet been able to
produce such expressions, but we have some bounds for these variances:

Theorem 5.3.19. Let Wt ∼WIS(n, 2,W0), with n ≥ 2 and with eigenvalues Xt > Yt ≥
0. Then some upper and lower bounds for the variance of Xt are

V ar[Xt] ≤ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

+

√(
n(n+ 1)t2 + (n+ 1)(x+ y)t+

(x+ y)2

4

)
(8nt2 + 8(x+ y)t+ (x− y)2)

− 1

4

2nt+ x+ y − 2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2

V ar[Xt] ≥ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

− 1

4

2nt+ x+ y − 2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2
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and, similarly, some upper and lower bounds for the variance of Yt are

V ar[Yt] ≤ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

− 1

4

2nt+ x+ y +
2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2

V ar[Yt] ≥ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

−

√(
n(n+ 1)t2 + (n+ 1)(x+ y)t+

(x+ y)2

4

)
(8nt2 + 8(x+ y)t+ (x− y)2)

− 1

4

2nt+ x+ y +
2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2

,

where the expected values E[(Xt − Yt)2k] are computable for all k.

Proof. In order to complete this proof, we will need the expected values of some
symmetric polynomials. We compute those using Theorems 5.3.4 and 5.3.5 to ob-
tain:

E[X2
t + Y 2

t ] = 2n(n+ 3)t2 + 2(n+ 3)(x+ y)t+ x2 + y2

E[(Xt + Yt)
2] = 4n(n+ 1)t2 + 4(n+ 1)(x+ y)t+ (x+ y)2

E[(Xt − Yt)2] = E[X2
t + Y 2

t − 2XtYt] = E[X2
t + Y 2

t ]− 2E[XtYt]

= 2n(n+ 3)t2 + 2(n+ 3)(x+ y)t+ x2 + y2

− 2(n(n− 1)t2 + (n− 1)t(x+ y) + xy)

= 8nt2 + 8(x+ y)t+ (x− y)2

Now observe that Hölder’s inequality gives:

E[X2
t − Y 2

t ] = E[(Xt + Yt)(Xt − Yt)] ≤ E[(Xt + Yt)
2]1/2E[(Xt − Yt)2]1/2 (5.78)

Hence

E[X2
t ] =

1

2
(E[X2

t + Y 2
t ] + E[X2

t − Y 2
t ])

≤ 1

2
(E[X2

t + Y 2
t ] + E[(Xt + Yt)

2]1/2E[(Xt − Yt)2]1/2)

=
1

2
(2n(n+ 3)t2 + 2(n+ 3)(x+ y)t+ x2 + y2

+
√

(4n(n+ 1)t2 + 4(n+ 1)(x+ y)t+ (x+ y)2)(8nt2 + 8(x+ y)t+ (x− y)2))
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= n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

+

√(
n(n+ 1)t2 + (n+ 1)(x+ y)t+

(x+ y)2

4

)
(8nt2 + 8(x+ y)t+ (x− y)2)

On the other hand, since E[X2
t − Y 2

t ] ≥ 0 we have that

n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2
=

1

2
E[X2

t + Y 2
t ] ≤ E[X2

t ]

This gives us the following bound for the variance of Xt

V ar[Xt] = E[X2
t ]− E[Xt]

2

≤ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

+

√(
n(n+ 1)t2 + (n+ 1)(x+ y)t+

(x+ y)2

4

)
(8nt2 + 8(x+ y)t+ (x− y)2)

− 1

4

2nt+ x+ y − 2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2

And

V ar[Xt] ≥ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

− 1

4

2nt+ x+ y − 2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2

Similarly, since E[(X2
t − Y 2

t )] > 0, an upper bound for E[Y 2
t ] can be:

E[Y 2
t ] =

1

2
(E[X2

t + Y 2
t ]− E[X2

t − Y 2
t ])

≤ 1

2
E[X2

t + Y 2
t ]

= n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

and using (5.78) we can also establish a lower bound given by

E[Y 2
t ] =

1

2
(E[X2

t + Y 2
t ]− E[X2

t − Y 2
t ])

≥ 1

2
(E[X2

t + Y 2
t ]− E[(Xt + Yt)

2]1/2E[(Xt − Yt)2]1/2)
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= n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

−

√(
n(n+ 1)t2 + (n+ 1)(x+ y)t+

(x+ y)2

4

)
(8nt2 + 8(x+ y)t+ (x− y)2)

This gives the following upper and lower bounds for the variance:

V ar[Yt] = E[Y 2
t ]− E[Yt]

2

≤ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

− 1

4

2nt+ x+ y +
2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2

and

V ar[Yt] ≥ n(n+ 3)t2 + (n+ 3)(x+ y)t+
x2 + y2

2

−

√(
n(n+ 1)t2 + (n+ 1)(x+ y)t+

(x+ y)2

4

)
(8nt2 + 8(x+ y)t+ (x− y)2)

− 1

4

2nt+ x+ y +
2

π

∫ ∞
0

(∑∞
k=0(−1)k λ2k

(2k)!E[(Xt − Yt)2k]
)
− 1

λ2
dλ


2

,

as claimed. Again, the expectations E[(Xt + Yt)
2k − (Xt − Yt)2k] are clearly com-

putable for each k since (Xt + Yt)
2k − (Xt − Yt)2k is a symmetric polynomial in Xt,

Yt.

Remark. In the upper and lower bounds for the variances of Xt and Yt in the above
Theorem, we have used the expressions for E[Xt] and E[Yt] given by (5.70) and
(5.71) respectively. However, those could have been replaced by the alternative
integral expressions (5.72) and (5.73).

In this section, we have obtained the expected value of cos(λ(Xt + Yt)) and
cos(λ(Xt − Yt)). This naturally provides us with E[f(Xt, Yt)] for any function f

that can be written as f(Xt, Yt) = A cos(λ(Xt + Yt))] + B cos(λ(Xt − Yt)) for some
constants A and B:



5.3. An alternative approach to the study of the eigenvalues 177

Example 5.3.4.

E[cos(λXt) cos(λYt)] =
1

2
(E[cos(λ(Xt − Yt))] + E[cos(λ(Xt + Yt))])

=
1

2

 ∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k] +

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt + Yt)

2k]


(5.79)

=
1

2

 ∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k + (Xt + Yt)

2k]


E[sin(λXt) sin(λYt)] =

1

2
(E[cos(λ(Xt − Yt))]− E[cos(λ(Xt + Yt))])

=
1

2

 ∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k]−

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt + Yt)

2k]


(5.80)

=
1

2

 ∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k − (Xt + Yt)

2k]


The expected values appearing in the above expressions are all computable using
the techniques provides thus far. Moreover, the expression for E[cos(λ(Xt + Yt))]

used in (5.79) and (5.80) can be substituted by the expression (5.60) obtained via
direct integration of the cos(λz) against the transition density for the sum Zt =

Xt + Yt.

In addition, Theorem 5.3.16 and its subsequent Corollary allow us to formulate
the following result:

Proposition 5.3.20. Let Wt ∼ WIS(n, 2,W0), with n ≥ 2 and with eigenvalues Xt >

Yt ≥ 0. Let f ∈ S(R+), i.e. let f be any function in the Schwartz class. Then

E[f(Xt − Yt)] =

√
2

π

∞∑
k=0

(−1)k

(2k)!
E[(Xt − Yt)2k]

∫ ∞
0

f̂(λ)λ2kdλ, (5.81)

where f̂ denotes the classical Fourier cosine transform of the function f . Further, the ex-
pected values E[(Xt − Yt)2k] appearing in the above expression are computable for all k,
since (Xt − Yt)2k is a symmetric polynomial in the eigenvalues Xt, Yt for each k.
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Proof. Let qt(ξ, x−y) be the transition density function of the process Xt−Yt. Then
by (5.63)

E[f(Xt − Yt)] =

∫ ∞
0

f(ξ)qt(ξ, x− y)dξ

=

∫ ∞
0

f(ξ)
2

π

∫ ∞
0

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k] cos(λξ)dλdξ

=

√
2

π

∫ ∞
0

∫ ∞
0

√
2

π
f(ξ)

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k] cos(λξ)dλdξ

=

√
2

π

∫ ∞
0

∞∑
k=0

(−1)k
λ2k

(2k)!
E[(Xt − Yt)2k]

(√
2

π

∫ ∞
0

f(ξ) cos(λξ)dξ

)
dλ

=

√
2

π

∞∑
k=0

(−1)k

(2k)!
E[(Xt − Yt)2k]

∫ ∞
0

f̂(λ)λ2kdλ,

where f̂ is Fourier cosine transform of the function f , as claimed.

Example 5.3.5. Consider the above Proposition with f(z) = e−µz
2
, µ > 0. Note that

f ∈ S(R+) and that

f̂(λ) =

√
2

π

∫ ∞
0

f(z) cos(λz)dz =

√
2

π

∫ ∞
0

e−µz
2

cos(λz)dz =
e
−λ

2

4µ

√
2µ

Hence

E[e−µ(Xt−Yt)2
] =

√
2

π

∞∑
k=0

(−1)k

(2k)!
E[(Xt − Yt)2k]

∫ ∞
0

f̂(λ)λ2kdλ

=
1
√
µπ

∞∑
k=0

(−1)k

(2k)!
E[(Xt − Yt)2k]

∫ ∞
0

e
−λ

2

4µλ2kdλ

=
1
√
µπ

∞∑
k=0

(−1)k

(2k)!
E[(Xt − Yt)2k]4kµk+ 1

2 Γ

(
k +

1

2

)

=
1√
π

∞∑
k=0

(−4µ)k

(2k)!
E[(Xt − Yt)2k]Γ

(
k +

1

2

)

=
1√
π

∞∑
k=0

(−4µ)k

(2k)!
E[(Xt − Yt)2k]

(2k)!

4kk!

√
π

=
∞∑
k=0

(−µ)k

k!
E[(Xt − Yt)2k],

and E[(Xt − Yt)2k are computable for all k.
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Moreover, for other functions g(Xt − Yt) that are not in S(R+), the expected
value E[g(Xt−Yt)] may still be computable through the appropriate manipulation
of E[f(Xt − Yt)] for some f ∈ S(R+).

Example 5.3.6. Claim: Let g(z) = 1
z2 , which is not in S(R+). We can obtainE[g(Xt−

Yt)] through the integration with respect to µ of E[f(Xt − Yt)] for f(z) = e−µz
2
,

µ > 0, which is clearly in S(R+). That is, we can obtain E
[

1
(Xt−Yt)2

]
as

E

[
1

(Xt − Yt)2

]
=

∫ ∞
0

∞∑
k=0

(−µ)k

k!
E[(Xt − Yt)2k]dµ.

To show this, let rt(z, x− y) be the transition density function for the difference
of the eigenvalues. Then:∫ ∞

0
E
[
e−µ(Xt−Yt)2

]
dµ =

∫ ∞
0

∫ ∞
0

e−µz
2
rt(z, x− y)dzdµ

=

∫ ∞
0

(∫ ∞
0

e−µz
2
dµ

)
rt(z, x− y)dz

=

∫ ∞
0

[
e−µz

2

−z2

]∞
0

rt(z, x− y)dz

=

∫ ∞
0

1

z2
rt(z, x− y)dz

= E

[
1

(Xt − Yt)2

]
Therefore

E

[
1

(Xt − Yt)2

]
=

∫ ∞
0

∞∑
k=0

(−µ)k

k!
E[(Xt − Yt)2k]dµ,

as claimed. Once more, we cannot integrate the previous expression term by term,
so if we wish to be able to obtain an approximation for this expected value, we
must first express it as

E

[
1

(Xt − Yt)2

]
=

∞∑
k=0

(−1)k

k!
lim
ε→0

∫ ∞
0

e−εµ
2
µkE[(Xt − Yt)2k]dµ (5.82)

and consider as many terms as needed in the above expression. The amount of
terms needed for a desired accuracy is yet to be studied.
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5.3.4 The Feynman-Kac formula to compute expected values for some
functionals of the eigenvalues of a 2× 2 Wishart process

In the previous sections, we have been concerned with finding expected values of
the type

Ex,y
[
f(X(t), Y (t))e−

∫ t
0 g(X(s),Y (s))ds

]
, (5.83)

for some cases with g = 0. In this section, we present some results for g 6= 0 that can
be obtained through the so called Feynman-Kac formula (see Theorem 2.2.5). The
results presented in what follows have been obtained as group-invariant solutions
for the Cauchy problem for u(x, y, t):

ut = Lu− q(x, y)u, t > 0 (5.84)

u(x, y, 0) = f(x, y), (5.85)

where the differential operator L is the generator of the eigenvalue process of a
Wishart process Wt ∼WIS(n, 2,W0) with n ≥ 2:

L = 2x
∂2

∂x2
+ 2y

∂2

∂y2
+

(
n+

x+ y

x− y

)
∂

∂x
+

(
n− x+ y

x− y

)
∂

∂y
(5.86)

Theorem 5.3.21. Let Wt ∼WIS(n, 2,W0) with eigenvalues X(t) > Y (t) ≥ 0 and with
index n ≥ 2. Then

E(x,y)

exp

−∫ t

0

(
λ+

1

Xs
f

(
Ys
Xs

))
ds

 exp

(
−Xt + Yt

2
− λ

)

×
(

1− Yt
Xt

)−1/2( Yt
Xt

) 1−n
4
(

1 +
Yt
Xt

)n−2
2

α

(
Yt
Xt

) (5.87)

= (t+ 1)−n exp

(
− x+ y

2(t+ 1)
− λ(t+ 1)

)(
1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
(5.88)

where α(z) satisfies the ODE:

α′′(z) + φ(z)α(z) = 0, (5.89)
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and

φ(z) =− n2(z − 1)4 − 2n(z − 1)2(3 + z(2 + 3z))

16(z2 − 1)2

− (1 + z)2(5 + z(−14 + 5z)) + 8(z − 1)2z(1 + z)f(z)

16(z2 − 1)2
.

Furthermore, for the following choices of f(z), we can explicitly write these expectations
with the given function α in each case.

1.

f(z) = −n
2(−1 + z)4 − 2n(z − 1)2(3 + z(2 + 3z)) + (1 + z)2(5 + z(−14 + 5z)

8(z − 1)2z(z + 1)
,

which yields α(z) = C1 + C2z.

2.

f(z) =
−5

8(z − 1)2z(z + 1)
+
−n2(z − 1)2 + 2n(3 + z(2 + 3z))

8z(z + 1)

+
4 + z(18 + (4− 5z)z + 16a(−1 + z2)2)

8(z − 1)2(z + 1)
, with a ∈ R.

This choice of f produces α(z) = C1 exp(
√
az) + C2 exp(−

√
az).

3.

f(z) =
1

8

(
−5 + 6n− n2 +

8

(z − 1)2
+

4

(z − 1)
− (n− 5)(n− 1)

z

)
+ 2z(b+ (a+ b)z + az2) +

n(n− 2)

2(z + 1)
, with a, b ∈ R.

In this case we have α(z) = C1Ai
(
b+az
a2/3

)
+C2Bi

(
b+az
a2/3

)
, where Ai and Bi are the

traditional Airy functions, that is

Ai(z) =
1

32/3Γ
(

2
3

)0F1

(
;
2

3
;
1

9
z3

)
− z

31/3Γ
(

1
3

)0F1

(
;
4

3
;
1

9
z3

)

Bi(z) =
1

31/6Γ
(

2
3

)0F1

(
;
2

3
;
1

9
z3

)
+

31/6z

Γ
(

1
3

)0F1

(
;
4

3
;
1

9
z3

)
where 0F1(; a; z) ≡ limq→∞ 1F1(q; a; z/q) or, as a series expansion 0F1(; a; z) =∑∞

n=0
zn

(a)nn!
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4.

f(z) =
−5− n2(z − 1)4 + 2n(z − 1)2(3 + z(2 + 3z))

8(z − 1)2z(z + 1)

+
4 + z(18 + (4− 5z)z + 16a(z2 − 1)2(1 + az2))

8(z − 1)2(z + 1)
, with a ∈ R.

For this choice of f we must have α(z) = C1D−1(
√

2
√
az) + C2D0(i

√
2
√
az).

Here, Dν(z) refers to the traditional Parabolic Cylinder function, i.e.

Dν(z) =
2ν/2e−

z2

4

√
π

cos

(
πν

2

)
Γ

(
ν + 1

2

)
1F1

(
−ν

2
;
1

2
;
z2

2

)

+
2(ν+1)/2e−

z2

4 z√
π

sin

(
πν

2

)
Γ

(
ν

2
+ 1

)
1F1

(
1

2
− ν

2
;
3

2
;
z2

2

)

5.

f(z) =
−n2(z − 1)2 + n(6 + 4z + 6z2) + 16z2(z + 1)2(b+ az2)

(z + 1)8z

+
−5 + z(9 + (9− 5z)z)

(z − 1)28z
, with a, b ∈ R,

which produces α(z) = C1D− b+
√
a

2
√
a

(
√

2a1/4z)+C2D b−
√
a

2
√
a

(i
√

2a1/4z),whereDν(z)

is again the traditional Parabolic Cylinder function.

6.

f(z) =
−5− n2(z − 1)4 + 2n(z − 1)2(3 + z(2 + 3z))

8(z − 1)2z(z + 1)

+
4 + z(18 + z(4− 5z − 16a3(az − 2)(z2 − 1)2))

8(z − 1)2(z + 1)
, with a ∈ R.

This particular f(z) leads to

α(z) = C1D− 1
2

(1+i)((−1 + i)(−1 + az)) + C2D− 1
2

(1−i)((1 + i)(−1 + az)),

with Dν(z) the Parabolic Cylinder function.

7.

f(z) =
−n2(z − 1)2 + n(6 + 4z + 6z2) + 16z2(z + 1)2(c+ z(b+ az))

(z + 1)8z

+
−5 + z(9 + z(9− 5z))

(z − 1)28z
, with a, b, c ∈ R.



5.3. An alternative approach to the study of the eigenvalues 183

Choosing such an f(z) yields the following expression for α(z):

α(z) = C1D b2−4a(
√
a+c)

8a3/2

(
b+ 2az√

2a3/4

)
+ C2D−b2−4a(

√
a−c)

8a3/2

(
i
b+ 2az√

2a3/4

)
.

In the above expression Dν(z) denotes the traditional Parabolic Cylinder function.

8.

f(z) =
−5− n2(z − 1)4 + 2n(z − 1)2(3 + z(2 + 3z))

8(z − 1)2z(z + 1)

+
4 + z(18 + (4− 5z)z + 16azq(z2 − 1)2)

8(z − 1)2(z + 1)
, with a ∈ R, q ∈ Z,

which gives

α(z) =
√
zC1I− 1

2+q

(
2
√
az1+ q

2

2 + q

)
Γ

(
1 + q

2 + q

)

+
√
zC2(−1)

1
2+q I 1

2+q

(
2
√
az1+ q

2

2 + q

)
Γ

(
1 +

1

2 + q

)

where In(z) is the modified Bessel function of the first kind and Γ(z) is the Euler
gamma function. That is

In(z) =
∞∑
m=0

1

m! Γ(m+ n+ 1)

(
z

2

)2m+n

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

, z ∈ C \ {0,Z−}

9.

f(z) =
z + 1

8z

(
−n

2(z − 1)2

(z + 1)2
+
−5 + (14− 5z)z

(z − 1)2

)

+ 2azq(z + 1)(q + az1+q) +
n(3 + z(2 + 3z))

4z(z + 1)
with a ∈ R, q ∈ Z.

In this case, a particular solution for the function α(z) is α(z) = C1 exp( a
q+1z

q+1)



184 Chapter 5. Wishart Processes and their Eigenvalues

10.

f(z) =
1 + z

8z

(
−n

2(z − 1)2

(z + 1)2
+
−5 + z(14− 5z)

(z − 1)2

)

+ 2azq−1(z + 1)(1 + q + azq) +
n(3 + z(2 + 3z))

4z(z + 1)
with a ∈ R, q ∈ Z.

Similarly to the previous case, a particular solution for the function α(z) is α(z) =

C1z exp(az
q

q ).

11.

f(z) =
4 + z(18 + z(4− 5z)) + 16bzq(z2 − 1)2 + 16az1+2q(z2 − 1)2

8(z − 1)2(z + 1)

+
−5− n2(z − 1)4 + 2n(z − 1)2(3 + z(2 + 3z))

8(z − 1)2z(z + 1)
with a, b ∈ R, q ∈ Z.

For this last choice of f(z) the expression for α(z) is

α(z) = C1e

(
i
√
az1+q

|1+q|

)
U

(
q

2(1 + q)
− i b

2
√
a|1 + q|

,
q

1 + q
,−(2i

√
az1+q

|1 + q|

)

+ C2e

(
i
√
az1+q

|1+q|

)
L
− 1

1+q

− q
2(1+q)

+i b
2
√
a|1+q|

(
−2i
√
az1+q

|1 + q|

)
.

In this expression for α(z), the function U(a, b, z) is the confluent hypergeometric
function and Lan(x) is the generalized Laguerre polynomial.

Proof. Let

u(x, y, t) = (t+ 1)−ne
− x+y

2(t+1)
−λ(t+1)

(
1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
where α(z) satisfies the ODE:

α′′(z) + φ(z)α(z) = 0, (5.90)

and

φ(z) =− n2(z − 1)4 − 2n(z − 1)2(3 + z(2 + 3z))

16(z2 − 1)2

− (1 + z)2(5 + z(−14 + 5z)) + 8(z − 1)2z(1 + z)f(z)

16(z2 − 1)2
.
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We first need to check that

u(x, y, 0) = exp

(
−x+ y

2
− λ
)(

1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
,

as required by Theorem 2.2.5, but this is trivial if we substitute t = 0 in the ex-
pression of u. Next we need to check that u satisfies the PDE (5.84), with q(x, y) =

λ+ 1
xf
( y
x

)
. That is, we must check that u solves

ut = Lu−

(
λ+

1

x
f

(
y

x

))
u

= 2xuxx + 2yuyy +

(
n+

x+ y

x− y

)
ux +

(
n− x+ y

x− y

)
uy −

(
λ+

1

x
f

(
y

x

))
u

(5.91)

Observe that on the one hand we have

ut = (t+ 1)−ne
− x+y

2(t+1)
−λ(t+1)

(
1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
×
(
x+ y

2
(t+ 1)−2 − λ− n(t+ 1)−1

)
= u×

(
x+ y

2
(t+ 1)−2 − λ− n(t+ 1)−1

)
Similarly, we can write ux, uy, uxx and uyy in terms of u as follows:

ux = −(t+ 1)−ne
− x+y

2(t+1)
−λ(t+1)

(
1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
×

(
(1− n)(x− 2y)x+ (5− n)y2

4x(x− y)(x+ y)
+

1

2(t+ 1)
+

y

x2

α′
( y
x

)
α
( y
x

) )

= −u×

(
(1− n)(x− 2y)x+ (5− n)y2

4x(x− y)(x+ y)
+

1

2(t+ 1)
+

y

x2

α′
( y
x

)
α
( y
x

) )

uy = −(t+ 1)−ne
− x+y

2(t+1)
−λ(t+1)

(
1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
×

(
(n− 1)

(
x2 − 2xy

)
+ (n− 5)y2

4y(x− y)(x+ y)
+

1

2(t+ 1)
− 1

x

α′
( y
x

)
α
( y
x

) )

= −u×

(
(n− 1)

(
x2 − 2xy

)
+ (n− 5)y2

4y(x− y)(x+ y)
+

1

2(t+ 1)
− 1

x

α′
( y
x

)
α
( y
x

) )
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uxx = (t+ 1)−ne
− x+y

2(t+1)
−λ(t+1)

(
1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
︸ ︷︷ ︸

u

×

6((n− 6)n+ 13)x2y2 + (n− 5)(n− 1)
(
x4 − 4xy

(
x2 + y2

)
+ y4

)
16x2(x− y)2(x+ y)2

+
1

4(t+ 1)2
− (n− 1)x(x− 2y) + (n− 5)y2

4(t+ 1)x(x+ y)(x− y)

−

(
(n− 5)x2y + (n− 1)y2(y − 2x)

2x3(x+ y)(x− y)
− y

(t+ 1)x2

)
α′
( y
x

)
α
( y
x

) +
y2

x4

α′′
( y
x

)
α
( y
x

)


uyy = (t+ 1)−ne
− x+y

2(t+1)
−λ(t+1)

(
1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
︸ ︷︷ ︸

u

×

(
(n− 1)x(x− 2y) + (n− 5)y2

4(t+ 1)y(x+ y)(x− y)
+

2(3(n− 6)n+ 23)x2y2 + (n− 9)(n− 5)y4

16y2(x+ y)2(x− y)2

+
(n− 1)

(
(n+ 3)x4 − 4(n− 1)x3y − 4(n− 9)xy3

)
16y2(x+ y)2(x− y)2

+
1

4(t+ 1)2

−

(
(n− 1)x(x− 2y) + (n− 5)y2

2xy(x+ y)(x− y)
+

2y

2(t+ 1)xy

)
α′
( y
x

)
α
( y
x

) +
1

x2

α′′
( y
x

)
α
( y
x

)


It can be checked that substituting these expressions of the derivatives into (5.91)
produces the following differential equation for the function α:

0 = −1

x
f

(
y

x

)
+

2y(x+ y)

x3

α′′
( y
x

)
α
( y
x

)
+

2(n(2− 3n) + 9)x2y2 + (n− 1)
(

4(n− 1)xy
(
x2 + y2

)
− (n− 5)

(
x4 + y4

))
8xy(x− y)2(x+ y)

,

which, after setting z = y
x is equivalent to

0 = −

8z(z + 1)(z − 1)2f(z) + n2(z − 1)4 − 2n(z(3z + 2) + 3)(z − 1)2

16z2
(
z2 − 1

)2
+

(z + 1)2(z(5z − 14) + 5)

16z2
(
z2 − 1

)2
α(z) + α′′(z),
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as claimed. Hence, if α is indeed a solution of the above DE, then u is in fact a
solution of

ut = Lu−

(
λ+

1

x
f

(
y

x

))
u

with

u(x, y, 0) = exp

(
−x+ y

2
− λ
)(

1− y

x

)−1/2(y
x

) 1−n
4
(

1 +
y

x

)n−2
2

α

(
y

x

)
,

and so, by part (b) of the Feyman-Kac theorem, we have that

u(x, y, t) = E(x,y)

exp

−∫ t

0

(
λ+

1

Xs
f

(
Ys
Xs

))
ds

 exp

(
−Xt + Yt

2
− λ

)

×
(

1− Yt
Xt

)−1/2( Yt
Xt

) 1−n
4
(

1 +
Yt
Xt

)n−2
2

α

(
Yt
Xt

)
For the proof of the second part of the theorem where particular choices for f are
given, one need only check that substituting each particular choice of f into the
coefficient function φ(z) appearing in the DE

α′(z) + φ(z)α(z) = 0

will yield the given function α(z) as a solution to the DE in each case. We do not
include these computations here, but they can easily be checked using any basic
computer algebra system.

Another result involving the expectations of functionals of the eigenvalues of a
2× 2 Wishart Process that can be obtained using the Feynman-Kac theorem (Theo-
rem 2.2.5) is the following:

Theorem 5.3.22. Let Wt ∼WIS(n, 2,W0) with eigenvalues X(t) > Y (t) ≥ 0 and with
index n ≥ 2. Then

E(x,y)

[
e−λtω

(
Xt

Yt

)]
= e−λtω

(
x

y

)
, (5.92)

where

ω(z) = C1 − C2z
3−n

2

(
F1

(
3− n

2
,−n, 1, 5− n

2
,−z, z

)

+ 2F1

(
1− n, 3− n

2
,
5− n

2
,−z

)
+ 22F1

(
2− n, 3− n

2
,
5− n

2
,−z

))
, (5.93)
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where F1(a; b1, b2; c;x, y) is the Appell hypergeometric function of two variables and

2F1(a, b; c; z) is the traditional hypergeometric function 2F1.

Proof. Let u(x, y, t) = e−λtω
(
x
y

)
with ω(z) defined as in (5.93). Note that u(x, y, 0) =

ω
(
x
y

)
. We need to check next that u satisfies the PDE:

ut = Lu− λu (5.94)

Note that

ut = −λe−λtω
(
x

y

)
ux =

e−λt

y
ω′
(
x

y

)
uy = −xe

−λt

y2
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(
x

y

)
uxx =

e−λt
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(
x

y

)
uyy = e−λt

(
x2

y4
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(
x

y

)
+

2x

y3
ω′
(
x

y

))

So equation (5.94) becomes:

−λe−λtω
(
x

y

)
= 2x

e−λt
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(
x

y

)
+ 2ye−λt

(
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y4
ω′′
(
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y

)
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2x

y3
ω′
(
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y
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+

(
n+

x+ y

x− y

)
e−λt

y
ω′
(
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y

)
−
(
n− x+ y

x− y

)
xe−λt

y2
ω′
(
x

y

)
− λe−λtω

(
x

y

)
Note that the above ODE is equivalent (after multiplying by yeλt) to:

0 =

(
2
x

y
+ 2

x2

y2

)
ω′′
(
x

y

)
+

(
4
x

y
+ n

(
1− x

y

)
+
x+ y

x− y

(
1 +

x

y

))
ω′
(
x

y

)

Now let z = x
y . The above ODE for ω becomes the following in terms of z:

0 = 2z(1 + z)ω′′(z) +

(
4z + n(1− z) +

z + 1

z − 1
(1 + z)

)
ω′(z), (5.95)

So we only need to make sure that w(z) defined as in (5.93) is a solution to this
ODE. This can easily be checked with any basic computer algebra system, so we
do not include the computations here. We have thus proved that u satisfies (5.94)
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with initial condition u(x, y, 0) = ω
(
x
y

)
and hence, by part (b) of the Feynman-Kac

Theorem, we have

u(x, y, t) = E(x,y)

[
e−λtω

(
Xt

Yt

)]
(5.96)





191

Chapter 6

Summary

6.1 Systems of PDEs

In this thesis, we have shown how lie symmetries and integral transforms may
be used to obtain fundamental matrices for some classes of systems of PDEs. In
Chapter 3 we have computed the lie algebra for systems of the typeut = uxx + g1(x)v

vt = vxx + g2(x)u

for the choices:

(1) g1(x) =
C1

x2
, g2(x) =

C2

x2
,

(2) g1(x) = C1, g2(x) =
C2

x4
,

(3) g1(x) = C1x
k, g2(x) = C2x

−(4+k), k 6= 0,−2,

(4) g1(x) = C1 + C2x, g2(x) = k(C1 + C2x),

(5) g1(x) = C1, g2(x) = C2.

We have obtained fundamental matrices for cases (1), (2),(4) and (5). We have
shown how the simplest cases, (1),(4) and (5), produce fundamental matrices of
scalar functions, while the more complex cases, such as (2), produce matrices of
differential operators.

In Chapter 4, we have obtained fundamental matrices for general systems of
the type vt = σxγvxx + f1(x)vx − f2(x)wx

wt = σxγwxx + f2(x)vx + f1(x)wx,
x, t > 0,
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where Ai, Bi ∈ R for i = 1, 2, σ, γ ∈ R, γ 6= 2 and where f1(x), f2(x) are real-valued
functions satisfying−γσx

1−γf1(x) + σx2−γf ′1(x) + 1
2x

2(1−γ)(f1(x)2 − f2(x)2) = 2σA1x
2−γ +B1

−γσx1−γf2(x) + σx2−γf ′2(x) + x2(1−γ)f1(x)f2(x) = 2σA2x
2−γ +B2.

We have obtained a general formula for a fundamental matrix for any system of
this particular type and we have obtained some explicit formulas for some exam-
ples. These typically contain both integral and differential operators. We have also
prepared the ground to obtain similar results for a wider class of functions f1 and
f2.

6.1.1 Future work

We would like to extend our work on this topic in different aspects:

• First, we would like to find a non-stationary solution for the the above men-
tioned case (3) to be able to compute a fundamental matrix for this case too.
For this choice of functions g1 and g2, the system possesses a scaling symme-
try, and we believe this is enough to produce a fundamental matrix.

• Second, we would like to further explore the methods used in Chapter 4 to
extend the scope of the results to a wider class of functions f1 and f2, as
indicated at the end of that chapter.

• Third, we would like to explore other ways of using Lie symmetries to com-
pute fundamental matrices for a given system of PDEs and try to determine
if it is possible to obtain simpler fundamental matrices in the cases where we
currently have things that are not in terms of scalar functions only.

• Finally, we would like to explore these methods for higher dimensional sys-
tems, systems of higher order and, ideally, elliptic systems as well.

6.2 Wishart Processes and their eigenvalues

We have studied Wishart processes in Chapter 5. In particular, we have focused
on their eigenvalues. We have shown how the usual lie symmetry methods fail
to produce a transition density function for the eigenvalues of a Wishart process.
However, we have produced a set of tools that allow us to compute a wide range
of expected values of functions of these eigenvalues. We have focused mainly on 2-
dimensional Wishart processes but we have also provided some results for general
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dimension p. In particular we have obtained expected values of the form:

Ex,y
[
f(X(t), Y (t))

]
, (6.1)

for a wide range of functions f including symmetric polynomials and some trigono-
metric functions such as cos(λ(Xt − Yt)) or sin(λXt) sin(λYt), or for any function
f(Xt − Yt) of the Schwartz class. Further, we have given some methods that allow
us to compute new expected values of these type from known ones.

In addition, we have obtained the cosine transform of the transition density
function of Xt− Yt and an integral expression for the expected values of Xt and Yt.
We have also given some bounds for the variances of Xt and Yt.

Lastly, we have computed some expectations of the type

Ex,y
[
f(X(t), Y (t))e−

∫ t
0 g(X(s),Y (s))ds

]
, (6.2)

through the Feynman-Kac formula.

6.2.1 Future work

• We would like to pursue the idea of solving the Sturm-Liouville problem ob-
tained in section 5.2.1.1, which would produce an expression for the transition
density of the eigenvalues.

• We would like to further explore the evaluation problem for the integral ex-
pressions appearing in the last section. We would like to determine the amount
of terms needed for a particular accuracy.

6.3 Conclusion

Lie symmetries have been proven to be useful for the computation of fundamen-
tal matrices for systems of PDEs. So far, we have only studied a small number
of parabolic systems but we would like to explore these techniques for higher di-
mensional systems and for systems of higher orders. Ideally, we would also like
to extend this to elliptic systems of PDEs, so it is clear that this is still an area with
much room for further study.

Additionally, we have seen how lie symmetries can be employed to study diffu-
sion processes even when they fail to produce the transition density for the process.
They provide a good amount of information about the diffusion and they allow us
to obtain the expected values for a large number of functions of this diffusion.
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Appendix A

Integral Transforms

A.1 Some classical integral transforms

Throughout our work, we make extensive use of classical integral transforms. Here
is a recollection of the transforms we use and their definitions, as well as some
useful properties.
For a suitable function f in each case, let us define the following transforms:

(1) Laplace Transform

L{f(t)}(s) =

∫ ∞
0

f(t)e−stdt (A.1)

(2) Fourier Transform

F{f(x)}(y) =
1√
2π

∫ ∞
−∞

f(x)e−iyxdx (A.2)

(3) Fourier Cosine Transform

Fc{f(t)}(ω) =

√
2

π

∫ ∞
0

f(t) cos(ωt)dt (A.3)

(4) Mellin Transform

M{f(x)}(s) =

∫ ∞
0

xs−1f(x)dx (A.4)

(5) Hankel Transform of order n

Hn{f(t)}(r) =

∫ ∞
0

tf(t)Jn(rt)dt, (A.5)

where Jn(x) is a Bessel function of the first kind.

A useful property of the Laplace transform is the shift property. We use this prop-
erty a few times throughout this thesis to invert some Laplace transforms. Let
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L{f(t)}(s) = F (s), then

L{e−atf(t)}(s) = F (s+ a).

This implies that
L−1{F (s+ a)}(t) = e−atf(t)

Let us now derive a relationship between the Mellin transform and the Fourier
transform defined in (A.2):

M{f(x)}(s) =

∫ ∞
0

xs−1f(x)dx (make the change of variables x = e−u)

= −
∫ −∞
∞

e−u(s−1)f(e−u)e−udu

=

∫ ∞
−∞

e−usf(e−u)du

=
√

2π
1√
2π

∫ ∞
−∞

e−i(−is)uf(e−u)du

=
√

2πF{f(e−x)}(−is) (A.6)

Hence we can invert any Mellin transform by converting it to the corresponding
Inverse Fourier transform.

A.2 The distributional Laplace transform

In this section we give a brief explanation on how to extend the notion of the clas-
sical Laplace transform defined in (A.1) to one that is capable of dealing with the
broader concept of generalised functions or distributions. We also deal with what is
commonly referred to as pseudo-functions. These pseudo-functions will be our main
tool to deal with integrands that have singularities at a finite point. The approach
we use to deal with such singularities is due to the French mathematician Jacques
Hadamard. An explanation of this approach can be found in [37].

We will first consider the case of probably one of the most famous generalised
functions: the Dirac Delta function, δ(t).
It is clear, due to the very special properties of this particular function, that ex-
tending the classical notion of the Laplace transform (A.1) to generalised functions
should produce the following result for δ:

L{δ(t)}(s) =

∫ ∞
0

δ(t)e−stdt = 1 (A.7)
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We can also define the Laplace transform for any derivatives of the Delta function
in a similar manner:

L{δ′(t)}(s) =

∫ ∞
0

δ′(t)e−stdt = −
∫ ∞

0
(−s)δ(t)e−stdt = s

∫ ∞
0

δ(t)e−stdt = s

L{δ′′(t)}(s) =

∫ ∞
0

δ′′(t)e−stdt = −
∫ ∞

0
(−s)δ′(t)e−stdt = s

∫ ∞
0

δ′(t)e−stdt = s2

...

One can therefore easily obtain the following general formula recursively:

L{δ(n)(t)}(s) = sn (A.8)

This seems rather intuitive and, although it requires some knowledge on the ma-
nipulation of distributions, it does not apparently require any new definitions of
the Laplace transform. In the literature, the Laplace transform of the Dirac Delta
function (A.7) commonly appears denoted as

L−{δ(t)}(s) =

∫ ∞
0−

δ(t)e−stdt := lim
ε→0

∫ ∞
−ε

δ(t)e−stdt = 1. (A.9)

This notation is used to emphasize that any point mass located at the origin is
entirely captured by the Laplace transform.
However, one often needs to deal with functions of the type f(t) = tλ with λ ∈ R,
λ ≤ −1. For such functions it is easy to see that the Laplace integral

L{tλ}(s) =

∫ ∞
0

tλe−stdt (A.10)

diverges near the origin. It is in this context that the so called pseudo-functions
arise. To deal with this type of functions one needs to redefine the notion of a
Laplace transform.
There are a number of authors that have worked on the definition of distributional
integral transforms (and their inversions) using different approaches. Amongst
them, we would like to remark the work by Zemanian in [58], [61], [57], [60],[59] or
by Pathak in [53].
Both Pathak (in [53]) and Zemanian (in [57]) first introduce the testing function
space La and its dual space L ′

a for which the ordinary right-sided Laplace trans-
form can be generalised in a natural way and then define the generalized Laplace
transform for any function f ∈ L ′

a as

L{f}(s) = 〈f(t), e−st〉, s ∈ Λ, (A.11)
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for a suitable region Λ ⊂ C .
We provide in what follows a very brief explanation on how these spaces and trans-
form are defined. We do not provide all the proofs and we refer the reader to the
above literature for a more thorough explanation on the concept.

Let I = (0,∞) and let φ be a C∞ complex-valued function on I . Then φ ∈ La(I)

for a ∈ R if

γk(φ) := γa,k(φ) := sup
0<t<∞

|eatDkφ(t)| <∞, ∀k ∈ N. (A.12)

With this definition it can easily be seen that La(I) is a linear space and that for
a < b we have that Lb(I) ⊂ La(I). One can also easily check that for each fixed s,
the exponential e−st ∈ La(I) if and only if a ≤ Re[s].
We now need to define the appropriate space of generalized functions, i.e. the dual
of La(I), L ′

a(I):
Let f be a locally integrable function such that e−atf(t) is absolutely integrable on
(0,∞). Then f generates a regular generalized function in L ′

a(I) through

〈f, φ〉 :=

∫ ∞
0

f(t)φ(t)dt, φ ∈ La(I). (A.13)

We say that f is a Laplace transformable generalized function if there exists a ∈ R such
that f ∈ L ′

a(I). It is then clear that f ∈ L ′
b(I) for every b > a; hence there

exists a real number σf (possibly −∞) such that f ∈ L ′
a(I) for every a > σf and

f /∈ L ′
a(I) for every a < σf .

The last step is to define the generalized Laplace transform of any function f ∈
L ′

a(I). One expects to be using the test function e−st to define such transform but,
as mentioned before, certain conditions must be satisfied for such exponential to be
in La(I). So we need to produce one last definition before we can properly define
our distributional Laplace transform.
Let

Ωf := {s ∈ C : Re[s] > σf , s 6= 0, |arg(s)| < π}. (A.14)

Note that for negative σf this region Ωf is a cut half-plane obtained by deleting all
non-positive values of s.

Definition A.2.1. Let s ∈ Ωf . We define the generalized Laplace transform of
f ∈ L ′

a(I) by
L{f}(s) := F (s) := 〈f(t), e−st〉. (A.15)

With this definition, the real number σf is called the abscissa of definition and the re-
gion Ωf is referred to as the region of definition of the generalized Laplace transform.



A.2. The distributional Laplace transform 199

It is important to remark that the above definition makes sense as the applica-
tion of a certain function f ∈ L ′

a(I) to e−st ∈ La(I) for a ∈ R with σf < a < Re[s].
It turns out that with such a definition this construction possesses all the expected
nice qualities such as analyticity in Ωf . The following theorem can be found with
its proof in [53]:

Theorem A.2.1. Let F (s) = L{f}(s) for s ∈ Ωf . Then F (s) is an analytic function on
Ωf and

D(k)F (s) = 〈f(t), (−t)ke−st〉, k ∈ N (A.16)

This result is however not surprising since it is in some way the analogous of
the differentiation property of the ordinary Laplace transform.
Other properties of the distributional Laplace transform that can be intuitively re-
lated to those of the ordinary Laplace transform. Here is a summary (without
proofs) of some of the most interesting properties of the distributional Laplace
transform:

(i) Differentiation of the Laplace transform:

DαL{f(t)}(s) = L{(−t)αf(t)}(s), s ∈ Ωf (A.17)

(ii) The Laplace transform of a derivative:

L{Dαf(t)}(s) = sαL{f(t)}(s), s ∈ Ωf (A.18)

(iii) The translation of a Laplace transform:

L{f(t)e−at}(s) = L{f(t)}(s+ a), a > 0, s+ a ∈ Ωf (A.19)

(iv) The Laplace transform of a translation:

L{H(t− t0)f(t− t0)}(s) = e−st0L{f(t)}(s), s ∈ Ωf (A.20)

(v) The Laplace transform under a change of scale:

L{f(at)}(s) =
1

a
L{f(t)}(s

a
), a > 0,

s

a
∈ Ωf (A.21)

Furthermore, just as with the classical Laplace transform, an inversion formula can
be obtained and the convolution of two elements in L ′

a(I) can be defined in such
a way that its distributional Laplace transform will be the product of the individual
Laplace transform of the elements involved in the convolution.
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