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Abstract. Fruit harvesting is a topic of intereset in agricultural indus-
tries. In order to perform this task, robots should be able to recognize
and segment fruit in their perceptual environment. Particularly, apple
trees are often arranged as planar trellis structures in commercial or-
chards. The vine-like branches have leaves that can occlude fruit and
produce noise in typical depth sensor data that also populates the scene
with objects that are not of interest. In this paper, we present a method
that uses a Dirichlet mixture of Gaussian processes and a Gibbs-Sampler
for segmenting clusters of apples to support selective autonomous har-
vesting. Furthermore, the model provides probabilistic reconstruction of
the entire apple which can be used for better grasping of the fruit.

Keywords: Probabilistic segmentation, RGB-D, agricultural robotics

1 Introduction

The emerging field of agricultural robotics has gained increasing interest in re-
cent years. The growing demand for high-quality food worldwide, combined with
inherently limited natural resources, has forced the agriculture industry to mod-
ernize assets in order to increase overall efficiency. The task of collecting fruit
from trees is typically characterized by large quantities, but comparably low lev-
els of selectivity, and an enormous requirement for manual labor. As a result,
large quantities of fruit must be sold at low value or wasted, as it cannot be
harvested at the right time (being either too mature or not ripe) or cannot be
harvested at all due to inavailability of workers. Increasing the level of automa-
tion allows for continuous harvesting over wide time windows, and the intelligent
selection of fruit to be picked at just the right time with lower labor cost.

Automation of agricultural processes using robots requires high levels of ro-
bustness compared to processes that are performed by humans or closely mon-
itored by humans. In uncontrolled environments, such as typically encountered
in outdoor fruit harvest scenarios, a robot needs to cope with high levels of
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uncertainty in the perception of its environment, and the need for representa-
tions of uncertainty is twofold. On the one hand, for a robot to operate safely,
it should not be steered into regions with high uncertainty, so that accidents are
prevented. On the other hand, large scale automation of agricultural processes
can only be achieved with increased levels of autonomy, where a robot actively
explores its environment to reduce uncertainty.

This paper discusses several crucial components of an automized pome fruit
harvesting pipeline using an RGB-D camera. We present an experimental setup
where an Intel RealSense SR300 camera is mounted to a commercial robot arm,
and collects multiple scans of an artificial apple trellis in order to increase the
accuracy of perception. Accurate knowledge of the location and shape of the fruit
reduces potential damage to the fruit and surrounding parts of the plant at the
time of harvesting. Harvesting with robots is challenging because of the varying
light conditions of outdoor environment and the large amount of occlusions by
the leaves and branches.

Authors in [1] used a RGB-D sensor for the detection of apples. They use
single scans from the camera and process them to quantify the amount of apples
and their size. They first apply a color filter to remove the non-apple points,
and then use Euclidean clustering for initial segmentation of the apples. Finally,
apples that are close to the camera are segmented using a RANSAC algorithm
with a model of a sphere.

Authors in [2] develop a classification algorithm for detection of peduncles of
sweet peppers. They use a Support Vector Machine classifier for 3D points in a
reconstructed scene fed with color features and point feature histograms.

In [3] the authors use simple color cameras for the detection and 2D segmen-
tation of tomatoes using a set of filters and an adaptive threshold algorithm.
They achieve good results for the segmentation of tomatoes, but their work is
limited to 2D perception, and further steps are required for automatic harvesting
of the tomatoes.

In [4] authors develop a multisensory system consisting of a multi-espectral
camera, a TOF camera, an RGB-D camera and an artificial illumination system.
They combine a set of filters for the input data combined with a pixel-wise
classification algorithm. They achieve good results for different scenarios and
fruits, but the cost of the entire system is large considering the need for mass
employment as required in pome fruit harvesting.

In this paper we use probabilistic modeling of the fruit surface based on
Gaussian Process Implicit Surfaces (GPIS) [5]. State-of-the-art GPIS algorithms
typically assume a constant mean level function, which contains no prior knowl-
edge about the shape of an object. This restriction is limiting the applicability
of GPIS, especially when the data points for the surface reconstruction are not
evenly distributed or large fractions of the objects have not been observed. In [6]
authors propose the use of a priori learned shapes of objects to integrate prior
knowledge in the GPIS process. This improves the surface reconstruction and
can be used to improve segmentation of the object when significant parts of the
scene have not been observed.
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Here, we use a Dirichlet mixture of GPIS for probabilistic segmentation of
the scene into distinct pieces of fruit and non-fruit components. Dirichlet mix-
ture models are a systematic way of describing data association problems where
latent components, such as an unknown number of objects in a scene, need to
be inferred. The resulting probability space increases super-exponentially, and
Markov-Chain Monte Carlo methods (such as Gibbs-sampling) are typically em-
ployed.

The remainder of the paper is organized as follows. Section 2 introduces the
probabilistic segmentation model, and Section 3 presents the procedure of the
multiple view selection for reducing the uncertainty on the segmentation and
improving the object segmentation. In Section 4, the hardware system used for
testing the algorithm is shown, and results are presented for a real apple vine.
In Section 5, the paper concludes with a discussion of the presented results and
further steps to be investigated.

2 Dirichlet segmentation

Segmentation is a common preprocessing step to higher-level tasks such as ob-
ject detection, classification, or manipulation. Probabilistic representations of
pointcloud segmentation are essential for active methods such as targeted ex-
ploration [7], decision making in grasping contexts [8] or probabilistic object
detection [9]. We formulate segmentation as a data association problem, where
each point n is assigned a label an, associating it to one of a set of objects
present in the scene. With common pointcloud sizes, data association on a point
level is generally impractical. Instead, we perform probabilistic segmentation on
an oversegmented scene, as obtained using the voxel cloud segmentation algo-
rithm presented in [10], with source code distributed as part of the Point Cloud
Library (PCL) [11].

The surfaces of fruit are modelled by Gaussian process implicit surfaces [5],
where observations of object surfaces are interpreted as points in the zero-level
set of an underlying GP. As we are interested in scenes consisting of multiple
objects, we consider mixtures of GPs, where the association of data points to
different GPs is modelled by a Dirichlet process (DP). DP mixture models have
the advantage that they readily deal with data sets where the number of latent
clusters is not known. Each GP is then characterised by a set of hyperparameters,
which can be used to represent the surface properties as well as prior shape and
location [6].

Analytical representations of the resulting probability space are intractable,
even for reasonably small problems, as it consists of all possible combinations of
part associations. As a result, we employ a Markov-Chain Monte Carlo method
that sequentially explores the probability space by producing samples according
to a Gibbs-sampler. It is known that samples from a DP can be generated by
sampling from a Chinese Restaurant process (CRP): the prior distribution of a
data point’s association is conditioned on the association of all other data points
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and is given by

p(an = k|a\n, α) =
Nk

N − 1 + α
(1)

p(an = K + 1|a\n, α) =
α

N − 1 + α
, (2)

where an denotes the association of point n, a\n denotes the association vector
for all other points, N denotes the total number of points (including point n),
Nk denotes the number of points associated to component K, and α denotes the
Dirichlet process concentration parameter. The second expression p(an = K+1)
represents the probability that point n is associated to a new object without
any points associated. The algorithm randomly selects a data point {xn, yn} ∈
DM and removes it from its current GP, before computing the likelihoods with
respect to all GPs currently present in the scene, i.e. with number of associated
data points Nk > 0. The GP likelihoods are weighted by Nk according to (1)
and (2) and used to compute posterior association probabilities p(an = k) by
normalisation. Our algorithm produces a desired number of samples for the
scene segmentation, which can be used to draw probabilistic conclusions about
the scene segmentation and the location and shape of objects.

3 Multiple view segmentation

3.1 Pose generation and cloud registration

The vine-like structure of apple trees on a trellis comprises leaves, branches and
fruit. The leaves can occlude the fruit and also induce noise in the observed
point clouds. For these reasons the input point clouds are firstly filtered with a
standard noise removal. At this stage, the clouds have fragments of the apple but
morphologically these are identical to leaves since both are small planar surfaces.

In order to achieve better results in the probabilistic segmentation we per-
form registration of point clouds taken from multiple points of view. A pose
planner generates camera poses such that the scene is observed from different
angles. Figure 1 summarizes the multiview probabilistic segmentation process.
It is assumed that the robot is positioned in front of the apple branches. First,
a snapshot is taken and used to infer the relative angle of the apple “vine” with
respect to the arm. Using this angle, we compute candidate poses reachable by
the arm arranged on a portion of a sphere. Then, at each step of the algorithm
a pose is selected that maximizes the distance from the history of past poses.
From each viewpoint a new cloud is taken, which is registered using ICP plus
information from the arm controller that provides an initial estimate of the point
cloud’s true pose.

Finally, the map of the scene is filtered by color using Euclidean distance
between colors and a model value in HSV. Then, it is simplified using the voxel
cloud segmentation algorithm described in [10] before being introduced into the
Dirichlet segmentation process.
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Fig. 1. System block diagram.

3.2 Arm controller

Path planning and control The arm path planning framework leverages
recent breakthroughs in trajectory optimization algorithms that perform very
well in high-dimensional configuration space. The algorithms used in our system
include: TrajOpt [12], GPMP2 [13] and CHOMP [14]. In preliminary experiments
we found that none of the algorithms performed consistently better than any
other for all scenarios. CHOMP had the highest success rate, however, TrajOpt
had significantly better computation time.

The algorithms can fail for several reasons, most often because they are
inherently prone to getting trapped in local minima and there is no guarantee
of ever finding a solution. Sampling based planners, such as RRT*, are another
effective path planning method used in high-dimensional configuration spaces.
A key property is that these planners are probabilistically complete, that is as
the planner continues running, the probability of not finding a solution (if one
exists) asymptotically approaches zero. Bi-directional RRT, a variant of RRT,
exhibits a high planning success rate at the cost of sub-optimal paths [15].

We performed comparison experiments with 20 random end-effector positions
on the sphere. As can be seen from results in Table 1 the Ranked planner (which
runs all optimizers in parallel) performed the best, however still had a 2% failure
rate. Therefore, the Ranked planner is used in our system and supplemented by
Bi-directional RRT, which is used as a last resort if all others fail. The paths
returned are geometric and often sparse, hence they are first time parameterised
and up-sampled before being sent to the arm for execution.

Planner Computation Time (s) Success (%)

TrajOpt 0.09 94

GPMP2 0.09 68

Chomp 1.15 96

Ranked 0.088 98

Table 1. Average computation time and success rates per planner. Ranked planner
runs all three optimisers in parallel and, unless all planners fail, returns first successful
solution.
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Fig. 2. Arm hardware setup and simulation in OpenRAVE

Arm Hardware In order for a robot arm to achieve an arbitrary end effector
position and orientation in 3D space, i.e. a 6D pose, six degrees of freedom
(DOF) are necessary [16]. Hence, manipulators suited for dexterous tasks, such
as active sensing, should have at least six DOF. Redundant manipulators have
seven or more DOF and offer greater dexterity and flexibility for maneuvering
around obstacles. Rethink Robotics’ Sawyer, a 7DOF robot arm, is used in our
system. An open source SDK for the Sawyer arm provides a convenient API for
executing trajectories and requesting state information.

To control the robot arm, its SDK provides a built-in Joint Trajectory Ac-
tion Server (JTAS) which facilitates commanding the arm through multiple way-
points [17]. JTAS takes as input a list of timestamped waypoints and then de-
termines appropriate joint velocity commands, through interpolation, to send to
the arm so that the given trajectory is followed.

Simulation Environment The Sawyer arm and its environment are shown
in Figure 2. The arm is simulated in OpenRAVE, an Open Robotics Automa-
tion Virtual Environment for developing and testing motion planners [18]. Open-
RAVE can import standard robot models, such as COLLADA, allowing seamless
integration with all of its interfaces, including motion planning libraries, inverse
kinematics solvers and collision checkers. The motion planners are implemeneted
as OpenRAVE planner plugins. Further, one of the strengths of OpenRAVE is
its ability to robustly run multiple environments simultaneously in the same
process. Hence, parallel path planning is well supported.

Function With Rest of the System The Arm Controller provides a TCP
server front end which acts as the interface to the rest of the system. It listens on
a TCP socket for messages, containing serialised commands, and once received
deserialises and parses them for execution. The sequence of commands is as
follows. First the Cloud Registration sends a request to the Arm Controller for
the arm’s current pose. Then the Pose Planner computes a target pose based on
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the current pose and map information, which is then sent to the Arm Controller
for planning and execution. The Arm Controller then lets the Cloud Registration
node know whether the execution succeeded or failed. This process is repeated
until no more viewpoints are needed.

4 Experimental validation

In this section we discuss the experimental setup used for testing our system. We
use a 1.5m by 1.5m section of an artificial apple trellis with the same character-
istics as typical orchard trellises. The initial position of the arm with respect to
the trellis is unknown at the beginning of each experiment. The only assumption
we make is that the trellis is in the range of the camera (the Intel RealSense
SR300 has a maximum range of 1.5m).

Figure 3 illustrates the map building result of an experiment using the reg-
istration procedure described in Section 3.

The first row in Figure 4 shows the input cloud that is fed into the Diritchlet
segmentation algorithm. In the second row the result of the segmentation process
is shown, where different colors are used to show the association to the different
objects. Finally, the last row shows the centroids of the resulting objects. As the
sampler tends to create new candidates of groups with single parts at random
samples, a threshold has been set for a minimum number of parts for a group to
be considered an object. As the number of viewpoints increases, more parts are
added to the scene and an increasing number of apples are correctly located.

The computation time of the Dirichlet segmentation scales super-exponen-
tially with the number of parts in the scene. The supervoxelisation algorithm in
Section 2 over-segments the input clouds into supervoxels (which we refer to as
parts). This algorithm depends on two input parameters parameters: seed size
and voxel resolution [10]. Subfigure 5 (a) shows the effect of these parameters
on the number of parts fed into the segmentation process for the same dataset.
Subfigure 5 (b) shows the average time per sample in the Gibbs sampler. Finer
parameters (lower voxel resolution and seed size) produce more parts, which
increases the computation time.

(a) (b) (c) (d)

Fig. 3. Example of map building according to Section 3. The coordinate frames illus-
trate the inferred poses from where the point clouds were taken, and each cloud shows
the reconstructed RGB-D pointcloud of the apple scene.
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Fig. 4. Segmentation results for an increasing number of viewpoints from left to right.
The first row shows the registered point clouds for multiple views, the second row
shows the labeled groups representing the segmented apples, and the last row displays
the centroids of apples that were segmented with a sufficiently large number of parts
associated.
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Fig. 5. Effect of the seed size and voxel resolution on the number of parts of the input
cloud for the Dirichlet segmentation and the effect on the speed of the sampler. Note:
the legend describes the voxel resolution (number after ′v′) and seed size (number after
′s′).
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5 Discussion

We have presented a system for probabilistic segmentation of pome fruit, in-
cluding hardware realization consisting of an Intel RealSense SR300 camera
mounted on a commercial robotic arm, robust path planning algorithms, point
cloud acquisition and registration, preprocessing (color-based presegmentation
and cloud-based supervoxelisation) and MCMC-based proababilistic segmenta-
tion and fruit detection. We have investigated the robustness of the path planning
and point cloud registration algorithms in hardware experiments and demon-
strated the feasibility of the probabilistic segmentation algorithm.

The results of the GPIS- and DP-based probabilistic segmentation algorithm
are promising in that they reliably detect apples and their exact location in the
point cloud. Further, the probabilistic surface reconstruction using GPIS can be
used for robust grasping algorithms [19] that take into account uncertainty in
the fruit surface. Furthermore, probabilistic representations of the environment
are essential for active methods to improve perception.

Figure 6 shows the pointcloud and segmentation results at an intermediate
step of 5 registered scans. As was observed before, apples are correctly located

Fig. 6. Results of the probabilistic segmentation. The bottom right figure shows the
association entropy map, where blue indicates low entropy and red indicates high en-
tropy.
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and segmented. Furthermore, the bottom right subplot shows the association
entropy map, where blue indicates low entropy and red indicates high entropy.
Those parts of the scene with high association entropy indicate that parts have
been less consistently associated to the same objects compared to regions of lower
entropy. Fruit that are densely cluttered (like in the center of the scene) generally
result in larger segmentation uncertainty, whereas the single apple at the top
right is confidently identified as one object. Such results can immediately be
employed for grasping (start by picking the apple that is confidently segmented)
and active perception (acquire more data in cluttered regions of the scene).

In future work we intend to increase the robustness of the segmentation
algorithm. We have already employed a noise model that rejects parts that do
not belong to objects, and in a more involved approach planar prior shapes
can be used to model the shape of leaves. Our general goal is to close the loop
around perception and provide an end-to-end system that makes observations
with a low cost camera, registers point clouds, chooses viewpoints based on
information theoretic measures and robustly moves the arm accordingly.
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