
UNIVERSITY OF TECHNOLOGY SYDNEY
Faculty of Engineering and Information Technology

SCALABLE PROCESSING METHODS FOR

HOST-BASED INTRUSION DETECTION

SYSTEMS

by

Ming Liu

A Thesis Submitted

in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Ming Liu declare that this thesis, is submitted in fulfillment of the requirements for

the award of Doctor of Philosophy, in the School of Electrical and Data Engineering

at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This thesis is the result of a research candidature conducted with another University

as part of a collaborative Doctoral degree.

This document has not been submitted for qualifications at any other academic insti-

tution.

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 28/01/2019

Production Note:
Signature removed prior to publication.

ABSTRACT

SCALABLE PROCESSING METHODS FOR HOST-BASED

INTRUSION DETECTION SYSTEMS

by

Ming Liu

Host-based intrusion detection system (HIDS) is renowned for the fine-grained anal-

ysis and the capability of discovering internal malicious behaviors. HIDS monitors logs

from operating systems, whereas network-based intrusion detection system (NIDS)

focuses on the data flow of network traffic. In a contemporary data center, Linux ap-

plications often generate a large quantity of real-time system call traces, which are not

suitable for traditional host-based intrusion detection system deployed on every single

host. Training data mining models with system calls on a single host that has static

computing and storage capacity is time-consuming and intermediate datasets are not

capable of being efficiently handled. It is cumbersome for the maintenance and update

of HIDS installed on every physical or virtual host, and comprehensive system call

analysis can hardly be performed to detect complex and distributed attacks among

multiple hosts.

First, considering these limitations of current system call-based HIDS, this thesis

provides a review of the development of system call-based HIDS. Algorithms and tech-

niques relevant to system call-based HIDS are investigated, including feature extraction

methods and various data mining algorithms. The HIDS dataset issues are discussed,

including currently available datasets with system calls and approaches for researchers

to generate new datasets. Modern application of system call-based HIDS on embedded

systems is summarized, and related works are investigated.

Second, this thesis forecasts the future research trends of HIDS regarding three

aspects, namely, the reduction of false positive rate, the improvement of detection

efficiency, and the enhancement of collaborative security; then a real-time scalable

HIDS framework with big data tools in cloud for a data center is proposed to enhance

the collaborative security. The framework is comprised of three layers, namely, data

collection layer, data analytics layer, and data storage layer. The framework is deployed

in an open-source private cloud computing environment, and this framework is easily

scalable to fulfill the requirement of new hosts set up in the data center.

Third, this thesis presents SCADS, a corresponding scalable HIDS solution using

Apache Spark in the Google cloud environment. A set of Spark algorithms are devel-

oped to achieve the computational scalability. The experimental results demonstrate

that the efficiency of intrusion detection can be enhanced, which indicates that the

proposed method is applicable to the design of next-generation host-based intrusion

detection systems with system calls.

Fourth, in the current industry, there are two significant improvements about HIDS,

i.e., the integration with other security capabilities, and the combination of the lat-

est threat intelligence (CTI). Therefore, to design a comprehensive HIDS under the

current sophisticated threat environment, traditional HIDS should combine with other

security capabilities and the latest CTI. The key component of CTI is the sharing

of threat information. This thesis briefly introduces the cyber threat intelligence and

the threat information sharing; and proposes a scalable real-time threat information

sharing framework in cloud, based on some recently leading platforms, such as MITRE

TAXII, IBM X-Force, WEBROOT BrightCloud, EclecticIQ platform, and AlienVault

OTX platform.

Fifth, this thesis provides a private and scalable online virus detection system.

The system is expected to be integrated into the forecast scalable real-time threat

information sharing system, which is helpful to the design of a comprehensive HIDS.

The system incorporates multiple anti-virus engines and a web interface. The proposed

system can perform the “isolated detection and update”, which guarantees that the

uploaded confidential samples are not exposed to the Internet, during either virus

detection or system upgrade. Furthermore, the low-coupling design of this system is

scalable to support the distributed deployment mode. The system is tested with benign

v

files, EICAR (European Institute for Computer Antivirus Research) Standard Anti-

Virus Test File, and other suspicious samples. The system testing results demonstrate

that the proposed mechanisms are pragmatic.

Dedication

To my family

Acknowledgements

I would like to sincerely thank my supervisor Prof. Jinjun Chen for his constant

assistance and helpful suggestions. His great supervision makes a remarkable PhD

journey for me. I am grateful for all of his help. I would like to sincerely thank my

supervisor Prof. Xiangjian He for his continuous assistance and helpful guidance.

His support and encouragement make me going forward steadfastly.

I would like to sincerely thank Prof. Renping Liu for his valuable suggestions

during candidate assessment. I would like to sincerely thank Dr. Priyadarsi Nanda

for his valuable suggestions and English corrections. I would like to sincerely thank

Dr. Deepak Puthal for his suggestions and helps for the publication of academic

papers. I would like to sincerely thank Dr. Chang Liu for his suggestions and help

about the procedures of pursuing the PhD degree in UTS. I would like to sincerely

thank Yuxuan He for his help in chapter 6.

I would like to sincerely thank my colleagues and friends for their continuous help

and encouragements. They are A/Prof. Yuhong Zhang, Dr. Christy Liang, Dr. Chi

Yang, Dr. Xuyun Zhang, Dr. Wenjing Jia, Dr. Zhiyuan Tan, Dr. Pakawat Pupatwibul,

Dr. Khaled Aldebei, Dr. Muhammad Usman, Xiaochen Fan, Hanhui Li, Xiaohua Wei,

Saeed Amirgholipour, Vinh Tung Le, Farhan Mohd, Ashish Nanda, Haihan Sun, and

Haimin Zhang, etc.

I would like to sincerely thank the staff of the school and UTS for the help. I would

like to sincerely thank the China Scholarship Council for financial assistance.

Last but not least, I would like to sincerely thank my parents for the continuous

assistance and understanding.

Ming Liu

Sydney, Australia, 2019.

List of Publications

Journal Papers

J-1. Ming Liu, Zhi Xue, Xianghua Xu, Changmin Zhong, Jinjun Chen. Host-based

Intrusion Detection System with System Calls: Review and Future Trends. ACM

Computing Surveys. Accepted.

J-2. Ming Liu, Zhi Xue, Xiangjian He, Jinjun Chen. Enhancing the Collaborative

Security with Cyber Threat Intelligence Information Sharing. IEEE Consumer

Electronics. Accepted.

J-3. Ming Liu, Yuxuan He, Zhi Xue, Xiangjian He, Jinjun Chen. MultiScan: a

Private Online Virus Detection System with Multiple Anti-virus Engines. IEEE

Consumer Electronics. Accepted.

J-4. Ming Liu, Zhi Xue, Xiangjian He, Jinjun Chen. SCADS: A Scalable Approach

Using Spark in Cloud for Host-based Intrusion Detection System with System

Calls. To be submitted.

J-5. Pengze Guo, Ming Liu, Jun Wu, Zhi Xue, Xiangjian He. Energy-Efficient

Fault-Tolerant Scheduling Algorithm for Real-Time Tasks in Cloud-Based 5G

Networks. IEEE Access. Accepted.

Contents

Certificate ii

Abstract iii

Dedication vi

Acknowledgments vii

List of Publications viii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Background . 1

1.2 Research Motivations . 3

1.3 Research Objectives . 5

1.4 Research Contributions . 5

1.5 Thesis Organization . 7

2 Review of Host-based Intrusion Detection System with

System Calls 8

2.1 Introduction . 8

2.2 An overview of intrusion detection systems 9

2.2.1 Categorization based on the types of analyzed data 9

2.2.2 Categorization based on the types of attacks 11

x

2.2.3 Combination of misuse detection with anomaly detection 12

2.3 Algorithms and techniques of HIDS . 12

2.3.1 Preprocessing and feature selection 13

2.3.2 Enumerating sequences . 13

2.3.3 Rule learning . 15

2.3.4 Bloom filter . 15

2.3.5 Classification and clustering . 16

2.3.6 Hidden Markov Model . 17

2.3.7 Neural networks . 19

2.3.8 Validation method and evaluation metrics 19

2.4 HIDS datasets . 21

2.4.1 Current datasets for HIDS with system calls 22

2.4.2 Dataset customization . 24

2.4.3 The challenge . 26

2.5 The application of system call-based HIDS on embedded systems 26

2.5.1 The feasibility of applying system call-based HIDS to embedded

systems . 27

2.5.2 Enhancement with hardware . 28

2.5.3 Cloud-based HIDS with system calls for embedded systems . . . 28

2.6 Summary . 29

3 Future Trends of Host-based Intrusion Detection System

and Constructing a Real-time Scalable HIDS in Cloud 31

3.1 Introduction . 31

3.2 Reduction of false alarm rate . 31

xi

3.2.1 System call arguments . 31

3.2.2 Improve feature extraction approaches 32

3.2.3 Refine the decision-making process 33

3.2.4 Threshold optimization . 33

3.2.5 The integration of decision engines 35

3.2.6 Long short-term memory . 35

3.2.7 Challenges regarding this trend 36

3.3 Improvement of detection efficiency . 37

3.3.1 Refine the dataset quality . 37

3.3.2 Improvement of decision engines 37

3.3.3 Capability of cloud computing 38

3.3.4 Open-source big data tools . 40

3.3.5 Challenge regarding this trend 43

3.4 Enhancement of the collaborative security 43

3.4.1 Current system call-based HIDS approaches for virtual hosts . . 44

3.4.2 Constructing a real-time scalable HIDS with big data tools in

cloud . 47

3.4.3 CIDS for a data center . 49

3.4.4 Sharing threat information to enhance the collaborative security 50

3.4.5 Current practices in the industry regarding this trend 52

3.5 Summary . 53

4 SCADS: A Scalable Approach Using Spark in Cloud for

Host-based Intrusion Detection System with System Calls 54

4.1 Introduction . 54

xii

4.2 Related works . 55

4.2.1 Public cloud . 55

4.2.2 Apache Spark . 55

4.3 Scalable Approach Using Spark in Cloud for system call-based HIDS . . 57

4.3.1 Symbols . 59

4.3.2 Preprocessing and feature extraction 59

4.3.3 Classifier training and prediction 65

4.4 Experiments . 67

4.4.1 The computational environment 67

4.4.2 The ADFA-LD dataset . 68

4.4.3 Performance evaluation . 69

4.5 Summary . 73

5 Enhancing the Collaborative Security with Cyber Threat

Intelligence Information Sharing 75

5.1 Introduction . 75

5.1.1 Motivation of attackers . 75

5.1.2 Conventional defensive approaches 76

5.1.3 Using cyber threat intelligence to analyze the attack patterns of

adversaries . 77

5.2 The threat information sharing ecosystem 78

5.2.1 Drawbacks of conventional sharing methods 81

5.2.2 New standards and platforms for the automatic sharing of

structured threat information feeds 82

5.3 Constructing a scalable real-time threat information sharing system in

the cloud . 83

xiii

5.4 System design specifications . 85

5.4.1 Trust evaluation . 88

5.4.2 Threat data collection and caching 88

5.4.3 Centralized threat data analytics and generation of the threat

information feeds . 89

5.4.4 The indexed storage of the threat information feeds 90

5.4.5 The API for automatic and secure integration of the threat

information feeds . 91

5.4.6 Choosing the most valuable threat information feeds for

integration . 92

5.5 Summary . 93

6 A Private and Scalable Online Virus Detection System

with Multiple Anti-virus Engines 95

6.1 Introduction . 95

6.2 The virus detection process . 96

6.3 System design specifications . 97

6.3.1 The web interface . 97

6.3.2 The sample management subsystem 101

6.3.3 The engine management subsystem 101

6.3.4 The packaging scripts . 102

6.3.5 The update management subsystem 105

6.4 System testing . 106

6.5 Summary . 110

7 Conclusion and Future Works 111

xiv

7.1 Summary of Contributions . 111

7.2 Future works . 112

Bibliography 114

List of Figures

2.1 A two-tier HIDS platform for mobile devices. 29

3.1 LS-SVM-based intrusion detection system, modified from [8]. 34

3.2 A standard Spark cluster [49]. 42

3.3 A preliminary real-time scalable HIDS framework with big data tools

in cloud. The system call traces are from [44]. 47

3.4 A framework of CIDS [129]. 50

4.1 A simplified structure of Spark cluster, modified from [123]. 56

4.2 An example of RDD and DAG. Unshaded rounded rectangles are

RDDs. Shaded rounded rectangles are partitions. Modified from

Zaharia’s article [160]. 56

4.3 Examples of narrow dependencies and wide dependencies. Modified

from Zaharia’s article [160]. 57

4.4 The training and detection processes of SCADS. 58

4.5 A simplified demonstration of the RDD repartitioning process by

RangePartitioner for the preprocessing of raw system call traces. . . . 61

4.6 AUC values of the single-length n-gram method and the

multiple-length n-gram method. 72

4.7 AUC values of using TF feature vectors only and TF-IDF feature

vectors for testing traces. 72

xvi

4.8 The scalability of SCADS. The number of Spark executors ranges from

1 to 6. 73

5.1 Three models of the threat information sharing process. Modified from

[24]. 80

5.2 The scalable threat information sharing system in the cloud. 86

5.3 Five system units and four groups of security personnel. 87

6.1 The virus detection flowchart. 96

6.2 The system architecture. 97

6.3 The webpage for uploading suspicious samples. 98

6.4 Isolated detection and update. 106

6.5 The detection result of an uploaded sample. 107

6.6 The status of anti-virus engines. 108

6.7 The average detection time of detection engines. 109

List of Tables

2.1 A typical system call sequence [44]. 10

2.2 Three fundamental problems of HMM in HIDS. 18

2.3 Confusion matrix. 21

2.4 Comparison of HIDS datasets. 22

2.5 Comparison of system call tracing tools. 25

2.6 Tools for HIDS dataset generation. 26

3.1 Overview of public/open-source cloud services. 39

3.2 Comparison of big data tools. 41

3.3 Scalability of algorithms in big data tools. 43

3.4 Three layers of a real-time scalable HIDS framework with big data

tools in cloud. 48

4.1 Symbols and description. 59

4.2 AUC values obtained from ten experiments using the single-length

n-gram method. 70

4.3 AUC values obtained from ten experiments using the multiple-length

n-gram method. 71

4.4 AUC values obtained with the multiple-length n-gram method and

only the TF feature vectors for testing. 71

xviii

5.1 A summary of the standards and platforms for threat information

sharing. 83

6.1 Webpages of the interface and their functionalities. 99

6.2 Packaging methods of 32 anti-virus engines. 103

1

Chapter 1

Introduction

This thesis is composed of multiple aspects relating to host-based intrusion detection

system (HIDS). First, this thesis provides a review of the development of system call-

based HIDS. Second, this thesis forecast the future research trends of HIDS regarding

three aspects, namely, the reduction of false positive rate, the improvement of detec-

tion efficiency, and the enhancement of collaborative security; then a real-time scalable

HIDS framework with big data tools in cloud for a data center is proposed to enhance

the collaborative security. Third, this thesis presents SCADS, a corresponding scalable

HIDS solution using Apache Spark in the Google cloud environment to improve the

detection efficiency of HIDS. Fourth, as future HIDS should work collaboratively with

cyber threat intelligence (CTI), this thesis briefly introduces CTI and threat infor-

mation sharing; and proposes a framework of a scalable real-time threat information

sharing system in cloud. Fifth, this thesis provides a private and scalable multi-engine

online virus detection system to contribute to the scalable real-time threat information

sharing system in cloud.

In this chapter, section 1.1 provides the background of HIDS. Section 1.2 discusses

the motivations of this research. Section 1.3 discusses the research objectives. Section

1.4 discusses the contributions of this study. Section 1.5 provides the organization of

the rest of the thesis.

1.1 Background

Host-based intrusion detection system (HIDS) has been gaining attention in the

community of cybersecurity for over two decades. Compared with network-based in-

trusion detection system (NIDS), HIDS has the superiorities of fine-granularity and the

ability to detect internal attacks. HIDS analyzes auditing data from operating systems,

whereas NIDS analyzes data from network traffic. System call-based HIDS is about

analyzing collected Linux system call traces. This approach is effective on common

2

hosts. However, due to the rapid development of data center facilities and techniques,

recently, HIDS suffers from the well-known big data challenge. It is challenging for

traditional HIDS to handle the growing amount of system call traces or other kinds of

auditing data generated from various Linux applications installed in a contemporary

data center. Linux system call traces produced from a large data center are a kind of

big data, which are massive and complicated. Therefore, they bring new challenges to

conventional data processing methods. Haider et al. claimed this kind of challenges ac-

cording to their practical experience, and they listed some currently deployed systems

and their performance in specific numbers for comparison [57]. Traditional database

management systems and data mining methods on a single host may be not able to

handle massive system call traces efficiently. Processing large amount of system call

traces has become an essential requirement for modern data centers. Traditional host-

based intrusion detection systems are mostly about performing intrusion analysis on

an independent host with standalone detection software installed. System call traces

for training are loaded into the memory of a single host that has static computing and

storage capacity. There are no interactions among HIDS installed on different hosts.

This form of deployment has two main shortcomings:

System security → With standalone HIDS software installed on every single host,

it is difficult to perform comprehensive system call analysis to detect complex and

distributed attacks among multiple hosts. Nowadays, new varieties of zero-day attacks

are kept being generated. Intruders may even choose the intrusion detection software

itself as the attack target based on the software vulnerabilities.

Detection efficiency → Training decision engines with raw Linux system call traces

on a single host that has static computing and storage capacity is time-consuming.

The size of RAM on a single host may be not capable of handling a large quantity of

real-time system call traces or intermediate datasets such as data mining models. If

intermediate datasets and permanent detection results are stored in hard disks, it may

delay the real-time detection or queries of the records.

Therefore, innovations have to be made to address these shortcomings.

3

1.2 Research Motivations

The motivation of chapter 2 is that to the best of the author’s knowledge, there are

limited number of surveys discussing host-based intrusion detection system with system

calls and the corresponding big data challenge. Forrest et al. discussed applications

and results of system call monitoring as well as data modeling in anomaly intrusion

detection [43]. This work was composed years ago, yet many new techniques and

applications have been generated since that time. Hu [65] composed an introductory

article about host-based anomaly intrusion detection. This article emphasized the

application of Hidden Markov Model, other data mining models were briefly introduced.

Ahmed et al. composed a survey about network anomaly detection techniques and

the dataset issues with the introduction of ADFA-LD dataset [3]. This survey was

mostly about network-based anomaly detection system. Chandola et al. proposed a

comprehensive taxonomy to classify studies of anomaly detection for discrete sequences

into three distinct categories [21]. Their work mainly focused on the theoretical analysis

of algorithms, whereas issues such as system call datasets or new applications with

system call-based HIDS were rarely discussed. Therefore, it is necessary to propose a

survey to fill these voids.

The motivation of chapter 3 is that first of all, false alarms may consume and waste

human resources of security personnel, as it is their responsibility to take appropriate

actions on each intrusion alarm. Therefore, a high false alarm rate can affect the per-

formance of a HIDS and has to be lowered down to a minimal level to save resources.

Second, detection efficiency is another significant issue in real-time intrusion detection.

Detection speed and accuracy are usually difficult to be well-balanced. Third, to en-

hance the collaborative security, it is a significant trend that HIDS should combine

with NIDS to form future CIDS. Therefore, it is necessary to study these three future

trends to improve future HIDS, and propose a new real-time scalable HIDS framework

with big data tools in cloud for a data center to enhance the collaborative security.

The motivation of chapter 4 is that recently cloud computing presents extensive

computational capability and massive storage capacity that can facilitate security spe-

cialists to implement data-intensive projects with manageable expenditure. Meanwhile,

a set of modern frameworks such as Apache Hadoop and Apache Spark are specifically

developed for stable and scalable processing of big data. Combining those big data pro-

4

cessing frameworks and the capability of cloud computing can provide an opportunity

to improve the detection efficiency of traditional system call-based HIDS. However, to

the best of the author’s knowledge, there are limited research works concerning apply-

ing big data tools such as Apache Spark to system call-based HIDS. Therefore, it is

necessary to propose a scalable HIDS approach using Spark in cloud to improve the

detection efficiency and the scalability for a new-generation system call-based HIDS.

The motivation of chapter 5 is that to prohibit cyber attacks before they are

launched, not only the vulnerabilities should be fixed, but the attack patterns should

be perceived to optimize the effect of defense. Although attacks cannot be monitored

before they are launched, the threats can be analyzed. A threat has the potential of

exploiting vulnerabilities to compromise IT systems. The threats can be classified as

low-leveled threats such as threats related to system and software vulnerabilities, and

high-leveled threats such as APT. The active threat analysis approaches are helpful to

gain the information about sophisticated novel attack methods. Utilizing cyber threat

intelligence (CTI) can assist the deep threat analysis. CTI can facilitate the process-

ing of the large quantity of threat information that industries confronted nowadays.

Therefore, it is necessary to study the sharing of threat information, which is the key

component of CTI and then propose a real-time scalable threat intelligence information

sharing framework to enhance the collaborative security.

The motivation of chapter 6 is that current computer systems are constantly con-

fronted with new kinds of computer viruses, which have evolved to more sophisticated

and stealthy forms to hide from the detection of anti-virus systems [110]. Recently,

some anti-virus systems are composed of multiple anti-virus engines. This kind of sys-

tem allows users to upload suspicious samples online and then presents the users with

multiple independent detection results. But these systems may save user-uploaded

suspicious samples and share them to the security enterprises that own the anti-virus

engines. Currently, some anti-virus engines provide cloud-based anti-virus services,

and user files may be uploaded to the cloud for analysis. These factors may cause

some privacy-leakage problems [163][166][162], particularly for the samples with high

confidentiality. Therefore, it is necessary to construct a multi-engine system that can

provide accurate and private virus detection services to those users with high privacy

requirements.

5

1.3 Research Objectives

i. This thesis will provide a review of the development of HIDS with system calls.

ii. This thesis will forecast three future research trends of HIDS in the current big

data and cloud computing environment, and then propose a real-time scalable

HIDS framework with big data tools in cloud to enhance the collaborative secu-

rity.

iii. This thesis will contribute to the community of HIDS by proposing a scalable

HIDS approach using Spark in the Google cloud, endeavoring to improve the

detection efficiency and the scalability for a new-generation system call-based

HIDS.

iv. This thesis will study the issues related to threat intelligence information shar-

ing, and then propose a real-time scalable threat intelligence information sharing

framework to enhance the collaborative security.

v. This thesis will propose a private online virus detection system, which incorpo-

rates multiple anti-virus engines.

1.4 Research Contributions

i. In chapter 2, the main contributions are:

(a) An overview of the development of system call-based HIDS is presented.

(b) Algorithms and techniques relevant to system call-based HIDS are investi-

gated, including various data mining methods.

(c) The application of system call-based HIDS on embedded systems is studied,

and related works are investigated.

(d) The HIDS dataset issues are analyzed; currently available datasets with sys-

tem calls and approaches for researchers to generate new datasets are discussed.

ii. In chapter 3, limitations relating to current system call-based HIDS are discussed,

and future research trends are forecast regarding three aspects, namely, the re-

duction of false positive rate, the improvement of detection efficiency, and the

6

enhancement of collaborative security. Then a real-time scalable HIDS frame-

work with big data tools in cloud for a data center is proposed to enhance the

collaborative security, and this framework is easily scalable to fulfill the require-

ment of new hosts set up in the data center.

iii. In chapter 4, a HIDS solution using Apache Spark in the Google cloud envi-

ronment for HIDS with system calls (SCADS) is presented. SCADS shows the

ability to improve the detection efficiency and the scalability for a new-generation

system call-based HIDS.

iv. In chapter 5, the main contributions are:

(a) The current threat information sharing ecosystem is investigated, including

the famous three models of the threat information sharing process, the drawbacks

of conventional sharing methods, and some new standards and platforms for the

automatic exchange of structured threat information feeds.

(b) The necessity of constructing a scalable real-time threat information sharing

system in the cloud is analyzed.

(c) A real-time scalable threat intelligence information sharing framework is pro-

posed to enhance the collaborative security. The system design specifications are

provided based on some recent notable platforms.

(d) The issue that demands to be solved in the future is addressed.

v. In chapter 6, the main contributions are:

(a) A private online virus detection system is presented. The system incorpo-

rates multiple anti-virus engines. The proposed system can perform the “isolated

detection and update” of the anti-virus engines. This mechanism guarantees that

the uploaded confidential samples are not exposed to the Internet, during either

virus detection or system upgrade.

(b) A web interface is provided so that the system users can upload suspicious

samples via web browsers and the detection results from multiple anti-virus en-

gines can be displayed on the web interface.

(c) The low-coupling design of this system is scalable to support the distributed

deployment mode.

7

1.5 Thesis Organization

The rest of this thesis is composed as follows.

• Chapter 2: This chapter presents the review of host-based intrusion detection

system with system calls.

• Chapter 3: This chapter presents three future research trends of host-based in-

trusion detection system with system calls; then a real-time scalable HIDS frame-

work with big data tools in cloud for a data center is proposed to enhance the

collaborative security.

• Chapter 4: This chapter presents SCADS, a HIDS solution using Apache Spark

in the Google cloud environment for HIDS with system calls.

• Chapter 5: This chapter introduces the cyber threat intelligence and the threat

information sharing; and proposes a framework of scalable real-time threat infor-

mation sharing system in cloud.

• Chapter 6: This chapter presents a private and scalable multi-engine online virus

detection system to contribute to the scalable real-time threat information shar-

ing system in cloud.

• Chapter 7: This chapter provides the conclusion of this thesis and discusses the

potential future research works.

8

Chapter 2

Review of Host-based Intrusion Detection System

with System Calls

2.1 Introduction

To the best of our knowledge, there are limited number of surveys discussing host-

based intrusion detection system with system calls and the corresponding big data

challenge. Forrest et al. discussed applications and results of system call monitoring

as well as data modeling in anomaly intrusion detection [43]. This work was composed

years ago, yet many new techniques and applications have been generated since that

time. Hu [65] composed an introductory article about host-based anomaly intrusion

detection. This article emphasized the application of Hidden Markov Model, other

data mining models were briefly introduced. Ahmed et al. composed a survey about

network anomaly detection techniques and the dataset issues with the introduction of

ADFA-LD dataset [3]. This survey was mostly about network-based anomaly detection

system. Chandola et al. proposed a comprehensive taxonomy to classify studies of

anomaly detection for discrete sequences into three distinct categories [21]. Their work

mainly focused on the theoretical analysis of algorithms, whereas issues such as system

call datasets or new applications with system call-based HIDS were rarely discussed.

This chapter endeavors to present a clear overview of the development for HIDS with

system calls. The main contributions of this chapter are described below.

i. An overview of the development of system call-based HIDS is presented.

ii. Algorithms and techniques relevant to system call-based HIDS are investigated,

including various data mining methods.

iii. The HIDS dataset issues are analyzed; currently available datasets with system

calls and approaches for researchers to generate new datasets are discussed.

iv. The application of system call-based HIDS on embedded systems is studied, and

9

related works are investigated.

The rest of this chapter is composed as follows. Section 2.2 presents an overview

of intrusion detection systems. In Section 2.3, algorithms and techniques of system

call-based HIDS are outlined. In Section 2.4, HIDS dataset issues are analyzed, and

dataset generation methods are discussed. In Section 2.5, the application of HIDS on

embedded systems is studied. Section 2.6 gives summary of this chapter.

2.2 An overview of intrusion detection systems

An intrusion detection system, or IDS, monitors the real-time data of a network or

a host/hosts to detect malicious behaviors [37]. It generates an alarm when it detects

an intrusive activity. There are two ways to categorize intrusion detection systems:

Types of analyzed data → Network-based intrusion detection system (NIDS), host-

based intrusion detection system (HIDS), and collaborative intrusion detection

system (CIDS) [99].

Types of attacks → Misuse detection system and anomaly detection system [99].

2.2.1 Categorization based on the types of analyzed data

Network-based intrusion detection system

NIDS checks communications in a network to observe intrusions. For instance, ap-

plying data mining methods to network traffic data for the detection of anomalies is a

kind of NIDS. Currently, issues related to NIDS have been intensively researched and

notable outcomes have been achieved. For instance, Tan et al. proposed a system to

detect denial-of-service (DoS) attacks for interconnected server systems by applying

multivariate correlation analysis [127]. Geometrical correlations are generated from

selected network features. They apply anomaly detection on benign network data

to detect zero-day attacks. The process of multivariate correlation analysis is aug-

mented and accelerated by using the triangle-area-based method. The KDD99 dataset

is adopted to assess the capability of their IDS on raw and normalized datasets, demon-

strating the enhanced detection rate. They further used computer vision methods to

solve the DoS attack problem [128]. Network traffic entries are considered as corre-

sponding images by taking multivariate correlation analysis. Those images that used

10

Table 2.1 : A typical system call sequence [44].

“...open, read,mmap,mmap, open, getrlimit,mmap, close...”

as observed objects are composed with Earth Mover’s Distance. The experiment with

ten-fold cross-validations shows high detection accuracy.

Limitations of NIDS NIDS is often deployed as hardware devices between the

Internet and the Intranet of an enterprise. The advantage of this form of deployment

is that the NIDS can detect network intrusions immediately. However, it is difficult

for traditional NIDS to process encrypted packets transmitting on the network, and

the speed of network flow may be downgraded due to the deployment of NIDS devices.

Moreover, internal attacks are difficult to be detected by NIDS in this case.

Host-based intrusion detection system

HIDS monitors activities such as system or shell logs within a host/hosts to discover

unauthorized behaviors. HIDS can perform various kinds of data mining methods such

as artificial neural networks on host auditing data to discover attacks. System call-

based HIDS is mainly discussed in this chapter. In Unix-like operating systems, system

calls are referred when a kernel service from the operating system is requested by a

running process. System calls are significant interactions between programs and the

system kernel. A system call-based HIDS monitors real-time system call traces to

detect abnormal system call sequences. Table 2.1 shows a typical system call sequence.

Data processed by system call-based HIDS is fine-grained. System call-based HIDS

can trigger alarms when abnormal system call traces are detected from normal traces.

By using system calls as the input data, a HIDS can manipulate the most original

information of an operating system. System call-based HIDS has gained attention in

recent twenty years because of the increasing number of attacks focusing on Linux

servers. System call-based HIDS has been developed for intrusion detection in virtual

hosts and embedded platforms such as smartphones.

Challenges for HIDS The execution speed of a HIDS is commonly measured by

summing up all time of training and testing. Considering the HIDS needs to handle a

11

large quantity of fine-grained system call traces, the speed may be limited. Meanwhile,

it is tedious to maintain and update a large number of traditional HIDS software

installed on every host or virtual host in a network, compared with the number of NIDS

devices. Therefore, novel HIDS approaches that can reduce the execution time while

keeping the acceptable detection accuracy are demanded [103]. Moreover, traditional

HIDS does not show enough robustness against advanced persistent threats. Therefore,

it is necessary for future HIDS to work collaboratively with other security mechanisms.

Collaborative intrusion detection system

Collaborative intrusion detection system (CIDS) is about collaboratively combin-

ing NIDS, HIDS, and other security mechanisms in a network for more efficient and

effective detection of cyber attacks. Vasilomanolakis et al. proposed a detailed survey

that classified CIDS into three types, i.e., centralized CIDS, decentralized CIDS, and

distributed CIDS [133].

Limitations of traditional CIDS Traditional CIDS methods often ignore central-

ized and comprehensive analysis of network traffic data and host logs, and traditional

CIDS may be not efficient enough to handle large-volume of real-time data streams.

2.2.2 Categorization based on the types of attacks

Misuse detection system

Misuse detection system (signature-based intrusion detection system) defines li-

braries of acknowledged attack signatures and raises alarms when the network traffic

or system operations match any attack signatures in the library. Predefined by the

system administrators, the library tries to precisely list and persist every possible ab-

normal network and system behavior. Other known and unknown behaviors are treated

as normal. Therefore, misuse detection system can effectively discover attack methods

that are already identified.

Limitation of misuse detection system Misuse detection system is often criticized

with high missed alarm rate. The increasing amount of zero-day attacks make this

approach gradually obsolete. Intruders can simply obfuscate their attack methods to

bypass the predefined intrusion libraries.

12

Anomaly detection system

Anomaly detection system (ADS) requires no knowledge of known intrusions. Chan-

dola et al. provided a comprehensive survey of anomaly detection system [20]. In the

area of IDS, ADS is classified into network-based anomaly detection system (NADS)

and host-based anomaly detection system (HADS). NADS identifies anomalies from

normal network traffic. HADS monitors a host/hosts to discover anomalies from nor-

mal system behaviors. HADS is often deployed in systems whose normal behaviors do

not change frequently. System call-based HADS is about utilizing system call traces

to build normal databases or data mining models of normal system behaviors. Then

these databases or models can be used as the criteria for anomaly detection. Therefore,

anomaly detection system can detect zero-day attacks.

Challenge for host-based anomaly detection system High false alarm rate

(FAR) is the challenge. Novel system call traces are being generated along with the

increasing number of new Linux applications. As HADS only holds normal databases

or data mining models of known behaviors, new normal system call traces that do not

conform to the databases or models may be falsely regarded as intrusions.

2.2.3 Combination of misuse detection with anomaly detection

Although IDS can be categorized into these two groups, the combination of misuse

detection system with anomaly detection system is a current trend for the develop-

ment of a complete real-time IDS infrastructure to detect both known and unknown

intrusions. Concerning system call-based HIDS, when a new system call trace is ap-

proaching, after preprocessing, firstly it can be compared with predefined rules of known

attacks. If no attack is detected, then it can be compared with the normal databases

or checked by other anomaly detection algorithms. The trace can also be passed to

the security personnel for further investigations. The combination of misuse detection

with anomaly detection has been adopted by many current research works such as [10].

2.3 Algorithms and techniques of HIDS

Intrusion detection system was briefly introduced from different perspectives in the

previous section. In this section, algorithms and techniques that mainly used in the

13

area of system call-based HIDS will be discussed.

2.3.1 Preprocessing and feature selection

As system call traces collected by tracing tools are the original data, preprocessing

and feature selection methods have to be applied to get clean and typical features for

training. Similar to natural language processing, methods such as n-gram, sliding win-

dow algorithm, bag-of-words model, and term frequency-inverse document frequency

(TF-IDF) method can be implemented in system call-based HIDS. An n-gram in HIDS

is often referred as a contiguous sequence of n system calls extracted from a system call

trace within a particular time interval [150]. Sliding window algorithm with window

size n is often utilized to scan the complete system call trace to generate n-grams of

system calls, which are used for training normal databases or data mining models. The

n-gram method has been proven to be effective by researchers [140][72][158]. Creech et

al. [30] used multiple-length sliding windows to scan the complete system call trace and

multiple-length n-grams were generated. This method combined with ELM is proven

to be effective to increase the detection rate and lower the false alarm rate.

Choosing the optimal n-gram Tan et al. provided a theoretical and experimental

investigation of choosing various sequence lengths [126]. 6-gram and 7-gram are claimed

to have better performance in UNM and ADFA-LD datasets, respectively [126][81]. In

[6], system call traces are collected from virtual machine user programs; 6-gram shows

the best time-efficiency and 10-gram can achieve the optimal detection result.

2.3.2 Enumerating sequences

Enumerating sequences-based method, or known as the “sequence time-delay em-

bedding (STIDE)” [106], is the first kind of system call-based HIDS method introduced

by Forrest et al. [44][141][63][43]. STIDE is inspired by the natural immune systems

of organisms. This approach is claimed simple and efficient to be deployed for possi-

ble real-time implementation. Parameters of system calls are removed, endeavoring to

reduce system load and obtain the best result with system call numbers only. In this

method, short sequences are extracted from normal execution of processes. Normal

databases are constructed with these short sequences to detect anomalies. Databases

do not have to contain every possible permutation of system calls, otherwise, no novel

14

sequence can be detected as an anomaly. The two main stages of this method are

described below.

• The first stage is for databases construction. During this stage, sliding window

algorithm is applied to scan normal system call traces and generate short sequences,

then normal databases representing signatures of normal behaviors are constructed

with these short sequences. Sequences are stored as a particular data structure in each

database to reduce storage consumption and improve comparison efficiency.

• The second stage is for intrusion monitoring. During this stage, similar to the first

stage, short sequences from testing system call traces are extracted and compared

against the normal databases to get the number of mismatches. The number of mis-

matches is then used to identify anomalies from normal system behaviors.

Hamming distance Hofmeyr et al. utilized Hamming distance, which is acquired

by counting different positions of two system call sequences, to get the number of

mismatches [63]. Every short sequence extracted from testing system call traces is

compared with its corresponding normal database to find a known sequence with the

minimal Hamming distance. If this minimal distance is larger than a user-defined

threshold value, it means all sequences within the normal database may deviate from

the testing sequence. Thus the testing sequence is then regarded as an anomaly.

The problem of Hamming distance-based method To guarantee a testing se-

quence is an anomaly, the sequence needs to be compared with all entries of the

database to ensure every obtained Hamming distance is larger than the threshold.

Therefore, the process of finding the minimal Hamming distance may be time-consuming,

especially if there are many anomalies or normal databases are large.

The challenge of enumerating sequences-based method In general, the enu-

merating sequences-based method requires building one normal database for each pro-

gram. Consequently, different systems may generate different sets of normal databases.

In the practical environment, normal databases need to be regularly updated to add

new normal system call sequences generated by system and software upgrades. There-

15

fore, the efficient methods of building, updating, and maintaining those normal databases

need to be designed.

2.3.3 Rule learning

Lee et al. implemented a rule learning-based method with continuous system call

sequences to describe normal and abnormal kernel behaviors [84][83]. During the data

preprocessing stage, sliding window algorithm is applied to traverse normal and in-

trusive traces to generate short sequences. Each short sequence is represented as a

class-labeled vector, either normal or abnormal. Thus, a labeled dataset is formed and

separated as training and testing partitions for the experiment. The rule learning algo-

rithm RIPPER is applied to the training data. Testing sequences deviate from the set

of predefined if-then rules are recognized as anomalies. The rules created are claimed

to be concise for real-time implementation. Jiang et al. [72] generated n-grams of

multiple lengths with normal system call traces and created an automaton of normal

behaviors, and the automaton is used to detect anomalous behaviors. Tandon [130]

designed some variants of the LEARD rule algorithm [91] to generate rules with sys-

tem call sequences and their arguments. Qing et al. proposed an anomaly detection

approach based on rough set theory [156]. A minimized set of rules is extracted from

normal system call sequences to define a normal behavior model [156].

The limitation of these rule learning-based methods The rules described in

the methods above are derived from traditional small-scale datasets. Therefore, these

rules may be outdated for mining deep patterns from a large amount of system call

traces generated by a large data center.

2.3.4 Bloom filter

Bloom filter is often used for searching whether a new entry is in a set or not. Com-

pared with STIDE, Bloom filter-based methods have the advantages of light memory

occupation, high searching speed, and effective privacy preservation. When a new short

sequence is passed to the system, a set of hash functions can be applied to map the se-

quence to different positions in the bloom filter. The Murmurhash [9], which is proven

to have the advantages of simple implementation and high resistance of hash collisions,

16

is often utilized with the bloom filter. The two main stages for Bloom filter-based

HIDS methods are described below.

• During the construction stage, firstly all bits in the Bloom filter are set to zero, k

hash functions are selected manually, and all training normal short sequences will be

processed by them. The hashing results are corresponding positions in the Bloom filter,

which will be set to one.

• During the detection stage, for a new short system call sequence, k hashing results

are generated and compared with corresponding bits in the Bloom filter. If at least

one bit is zero, it means that the system call sequence is an anomaly. However, if all

bits are one, the new short sequence may still be an anomaly since there is a small

possibility of hash collision.

Anagram Wang et al. proposed an anomaly detector called Anagram that applies a

mixture of high-order n-grams and semi-supervised training method on system call se-

quences [140]. Bloom filters are implemented in this method to save space and enhance

privacy-preserving ability. Anagram can detect anomalies and model malicious behav-

iors with “high detection rate and low false positive rate” [140], and shows robustness

to some mimicry attacks [137].

Limitation of Bloom filter-based methods Bloom filter has shown the simplicity

and effectiveness when computational space is inadequate. However, the limitation of

Bloom filter is that it allows false positives [15], yet it is expected that the FPR

of a HIDS can be minimized. Moreover, considering the improvements of hardware

and cloud computing capabilities recently, space is not the most significant factor.

Therefore, improvements are expected to make Bloom filters further applicable for

HIDS.

2.3.5 Classification and clustering

The classification and clustering based methods here are referred to a set of com-

monly used machine learning algorithms that have been applied to system call-based

HIDS. Well-known models such as k-nearest neighbor algorithm (kNN) [87][158], k-

means clustering algorithm (KMC) [146][148], decision trees [158][10], support vector

17

machine (SVM) [158][30][147][142][8][77] and Bayesian networks [105] have been imple-

mented on system call-based HIDS.

Yuxin et al. proposed a behavior-based detection method with semantic analysis

approach [158]. An “executable” is presented as assembly code and then transferred to

a control flow graph with flow-based analysis. Based on the control flow graph, a run-

ning tree is built from which the system call execution paths are extracted. Combining

these paths can generate a system call stream from an “executable”. System calls are

represented as different integers. Features are extracted by using n-gram approach

with sliding window algorithm and information gain method, and normalized feature

vectors are formed. KNN, decision tree, and SVM classifiers are adopted for training

and testing.

The challenge In the era of big data, how to fit traditional machine learning algo-

rithms in the current distributed computing environment is a challenge. It is necessary

to improve the efficiency of current parallelization methods, which can be both on the

algorithm aspect and the data aspect; machine learning algorithms can be redesigned

to be executable in parallel, and large-scale datasets can be segmented properly to fit

distributed machine learning algorithms.

2.3.6 Hidden Markov Model

Hidden Markov Model (HMM) is a doubly stochastic model which contains a finite

number of hidden states [114]. Yeung et al. verified that applying HMM training on

system call sequences operates better than modeling frequency distributions of shell

command logs [157]. Hu [65] provided a detailed tutorial about how to apply HMM

on system calls. HMM is widely known for its three fundamental problems shown in

table 2.2, which are applicable in system call-based HIDS.

Initiation of HMM-based HIDS with system calls Warrender et al. initiated

the HMM-based approach for HIDS with system calls [141]. Several HMMs are trained

with dozens of states according to the number of system call types in each test program,

as the number of states should be determined in advance before the creation of an HMM

[98]. States are completely connected and reachable from each other. The probabilities

18

Table 2.2 : Three fundamental problems of HMM in HIDS.

The evaluation problem
Given an HMM λ = (Λ, B, π), obtain P (O|λ), the probability of O = {O1, O2, ...,
Ot, ..., OT}, 1≤t≤T [65]. Λ is the state transition probability matrix, B is the
observation probability distribution, π is the initial state distribution, O is the
observation sequence with time t [52]. A high P (O|λ) indicates that O is normal
whereas a low P (O|λ) indicates that O is abnormal.
→ In HIDS this problem is related to testing if an incoming system call trace is an
anomaly.
The decoding problem
Given an observation sequence O and a model λ, find the most probable hidden state
sequence Q = {q1, q2, ..., qt, ..., qT}, 1≤t≤T to maximize the joint probability P (O,
Q|λ) [132].
The learning problem
Given an observation sequence O and a model λ, obtain the parameters (Λ, B, π) to
maximize P (O|λ) [65].
→ In HIDS this problem is related to training a model with the input observation
sequence, i.e., benign system call trace.

of states movement and system call generation are stored, which demand sufficient

storage space for these intermediate results. Compared with the high time-complexity

of training, testing requires each single incoming system call to be examined, which

is different from other system call sequences-based approaches. Alert is raised if the

probability of an incoming system call is under a particular threshold.

Combination of HMM with STIDE Inspired by Forrest and Warrender’s meth-

ods, Qiao et al. combined HMM with normal databases to propose a hybrid HIDS,

which aims to discover a distinct difference between normal and abnormal kernel be-

haviors [113]. Part of preprocessed raw system call traces is taken to train an HMM

filter using the Baum-Welch algorithm. Then all traces are passed to that HMM fil-

ter to get optimal state transition sequences using the Viterbi algorithm. Based on

the research of Lee et al., conditional entropy can be used to measure the quality of

input data [85]. The lower conditional entropy of input data can result in a model of

higher performance. The conditional entropy of state transition sequences is lower than

that of system call sequences. Hence state transition sequences can represent kernel

activities better. Then a normal database is constructed using these state transition

sequences. The state number is set to fifteen. Thus the database constructed is more

19

concise compared with previous methods. The robustness is improved as the normal

database can be almost constructed with only a small portion of training data.

Challenges of HMM modeling In practice, HMM modeling has been criticized for

its high time-complexity, especially when system call traces are extraordinarily massive

and complicated in modern large data centers. Moreover, deep patterns of system call

sequences usually cannot be mined by a single-layer HMM [57].

2.3.7 Neural networks

Many HIDS works are related to neural networks, including multi-layer perceptron

[1][33], self-organizing maps neural network [88], radial basis functions (RBF)-based

neural networks [4], extreme learning machine [30], self-structuring confabulation net-

work [23][22], etc. [102]. Ghosh et al. applied Elman neural network on DARPA

dataset for anomaly detection, and the performance of the Elman nets is better than

the back-propagation neural network in the experiments [50]. Recently, deep learn-

ing has shown its capability of discovering underlying patterns within big data and

is widely used in various data mining applications. Therefore, deep learning may be

applicable for HIDS in the big data environment [82].

The challenge When it comes to deep learning, although it has started to show the

advantages, however, due to increasing amount of system calls are being generated,

the training of a deep neural network and its fine-tuning may be complicated and

time-consuming. One solution is using multiple GPUs deployed on a physical host

to accelerate the training process. However, this solution may be pricey and space-

consuming.

2.3.8 Validation method and evaluation metrics

Cross-validation K-fold cross-validation is widely used to validate data mining al-

gorithms [138]. Although k can be any integer number, ten-fold cross-validation is often

applied. In ten-fold cross-validation, the original dataset is divided into ten partitions

with the same size, nine partitions are used for training, and one partition is used for

testing [70]. Then another nine partitions and the leftover one partition will be used

for training and testing. This cross-validation approach will repeat for ten times with

20

different training and testing data, ten results will be generated and averaged to get the

final result [75]. K-fold cross-validation method can provide a more precise estimation

of the whole dataset.

Precision/Recall/F-measure A set of metrics is available for the performance eval-

uation of intrusion detection techniques. As HADS usually has two detection results,

i.e., normal or anomalous, thus the performance can be evaluated using the Preci-

sion/Recall criteria [34],

Precision =
TP

TP + FP
Recall =

TP

TP + FN

FPR =
FP

FP + TN
TPR =

TP

TP + FN

(2.1)

where TP , FP , TN , and FN denote True Positive, False Positive, True Negative,

False Negative, respectively [78]. The meaning of these terms for system call-based

HIDS are described below:

• True Positive (TP) → The label of a trace is positive, and the prediction is also

positive. The anomalous trace is alarmed properly.

• False Positive (FP)→ The label of a trace is negative, but the prediction is positive.

A FP or a false alarm in system call-based HIDS indicates that a benign system call

trace is treated as an anomaly.

• True Negative (TN) → The label of a trace is negative, and the prediction is also

negative. The incoming system call trace is treated as benign properly.

• False Negative (FN)→ The label of a trace is positive, but the prediction is negative.

A FN or a missed alarm indicates that the system fails to raise the alarm for an

anomalous system call trace.

Table 2.3 shows the confusion matrix of these terms. FPR denotes False Positive Rate

and TPR denotes True Positive Rate. In the area of IDS, True Positive Rate (TPR)

is equal to detection rate (DR) and is equal to Recall, the False Positive Rate is equal

to False Alarm Rate (FAR) [34]. F -measure is often adopted to combine Precision

21

Table 2.3 : Confusion matrix.

Predicted/Actual label Actual intrusive Actual benign
Predicted intrusive TP FP
Predicted benign FN TN

with Recall for evaluation,

Fβ =
(
β2 + 1

)
·
(

Precision ·Recall
β2 · Precision+Recall

)
(2.2)

When Recall and Precision are weighted equally, β is equal to one. In this case, F1

measure is formed.

F1 =
2 · Precision ·Recall
Precision+Recall

(2.3)

The ROC curve The detection accuracy can also be evaluated with the Receiver

Operating Characteristic (ROC) curve, which provides an intuitive view of the relation

between FPR and TPR. The area under the ROC curve (AUC) can be a simple

metric to provide an overall evaluation of the detection accuracy and can be obtained

by calculating the trapezoids between each point under the ROC curve [34].

Time/Memory complexity The time-complexity of an algorithm indicates the to-

tal time required by the algorithm, and it is commonly represented by the big O nota-

tion [34]. Memory complexity of an algorithm indicates the total memory required by

the algorithm.

The challenge Evaluation metrics presented in HIDS articles are not consistent.

Sometimes only one pair of TPR and FPR value is given, and AUC value is not

shown. Therefore, standardized evaluation metrics are recommended so that comparing

different research outcomes can be easier.

2.4 HIDS datasets

The dilemma of HIDS datasets In the area of HIDS research, there are insufficient

publicly available datasets for conducting experiments. Traditional HIDS datasets

with system calls cannot represent contemporary Linux systems. There are many

22

Table 2.4 : Comparison of HIDS datasets.

Dataset Type Generation Advantages Disadvantages

DARPA • Network and
host auditing
data

• Solaris with
attacks and
collected by
BSM

• Widely used
as the
benchmark

• Few kinds of
attacks with small
data scale
• System call traces
are simple

UNM • System call
process IDs
and numbers

• Unix with
different kinds
of programs
and intrusions

• Widely used
as the
benchmark

• System call
arguments are
removed
• Not representative
of current diversified
attack methods

Firefox-
DS

• Normal and
malicious
Firefox system
call traces

• Firefox and
five different
attacks

• Large-scale
dataset with
the
completeness
of normal
behavior

• Focuses on Firefox
web browser only
• Referred only in a
few studies

ADFA-
LD

• Normal and
malicious
system call
traces

• Ubuntu
Linux and
Metasploit

•
Representative
of
contemporary
attacks

• Contains system
call numbers only
• Only has six types
of attacks with small
data scale

NGIDS-
DS

• Labeled host
logs and
network
packets

• PerfectStorm
commercial
hardware
platform

• A new
dataset that is
synthetically
realistic

• Referred only in a
few studies

studies describing the limitations of current HIDS datasets available on the Internet

[89][167][122][11][94][90][3]. Some widely used system call-based HIDS datasets are

described below and compared in table 2.4.

2.4.1 Current datasets for HIDS with system calls

DARPA and UNM DARPA and University of New Mexico dataset are two most

commonly used datasets for evaluation of HIDS [107]. DARPA and UNM datasets were

collected many years ago and may be outdated. They may contain errors and lack of

volume, variety, and veracity from the perspective of real-world big data [153]. Those

two datasets only have a few kinds of attacks with small data scale. Therefore, they

23

are not representative of current diversified attack methods. DARPA dataset consists

of both network and host auditing data. Maggi et al. provided a thorough analysis

of flaws and shortcomings of the DARPA dataset [89]. System call traces of DARPA

dataset are relatively simple, and UNM dataset consists of system call identifiers only.

Other information such as system call arguments is all removed. Therefore, traditional

HIDS datasets with system calls cannot represent contemporary Linux systems.

Firefox-DS Firefox dataset [102] is a newly developed HIDS dataset that is publicly

available. Created using modern penetration testing techniques such as Metasploit, the

dataset contains normal and anomalous system call traces from several programs. In

Firefox-DS, normal traces are acquired by running standard executions of the Firefox

Internet browser. Five up-to-date attacks such as memory corruption exploit, integer

overflow attack, DOM exploit, and pointer exploit are launched against Firefox 3.5,

and complete system call traces are collected. Traces are grouped according to distinct

Firefox processes, and each trace contains massive system calls.

ADFA-LD ADFA Linux Dataset (ADFA-LD) [28][30] was created on Linux operat-

ing system with preset vulnerabilities. The system is attacked by penetration testing

tools with several contemporary attack methods. The dataset has 833 benign traces

for training, 4372 traces for analyzing false alarm rate, and 746 traces with six kinds

of attacks for testing. The development of ADFA-LD aims to provide a new bench-

mark for HIDS analysis on contemporary computer systems. The ADFA-LD dataset

only contains system call numbers. Therefore, comprehensive analysis with system call

arguments cannot be applied. Xie et al. [146][148] provided an initial evaluation of

ADFA-LD with experiments using the simple kNN classification and k-means clustering

methods. They analyzed feature vectors, applied dimension reduction, and determined

optimal distance functions. The experimental result shows that frequency-based al-

gorithms save computational resources compared with short sequence-based methods.

They further improved the performance and reduced the computational cost using a

one-class support vector machine (SVM).

ADFA-WD Microsoft Windows is a widely used personal computing system. Haider

et al. analyzed two complex HIDS datasets collected by Creech et al. [27] for Win-

24

dows, namely, “Australian Defence Force Academy Windows Dataset (ADFA-WD)”

and “Australian Defence Force Academy Windows Dataset with a Stealth Attacks Ad-

dendum (ADFA-WD: SAA)” [55]. ADFA-WD involves acknowledged “Windows-based

vulnerability-oriented zero-day attacks” [55] using automated penetration testing tools.

As an extension of ADFA-WD, ADFA-WD: SAA is designed to test the effectiveness

of HIDS against “Windows-based stealth attacks”, by “crafting three stealth attacks,

namely, Doppelganger, Chimera, and Chameleon” [55]. These two datasets are not

designed for Linux system call analysis.

NGIDS-DS Haider et al. proposed a synthetically high-quality and realistic IDS

dataset named the next-generation IDS dataset (NGIDS-DS) using advantageous Ixia

PerfectStorm commercial hardware platform [69] and infrastructure in ADFA [54]. The

dataset contains 99 CSV files of labeled host logs for the design of HIDS as well as

network packets for the design of NIDS. The host logs contain various information,

such as the time of activities, process ids, execution paths, and system call numbers

for comprehensive system call analysis. They also assessed the quality of existing IDS

datasets including DARPA and ADFA-LD with a fuzzy logic system based on the

“Sugeno fuzzy inference model” [125].

2.4.2 Dataset customization

With the rapid evolution of system and software, due to the drawbacks of exist-

ing datasets such as DARPA and UNM, datasets relevant to the current environment

of cybersecurity need to be established. Acquiring a real-world intrusion dataset is

difficult, as companies often do not want to share data with the public. Therefore,

researchers tend to launch experiments and generate new datasets that can represent

current intrusion methods. In their experiments, normal training data can be acquired

by gathering benign system call traces during the normal execution of supervised pro-

cesses. Intrusive testing data can be acquired by collecting attack system call traces

caused by applying penetration tools such as Metasploit [115] on different kinds of

vulnerabilities according to their Common Vulnerabilities Exposures (CVE) ID [25].

Table 2.5 compares typical system call tracing tools. Table 2.6 provides common tools

for penetration testing.

25

Table 2.5 : Comparison of system call tracing tools.

Tracing
tools

Functional summaries Other features Platforms

strace The strace monitors
communications including
system calls between processes
and the Linux kernel.

The operation of strace is
promoted by ptrace.

Linux

KProbes
and
DProbes

KProbes and DProbes can debug
errors and monitor events in
Linux kernel.

KProbes is the built-in
mechanism of DProbes,
which can insert probes
dynamically into running
code modules.

Linux

SystemTap SystemTap reduces the load of
collecting information of the
operating system, which helps to
analyze functional errors.

The command line
interface and scripting
language are simple to use.

Linux

ltrace Similar to strace, ltrace can
monitor and record system calls
invoked by a running process.

ltrace can also intercept
and print the system calls.

Linux

LTTng The “Linux Trace Toolkit next
generation (LTTng)” is a
modern open-source tracing
platform, which consists of
kernel modules to simultaneously
trace the Linux kernel.

LTTng also has a kernel
module to trace shell
scripts.

Linux

BSM Solaris Basic Security Module
(BSM) is an auditing tool
provided by SUN Microsystems
for system security. It provides
comprehensive auditing of
system processes.

BSM offers methods to
check the history logs of
actions and events.

Solaris

Truss Truss can execute a specified
command, invoke system calls
and produce a trace, each line of
which contains a system call
name with arguments and values.

Truss is developed for
other Unix-like operating
systems except for Linux.

Solaris
UnixWare
AIX
FreeBSD

DTrace DTrace is a real-time debugging
tool for kernel and application
errors. DTrace provides a full
description of the executing
system.

Some fine-grained
information can be
provided, e.g., an argument
log or a process list.

FreeBSD
NetBSD
OpenBSD
Mac OS

ktrace The ktrace is a utility that traces
interactions including system
calls between kernel and
executing processes.

The traced information
can be dumped to external
hard drives and saved as
files for debugging and
analysis. The ktrace is
similar to strace.

FreeBSD
NetBSD
OpenBSD
Mac OS

26

Table 2.6 : Tools for HIDS dataset generation.

Tools Categories Features

CVE • Dictionary of
vulnerabilities

• Provides identifiers of publicly known
cybersecurity vulnerabilities

Metasploit • Penetration testing
framework

• Enables exploiting vulnerabilities

Kali Linux • Advanced penetration
testing platform

• Provides built-in penetration testing
tools

VirusShare • Malware repository • Provides samples of live malicious
code

VX
Heaven

• Virus repository • Provides massive continuously
updated virus samples and information

Contagio • Malware repository • Provides contemporary malware
samples
• Provides malware analysis

AVCaesar • Website of malware
analysis

• Provides a malware repository
• Provides multi-engine malware
analysis

VirusTotal • Online multi-engine
malware detector

• Enables analysis of suspicious files
and URLs

2.4.3 The challenge

This section have analyzed the issues of traditional HIDS datasets, introduced sev-

eral contemporary datasets for HIDS research and offered techniques to generate new

datasets. Researchers should make significant efforts to guarantee that all generated

public datasets should have high quality, which ensure that relevant studies will not

be misled by the datasets.

2.5 The application of system call-based HIDS on embedded

systems

Embedded systems such as smartphones are gradually attracting users’ attention

due to their computational capability and portability. Meanwhile, the issue of smart-

phone security has arisen. New threats are continuously occurring due to new function-

alities of the smartphone. Android is a popular mobile operating system with Linux

kernel, which is similar to Linux operating systems installed on desktops [145]. An-

droid smartphones can be compromised by the same types of attacks against Linux.

27

Conventional defensive techniques cannot be simply transferred to Android due to the

embedded environment. The computational capability of smartphones is still limited

for time-efficient malware detection. For Android devices, light-weight anomaly detec-

tion approaches should be developed so that the execution of detection software will

not affect other applications. The detection software should conform to three design

rules, i.e., accurate detection result, quick detection speed, and minimal resource usage.

2.5.1 The feasibility of applying system call-based HIDS to embedded sys-

tems

Recently, system call-based HIDS has been applied to embedded systems such as

smartphones and is proven to be effective to detect intrusive behaviors. Feizollah et

al. proposed a review of recent feature selection approaches for developing an effective

malware detection system of mobile devices [39]. Features are categorized into four

types, namely, “static features, dynamic features, hybrid features and applications

metadata” [39]. System calls and network traffic are “two main types of dynamic

features” [39]. Many researchers used system calls as dynamic features as applications

use system calls to communicate with the mobile operating system [104]. They surveyed

100 articles between 2010 and 2014, discovering 42% of all research works utilized

dynamic features. System calls were found to be the most regular dynamic features

used.

Static/dynamic analysis Static analysis and dynamic analysis are two primary

analysis methods for smartphone malware detection [40]. Static analysis is related to

examining static patterns of applications such as source codes to address malicious be-

haviors without executing. Static analysis may not be valid after codes are obfuscated.

Dynamic analysis is about executing applications in a safe and isolated sandbox to

evaluate their running behaviors. Static and dynamic analysis can work together to

enhance malware detection capabilities. Blasing et al. proposed “Android Application

Sandbox (AASandbox)” that implements “static and dynamic analysis on Android

programs” for malware detection [14]. Statical prechecks are performed before the in-

stallation of Android applications. Dynamic analysis is about running the application

in an isolated sandbox, and system calls are traced. The sandbox can be deployed in

the cloud for distributed and resource-intensive execution.

28

Crowdroid Burguera et al. provided a lightweight malware detection system called

Crowdroid which is available on Google Play [18]. They indicate that monitoring

system calls can provide detailed low-level information, which is feasible to determine

malware behaviors. The system includes an overall framework for the collection of

system call traces and the analysis of data; and the two-means clustering algorithm

is applied to classify benign and intrusive applications [18]. Users will be notified if

an abnormal system call trace is detected by the system. The experimental results

confirm the feasibility of collecting and analyzing system calls for malware detection.

They discover that system calls open, read, access, chmod and chown are mostly

referred by malware [18]. They also provide a brief survey, demonstrating that many

malware detection approaches are based on NIDS and HIDS techniques.

2.5.2 Enhancement with hardware

Software-based HIDS may not show ideal performance against sophisticated in-

trusion techniques. Considering this issue, Das et al. proposed the first hardware-

enhanced system call-based HIDS framework named GuardOL with machine learning

approaches to detect malicious behaviors toward the embedded systems [33]. They

claimed that hardware-based HIDS was resistant to malicious software. Attacks are

launched using Ubuntu OS, and malware samples are downloaded from public mal-

ware repositories available on the Internet. Benign traces with arguments are collected

from the normal operation of Linux applications with strace. For feature extraction,

FCM is developed, which is a frequency-centralized model to comprehensively classify

system calls with arguments to reduce the false alarm rate. Offline analysis and online

hardware implementation are conducted in FPGA. An artificial neural network model

named multi-layer perceptron is selected from a couple of machine learning classifiers

and trained in Weka with features extracted from benign and malicious traces. Ten-fold

cross-validation is used to test the accuracy of prediction [33].

2.5.3 Cloud-based HIDS with system calls for embedded systems

Deploying system call-based HIDS as a two-tier platform shown in figure 2.1 is

prevalent. The first tier is the client interface installed on users’ devices for data col-

lection. The second tier is a cloud-based and centralized data analytics unit. Detection

feedbacks processed by the centralized unit can be returned to users’ devices timely,

29

Client tier

User applications Client interface

Cloud‐based data analytics tier

Detection engine Detection database

Decision tree,
kNN, HMM, SVM,
neural networks ...

Data collection and
preprocessing, result

notification

Permanent or
intermediate data

storage

System call
traces

Intrusion
notifications Detection feedbacks

Preprocessed data Intermediate
results

Data retrieval

Figure 2.1 : A two-tier HIDS platform for mobile devices.

and further defensive actions can be launched.

Dual defense protection Su et al. proposed a “dual defense protection framework”

for Android malware detection [124]. Applications can be uploaded to servers in the

cloud for verification. The framework has two main components, i.e., system call

monitoring tool and network monitoring tool. “System call monitoring tool” is utilized

for evaluation of the “new application for potential malware”, and “network monitoring

tool” is applied to solve the false negatives problem [124]. The experiments show that

the framework produces high detection accuracy with machine learning classifiers. The

Weka tool is used for experiments, random forest classifier in the tool performs better

than J.48 classifier, achieving the accuracies of 99.2% and 94.2% respectively.

The challenge of deployment in cloud Although many research works have

proven that it is feasible to transfer detection applications and algorithms to the cloud

environment, it has to guarantee that the detection mechanisms in the cloud and the

smartphone can be synchronized at all times. Therefore, the detection can be per-

formed timely, and further responses to the malware will not be delayed.

2.6 Summary

This chapter provides a survey of host-based intrusion detection system with sys-

tem calls, from the perspectives of its origin, algorithms, datasets and application

areas. Instead of elaborating every detail, the main aim of this chapter is trying to

provide researchers a clear overview of the development of system call-based HIDS.

Compared with choosing the optimal detection engines, data preparation and feature

extraction are the decisive factors and therefore desire more attention. It is expected

that high-quality datasets can be generated to guarantee that it is worth for further in-

30

vestigation. Meanwhile, standardized evaluation metrics are suggested to be presented

in each research work for easier comparison.

31

Chapter 3

Future Trends of Host-based Intrusion Detection

System and Constructing a Real-time Scalable

HIDS in Cloud

3.1 Introduction

The previous chapter concentrated on the review of HIDS development. This chap-

ter provides inspirational future research trends in the current big data and cloud

computing environment. Future research trends of HIDS are discussed regarding three

aspects, namely, the reduction of false positive rate, the improvement of detection ef-

ficiency, and the enhancement of collaborative security. Possible challenges of these

three aspects are discussed. This chapter aims to inspire researchers in the community

to collaboratively push forward the frontier of HIDS.

The rest of this chapter is composed as follows. Section 3.2 analyzes the reduction of

false alarm rate. Section 3.3 discusses the improvement of detection efficiency. Section

3.4 studies the enhancement of collaborative security. Section 3.5 gives summary of

this chapter.

3.2 Reduction of false alarm rate

False alarms may consume and waste human resources of security personnel, as it

is their responsibility to take appropriate actions on each intrusion alarm. Therefore,

high false alarm rate can affect the performance of a HIDS and has to be lowered down

to a minimal level to save resources. Recently, researchers have tried multiple ways to

reduce the false alarm rate.

3.2.1 System call arguments

Although Forrest et al. initially eliminated all arguments of system calls to test the

performance with that simple assumption, research works have shown that modeling

32

system call arguments and return values together can enhance the detection accuracy

and lower the false alarm rate. Mutz et al. “applied multiple detection models to

system call arguments” and anomaly scores from each model are combined into an

overall score for judgment of anomalies [105]. Results have shown that taking system

call arguments to train Bayesian networks not only can improve the detection accuracy,

but computation and memory resources can be saved as well. Maggi et al. [89] also

indicated that system call arguments could also contain anomalies and they provided

an unsupervised system that analyzes system call traces and arguments. Das et al.

developed FCM, a frequency-centralized model to comprehensively classify system calls

with arguments to reduce the false alarm rate [33].

The problem Although using system call arguments or other host logs can reduce

the false alarm rate, it may deviate the simple hypothesis that Forrest initially made

on system call-based HIDS.

3.2.2 Improve feature extraction approaches

Currently, novel feature extraction methods are being developed to achieve more

effective detection.

Contiguous and discontiguous system call patterns Creech et al. designed

a new HIDS approach with syntactic development and semantic hypothesis to lower

missed alarm rate and false alarm rate [30]. Word and phrase dictionaries are formed

with various-length system call numbers. They trained extreme learning machine

(ELM) [67] for anomaly detection and achieved notable detection rate and false alarm

rate. The result shows the effectiveness to handle mimicry attacks. Decision engines

SVM, HMM, and ELM are applied for training and prediction. The approach is tested

with DARPA, UNM, and ADFA-LD datasets.

Integer data zero-watermarking To select representative features from system

call traces, Haider et al. proposed an “integer data zero-watermarking algorithm” to

extract abstract hidden reliable or representative features from system call traces of

ADFA-LD and DARPA datasets [56][58]. The proposed method in conjunction with

33

multiple machine learning algorithms show acceptable real-time performance regarding

accuracy and processing time.

Mutual information In the area of NIDS, considering that redundant features ex-

isting in big data may affect the efficiency and correctness of classification result, Am-

busaidi et al. [8] proposed a practical method with mutual information based prepro-

cessing and feature extraction for NIDS to deal with issues caused by duplicated and

worthless features in the dataset. This method is potentially applicable in HIDS. The

algorithm proposed helps to extract more critical features from raw data and can deal

with linearly as well as non-linearly dependent features. They also implemented an

IDS with Least Square SVM (LSSVM-IDS), which is combined with features extracted

using the mutual information-based approach. The false alarm rate is lowered, and the

computational resources are saved. Figure 3.1 represents their proposed system.

3.2.3 Refine the decision-making process

Nauman et al. proposed a “three-way decision-making approach” to reduce false

positive rate [106]. The model is based on rough set theory with three options,

namely, acceptance, rejection, or deferment. If the information of an intrusion is in-

sufficient, then a decision will be deferred. “Game-theoretic rough sets (GTRS)” and

“information-theoretic rough sets (ITRS)” [106] are exploited to construct the model,

and UNM dataset is taken for the experiment. A minimum 8.5% false positive rate is

achieved with the proposed approach.

3.2.4 Threshold optimization

The threshold of a HIDS controls the sensitivity. If the predicted value of an anoma-

lous system call sequence is higher than a particular threshold, then an intrusion alarm

will be triggered. Low sensitivity may cause high missed alarm rate, yet high sensitivity

may cause high false alarm rate. A large number of false alarms can consume additional

maintenance time of security personnel. Therefore, optimizing the threshold of HIDS is

important and is a challenging work that requires knowledge and experiences. Laszka

et al. [81] discussed related problems of generating the optimal threshold and built an

algorithm for threshold selection. ADFA-LD is used for evaluation, showing that the

34

Instances transform
ation

and norm
alization

Filter‐based
feature selection

Know
n class

labels

N
etw

ork traffic
data

Labelled training
data

Instances transform
ation

and norm
alization

Building classification
m
odel using LS‐SVM

O
nline netw

ork
traffic data

Detection m
odel

Intrusive activities

N
orm

al flow
Decision m

aking

Data collection

Data pre‐processing (Training phase)
Classifier training

Data pre‐processing
(Testing phase)

Results
Attack recognition

Training data phaseTesting data phase

Figure 3.1 : LS-SVM-based intrusion detection system, modified from [8].

35

proposed algorithm achieves a better result than the “optimal uniform strategy” and

“locally optimal strategy” [81].

3.2.5 The integration of decision engines

Fuzzy inference engine Hoang et al. built a “multi-layer model of program be-

haviors” [60], based on HMM and enumerating sequences method using the temporal

characteristics. They further proposed a hybrid HIDS scheme [61] that integrates HMM

with enumerating sequences method using a “fuzzy inference engine” to decrease false

alarm rate. HMM is trained by adopting a modified HMMMOSA scheme [35] with

optimal initialization of parameters, which reduces training time and the model vol-

ume. Input sequence parameters used by the “fuzzy inference engine” are “generated

by HMM and normal databases” [61] as two detection engines. Fuzzy sets are created

empirically, and fuzzy rules obtain assumptions from the two detection engines. For

each testing input, a three-phase fuzzy reasoning process is applied to generate an

output value.

Integration in the ROC space To reduce false alarms, Khreich et al. proposed

a multiple-detector HIDS which integrates the decisions from various traditional de-

tectors such as STIDE, HMM, and One-Class SVM with “Boolean combination in

the Receiver Operating Characteristics (ROC) space” [77]. Experiments on the Linux

dataset (ADFA-LD) and the Window dataset (CANALI-LD [19]) show that the pro-

posed method can reduce the false alarm rate and substantially increase the true pos-

itive rate on both of the two datasets [77]. To the best of our knowledge, when it

comes to the detection accuracy of ADFA-LD, currently their work may achieve the

state-of-the-art performance.

3.2.6 Long short-term memory

Long short-term memory (LSTM) is an architecture of recurrent neural network

(RNN) firstly presented by Hochreiter et al. [62]. LSTM network can lengthily persist

temporal information and therefore adaptive in the situation when there are notable

time intervals between significant events within input sequences. Gates included within

an LSTM block are helpful to determine when it is necessary to remember the input

value and when it should retain, discard, or output relative value.

36

Hierarchical LSTM Although LSTM can handle relatively long sequences, different

from other areas in which LSTM is employed such as natural language processing, a

system call trace may contain thousands of system calls, which make corresponding long

time dependencies difficult to be captured by LSTM. This dilemma may be assisted

by hierarchical LSTM, which has a hierarchical structure that can model the temporal

transitions between single system calls as well as system call sequences with different

granularity [109].

The attention model and review network For implementing LSTM on system

call traces for anomaly detection, the prediction will rely on the final hidden state. One

assumption, in this case, is that the network has to encode all essential information of

system call traces into equal-sized vectors, which may make it difficult to manage long

traces, especially those exceed the size of most training traces. Instead of compressing

all information of system call traces into fixed-length vectors, the attention model

[149] can encode input traces into a chain of vectors and for prediction, a subset is

flexible to be chosen from the chain accordingly, which may perform better on large

traces generated by programs. Yang et al. indicated that the attention model operated

sequentially and proposed review network, which is an extension of the encoder-decoder

framework, to augment global modeling capability [155].

The challenge of LSTM LSTM has gained notable advances on various sequence

processing tasks such as speech processing. Thus LSTM is potentially applicable in

the area of system call-based HIDS. However, The challenge is that modeling of LSTM

is often complicated and computationally expensive.

3.2.7 Challenges regarding this trend

Controlling the false alarm rates is still the most significant challenge and the critical

point for both of NIDS and HIDS, regardless of the kind of platform on which HIDS

is deployed. Given the wide range of normal behaviors of the hosts in a network,

it is possible that a detected anomaly is normal (i.e., legitimate). The false positive

rate can be affected by many factors, including feature selection, detection engine

design, and threshold optimization. As new Linux applications and functions are kept

being developed, the generated system call traces can be unstable and miscellaneous.

37

Therefore, how to preprocess the raw dataset and select right features can influence

significantly on the performance of detection system. Adjusting the detection threshold

is also an arduous work, and it may require decisions from experienced security experts.

Besides the quality of the designed detection engine, another essential factor that can

affect the detection accuracy and false positive rate is the quality of training dataset.

3.3 Improvement of detection efficiency

Detection efficiency is another significant issue in real-time intrusion detection.

Detection speed and accuracy are usually difficult to be well-balanced. When there is

a heavy load of Linux kernel operation, it may take a significant amount of time to

process the system call traces generated during a short period. Intermediate datasets

may be too massive to be saved in the RAM of a single machine. In this case, the real-

time detection of intrusions may be delayed. Researchers have been seeking methods

to improve the detection efficiency of HIDS.

3.3.1 Refine the dataset quality

Besides the detection accuracy, the quality of datasets can also influence the ef-

ficiency of detection engine training. Hu et al. provided an acceleration method of

HMM incremental training process which reduces half of the training time for the UNM

dataset [66]. During the preprocessing period, near-duplicate sequences of system calls

are deleted. The detection rate of anomalies remains almost unchanged whereas the

false alarm rate is downgraded as more than half of the original data are eliminated.

3.3.2 Improvement of decision engines

Kernel State Modeling Murtaza et al. developed a trace abstraction technique

called Kernel State Modeling (KSM) to reduce the processing time and false alarm

rate of HADS, by representing system call traces as traces of kernel modules [102][103].

Abstract traces generated are used as the training data of previous approaches, such as

STIDE and HMM. Experiments are launched with UNM, Firefox-DS, and ADFA-LD

datasets. The result shows lower false alarm rate and less execution time. Their later

work presented a creative and extensible Eclipse-based open-source HADS framework

named automated anomaly detection framework (Total ADS) [101], which can train

a variety of decision engines with normal system call streams, raise anomaly alarms

38

and perform visualization automatically. The proposed framework allows training and

testing of three remarkable HADS methods, namely, STIDE, HMM, and Kernel State

Modeling (KSM) [102] with real-time system call streams.

Real-time self-structuring method Recently, Chen et al. proposed a real-time

self-structuring learning framework named anomaly recognition and detection (An-

RAD) for unsupervised anomaly detection of streaming data [23][22]. They aimed to

exploit the computational capability of parallel computing platforms efficiently. The

feature dependencies of DARPA and ADFA-LD datasets are analyzed respectively.

Unlabeled system call data are used to train an efficient confabulation network with

the self-structuring method. The result shows high-speed incremental learning of data

streams as well as acceptable detection accuracy. The knowledge base can be updated

regularly and rapidly. Meanwhile, the method implemented on parallel architectures

obtains apparent speedups, with ideal performance and memory efficiency.

Nested-arc-HSMM Concerning the big data issue caused by a significant amount

of system call traces, Haider et al. proposed a HIDS for hosts in cloud environment

by integrating “state summarization” and the novel “nested-arc hidden semi-Markov

model (NAHSMM)” [57]. Designed according to the hierarchical HMM [41] structure,

the NAHSMM has two layers of hidden Markov chains. Tested with NGIDS-DS, the

proposed method shows acceptable detection accuracy, training efficiency, and scala-

bility.

3.3.3 Capability of cloud computing

Currently, cloud computing provides a powerful infrastructure for scalable large-

scale data processing by using its flexible computation and storage capability. With

cloud computing, large-scale computation and storage resources such as RAMs, multi-

ple GPUs or solid state drives can be allocated based on requirements. Therefore, the

capability of cloud computing can be utilized to strengthen the performance of HIDS.

Intrusion detection algorithms can run in cloud to process real-time high-volume sys-

tem call streams. Acceleration methods for HIDS used in the community can also

be integrated into cloud computing platforms. Table 3.1 provides an overview and

comparison of public/open-source cloud services.

39

Table 3.1 : Overview of public/open-source cloud services.

Public cloud services → Three forms

Public cloud services usually have three forms, namely, “Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS)” [74]:
• SaaS utilizes the Internet to provide services and applications. Most of SaaS applications
are accessible and controllable through a web browser.
• PaaS provides an efficient cloud-based built-in middleware on which applications can be
developed.
• IaaS presents in-cloud servers, storage, and network hardware for users to rent instead of
purchasing physical servers. IaaS users are responsible for managing allocated virtual
machines.
→ Google Compute Engine and Amazon EC2 are two commercial providers of public cloud
services.

Public cloud → Advantages

• Scalability. Deploying clusters in public cloud is more flexible and scalable compared with
deploying on physical machines.
• Efficiency. Users pay for demanded computational capacity and time. The time required
to launch instances and scale computational capacity can be significantly reduced.
• Flexibility. Demanded computational resources can be flexibly allocated via a variety of
console interfaces on the web page. Users can quickly boot, control, and manage various
types of virtual machines (instances) with stable performance as required.
• Reliability. Deploying HIDS in public cloud services provided by trusted large IT
corporations such as Amazon and Google can be more reliable and less vulnerable
compared with local networks, considering intruders may attack the intrusion detection
software based on the vulnerabilities.

Public cloud → Disadvantages

• Cost. Uploading and downloading large amounts of data may cause additional data
transfer cost charged by public cloud providers.
→ Nevertheless, while software and hardware technologies for cloud computing are still being
developed, the cost may gradually decrease, and the dependability may progressively increase
with improving security measures.

Open-source cloud → Advantages

• Cost-effectiveness. Open-source software usually is freely available on the Internet.
• Flexibility. As source codes are available, researchers can build the cloud platforms
themselves and customize the services to fulfill their functional requirements.

Open-source cloud → Disadvantages

Open-source cloud software is often developed by unpaid developers in loosely-organized
communities. Therefore, there are also some disadvantages.
• Usability. Open-source cloud platforms are often cumbersome to deploy and do not have
user-friendly APIs, which may influence the efficiency and effectiveness of working. Users
usually cannot get instant customer support and therefore they need more effort of training
and learning.
• Compatibility. As the open-source cloud software is still under development, software with
different versions are often not compatible with each other. Thus the entire cloud platform
may not be operating some time.
• Cost. Although open-source cloud platforms are usually free for the services, the
time-consuming installation and maintenance may cause other forms of expenses.
• Security. Open-source software is often criticized regarding the security, as the source
codes are exposed to potential attackers. If a HIDS is deployed in an open-source cloud,
then the system itself may be vulnerable.

40

3.3.4 Open-source big data tools

The development of scalable big data processing tools such as Hadoop shows high

scalability for big data processing [166][165][162][154][152][151]. These tools are de-

signed to perform underlying resources management such as task and fault-tolerant

scheduling, providing simplified APIs to data engineers. Data mining tasks, especially

for streaming data, can be distributed across clusters by these tools to achieve scala-

bility. Fault-tolerance is another important issue. With these big data tools, a failed

job can be taken over by another worker rather than rolling back to the beginning and

compute again, which saves computational time. Therefore, the integration of cloud

computing and big data processing tools can provide a new vision for solving security

problems. A set of open-source big data tools applicable for HIDS are described below

and compared in table 3.2.

Apache Hadoop Hadoop is a popular open-source distributed big data processing

and storage framework [118]. Next generation MapReduce on YARN is the computing

framework, and HDFS is the storage framework. HDFS can be used as long-term

storage for HIDS results because of the fault-tolerant capability.

Apache Spark Spark is an in-memory framework for distributed big data process-

ing [96]. Different from MapReduce, intermediate datasets in Spark can be cached

into distributed memory, which is reasonable for iterative statistical machine learning

algorithms. Spark has a master driver program which controls its workers on a clus-

ter. Consequently, this framework is a considerable solution for processing large-scale

system call traces. Resilient Distributed Dataset, or RDD [160], represents Spark’s

fault-tolerant distributed dataset abstraction. Lineages of RDDs are represented by a

Directed Acyclic Graph (DAG), if one partition of an RDD is lost, the DAG has the

record of how that partition is acquired from other partitions [159]. Therefore, it only

needs to re-compute that partition according to its lineage, instead of re-computing the

whole DAG again. Figure 3.2 shows the structure of a standard Spark cluster. Spark

currently can run on three kinds of cluster manager, namely, Standalone, Mesos, and

YARN. Recently, for deep learning acceleration, utilizing Spark in cloud environment

shows more flexibility compared with traditional methods. Philipp et al. introduced

41

Table 3.2 : Comparison of big data tools.

Tools Functional
summaries

Advantages Limitations For HIDS

Hadoop • Distributed big
data processing and
storage
• Computation
→MapReduce
• Storage →HDFS

• Large-scale
static data
processing
•
Fault-tolerance
capability

• Complete
dataset must be
loaded before
processing
→High I/O cost

• Long-term
storage for
HIDS results

Spark • In-memory big
data processing
• Fault-tolerant
distributed dataset
abstraction →RDD
• Lineages of RDDs
→DAG

• Intermediate
datasets are
cached into
distributed
memory
→Facilitates
iterative
algorithms

• Cost may be
high due to the
high RAM
requirement

• Preprocessing
and feature
extraction
• Training of
decision engines

Spark
Streaming

• Scalable
fault-tolerant
streaming data
processing →Discrete
streams
• Divide streams into
micro RDD batches
→predefined time
intervals

• Suitable for
streaming
system call
traces

• Predefined
time intervals
→Not actual
real-time
processing

• Real-time
intrusion
detection of
system call
traces

Kafka • Distributed
messaging platform
• Fault-tolerant data
caching
• Real-time
processing of data
streams

• Resilient to
data loss →Data
streams can be
duplicated for
backup

• The possibility
of message lost

• Intermediary
between
multiple hosts
and Spark
cluster
→Propagating
system call
streams

Alluxio • In-memory
distributed storage
system
• Designed for
solving the problem
of on-heap storage in
Spark

• Off-heap
storage →avoid
the problem of
full garbage
collection
(FGC) in JVM

• Not suitable
for long-term
storage →Data
in RAM may be
lost after
services
terminate

• Off-heap
storage solution
in real-time
HIDS
→Fault-tolerant
and efficient
execution

42

Worker Node Worker Node Worker Node

 Executor Executor Executor

...

Cluster Manager Driver Program SparkContext

Cache Cache Cache

Task Task Task Task Task Task

Task Task Task Task Task Task

Figure 3.2 : A standard Spark cluster [49].

SparkNet [100] that implements a deep neural networks training framework on Spark,

including interfaces of loading data from other RDDs and the connection to Caffe [71].

Spark Streaming Spark Streaming is a scalable fault-tolerant streaming data pro-

cessing framework [161]. System call traces are generated based on time intervals of

hosts, which conform to the computing mechanism of Spark Streaming. To obtain

efficient fault-tolerance and low latency during real-time HIDS implementation, Spark

Streaming can divide the incoming real-time streaming system call traces into small

RDD batches according to micro time intervals.

Alluxio Alluxio is an open-source in-memory distributed storage system which has

a master-workers structure similar to HDFS [45]. As a component of the real-time

scalable HIDS, Alluxio can be deployed in the same cluster with Spark. Alluxio was

initially designed for solving the problem of on-heap storage in Spark. With off-heap

storage, objects are stored out of the heap, which can avoid FGC in JVM. Alluxio can

be an off-heap storage solution for real-time Spark-based HIDS implementation.

Apache Kafka Kafka is a contemporary distributed messaging platform [47]. In real-

time HIDS data processing framework, Kafka can operate as an intermediary between

multiple hosts and the Spark cluster [120], propagating system call streams from origin

to destination.

43

Table 3.3 : Scalability of algorithms in big data tools.

Scalability of preprocessing and feature selection
• System call traces are capable of being distributed evenly to Spark workers so that
data preprocessing can be operated in parallel.
Scalability of classification and clustering
• The scalability of classification or clustering based HIDS method is capable of being
accomplished by MLlib, which is a machine learning library on Spark that helps to
accelerate distributed machine learning algorithms.
• Classification models such as logistic regression, decision tree, random forest and
clustering models such as k-means, latent Dirichlet allocation, Gaussian Mixture
Model can be trained and predicted using MLlib [80].
• It is flexible to implement saving and loading RDDs of trained models with off-heap
storage, which is appropriate for real-time HIDS prediction.
Scalability of normal databases
• The design of Spark is suitable for the method of STIDE.
• In Spark, normal system call sequences can be either cached temporarily in memory
or stored permanently in external storage such as HDFS.
• As massive system call sequences may result in a large-scale traditional database, it
may be inefficient to launch a database query when a new short system call sequence
comes. Therefore, NoSQL databases can be utilized. NoSQL databases allow data
accesses based on key-value pairs and values can be returned by the keys passed.

Scalability of algorithms in big data tools In the current big data environment,

from the perspective of real-time implementation, the scalability of an algorithm should

be ensured to deal with the increasing amount of data. Table 3.3 discusses the scal-

ability of a set of data mining algorithms in big data tools, particularly for system

call-based HIDS.

3.3.5 Challenge regarding this trend

Although the detection efficiency of HIDS can be improved with cloud computing

and big data tools, how to effectively process massive HIDS data in a centralized and

collaborative manner is still challenging.

3.4 Enhancement of the collaborative security

Cloud computing and big data tools can be utilized to improve the detection effi-

ciency of system call-based HIDS. Currently, researchers are focusing on constructing

comprehensive real-time HIDS for data center/cloud platforms. Moreover, to enhance

44

the collaborative security, it is a significant trend that HIDS should combine with NIDS

to form future CIDS.

Definition of data center A data center, which contains computer systems, network

systems and database systems, can manage all data of a modern enterprise [120]. A

data center is composed of a group of physical hosts. Virtual hosts are deployed on

each of the physical hosts. A virtual host is an operating system administrated by the

virtual machine monitor (VMM), which is a program installed on a host system that

helps one physical host run on various computing environments. Applications such

as databases, DNS servers, web servers are usually distributed across multiple virtual

hosts.

Threats of a data center The comprehensive deploy mode of a data center can

attract advanced intrusions. Virtualization technologies applied in a data center have

led to the occurrence of new attack methods against vulnerabilities in virtual machines

deployed on physical hosts. Hackers can exploit those vulnerabilities to set up Trojans

and then obtain advanced system priorities, or obtain private information of data

center users. The computational capacity of a data center may be taken by attackers

to launch DDoS attacks toward the infrastructure of the data center. By exploiting a

compromised virtual machine, an intruder can perform intrusions toward more VMs,

the virtual machine monitor, or operating systems of physical machines.

3.4.1 Current system call-based HIDS approaches for virtual hosts

System call capturing From the perspective of HIDS, to deal with intrusions

against a large data center, auditing data generated from hosts or virtual hosts of

a data center need to be gathered for intrusion analysis. Pfoh et al. designed a vir-

tual machine introspection-based framework to capture and monitor system calls in

real-time [111]. This framework is based on modified KVM and is segregated from

guest OS. Approaches for trapping desired events of system calls to the hypervisor are

designed. Interrupt-based, syscall-based and sysenter-based system calls are supported

[111]. Users can control the granularity of tracing the system call data.

45

Bag of system calls As public IaaS cloud environment is vulnerable to multiple

novel intrusions, Alarifi et al. proposed a ‘bag of system calls’ method to detect anoma-

lies, particularly for mimicry attacks [6]. Experiments are conducted via Linux KVM,

and system calls are collected from virtual machine user programs to guarantee the fine

granularity. A normal profile is created for the experimental virtual machine. For the

bag of system calls, sequence length 10 has the optimal detection result whereas length

6 has the best time-efficiency. Their next experiment [5] uses HMM with predefined

capacity as the normal profile. Virtual machines are firstly running normally so that

normal system calls can be gathered. Normal traces are the input for training and

malicious system calls generated by a DoS attack are for testing. The size of dataset

required for classifier training and testing is small in their experiment as only simple

services are installed on virtual machines and behaviors in public cloud are assumed

static. Virtual machines are treated as black boxes by the premise that VMs are only

reachable by IaaS users.

Intrusion severity analysis Arshad et al. proposed an intrusion severity analysis

method [10]. It assumes that system hardware is error-free. Decision trees are used

in this method, as they are simpler to manipulate and require less training data than

neural networks. A Virtual Machine System Call Handler collects and passes system

calls to an anomaly or misuse intrusion Detection Engine, which may consult an Attack

Database with existing intrusion signatures, or a Virtual Machine Profile Engine for

anomalies. A Virtual Machine Profile Engine can handle security profiles of VMs.

Malicious system calls detected by the Detection Engine are passed to the “Severity

Analysis Module” [10], which assesses intrusion severity, and the result is transferred

to an “intrusion response system” [10] to make appropriate responses.

Structure-based approach Gupta et al. developed a structure-based approach for

anomalous processes detection in a private cloud environment [53]. The technique

is claimed to be platform-independent and portable to any cloud architecture. For

model initialization, structures of programs are constructed and saved in a database.

Structures are identified and created with logs generated by running programs. System

call traces from virtual machines are monitored, and intermediate results are saved

temporarily as key-value pairs for testing. Their method is still tested on UNM dataset

46

due to the complexity of collection and maintenance of real-world system call data

generated from the cloud. System call database of key-value pairs is built based on

programs of UNM dataset. Anomalies identified will be recorded and notified to the

cloud administrator for further actions. The cloud administrator is in charge of the

whole system. The complexity of this method is O(n2) and Perl hash method is adopted

for further acceleration.

The first HIDS for virtual hosts with Spark and Kafka To the best of our

knowledge, Solaimani et al. firstly introduced an efficient and scalable real-time HIDS

that performs comprehensive anomaly detection on various data streams such as CPU

and memory performance data from virtual hosts [120]. The system has two major

functional modules, i.e., Message Broker with Kafka cluster and Streaming Data Miner

with Spark cluster. A virtual resource manager is designed and incorporated into the

data center. Various data streams such as CPU and memory performance data are

periodically gathered by the system from multiple virtual hosts and delivered through

Kafka to Spark cluster for analytics. vSphere Guest SDK [136] is used for continu-

ously monitoring streaming data with Kafka API integrated. CPU and memory usage

percentages are gathered by mpsat [51] and vmstat [59] respectively. Spark utilizes its

built-in machine learning approaches on discrete input streams for anomaly detection.

A two-sample scalable Chi-square test is performed with Spark. Whenever abnormal

behaviors are detected, the system will inform the resource manager, and further ac-

tions will be applied to abnormal virtual hosts. Detection results are saved to the

resource pool for further resources allocation. Their next experiment was conducted

in a VMware cluster, which involves five VMware hypervisor server systems, and each

host has three virtual machines [121]. CentOS is set up on each VM. HDFS is uti-

lized by Spark as the distributed storage system. Apache ZooKeeper is installed to

manage message flow between Kafka cluster and Spark cluster. The interactive esxtop

[13] utility of VMware ESXi host provides metrics of performance, such as CPU or

memory usage data. Only CPU data is taken in their experiment. The data is period-

ically gathered and formed into feature vectors, which are continuously recorded into

a CSV file cached in Kafka cluster for further use. VMware resources usage is shown

by the performance metrics. More resources should be provided when CPU-intensive

programs are executing. Unexpected resource improvement, which is considered as the

47

open
read
write
fork
fstat

mprotect
read
fork
write
Close
...

Spark ClusterKafka ClusterVirtual
Hosts

...

Cluster Manager

OpenStack Cloud Environment

Permanent Distributed Storage Distributed Memory‐centric Storage

KVM Virtualization

open
read
write
fork
fstat

mprotect
read
fork
write
Close
...

Worker Node

Worker Node

...

Server 1 Driver Program
SparkContextP0 P3

Server 2

Zookeeper

Apache Flume

Push
Spark

Streaming

Pull

P1 P2

Figure 3.3 : A preliminary real-time scalable HIDS framework with big data tools in
cloud. The system call traces are from [44].

anomaly, would be rendered in the performance metrics. The non-updatable model

trained with benign data is used for prediction. Anomaly information analyzed by

Spark is reported to the virtual resource management module, which manages and

allocates computational resources.

3.4.2 Constructing a real-time scalable HIDS with big data tools in cloud

Inspired by current research works, a preliminary real-time scalable HIDS frame-

work with big data tools in cloud for a data center is proposed. The framework is

comprised of three layers described in table 3.4. Figure 3.3 demonstrates the frame-

work deployed in an open-source private cloud computing environment. Computing

facilities such as servers, routers, and switches are basic hardware components of the

cloud. Kernel-based Virtual Machine (KVM) [16] open-source software included in

Linux operating system is used for infrastructure virtualization. A couple of virtual

machines with their own virtualized hardware and Linux operating system can run on

KVM, OpenStack open-source cloud operating system is installed for resource man-

agement and interactions with applications of users [164]. Administrators can control

all resources via the provided dashboard. Hadoop with HDFS and YARN [46] is in-

stalled to build and manage a cluster in the OpenStack-based cloud to realize scalable

HIDS data processing and permanent storage. Apache Spark Streaming can run on the

YARN cluster to process large HIDS data streams. Streaming system calls collected

48

Table 3.4 : Three layers of a real-time scalable HIDS framework with big data tools in
cloud.

Data collection layer
• This layer collects and caches real-time system call traces generated by multiple
hosts.
→ Apache Kafka can be adopted as the message broker.
• In practice, sensors are installed in hosts to gather system call traces.
Data analytics layer
• This layer comprehensively analyzes real-time system call traces from the data
collection layer.
• Spark MLlib can apply distributed machine learning algorithms on feature vectors
extracted from system call traces. Normal databases for anomaly detection can also
be formed in this layer.
• System call traces need to be pulled by Spark Streaming from Kafka server and
compared with standard normal databases or predicted by machine learning models.
Data storage layer
• This layer consists of distributed fault-tolerant data storage systems for saving and
loading final detection results as well as intermediate HIDS datasets including trained
machine learning models and normal databases.
• When it comes to host-based intrusion detection, given that normal databases or
machine learning models need to be regularly updated to deal with new attack
methods, it requires high integrity and robustness for the storage system. Saving
Spark RDDs in off-heap distributed memories can be a solution of intermediate
dataset storage due to the DAG-based fault-tolerant mechanism of RDD.
→ Long-term on-disk frameworks such as HDFS and temporary in-memory
frameworks such as Alluxio are included in this layer.

by Apache Flume [48] from hosts in DMZ or Intranet are pushed into Kafka cluster for

caching. Spark Streaming pulls system call traces accordingly from Kafka server to an-

alyze anomalies in a fine-grained manner. This framework is easily scalable to fulfill the

requirement of new hosts set up in the data center. With heavier data load as a result

of increasing number of hosts, Spark and Kafka clusters can be expanded, either in the

way of enlarging internal distributed memory or adding more worker nodes. Further-

more, in a large data center, an overall scheduler with the highest priority controlled

by security personnel is required to administer all computational resources including

every single host. The scheduler should continuously monitor the complete data flow

from multiple hosts to Spark cluster eventually. If an intrusion in an individual host is

detected, Spark master can notify the scheduler to take appropriate measures on that

host.

49

3.4.3 CIDS for a data center

For the security of a large data center with massive hosts, to achieve more pow-

erful detection, HIDS should articulate with NIDS to compose an effective and high-

throughput CIDS. The system should consist of a central analytical unit plus sensors

installed on each of physical or virtual hosts and network devices for the collection of

system call traces and network packets.

CIDS with MapReduce Tan et al. provided a novel framework of CIDS with

MapReduce for cloud computing systems [129]. Detection software sensors named

cooperative agents are installed to collaborate with HIDS and NIDS, and anomalous

behaviors detected by relevant agents are reported to the central coordinator for mining

attack patterns of the whole system [129]. An alternative central coordinator will

be used if the primary one fails. With the central coordinator, data collected by

cooperative agents can be summarized for comprehensive analysis to resist cooperative

intrusions [129]. Whenever anomalies are detected from cooperative agents or the

central coordinator, the system administrator will be notified to take proper defensive

measures. MapReduce is implemented and integrated with the proposed method for

parallel summarization of data [129]. The master node works as the central coordinator,

and worker nodes work as cooperative agents. Figure 3.4 demonstrates the proposed

framework.

The challenge According to [133], CIDS with a centralized unit that analyzes a

complete dataset is a dependable solution for data centers. However, the scalability

is limited. It lacks scalable and applicable solutions to perform distributed intrusion

detection in large networks. Meanwhile, intruders nowadays tend to employ a set of

social engineering approaches to launch advanced persistent threats (APTs) toward the

targeted systems, which make the security problems more sophisticated. New forms

of attacks are continuously created by intruders and intrusions can occur from both of

the Intranet and the Internet. Meanwhile, protecting a system is always more difficult

than making attacks. Traditionally, security specialists focus on security incidents

that already occurred and make relevant incident responses. This kind of negative

defensive approaches is not robust when confronted with advanced attacks. In this case,

50

S EP T E M B ER 2 0 14 I EEE CLO U D CO M P U T I N G� 31

generic attacks that present abnormality within the
network traffic and don’t involve sophisticated co-
operation. The network-based cooperative agents
alert a central coordinator to any suspicious pack-
ets detected. Meanwhile, these agents summarize
network traffic flowing through the network in a
distributed and parallel manner. In network data
summarization, the nonparametric Bayes could be
a suitable machine learning approach for solving
the challenges of cloud computing.12 Network sum-
marization is particularly important for detecting
cooperative intrusions, such as distributed denial-
of-service (DDoS) attacks. These summarizations
are periodically sent to a central coordinator, as we
discuss next.

This parallel summarization is empowered by
cloud computing through the MapReduce frame-
work.13 The MapReduce framework provides seam-
less and effortless integration of our CIDS framework
into a distributed and parallel architecture by treating
the network-based cooperative agents as slave nodes

and the central coordinator as a master node. The
MapReduce framework manages all details, ranging
from scheduling to information aggregation.

Central Coordinator
Finally, the network traffic aggregation is performed
on the central coordinator, which generates a com-
plete attack diagram of the entire network (that is,
the cloud computing system). Based on this aggre-
gation, the central coordinator is capable of captur-
ing sophisticated cooperative intrusions that the
individual network-based cooperative agents miss.
When intrusive behaviors (including those identified
by the cooperative agents and the central coordina-
tor) are detected, the central coordinator raises an
alert to a system administrator.

It’s worth noting that a hybrid detector com-
bining misuse-based and anomaly-based detection
mechanisms can help reduce the time needed to de-
tect and enhance the detection accuracy of known
and unknown attacks.

Internet

Firewall

NIDS

NIDS

Firewall

Gateway

Central
coordinator

Backup central
coordinator

HIDS

Host machines

Host machines

Cloud computing environment

Host machines

HIDS

FIGURE 1. Framework of a collaborative intrusion detection system (CIDS). The figure illustrates how the different

types of fellow IDSs are deployed in a cloud computing environment, and how they cooperate with each other and

central coordinators in detecting intrusions. (HIDS: host-based IDS, NIDS: network-based IDS)

HIDS

Gateway

Figure 3.4 : A framework of CIDS [129].

traditional forms of IDS including CIDS offer inadequate information about attackers

and potential attacks. Innovative CIDS updates and further comprehensive threat

information sharing methods are demanded [133].

3.4.4 Sharing threat information to enhance the collaborative security

Currently, security specialists are seeking methods to block potential cyber attacks

before they are launched to secure computer systems. Using cyber threat intelligence

information sharing is effective to prevent attacks actively and can enhance the system

security [12].

Structured threat information feeds The “threat information” is standardized

information that can present attack patterns and relevant defensive strategies. Obser-

vation and analysis of attack patterns are necessary to prevent intrusions beforehand.

Threat information for a system can be obtained from the Internet, the Intranet, and

trusted collaborators such as security specialists from one trusted community. With-

out collaboration, security specialists can hardly obtain adequate and comprehensive

threat information. Threat information to be consumed is commonly interpreted as

51

structured feeds, which are ready to be integrated into security systems such as CIDS

for updating. Security specialists from one trusted community can efficiently and col-

laboratively study upon complicated HIDS incidents together by sharing structured

threat information feeds. The threat information feeds are composed based on some

standards.

Threat information sharing → standards Recently, a set of standards have been

created to facilitate automatic sharing of threat information [73]. The standards such

as STIX, MAEC, OVAL, and CybOX attempt to describe the threat information in

machine-readable formats for automatic integration.

Threat information sharing → platforms Threat information can be gathered,

analyzed and consumed automatically via some centralized platforms such as MITRE

TAXII. Via such platforms, collaborators can make contributions to make threat in-

formation feeds more accurate and complete. For instance, if a host-based intrusion

can be spotted in a system and related threat information feeds are shared with other

collaborators, then similar attacks can be predicted. Submitting high-quality threat

information feeds to platforms contributes to the community. If security specialists

can integrate the available high-quality threat information feeds about HIDS properly,

then the security of relevant computer systems can be enhanced.

Select the most valuable feeds Determining the most valuable feeds for integra-

tion is a significant task. For a particular consumer, some of the feeds available on the

platforms may not be applicable for integration. Consuming redundant feeds from com-

mercial platforms can cause additional expenses. Consumers need to understand their

requirements of security and possible varieties of intrusions that may confront with

and select the most valuable feeds for integration to maximize the effect of defense

and minimize the cost. Usually, consumers can identify the origins of feeds according

to the records of platforms. Even though the platforms provide authenticated threat

information feeds, consumers still need to verify their accuracy and integrity before

integration.

52

Challenges for threat information sharing Although taking advantage of threat

information sharing can be an enhancement to HIDS and CIDS, some issues need

to be considered and solved by the submitters and consumers of structured threat

information feeds. Submitters need to consider what kind of threat information about

HIDS or CIDS should be generated as relevant standardized threat information feeds,

and how to generate and submit those feeds to the sharing platform. Consumers

need to consider what kind of HIDS or CIDS-related feeds should be integrated from

the sharing platform, and how to integrate those feeds into the local HIDS or CIDS.

Some other issues also have to be considered, such as how to develop a private threat

information sharing platform for internal use to protect the privacy.

3.4.5 Current practices in the industry regarding this trend

In the current industry, there are two significant improvements about HIDS. (1)

The integration with other security capabilities. As HIDS usually cannot provide com-

plete security protection to critical systems, in the current industry, HIDS is usually

integrated with other essential security mechanisms, including NIDS, vulnerability as-

sessment, and incident response. HIDS can be deployed as part of one unified security

platform, on which security incidents can be aggregated and investigated. (2) The

combination of the latest threat intelligence. Another significant improvement in the

current industry is that HIDS is usually strengthened with the latest threat intelligence

to keep up-to-date with emerging cyber threats. Actionable threat intelligence can be

integrated into HIDS as continuous signature updates. Some typical HIDS systems

deployed in the current industry are described below.

McAfee The “McAfee host intrusion prevention for desktop” provides a dynamic

and complete platform that protects the system security and data confidentiality [93].

The centralized console offers simple administration. With the increase in advanced

threats, McAfee has integrated the cloud-based “Global Threat Intelligence” service to

its HIDS to detect advanced cyber threats before attacks happen.

OSSEC The HIDS solution “OSSEC (Open Source HIDS SECurity)” provides ser-

vices such as “file integrity checking, log monitoring, rootkit detection and active re-

sponse” [131]. OSSEC can help the user to implement a comprehensive HIDS across

53

multiple operating systems with a centralized management server.

OSSIM The “OSSIM (Open Source Security Information and Event Management)”

is an open-source threat management system that integrates HIDS and NIDS with

other key threat detection capabilities [108]. It monitors the security of local environ-

ment. OSSIM is a unified platform that supports multiple operating systems including

Linux. OSSIM utilizes the capability of “AlienVault Open Threat Exchange (OTX)”

by enabling collaborators to share latest threat information of malicious hosts.

AlienVault USM The “AlienVault Unified Security Management platform (USM)”

is a commercial product that combines HIDS with NIDS and other security mecha-

nisms in a unified platform to manage threats [7]. USM can monitor the security of

both local and cloud environments. The information that collected by HIDS agents

will be sent to the unified platform for centralized threat detection. AlienVault USM

receives continuous and automatic threat intelligence updates from the community of

AlienVault OTX, where collaborators can share the latest threat information.

3.5 Summary

This chapter provides the future research trends of host-based intrusion detection

system with system calls. This chapter aims to inspire future researchers about the

three trends of HIDS, namely, the reduction of false positive rate, the improvement

of detection efficiency, and the enhancement of collaborative security. This chapter

also proposes a real-time scalable HIDS framework with big data tools in cloud for

a data center to enhance the collaborative security. The framework is easily scalable

to fulfill the requirement of new hosts set up in the data center. When it comes to

current big data environment and the emerging of diversified cyber threats, combining

multiple intrusion defense approaches to work collaboratively is the dominant trend

for designing a robust threat-defensive infrastructure. Meanwhile, taking advantage of

threat information sharing can be an enhancement to HIDS and CIDS.

54

Chapter 4

SCADS: A Scalable Approach Using Spark in

Cloud for Host-based Intrusion Detection System

with System Calls

4.1 Introduction

Recently, cloud computing presents extensive computational capability and massive

storage capacity that can facilitate security specialists to implement data-intensive

projects with manageable expenditure. Users can focus on their works using a group

of flexible IT services, with less concern about the purchase and maintenance of physical

devices. Therefore, various security enterprises have moved their projects to the cloud.

Moreover, a set of modern frameworks such as Apache Hadoop and Apache Spark are

specifically developed for stable and scalable processing of big data. These frameworks

enable the processing and storage of massive datasets among clusters that have the

”master-workers” structure. Clusters can be created with multiple common computers,

which provide local computation and storage capability. With these big data processing

frameworks, computational resources in clusters can be scheduled, hardware failures

can be handled, and functional user interfaces can be provided. Therefore, combining

those big data processing frameworks and the capability of cloud computing can provide

an opportunity to improve the detection efficiency of traditional system call-based

HIDS.

To the best of our knowledge, there are limited research works concerning applying

big data tools such as Apache Spark to system call-based HIDS. Motivated by this

issue, in this chapter, we contribute to the community of HIDS by proposing a scalable

HIDS approach using Spark in the Google cloud, endeavoring to improve the detection

efficiency and the scalability for a new-generation system call-based HIDS.

The rest of this chapter is organized as follows. In Section 4.2, we provide related

works. In Section 4.3, we introduce the design of SCADS, the scalable approach using

55

Spark in the Google cloud for HIDS with system calls. In Section 4.4, we demonstrate

the experimental results. In Section 4.5, the summary of this chapter is provided.

4.2 Related works

4.2.1 Public cloud

Contemporary public cloud computing services can offer load-balanced IaaS (Infras-

tructure as a Service) for scalable data analytics. Based on the information provided

by Amazon EC2 [139] and Google Compute Engine [79], IaaS cloud computing services

can be scaled from single to multiple virtual machines (instances) running in data cen-

ters with consistent performance. Users can manage and configure those instances on

web interfaces. The pricing of those public cloud computing services is flexible. Ac-

cording to the scale their projects, users choose and pay for the size of processors, the

volume of storage, and the time of computation. Moreover, renowned enterprises such

as Amazon and Google may provide more reliable and less vulnerable cloud comput-

ing services, considering intruders may attack the intrusion detection software based on

the vulnerabilities. Therefore, system call-based HIDS can be deployed in public cloud.

General acceleration methods used in the community for system call-based HIDS can

also be integrated into public cloud platforms.

4.2.2 Apache Spark

Contemporary big data processing frameworks (or big data tools) refer to a group

of open-source software that can execute on clusters built with common hosts for

distributed, scalable, and reliable processing of large-scale datasets. These frameworks

provide functionalities such as distributed storage and processing of big data, and they

usually have user-friendly APIs and web interfaces. These frameworks can deliver high-

availability services, and frequent hardware failures can be automatically handled and

restored. Distributed algorithms can be passed to worker nodes to process the local

data. Therefore, with big data tools deploy on clusters, datasets can be efficiently

processed.

Apache Spark is an open-source in-memory cluster computing framework [117].

Figure 4.1 demonstrates a simplified structure of Spark cluster. Spark can exchange

data with various distributed storage systems such as the Hadoop Distributed File

56

Worker Node Worker Node
 Executor Executor

...

Cluster Manager

Task Task Task Task

Task Task Task Task

Driver Program SparkContext

Figure 4.1 : A simplified structure of Spark cluster, modified from [123].

RDD: A RDD: B

RDD: C RDD: FRDD: D

RDD: G

map

groupBy

union

RDD: E

join

DAG

Figure 4.2 : An example of RDD and DAG. Unshaded rounded rectangles are RDDs.
Shaded rounded rectangles are partitions. Modified from Zaharia’s article [160].

System (HDFS), which splits files into redundant blocks that are distributed among

worker nodes. Spark facilitates the implementation of iterative algorithms (such as

the training of machine learning models). The intermediate datasets can be cached

in the distributed memory. The distributed and fault-tolerant computing paradigm of

Spark is based on the Resilient Distributed Dataset (RDD) and the relevant directed

acyclic graph (DAG) (depicted in figure 4.2). An RDD consists of multiple partitions.

The dependencies between RDDs can be classified into two types, namely, narrow

dependencies and wide dependencies. Narrow dependencies allow pipelined executions

in one cluster node with no shuffling, whereas wide dependencies require data shuffling

across nodes [160]. Some examples of narrow dependencies and wide dependencies

are depicted in figure 4.3. As the process of data shuffling in wide dependencies may

require additional processing time, unnecessary data shuffling should be avoided.

57

groupByKey join with inputs not
co-partitioned

Wide Dependencies:

Narrow Dependencies:

union

join with inputs
co-partitioned

Figure 4.3 : Examples of narrow dependencies and wide dependencies. Modified from
Zaharia’s article [160].

4.3 Scalable Approach Using Spark in Cloud for system call-

based HIDS

The intrusion detection procedure for SCADS is depicted in figure 4.4. There are

two main phases in this procedure, i.e., the training phase and the testing phase. There

are several steps for each phase.

• The training phase. Firstly, the ADFA-LD dataset is prepared and stored in the

cloud storage system. For the preprocessing and feature extraction of the training

phase, vectors of words are generated from raw system call traces with multiple-length

n-gram method. Single-length n-gram method is also applied for comparison. TF-

IDF feature vectors are generated from the vectors of words and labeled as normal or

attack. The detection model is trained using logistic regression with limited-memory

BFGS (LR-LBFGS).

• The testing phase. The preprocessing and feature extraction of the testing phase

are same as the training phase. Then for the generation of TF-IDF feature vectors,

it is assumed that in the real-world scenario of intrusion detection, real-time system

call traces are gathered by the IDS trace by trace. Therefore, the IDF model of the

testing dataset cannot be one-time obtained. In this case, for each testing trace, the

TF vector is generated, then the TF-IDF feature vector is generated using IDF model

58

D
etection results

Preprocessing and feature extraction (Testing phase)

D
etection m

odel training

Intrusion detection
D

ata preparation

Preprocessing and feature extraction (Training phase)

Training phaseTesting phase

System
 call traces

for training

Building detection
m

odel w
ith LR

-LBFG
S

G
enerating

vectors of w
ords

G
enerating

vectors of w
ords

G
enerating
TF-ID

F
feature vectors

Attack or norm
al

labels

G
enerating
TF-ID

F
feature vectors

System
 call traces

for testing
D

etection m
odel

TF-ID
F

feature vectors

Labelled TF-ID
F

feature vectors

N
orm

al trace

Intrusive trace

Figure 4.4 : The training and detection processes of SCADS.

59

Table 4.1 : Symbols and description.

Symbols Description
IH The complete dataset of system call traces T
T A trace of system calls S
S A system call
ID The complete corpus of documents D
D The generated document that contains the extracted words

W of systems calls S
W An extracted word of systems calls S

of the training dataset and then passed to the detection model for the prediction of

either intrusive or normal trace. Finally, the value of AUC is returned to evaluate

the detection accuracy. We have also used TF feature vectors only in this phase for

comparison.

The detailed steps are elaborated in the following subsections.

4.3.1 Symbols

Symbols used for description of the proposed approach are listed and described in

table 4.1.

4.3.2 Preprocessing and feature extraction

RDD repartitioning

To achieve the detection efficiency and scalability for a HIDS using Spark, the

design of the intrusion detection algorithms should conform to the internal mechanism

of Spark. To achieve parallel processing, the raw system call traces should be firstly

distributed evenly among worker nodes of the Spark cluster, and then be processed

by appropriate algorithms in parallel. In the proposed approach, after eliminating

redundant traces, the raw system call traces for training and testing are treated as Spark

RDDs, each RDD has several partitions. When the system call traces are firstly loaded

from the storage system and cached as RDDs, they may only have a few partitions

and are not distributed evenly among worker nodes of the cluster. Therefore, we have

designed an RDD repartitioning method using Spark API to transform those RDDs

of raw system call traces into new RDDs with more partitions; the new partitions are

distributed evenly to the worker nodes.

60

Algorithm 1: Generate vectors of words from an RDD of raw system call
traces using Spark [123]

Input: An RDD of system call traces traces
Output: An RDD of vectors of words vects

1 def VectsGen(traces : RDD[String]) : RDD[Seq[String]]=
2 val tHashed = traces.map(x => (x.hashCode, x))
3 val rangePtnr = new RangePartitioner(traces.count.toInt, tHashed)
4 val tP tned = tHashed.partitionBy(rangePtnr)
5 val input = tP tned.values.flatMap(.split(′′\\s+′′)).cache
6 val output = input.mapPartitions(WordsGen).cache
7 val vects = output.mapPartitions(iter =>

Iterator(iter.toArray.toSeq)).coalesce(8, false)
8 return vects

9 end

The RDD repartitioning method for system call traces is implemented in algorithm

1, and figure 4.5 provides a simplified demonstration of the RDD repartitioning process

using RangePartitioner in Spark. In algorithm 1, for an RDD of system call traces

traces, every trace is assigned a hashCode value by calling the transformation map.

Then the RDD tHashed is repartitioned by the RangePartitioner, which can partition

traces with hashCode values into roughly equal ranges. Then a Spark RangePartitioner

rangePtnr is constructed with two parameters. Since traces.count.toInt counts the

number of system call traces in the dataset, the number of partitions of the new RDD

tP tned is roughly equal to the number of system call traces. Thus each partition of

tP tned may represent a system call trace in this case. Then for the repartitioned RDD

tP tned, after processed by the transformation flatMap on the values to split by one

or more whitespaces, the transformation mapPartitions operates on every partition of

the RDD input to extract words of system calls by calling function WordsGen. Then

the RDD output is coalesced to eight partitions by using the transformation coalesce,

which is “useful for running operations more efficiently after filtering down a large

dataset” [123]. The number of the coalesced partitions in the proposed approach is

selected based on the number of worker nodes. The second parameter of coalesce is set

to “false” in the proposed approach, as it is expected that the coalescence of partitions

only occurs within the local worker nodes with no data shuffling, i.e., the coalescence

conforms to the narrow dependencies depicted in figure 4.3. Using the parameter of

61

Partition 1

Raw system call trace 1hashCode 1

Raw system call trace 2hashCode 2

Raw system call trace 3hashCode 3

Raw system call trace 4hashCode 4

MapPartitionsRDD

...

Partition 2
Raw system call trace nhashCode n

ShuffledRDD

Partition nPartitioned trace nhashCode n

Partition 4Partitioned trace 3hashCode 3

Partition 3Partitioned trace 2hashCode 2

Partition 2Partitioned trace 1hashCode 1

Partition 1Partitioned trace 4hashCode 4

Partition 1

Raw system call trace 1

Raw system call trace 2

Raw system call trace 3

Raw system call trace 4

MapPartitionsRDD

...

Partition 2
Raw system call trace n

map(x=>(x.hashCode,x) partitionBy rangePartitioner

...... ...

Figure 4.5 : A simplified demonstration of the RDD repartitioning process by
RangePartitioner for the preprocessing of raw system call traces.

“true” may cause additional shuffling between worker nodes.

Single-length n-grams

In the area of system call-based HIDS, an n-gram is referred to a contiguous se-

quence of n system calls extracted from a system call trace within a time interval [150].

The sliding window algorithm with window size n can be taken to scan a system call

trace to generate n-grams of system calls, and the generated n-grams can be used for

training detection models. Using the n-gram method for preprocessing has been widely

adopted by HIDS researchers [140][158]. The term “single-length n-gram method” is

used to compare with the “multiple-length n-gram method”.

The process of feature extraction with the single-length n-gram method is described

as follows. Let IH = {T1, T2, ..., Tm} be the complete dataset of m system call traces

T ; and let T = {S1, S2, ..., Sk} be a trace of k system calls S. Then for a trace T ,

one sliding window of length n are applied to traverse from the beginning to the end

of trace T to extract contiguous system call sequences. The maximum window size n

allowed in this case is k, which is the length of trace T . The contiguous system call

sequences extracted are treated as words W of length n. Therefore, if n is equal to six,

for trace T the generated document D that contains the extracted words W of systems

calls is,

D = {S1S2S3S4S5S6, S2S3S4S5S6S7, S3S4S5S6S7S8, ...,

Sk−5Sk−4Sk−3Sk−2Sk−1Sk}

62

Algorithm 2 implements the method of single-length n-grams using Spark. It takes the

sliding window algorithm with one window size n. In Algorithm 2, n is set to six. Thus

the length of the extracted words W is six.

Algorithm 2: Generate words of system calls with the single-length n-gram
method from one RDD partition using Spark [123]

1 def WordsGen[T : ClassTag](iter : Iterator[T])=
2 var words = List[String]()
3 var arr = iter.toArray
4 val n = 6
5 for j = 0→ (arr.length− n) do
6 words ::= arr.slice(j, j + n).mkString(′′ ′′)
7 end
8 words.iterator

9 end

Multiple-length n-grams

The multiple-length n-gram method has been proven to be effective to increase the

detection accuracy in the area of system call-based HIDS [144][92][76]. For instance,

Creech et al. used multiple sliding windows with various sizes to scan the complete sys-

tem call trace; the generated multiple-length n-grams were used for feature extraction,

and notable detection accuracy was achieved[30]. Therefore, we have implemented the

multiple-length n-gram method with Spark for feature extraction.

The process of feature extraction with the multiple-length n-gram method is de-

scribed as follows. Let IH = {T1, T2, ..., Tm} be the complete dataset of m system call

traces T ; and T = {S1, S2, ..., Sk} be a trace of k system calls S. Then for a trace

T , a set of sliding windows ranging from size one to n are applied to traverse from the

beginning to the end of trace T to extract contiguous system call sequences. In this

case, the maximum window size n allowed is k, which is the length of trace T . The

contiguous system call sequences extracted at this stage form words W of length one to

n. Therefore, if n is equal to six, for trace T the generated document D that contains

the extracted words W of system calls is,

D = {S1, S2, S3, ..., Sk,

S1S2, S2S3, ..., Sk−1Sk,

63

S1→S3, S2→S4, ..., Sk−2Sk−1Sk,

S1→S4, S2→S5, ..., Sk−3Sk−2Sk−1Sk,

S1→S5, S2→S6, ..., Sk−4Sk−3Sk−2Sk−1Sk,

S1→S6, S2→S7, ..., Sk−5Sk−4Sk−3Sk−2Sk−1Sk}

Algorithm 3 implements the method of multiple-length n-grams with the sliding window

algorithm with multiple window sizes. In Algorithm 3, the maximum window size n is

set to six, thus the length of the extracted words can range from one to six. When the

maximum window size n is set to 1, the algorithm is the same with the single-length

n-gram method.

Algorithm 3: Generate words of system calls with the multiple-length n-gram
method from one RDD partition using Spark [123]

1 def WordsGen[T : ClassTag](iter : Iterator[T])=
2 var words = List[String]()
3 var arr = iter.toArray
4 val n = 6
5 for i = 0→ (n− 1) do
6 for j = 0→ (arr.length− i− 1) do
7 words ::= arr.slice(j, j + i+ 1).mkString
8 end

9 end
10 words.iterator

11 end

Constructing feature vectors with TF-IDF

In this chapter, the description of feature extraction using TF-IDF is mainly based

on [123]. “Term frequency-inverse document frequency (TF-IDF)” is a feature ex-

traction scheme commonly used in text-based information retrieval to measure the

importance of a word in a document and the relevant corpus [86]. Term frequency

(TF) is the number of times that the word appears in the document; document fre-

quency (DF) is the number of documents that contain the word [64]. Using only TF

may over-emphasize frequent words, as a frequent word in the corpus may carry little

special information about a particular document. Inverse document frequency (IDF)

can measure the quantity of information that a word provides about a particular doc-

ument. Thus the TF-IDF value of a word increases according to its frequency in the

64

document and is adjusted by the frequency in the corpus. We have implemented TF-

IDF with Spark to construct feature vectors. The process is described as follows. Let

ID = {D1, D2, ..., Dn} denote the complete corpus of n documents D. Term frequency

TF (W,D) is the number of times that a word W appears in document D, while docu-

ment frequency DF (W, ID) is the number of documents that contain the word W [32].

In this case, the IDF is defined as,

IDF (W, ID) = log
n+ 1

DF (W, ID) + 1
(4.1)

The TF-IDF is defined as,

TFIDF (W,D, ID) = TF (W,D) · IDF (W, ID) (4.2)

Algorithm 4: Count the number of distinct words for an RDD of vectors of
words using Spark [123]

Input: An RDD of vectors of words vects
Output: The number of distinct words wordsNum

1 def NumOfDistinctWords(vects : RDD[Seq[String]]) : Int=
2 val wordsNum =

vects.flatMap{identity}.map(x => (x, 1)).reduceByKey(+).count.toInt
3 return wordsNum

4 end

Algorithm 5: Generate TF feature vectors from an RDD of vectors of words
as sparse vectors using Spark [123]

Input: An RDD of vectors of words vects, the number of dimensions num
Output: Sparse TF feature vectors tf

1 def TfGen(vects : RDD[Seq[String]], num : Int) :
RDD[org.apache.spark.mllib.linalg.Vector]=

2 val hashingTF = new HashingTF(num)
3 val tf = hashingTF.transform(vects).cache()
4 return tf

5 end

TF and IDF are implemented in HashingTF and IDF in Spark. The TF-IDF feature

vectors generated from the training and testing system call traces are also treated as

65

Spark RDDs. The HashingTF utilizes feature hashing in machine learning [143]. In

the proposed approach, to reduce the chance of hash collisions, the dimension number

of the target feature vectors is set to the number of distinct words in the corpus of

the training dataset. Algorithm 4 is implemented to count the number of distinct

words for an RDD of vectors of words. Algorithm 5 is implemented to generate TF

feature vectors from an RDD of vectors of words as sparse vectors, and algorithm 6 is

implemented to generate TF-IDF feature vectors from an RDD of vectors of words as

sparse vectors. The real-time system call traces are assumed to be gathered by the IDS

trace by trace. Thus the whole testing dataset cannot be one-time processed, instead

only one single trace can be handled each time. In this case, for the testing traces,

only TF feature vectors are generated from them, and the IDF model is unobtainable.

Therefore, algorithm 6 is applied to the training dataset only. For the testing dataset,

the TF feature vectors generated are adjusted by the Spark IDF model generated from

the training dataset.

Algorithm 6: Generate TF-IDF feature vectors from an RDD of vectors of
words as sparse vectors using Spark [123]

Input: An RDD of vectors of words vects, the number of dimensions num
Output: Sparse TF-IDF feature vectors tfidf

1 def TfidfGen(vects : RDD[Seq[String]], num : Int) :
RDD[org.apache.spark.mllib.linalg.Vector]=

2 val hashingTF = new HashingTF(num)
3 val tf = hashingTF.transform(vects).cache()
4 val idf = new IDF().fit(tf)
5 val tfidf = idf.transform(tf)
6 return tfidf

7 end

4.3.3 Classifier training and prediction

Logistic regression is a widely used linear method for binary classification. In the

proposed approach, logistic regression with limited-memory BFGS (LR-LBFGS) is

utilized for classifier training and prediction, as it is recommended in Spark for faster

convergence. By default, standard feature scaling and L2 regularization are utilized

for LR-LBFGS in Spark MLlib. The detailed classifier training and prediction steps

are described below.

66

i. In the process of classifier training and prediction, firstly the attack traces and

normal traces of ADFA-LD are loaded from the Google cloud storage system.

The distinct transformation, which can produce a new RDD with only distinct

elements, is called to eliminate repetitive traces for both of attack traces and

normal traces. For both of the attack traces and normal traces, 60% of them are

randomly selected as the training data, and the other 40% of them are selected

as the testing data.

ii. To get the number of dimensions num for functions TfGen and TfidfGen, the

attack training traces and normal training traces are combined using the union

method in Spark, followed by applying the distinct transformation to eliminate

repetitive traces. Then the function VectsGen is applied to the combined traces

to generate vectors of words, followed by applying the function NumOfDistinct-

Words to get the number of distinct words, i.e., the number of dimensions.

iii. For both of the attack training data and normal training data, the function

VectsGen is called to generate vectors of words, followed by applying the function

TfidfGen to generate TF-IDF feature vectors. The attack feature vectors are

labeled point 1, and the normal feature vectors are labeled point 0. Then the

labeled feature vectors are combined using the union method in Spark to form

trainingData, which is the dataset for training the LR-LBFGS classifier.

iv. As the real-time system call traces are assumed to be gathered by the IDS trace

by trace, thus the whole testing dataset cannot be one-time processed, instead

only one single trace can be processed every time. Therefore, for both of the

attack testing data and normal testing data, the function VectsGen is called to

generate vectors of words, followed by applying the function TfGen to generate

TF feature vectors. Then the function TfGen is applied to the vectors of words

formed in step 2 to generate TF feature vectors from the training dataset, followed

by generating the relevant Spark IDF model of the training dataset. Then this

IDF model is used to adjust the attack testing TF feature vectors and normal

testing TF feature vectors. The attack feature vectors are labeled point 1, and

the normal feature vectors are labeled point 0. These label points are used for

evaluation of the system only. Thus the labeling process is not shown in figure

4.4. Finally, the labeled feature vectors are combined using the union method

67

in Spark to form testingData, which is the dataset for testing the LR-LBFGS

classifier.

v. Algorithm 7 implements the classifier training and prediction with LR-LBFGS us-

ing Spark. As implemented in algorithm 7, the trainingData and the testingData

are used for training and prediction, respectively. The LR-LBFGS classifier is

trained using the LogisticRegressionWithLBFGS method in Spark. For predic-

tion, the labels predicted by the classifiers are compared with the labels of the

testing feature vectors to evaluate the detection accuracy. Finally, the AUC

value AUC is returned using Spark BinaryClassificationMetrics and the areaUn-

derROC method.

Algorithm 7: Classifier training and prediction with LR-LBFGS using Spark
[123]

Input: The dataset for training trainingData, the dataset for testing
testingData

Output: The value of AUC AUC
1 val model = new LogisticRegressionWithLBFGS().run(trainingData)
2 model.clearThreshold
3 val predictionAndLabels = testingData.map
{case LabeledPoint(label, features) =>
val prediction = model.predict(features) (prediction, label)}

4 val metrics = new BinaryClassificationMetrics(predictionAndLabels)
5 val AUC = metrics.areaUnderROC
6 return AUC

4.4 Experiments

4.4.1 The computational environment

The experiments are launched with Dataproc on the Google Compute Engine [79]

cloud computing environment. Dataproc provides pre-installed and administrated

Apache Hadoop and Spark services with a user-friendly API for configuration. Dat-

aproc can automatically and quickly create and manage clusters of virtual machines.

There are three modes to deploy a cluster, i.e., “single node (one master and zero

workers)”, “standard (one master and multiple workers)”, or “high availability (three

masters and numerous workers)”. Virtual machines of a cluster can connect with each

68

other with internal IP networking. Users can customize the number of virtual CPUs;

the memory capacity; the sizes and types of disks; and the region/zone where the clus-

ter to be deployed. The created master node contains the HDFS NameNode and the

YARN ResourceManager, and can be accessed with SSH; each of the worker nodes in-

cludes an HDFS DataNode and a YARN NodeManager. Spark jobs can be submitted

via the Dataproc API, where the jobs’ output can be accessed; the graphs of the net-

work, disk, and CPU utilization can also be viewed. Via the API, the created cluster

can be scaled up or down regarding the number of worker nodes. Therefore, a cluster

can be scaled multiple times with simple operations, which is flexible to test the scal-

ability of the proposed approach. In our experiments, a free account has been firstly

set up. Standard clusters (one master, N workers) are created within the global region

and us-central1-c zone. For a cluster, the master node has one vCPU with 3.75GB

memory, and the primary disk size is 100GB; each of the worker nodes has the same

machine type with the master node. Spark version 2.2.1 on Dataproc is used for the

experiments, and the number of Spark executors can be flexibly extended from one to

six.

4.4.2 The ADFA-LD dataset

As most of the datasets utilized for measuring system call-based HIDS were cre-

ated in the last century and cannot represent modern attack approaches, Creech et

al. compiled the new publicly available ADFA-LD dataset [30]. In their method,

Ubuntu Linux is the host operating system, which represents a contemporary Linux

server and provides multiple functionalities with a few vulnerabilities. The dataset

has three subsets of raw system call traces, including 833 traces of normal data, 4372

traces of validation data, and 746 traces of attack data. Training and validation traces

were gathered during normal activities of the operating system. The attack traces

were gathered under the cyber attack environment. Attack methods include “brute

force password guessing”, “add new superuser”, “Java Meterpreter payload”, “Linux

Meterpreter payload”, and “C100 webshell” [29]. The ADFA-LD dataset was claimed

to be more challenging to investigate than the traditional datasets since the modern

Linux environment has become more complicated than before [29]. Thus, ADFA-LD is

a new benchmark dataset for analyzing system call-based HIDS and is utilized in our

experiments. In our experiments, the attack traces and normal traces of ADFA-LD

69

are utilized. Multiple files in the dataset are combined into single files for experiments.

The dataset is prepared and stored in a bucket of the Google’s cloud storage system.

With Google Cloud Storage, users can store and retrieve large-scale data flexibly, re-

garding the time and the location. The default storage class of the bucket used for

experiments is Multi-Regional, and the location is ASIA. During an experiment, after

logging into the master node with SSH and launching the Spark shell, the attack traces

and normal traces of ADFA-LD are firstly retrieved from the bucket of Google’s cloud

storage system, followed by performing the complete training and testing phases for

intrusion detection.

4.4.3 Performance evaluation

Evaluation regarding the detection accuracy

The detection accuracy of a system call-based HIDS can be evaluated with the True

Positive Rate (TPR) and False Positive Rate (FPR) criteria, which are defined as [2],

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(4.3)

• True Positive (TP): The label of a system call trace is attack and the prediction is

also attack. The attack trace is detected correctly.

• False Positive (FP): The label of a trace is normal but the prediction is attack. A

normal system call trace is falsely detected as an attack trace.

• True Negative (TN): The label of a trace is normal and the prediction is also normal.

The testing system call trace is correctly predicted as normal.

• False Negative (FN): The label of a trace is attack but the prediction is normal. The

system omits an attack system call trace.

The Receiver Operating Characteristic (ROC) curve can provide an intuitive view

of the relation between the false positive rate (FPR) and the true positive rate (TPR)

[116]. In the proposed approach, the performance regarding detection accuracy is

evaluated using values of the area under the ROC curve (AUC). AUC can be a simple

metric to provide an overall evaluation of the detection accuracy. Using AUC values,

we have evaluated the performance regarding two aspects, i.e., the effectiveness of using

70

the multiple-length n-gram method for feature extraction, and the effectiveness of using

the TF-IDF method to construct feature vectors.

i. To test the effectiveness of using the multiple-length n-gram method for feature

extraction, the AUC values achieved using the multiple-length n-gram method are

compared with the AUC values achieved using the single-length n-gram method. For

the single-length n-gram method, we have tested the performance with the length of

n from 1 to 10. For each length of n, the AUC values of 10 experiments are recorded

and averaged in table 4.2. For the multiple-length n-gram method, we have tested the

performance with the maximum length of n from 1 to 10. For each of the maximum

length of n, the AUC values of 10 experiments are recorded and averaged in table

4.3. The averaged AUC values for both of the single-length n-gram method and the

multiple-length n-gram method are depicted in figure 4.6 for comparison. Based on

figure 4.6, for the multiple-length n-gram method, the AUC values reach a plateau when

the maximum length of n is greater than 5. For the single-length n-gram method, the

AUC values reach the maximum when n is equal to 5. Based on our implementation

methods and experimental results, the multiple-length n-gram method outperforms

the single-length n-gram method using the LR-LBFGS classifier when the sizes of n

(or maximum n) range from 1 to 10.

Table 4.2 : AUC values obtained from ten experiments using the single-length n-gram
method.

n E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10 Avg.

1 0.937 0.939 0.908 0.954 0.945 0.896 0.939 0.944 0.958 0.943 0.936

2 0.979 0.968 0.956 0.952 0.964 0.982 0.975 0.970 0.970 0.967 0.968

3 0.978 0.982 0.968 0.975 0.979 0.972 0.977 0.981 0.974 0.987 0.977

4 0.978 0.977 0.982 0.970 0.976 0.965 0.979 0.976 0.981 0.979 0.976

5 0.979 0.978 0.986 0.977 0.983 0.975 0.975 0.987 0.986 0.983 0.981

6 0.981 0.968 0.947 0.978 0.983 0.985 0.978 0.977 0.978 0.983 0.976

7 0.987 0.976 0.977 0.979 0.978 0.974 0.975 0.976 0.972 0.975 0.977

8 0.956 0.965 0.955 0.966 0.972 0.971 0.981 0.988 0.966 0.979 0.970

9 0.972 0.967 0.963 0.967 0.969 0.943 0.958 0.952 0.970 0.968 0.963

10 0.936 0.958 0.964 0.962 0.947 0.965 0.954 0.959 0.966 0.960 0.957

ii. To test the effectiveness of using the TF-IDF method to construct feature vectors,

for the testing traces, we have compared the detection accuracies of using only the

71

Table 4.3 : AUC values obtained from ten experiments using the multiple-length n-
gram method.

Max.
n

E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10 Avg.

1 0.885 0.940 0.936 0.945 0.956 0.945 0.951 0.922 0.935 0.943 0.936

2 0.978 0.957 0.966 0.963 0.976 0.981 0.965 0.976 0.973 0.974 0.971

3 0.970 0.986 0.978 0.974 0.986 0.967 0.985 0.968 0.973 0.978 0.977

4 0.977 0.979 0.986 0.969 0.973 0.975 0.988 0.979 0.985 0.957 0.977

5 0.988 0.984 0.989 0.987 0.982 0.980 0.990 0.978 0.985 0.981 0.984

6 0.981 0.992 0.987 0.980 0.982 0.987 0.990 0.985 0.979 0.983 0.985

7 0.986 0.985 0.985 0.987 0.981 0.985 0.992 0.984 0.982 0.980 0.985

8 0.981 0.977 0.989 0.988 0.983 0.989 0.986 0.981 0.989 0.981 0.984

9 0.980 0.981 0.980 0.987 0.977 0.985 0.986 0.979 0.991 0.983 0.983

10 0.980 0.979 0.987 0.989 0.979 0.993 0.980 0.992 0.983 0.983 0.985

Table 4.4 : AUC values obtained with the multiple-length n-gram method and only
the TF feature vectors for testing.

Max.
n

E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10 Avg.

1 0.807 0.841 0.818 0.739 0.756 0.935 0.770 0.658 0.813 0.817 0.795

2 0.836 0.878 0.859 0.890 0.929 0.886 0.844 0.906 0.850 0.860 0.874

3 0.928 0.926 0.938 0.947 0.973 0.948 0.957 0.925 0.938 0.935 0.942

4 0.913 0.973 0.940 0.904 0.974 0.913 0.957 0.964 0.946 0.944 0.943

5 0..912 0.971 0.874 0.895 0.979 0.970 0.970 0.912 0.981 0.928 0.939

6 0.968 0925 0.941 0.902 0.955 0.953 0.907 0.938 0.961 0.980 0.943

7 0.901 0.957 0.881 0.920 0.972 0.936 0.984 0.916 0.943 0.920 0.933

8 0.975 0.964 0.983 0.966 0.976 0.907 0.968 0.978 0.982 0.975 0.967

9 0.978 0.974 0.951 0.954 0.942 0.944 0.982 0.962 0.981 0.978 0.965

10 0.959 0.970 0.973 0.959 0.958 0.970 0.916 0.966 0.958 0.981 0.961

TF feature vectors with using the TF-IDF feature vectors adjusted by the Spark IDF

model generated from the training traces. The multiple-length n-gram method is used.

The AUC values of using only the TF feature vectors for testing traces are recorded

in table 4.4. For each of the maximum length of n, the AUC values of 10 experiments

are recorded and averaged. The averaged AUC values of these two cases (TF only

and TF-IDF) are depicted in figure 4.7. Based on our implementation methods and

experimental results, using only the TF feature vectors for testing shows unstable per-

formance, and using Spark IDF model generated from the training traces to adjust the

TF feature vectors of the testing traces is effective to improve the detection accuracy.

72

0 1 2 3 4 5 6 7 8 9 10 11
0.93

0.94

0.95

0.96

0.97

0.98

0.99

AU
C

 v
al

ue
s

The sizes of n (or maximum n) for the n-gram methods

 Single-length n-gram method
 Multiple-length n-gram method

Figure 4.6 : AUC values of the single-length n-gram method and the multiple-length
n-gram method.

0 1 2 3 4 5 6 7 8 9 10 11
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

AU
C

 v
al

ue
s

The sizes of maximum n for the multiple-length n-gram method

 TF feature vectors for testing
 TF-IDF feature vectors for testing

Figure 4.7 : AUC values of using TF feature vectors only and TF-IDF feature vectors
for testing traces.

73

1 2 3 4 5 6
20

40

60

80

100

120

140

160

180

200

220

Av
er

ag
e

ta
sk

 ti
m

e
of

 S
pa

rk
 e

xe
cu

to
rs

 (s
ec

on
ds

)

The number of Spark executors

 Maximum n = 1
 Maximum n = 6
 Maximum n = 10

Figure 4.8 : The scalability of SCADS. The number of Spark executors ranges from 1
to 6.

Evaluation of the scalability

Via the Dataproc API, the created Spark cluster can be flexibly scaled up or down

to test the scalability of the proposed approach. As we are using a free account of the

Google Compute Engine, the number of Spark executors in our experiments ranges from

1 to 6. In each case of the number of Spark executors, we have executed the system three

times, applying the multiple-length n-gram method with the maximum length of n=1,

6, and 10, respectively. The relevant average task time of Spark executors is recorded in

each case. As depicted in figure 4.8, regarding the average task time of Spark executors,

the approach of SCADS shows acceptable scalability. With the increase of number of

Spark executors, the average task time of Spark executors decreases apparently.

4.5 Summary

In this chapter, we have proposed SCADS, a scalable approach using Spark in the

Google cloud for host-based intrusion detection system with system calls. Based on

the experimental results, the proposed framework with Apache Spark and Google cloud

74

computing services can improve the detection efficiency of traditional system call-based

HIDS. Besides the algorithms used in our experiments, other existing intrusion detec-

tion algorithms may also be incorporated into this proposed framework with Apache

Spark and Google cloud computing services. However, as the current experiments are

conducted with a free account, the scale of computation is relatively limited. Therefore,

in the future experiments, we will keep tunning the system to achieve better system

performance, and we will also consider upgrading the account to a paid one for the

processing of real-time large-scale system call traces.

75

Chapter 5

Enhancing the Collaborative Security with Cyber

Threat Intelligence Information Sharing

5.1 Introduction

The term big data is prevalent in the research area of cybersecurity. Big data com-

monly refers to datasets with large size, regarding the volume, variety, and velocity.

Currently, the relationship between cybersecurity and big data has become more so-

phisticated. For enterprises, big data may bring threats as well as opportunities to

them. Although attackers have the chance to obtain the private and secret informa-

tion of the enterprises via the utilization of modern attack approaches with the analysis

of big data, the defenders can also analyze the large-scale data about attackers and

generate defensive methods to defend future attacks.

5.1.1 Motivation of attackers

A cyber attack refers to a set of intrusive methods toward some particular com-

puter systems or networks, manipulated by some people or associations, resulting in

malicious consequences, such as system damage, financial loss or information stealing.

For a particular enterprise, attacks may come from the adversaries or the internal net-

work. The attackers’ hacking demands and interests, such as distributing virus and

Trojans towards the targeted organizations to get the financial benefits, never termi-

nate. Attackers prefer to install malware into the targeted systems to obtain high

system authorities and steal private information of enterprises. Beyond traditional at-

tack strategies, the attack approaches are becoming more advanced and sophisticated

nowadays. Innovative attack patterns are kept being generated by adversaries. Profit

is not the only reason why attackers launch malicious attacks. Some attacks come from

well-organized terrorists and professional cybercriminals with sufficient funding. This

kind of attackers prefers to perform long-term social engineering methods to launch

complicated and advanced attacks toward large IT systems, endeavoring to obtain

76

some special purposes. Attacks are prepared thoughtfully and launched quickly, re-

sulting in severe private data leakage, financial loss or other serious consequences.

The “advanced persistent threat” [31], or APT, is the definition of this kind of

behavior. An increasing number of APT incidents have been witnessed during the past

few years. Attackers nowadays prefer to adopt APT approaches to hack IoT devices

and systems [110][112]. Absolute isolation from APT is impractical, as organizations

are inevitable to connect to the Internet. Small and medium enterprises, large corpo-

rations, security companies, and government agencies are all confronted with this kind

of challenge. Revolutionary defensive approaches are necessitated to be developed to

conform to the new attack patterns of APT and keep up with the pace of advanced

attackers.

5.1.2 Conventional defensive approaches

Defense is much more challenging than attack, as intrusions can happen by exploit-

ing only a few vulnerabilities, whereas defenders have to ensure the whole system they

protect is impeccable. Conventional defensive methods concentrate on scanning and

mining the system and software vulnerabilities. Vulnerabilities can have various types,

such as system or software backdoors, faulty administration of IT facilities, or other

sorts of human errors that are often exploited by social engineering strategies. This

kind of concentration is negative and obsolete when confronted with recent comprehen-

sive attacks. Although these methods are still valid for some kinds of attacks, however,

they cannot prevent most kinds of APT and present no information about attackers for

long-term defense. For instance, a system administrator may spot a malware in an op-

erating system and uses the antivirus software to remove that malware and fixes related

system and software vulnerabilities. This process is considered to be a full traditional

incident response activity. However, a severe security incident may still be ignored in

this case. The system administrator perceives no information about the origin of the

malware and the related attacker. Possibly, the installation of the malware is just one

of the steps of an advanced persistent threat. Even if the malware is eliminated, the

attacker may seek other vulnerabilities and reinstall a modified version of the malware.

77

5.1.3 Using cyber threat intelligence to analyze the attack patterns of

adversaries

Although there are methods to alleviate the impact caused by attacks, dealing with

occurred attacks is still cumbersome, especially for the recovery of loss. Therefore,

optimally, enterprises should prevent intrusive behaviors beforehand, instead of just

making responses or analysis after attacks have already occurred. The best time of de-

fense is the time when attacks are not happened yet, followed by the time when attacks

have just happened. The quicker that an attack is spotted, the more effective that the

incident response will be. E.g., if information about the domain names that contain

fraud content can be immediately shared with other enterprises, then the relevant web-

sites can be blocked by them timely to prevent future visits. Consequently, the concept

of actively detecting potential attacks is currently emerging. To prohibit attacks be-

fore they are launched, not only the vulnerabilities should be fixed, but the information

about attackers, or the attack patterns, should be perceived to optimize the effect of

defense. Attack patterns are convincing to represent essential information about attack

techniques utilized by adversaries. Consequently, by analyzing attack patterns, there

is a larger possibility for enterprises to predict future attacks and take proper actions

to secure the systems in advance and avoid compromises. Attack patterns are usually

generated from deep threat analysis of the data about attackers.

Although attacks cannot be monitored before they are launched, the threats can

be analyzed. A threat has the potential of exploiting vulnerabilities to compromise IT

systems. The threats can be classified as low-leveled threats such as threats related to

system and software vulnerabilities, and high-leveled threats such as APT. The active

threat analysis approaches are helpful to gain the information about sophisticated novel

attack methods. Utilizing cyber threat intelligence can assist the deep threat analysis.

The term “Cyber threat intelligence” or “CTI” was firstly defined by Gartner in 2013,

and the meaning of “Intelligence” is referred as both of the information about enemies

and the computational ability:

• According to Gartner’s definition in 2013, “cyber threat intelligence” is “evidence-

based knowledge, including context, mechanisms, indicators, implications and action-

able advice, about an existing or emerging menace or hazard to assets that can be used

to inform decisions regarding the subject’s response to that menace or hazard.” [95]

78

• Based on the definition of Merriam-Webster dictionary, “intelligence is the ability to

learn or understand or to deal with new situations; information concerning an enemy

or possible enemy; the ability to perform computer functions.” [97]

CTI can facilitate the processing of the large quantity of threat information that in-

dustries confronted nowadays. The sharing of threat information is the key component

of CTI, which will be elaborated in the rest of this chapter. The contribution of this

chapter is that the issues related to threat intelligence information sharing are stud-

ied, and then a real-time scalable threat intelligence information sharing framework is

proposed to enhance the collaborative security.

The rest of this chapter is composed as follows. In section 5.2, we investigate the

current threat information sharing ecosystem, including the famous three models of

the threat information sharing process, the drawbacks of conventional sharing methods,

and some new standards and platforms for the automatic exchange of structured threat

information feeds. In section 5.3, we analyze the necessity of constructing a scalable

real-time threat information sharing system in the cloud. In section 5.4, we provide

the system design specifications based on some recent notable platforms. In section

5.5, we present the summary of this chapter.

5.2 The threat information sharing ecosystem

The functionality of CTI can only be maximized via the “sharing” or “exchange”

of threat information. Many organizations are rapidly becoming active consumers of

CTI, as they can obtain the threat information that is associated with APT. They can

understand the behaviors of attackers thoroughly with the threat information and then

customize their cybersecurity systems. The “threat information” is the investigated

and interpreted information that is practical and actionable to the defense of threats.

Complete threat information includes multiple factors, such as the attacker’s identifi-

cation, attack approaches, previously launched attacks, attack targets, vulnerabilities

of the targeted systems, and possible solutions. According to “Cybersecurity Informa-

tion Sharing Act of 2015 (CISA)” [36], threat information is comprised of two phases,

namely, Threat Indicator and Defensive Measure:

• Threat Indicator: The threat indicator, or the indicator of compromise (IOC),

79

represents information about malicious reconnaissance, attack methods, vulnerabili-

ties, internal threats, malicious cyber commands, actual or potential harm, and other

attributes.

• Defensive Measure: The defensive measure is related to how an information sys-

tem should cope with threats and vulnerabilities.

Internet users and companies can use the generated threat information to judge

the risk of opening some particular websites or running some specific executable files.

Therefore Internet frauds can be relatively prevented. Some characteristics of threat

information are listed below:

• The threat information is usually generated from analyzing the threat data from

heterogeneous sources, and available as feeds for integration; the generated threat

information can either be short-term or long-term;

• The threat information does not present information about vulnerabilities only; it

mainly provides attack patterns of adversaries so that the defense can be more active;

• The threat information feeds can be integrated into organizations’ defense systems,

such as malware protection systems, firewalls or intrusion prevention systems, either

as the system update or for the incident response purposes.

For a particular organization, its threat information mainly comes from three ori-

gins, namely, the intranet, the public and the collaborators:

• The intranet: The threat information of intranet includes records and logs from de-

fensive tools and devices such as antivirus software, intrusion detection systems (IDS),

and the firewalls.

• The public: The public refers to sources out of the community. The public threat

information is usually free and easy to obtain. However, the quality cannot be ensured.

• The community collaborators: Community collaborators for threat information

sharing are other participants within a community that has a mutual defensive aim.

Joining an active community that expedites structured threat information sharing can

help enterprises to grasp a broad and quick view of the cyber threat environment. The

80

Source‐Subscriber Peer‐to‐Peer Hub‐and‐Spoke

Figure 5.1 : Three models of the threat information sharing process. Modified from
[24].

participants of the community can be individuals such as students, threat analysts, and

academic researchers. They also can be groups such as private businesses, government

organizations, and research institutes.

It is difficult for enterprises to maintain security without collaboration, as an iso-

lated enterprise cannot acquire sufficient, reliable, and multi-scope threat information.

The process of sharing can enhance the diversity, quantity, and quality of the threat

information and hence can produce an all-around description of attackers. Via threat

information sharing, threat analysts from different enterprises within the community

can work together to solve the most complex security problems. Contributions from

various enterprises can accomplish a set of comprehensive and multi-scope threat in-

formation, which in turn can bring benefits to each of those enterprises. E.g., if an

attack is discovered in one enterprise, relevant threat information can be shared with

other enterprises in time to prevent more attacks. In general, as shown in figure 5.1,

the process of threat information sharing can be defined by three models, namely,

Peer-to-Peer, Source-Subscriber, and Hub-and-Spoke [24]:

• Peer-to-Peer: A couple of collaborators share threat information with each other

according to some standards and agreements.

• Source-Subscriber: A couple of consumers receive the threat information dis-

tributed from a single producer.

• Hub-and-Spoke: A centralized unit receives and analyzes the threat information

contributed from multiple collaborators, and then the processed threat information can

81

be consumed by the collaborators.

Conventional threat information sharing methods are mostly based on the Peer-

to-Peer and Source-Subscriber models, whereas the Hub-and-Spoke model has been

broadly accepted for the development of the future-generation threat information shar-

ing systems.

5.2.1 Drawbacks of conventional sharing methods

Conventionally, the sharing of threat information was a manual process. Threat

information is not shared in a real-time manner. Threat analysts exchange their threat

information via emails, forums, and web pages. They publish information regarding

the encountered threats and their actions online. This mechanism may be practical

when there was a small amount of threat information. However, as the volume of threat

information grows larger than before, this mechanism encounters the dilemma, which

has three major drawbacks:

• Security and privacy: The privacy of the shared threat information cannot be

guaranteed, as the information is directly shared on the Internet forums and web pages

without encryption, the attackers can obtain them easily. Due to this reason, many

enterprises do not prefer to share their threat information online.

• Authenticity and dependability: The authenticity and dependability of the

threat information may not be well-checked before they are submitted online. E.g.,

some organizations may encounter false alarms on their defense systems but share the

false information online, which may mislead other organizations.

• Efficiency and efficacy: The more time it takes to update the defensive deployment

with the threat information, the more possibility for the system to be compromised

by new attacks. Regarding the variety of attack approaches, the volume and the

generation velocity of related threat information because of the increasing amount of

the cyber attacks, analyzing the information by human resources is an arduous work

that could take excessive time, and it may be tedious for anyone to grasp a complete

view of the threat environment by browsing forums or web pages. Important and

newly updated threat information may be easily ignored in this case. Moreover, the

82

threat information for sharing is usually not in a standardized structure, which makes

it extremely cumbersome for organizations to understand and integrate.

Trust is the dominant factor regarding the secure sharing of threat information. To

preserve the data privacy and trust for the sharing of threat information, Fisk et al.

specially defined three principles, namely, “Least Disclosure, Qualitative Evaluation,

and Forward Progress”, and implemented them with engineering methods [42]. The

system of an enterprise may be compromised if its sensitive threat information is pre-

sented to untrusted people or groups. E.g., if the threat information about some kinds

of attacks is uncovered, the attacker may realize that the information has been investi-

gated, and then does modifications to the attack approaches, resulting in ineffectiveness

of the defense system. Therefore, threat information cannot be easily shared with the

untrusted public and organizations should consolidate with a trusted community for

the threat information exchange.

5.2.2 New standards and platforms for the automatic sharing of structured

threat information feeds

Obviously, manual and unorganized threat information sharing methods are grad-

ually outdated. Currently, some innovative platforms and standards that are con-

structive to the automatic sharing of threat information have been developed. Those

normalized languages, dictionaries, and platforms facilitate standardized representa-

tion and automatic integration of the threat information:

• The standardized languages and dictionaries endeavor to define all of the threat infor-

mation about computer systems, software weaknesses, vulnerabilities, configurations,

platforms, attack patterns, etc. in a machine-understandable manner.

• The platforms incorporate those languages and dictionaries to perform efficient col-

lection, processing, and sharing of threat information.

With these standards and platforms, organizations can produce their standardized

threat information feeds for the automatic sharing within the community. The inte-

gration of the feeds can be efficient concerning computational resources. Table 5.1

summarizes the commonly used standards and platforms for threat information shar-

ing. Beside of the standards and platforms listed in the table, there are some other

83

Table 5.1 : A summary of the standards and platforms for threat information sharing.

CTI tools Category Threat information presented or functionalities

CVE Dictionary Identifiers of vulnerabilities

CWE Dictionary Software security weaknesses

CPE Dictionary Description of IT platforms

CCE Dictionary Identifiers of system configuration issues

CAPEC Dictionary Identified attack patterns

MAEC Language Machine-understandable malware information

CybOX Language Information about cyber observables

OVAL Language System information and machine states

STIX Language Standardized threat information

XCCDF Language Security checklists

CVSS Framework Provides severity scores of vulnerabilities

TAXII Framework Facilitates secure and automatic threat information sharing

OpenIOC Framework Facilitates quick information sharing with an XML schema

studies related to automatic threat information sharing. E.g., ENISA provides an

analysis of the standards and platforms for threat information sharing, including their

pros and cons [38]. Costa et al. proposed a standardized ontology that facilitates the

sharing of threat indicators among multiple participants while protecting the sensitive

information [26]. Burger et al. proposed a taxonomy of threat information sharing ap-

proaches with an agnostic framework [17]. Iannacone et al. proposed an ontology for

cyber threat knowledge graphs to standardize threat information from heterogeneous

sources [68].

5.3 Constructing a scalable real-time threat information shar-

ing system in the cloud

Within a trusted community, to promote the automatic sharing of threat informa-

tion, not only a set of standards should be utilized to compose threat information as

structured feeds, but a scalable real-time system should be implemented. An ideal

threat information sharing system should promote the automatic integration of threat

information, and keep the insight with the latest global cyber threat environment and

the threat situation in the local area. Currently, large-scale threat data streams are

continuously being generated from heterogeneous sources. These threat data streams

may be essential resources for the threat analysis. However, due to their high volume,

velocity, variety, and veracity, relevant technologies need to be employed to process

84

them. The sharing of the generated threat information feeds should also be conducted

timely.

Currently, many academic, government or commercial CTI providers choose to

maintain a centralized system for the gathering, processing, and sharing of real-time

threat information, such as MITRE TAXII, IBM X-Force, WEBROOT BrightCloud,

EclecticIQ platform, and AlienVault OTX platform. Deploying the threat informa-

tion sharing system in the cloud has been widely adopted. The elasticity, computa-

tional ability, and storage capacity of cloud computing ensure that the computational

resources can flexibly match the demand of the threat information sharing system.

Meanwhile, the development of the big data tools also brings new resources to the con-

struction of the information sharing system. The tools described below have notable

scalability:

• Hadoop: Apache Hadoop is a cluster-based big data processing and storage frame-

work. A master node manages multiple worker nodes for computation. Next generation

MapReduce on YARN is the computational framework, and HDFS is the storage frame-

work. HDFS can be applied as a long-term storage for the generated threat information

feeds. However, analyzing the large volume of real-time threat data with MapReduce

may cause additional I/O time among hard disks because of shuffling.

• Kafka: Apache Kafka is a modern distributed streaming platform. Kafka was ini-

tially designed for the gathering and caching of data streams. Recently, besides these

functions, the function of processing data streams has been developed as well in Kafka.

In the real-time threat information sharing system, Kafka can work as a message broker

between sources of threat data and the processing system. Kafka cluster can persist

streams of threat data as topics, each of which can have multiple consumers include

Spark Streaming.

• Spark: Apache Spark is a distributed in-memory big data processing framework. In

Spark, intermediate datasets can be persisted into distributed memory to save the cost

of I/O. Spark also has a master-workers deployment mode. The Resilient Distributed

Dataset (RDD) is Spark’s fault-tolerant distributed dataset abstraction. The fault-

tolerant mechanism of Spark is based on the DAG of RDDs. Spark Streaming is an

ideal solution for processing real-time threat data.

85

• Alluxio: Alluxio is an open source distributed in-memory storage system, which

also has a master-workers deployment mode. It can be deployed in the same cluster

within which Spark and Hadoop are deployed, as an off-heap storage solution for the

intermediate datasets of the threat information sharing system.

In general, deploying the threat information sharing system as the “Software as

a Service (SaaS)” mode in the cloud with big data tools has the following aspects of

advantages:

• Elasticity: As the system is deployed in the cloud instead of physical machines, less

space and devices are required, which save computational resources. Plenty of cloud

computing resources can be elastically allocated to scale instantly with the demand,

and they can be utilized flexibly. The contemporary IaaS, SaaS, and PaaS in the cloud

are user-friendly, and the consoles can be easily accessed via web browsers.

• Scalability: The rapid online analysis of real-time threat data streams can be real-

ized by crafting the scalable processing functionalities of big data tools, whose scalabil-

ity ensures the computational capability and storage capacity of cloud computing can

be scaled simultaneously with the increasing amount of threat data. Therefore this is

a practical solution of CTI in the big data environment.

• Robustness: The combination of cloud computing and big data tools facilitates

the resilient and reliable sharing of the threat information. Occasionally, the threat

information sharing system may encounter an abrupt increase of user accesses due to

the burst of new malware. High-throughput cloud computing services can address this

kind of issues related to data communications. The big data tools such as Hadoop and

Spark also have their particular fault-tolerance schemes to handle errors encountered

when processing threat data streams. Moreover, employing services in the cloud can

avoid all of the misuses as when operating physical machines, for cloud computing

services are mainly accessible via secured APIs.

5.4 System design specifications

Figure 5.2 sketches the framework of a scalable real-time threat information sharing

system in the cloud. The system consists of five main units and four groups of security

86

Trust evaluation unit

Collection unit

Centralized analytics unit

Storage unit Integration unit

Collaborators

Collaborator 1

Collaborator 2

Collaborator 3

Collaborator 4

...

Trust score

100

98

94

88

...

Watchlist of trust scores

Keys

Key 1

Key 2

Key 3

Key 4

...

Feeds

Feed 1

Feed 2

Feed 3

Feed 4

...

Indexed storage of feeds

Raw threat data

Threat information
feeds

NoSQL storage
in the cloud

Cluster Computing
in the cloud

Collaborators

System
administrator

System
engineers

Threat
analysts

Preprocessing and
feature extraction

Analytics of threat
patterns

Generation of the
structured threat
information feeds

Verification of the
generated threat
information feeds

Automatic
integration

Reports
generation

Visualization

Caching

Figure 5.2 : The scalable threat information sharing system in the cloud.

personnel shown in figure 5.3. Each of the five main units achieves a major and

particular feature and cooperates with other units simultaneously:

• Trust evaluation unit: This unit evaluates the trustworthiness of each collaborator

by maintaining a watchlist of trust scores for all collaborators.

• Threat data collection unit: This unit performs the gathering of raw threat data

from heterogeneous sources; this unit also collects structured threat information feeds

submitted by collaborators.

• Centralized analytics unit: This unit performs the centralized preprocessing and

analytics of the threat data; and the generation, interpretation, and investigation of

the structured threat information feeds. Ideally, the centralized analytics unit should

be able to perform deep packet inspection (DPI) and APT analysis.

• Storage unit: This unit performs caching of the collected threat data; this unit

also performs indexed and searchable storage of the generated standardized threat

information feeds.

• Integration unit: This unit achieves the automatic and secure sharing, distribution,

and integration of the structured threat information feeds for collaborators. A user-

friendly API is equipped for the enhancement of this unit.

Four groups of security personnel related to the system are described below:

88

5.4.1 Trust evaluation

The watchlist of the trusted collaborators is maintained by the trust evaluation

unit; and supervised by the system engineers and the system administrator. Only

the collaborators in the watchlist can submit and consume the threat information

feeds. Each of the collaborators in the watchlist owns its trust score, which is used to

judge whether a collaborator should be kept in the watchlist or removed from it. The

trust score of a collaborator is judged by multiple factors, such as the quantity and

quality of the collaborator’s threat information feeds submitted to the system and other

collaborators’ remarks. The collaborators are encouraged to submit more high-quality

threat information feeds to get higher trust scores. The collaborators with higher trust

scores can consume the more sensitive threat information feeds from the system and

assist the system operations.

5.4.2 Threat data collection and caching

The threat data is mainly gathered by the collection unit from two categories of

sources:

i. Structured threat information feeds submitted by collaborators. The threat infor-

mation feeds for submission are recommended to be organized into a standardized

structure such as STIX to save the computational resources of the centralized ana-

lytics unit. Each feed contains the name and ID of the threat information and the

content. An application programming interface (API) is provided to collaborators for

the submission of their threat information feeds. The collection unit classifies the sub-

mitted threat information feeds into groups based on the names and IDs for further

processing.

ii. Structured and unstructured raw threat data related to security incidents from

heterogeneous sources and various IoT platforms [119], such as IP addresses, URLs,

MD5 hashes, Internet files, web pages, vulnerabilities, images, network traffic data,

the content of webmails and domain names. IP addresses that are related to hacking

behaviors, URLs of websites that contain Trojans, or emails that have phishing content

can be discovered by analyzing these threat data. Collected raw threat data are cached

in the storage unit.

89

5.4.3 Centralized threat data analytics and generation of the threat infor-

mation feeds

In the centralized analytics unit, the large-scale threat data that transferred from

the collection unit are analyzed. The execution can be accelerated by the batch pro-

cessing methods with executable scripts. Threat analysts design and implement the al-

gorithms and techniques, and take the responsibility of regularly inspecting the quality

and dependability of the intermediate datasets and the generated threat information

feeds. As the threat data are categorized into “structured threat information feeds

from collaborators” and “raw threat data from heterogeneous sources”, they will be

processed separately according to their categories:

i. For those structured threat information feeds submitted by collaborators, the cen-

tralized analytics unit will verify the quality, integrity, authenticity, and availability

of the feeds, assisted by the threat analysts. Unqualified feeds will be discarded, and

qualified feeds will be classified, organized, and passed to the storage unit for sharing.

As the format of feeds should conform to one sharing standard such as STIX, those

feeds that conform to other standards should be reformatted or restructured before the

storage.

ii. For those raw threat data in inconsistent and diverse formats, the data have to be

preprocessed, and important features have to be extracted. Thus the centralized ana-

lytics unit will apply modern data mining techniques to them. Automatic preprocessing

and feature selection techniques will be utilized firstly, followed by the classification or

clustering with machine learning models.

Raw threat data are mostly unstructured and usually have numerous flaws and

duplication. Data preprocessing and feature extraction techniques are helpful to nor-

malize and convert raw threat data into the formats that are machine-readable and

can adapt to the machine learning models. After preprocessing and the selection of the

representative and standardized features, the threat data are assumed to be flawless

and consistent in the formats. These techniques have been realized in some of the

latest big data tools. E.g., in Apache Spark, these techniques are realized with MLlib

in a scalable manner and are categorized into three collections, namely, Extraction,

Transformation, and Selection. Scalable feature extractors, transformers, and selectors

90

are applicable with Spark. E.g., TF-IDF and n-gram are applicable for the threat data

in the text format, PCA is applicable for the threat data in the image format such as

human face images.

Using machine learning techniques can achieve the more practical understanding of

threat patterns. Machine learning models such as Bayesian networks, decision trees,

k-nearest neighbor classification, k-means clustering, hidden Markov model (HMM),

support vector machine (SVM), and artificial neural networks (ANN) can be used in

this process. The latest Spark MLlib implements various machine learning algorithms

as pipelines composed of DataFrames. A pipeline is a flow of directed stages. The

DataFrames support many data types and can enable users to build and tune machine

learning pipelines quickly. A generated threat information feed can be represented as

a DataFrame at the final stage of a pipeline, and the DataFrame can contain multiple

columns for the threat information feed, such as its name, ID, type, and description.

The finally generated threat information feeds should be automatically integrated into

the collaborators’ defensive measures and platforms. Therefore, to ensure the feeds

are understandable for both computer and threat analysts, the structure of the threat

information feeds should be standardized by the centralized analytics unit for automatic

and time-efficient sharing and integration. The format should conform to one sharing

standard such as STIX, and the feeds will be passed to the storage unit for sharing.

Each of the feeds contains the name and ID of the threat and the content. To ensure

the best quality of the threat information feeds, the threat analysts can make auxiliary

adjustments to them.

5.4.4 The indexed storage of the threat information feeds

The storage unit takes the responsibility to maintain an indexed and searchable

database that contains the generated threat information feeds for sharing. As cyber

attacks are kept being generated on a daily basis, the total amount of threat data is

tremendous. Therefore, a massive amount of threat information feeds may be gener-

ated, imposing a heavy load on the traditional relational databases. Thus the latency

can be high when a collaborator intends to search and integrate a threat information

feed.

In this case, open source and distributed NoSQL databases such as Apache HBase

91

and Apache Cassandra are taken into consideration. These cloud-based NoSQL databases

have their fault-tolerance measures and easy-to-use APIs and show the linear scalabil-

ity, efficiency, and robustness when deployed on cloud computing infrastructures. They

provide real-time queries based on the key-value pairs, and the values can be timely

returned with the input keys. The keys can be the IDs of the threat information feeds,

and the values can be the contents. The XML format is supported, which is suitable for

some threat information languages such as OVAL. The database can be deployed on a

distributed storage system such as HDFS for the permanent and fault-tolerant storage

of the threat information feeds. The feeds are ranked and grouped in the database

based on some criteria, for example:

• The generated threat information feeds have different levels of confidentiality. Only

those collaborators who have higher trust scores can get access to the threat information

feeds with high confidentiality levels.

• The threat information feeds for integration are classified in the database, e.g., feeds

that are associated with Distributed Denial of Service (DDoS) attack and botnet can

be generalized into the same group, and feeds that are related to spear phishing and

watering hole attacks can be categorized into another group, so that collaborators can

choose relevant category of threat information accordingly for easier integration.

5.4.5 The API for automatic and secure integration of the threat informa-

tion feeds

An API with secure access enables the automatic integration of the latest, real-

time and actionable threat information feeds into the collaborators’ defensive systems

to save the cost of human resources. The collaborators can get access to the complete

series of available and searchable threat information feeds via the API. With the API,

the system can enable customized integration services to highlight the most important

threat information feeds and facilitate the optimized integration of the threat informa-

tion, to guarantee that the feeds integrated into a particular collaborator’s defensive

system conform to the current and forthcoming threat situation of that collaborator.

Recommendations for the integration of the threat information feeds are provided

according to the type of that collaborator, the statistics of threat information feeds

that the collaborator integrated, and other information based on the footprints of

92

that collaborator in the sharing system. The recommendations can either be machine

generated or provided by threat analysts. Whenever new security incidents occur, the

system can also notify and warn the trusted collaborators in the watchlist through the

API, for the resistance of future identified or zero-day attacks. Scalable data privacy

preservation techniques [166] can be utilized in the sharing process and incorporated

into the API to prevent eavesdropping during the communication of data streams on

the Internet.

Currently, many CTI providers provide report and visualization services of the

threat information via the APIs. A report is a detailed and comprehensive summa-

rization of the threat information for a particular collaborator, and the visualization

is a set of methods in a visual manner that helps human analysts to understand the

text-based data easily. The visualization is a powerful combination of art, computer

science, and statistics. Compared with detailed yet complicated reports, visualization

can bring multi-scope views of the latest anomalies in the big data environment to the

threat analysts. The collaborators can understand their potential threats confronted

within the local area via a visualization of the time and locations of the occurred

attacks. Therefore, the visualization is one of the essential parts of the sharing system.

5.4.6 Choosing the most valuable threat information feeds for integration

Although plenty of relevant threat information feeds are available for sharing in the

database, not all of the threat information feeds provided are suitable for a particular

collaborator. Some issues have risen during the process of sharing and integration:

• The cost: Some commercial CTI providers charge the collaborators for using their

services, the integration of additional feeds may bring the extra cost for collaborators.

• The latency: It may be a repetitive and time-consuming process to choose the most

appropriate feeds from the massive database.

• The defensive outcome: Collaborators may mainly concentrate on those popu-

lar yet unnecessary feeds for integration, but neglect the vital information for them

conveyed by uncommon feeds.

Therefore, the collaborators should understand their defensive demands and choose

the most valuable threat information feeds for integration to save the time and cost as

93

well as maximize the defensive outcome. The following aspects may be considered by

the collaborators:

• The potential types of threats and attacks that they may encounter, according to

the varieties of the IT systems and the vulnerabilities.

• The most vulnerable and private data that should be protected.

• The severity of financial or privacy loss that the collaborators may suffer if their

systems were attacked.

For instance, if an enterprise possesses many private and worthy documents, then

one possible threat is the encryption caused by the ransomware. Then the enterprise

should focus more on the feeds that are linked to this threat. The origins of the threat

information feeds should be marked by the system, thus via proper source investiga-

tions, the collaborators can know which source that each threat information feed comes

from, and make proper responses. When it comes to the threat information conveyed

by different feeds, possibly there are some overlaps and duplication. Therefore, even

though the qualifications of the threat information feeds in the database have been

checked by the system, the collaborators still have to analyze the dependability, nov-

elty, quality, and integrity of the feeds.

5.5 Summary

In this chapter, we have briefly introduced cyber threat intelligence and the sig-

nificance of the automated threat information sharing. We have introduced a scalable

real-time threat information sharing system in the cloud, based on current researchers’

and commercial companies’ achievements. Fortunately, it is evident that various new

standards are being released, and numerous researchers and commercial enterprises

have been endeavoring to seek the approaches to incorporate these standards into their

threat information sharing platforms to promote the automatic formation and integra-

tion of the threat information feeds. Therefore, the computational cost and human

resources can be saved, and the defensive outcome can be maximized. However, the

amount of available standards and platforms for threat information sharing is exces-

sive, where a new dilemma has arisen. Within a particular community that utilizes

94

the same sharing standard, the exchange process may be efficient, yet the communi-

cations between different communities that utilize different sharing standards may be

complicated. Therefore, we hope that in the future, the reformatting or restructuring

methods between various standards should be enhanced to make the exchange pro-

cesses more efficient, so that different communities can work together seamlessly as a

broad community to defend cyber threats.

95

Chapter 6

A Private and Scalable Online Virus Detection

System with Multiple Anti-virus Engines

6.1 Introduction

The battle between computer viruses and anti-virus systems has last for decades.

Nowadays, the intrusive cyber behaviors have become more complicated and diversified

in the current big data environment [112][153]. Computer systems are constantly con-

fronted with new kinds of computer viruses, which have evolved to more sophisticated

and stealthy forms to hide from the detection of anti-virus systems [110]. Anti-virus

organizations currently may own a variety of advanced detection technologies and large-

scale repositories of virus samples. However, for one particular anti-virus engine, false

alarms or missed alarms during virus detection can still occur occasionally. Recently,

some anti-virus systems are composed of multiple anti-virus engines. This kind of sys-

tem allows users to upload suspicious samples online and then presents the users with

multiple independent detection results. Via summarization and comparison of these

results, both of the missed alarm rate and the false alarm rate can be reduced. Virus-

Total [135] and VirSCAN [134] are two signature systems that provide multi-engine

virus detection. But according to the information provided on the official websites of

VirusTotal and VirSCAN, these systems may save user-uploaded suspicious samples

and share them to the security enterprises that own the anti-virus engines. Currently,

some anti-virus engines provide cloud-based anti-virus services, and user files may be

uploaded to the cloud for analysis. These factors may cause some privacy-leakage prob-

lems [163][166][162], particularly for the samples with high confidentiality. Therefore,

it is necessary to construct a multi-engine system that can provide accurate and private

virus detection services to those users with high privacy requirements.

Motivated by this issue, in this chapter, we provide a private online virus detection

system, which incorporates 32 anti-virus engines. Our contributions are: (1) The

proposed system can perform the “isolated detection and update” of the anti-virus

96

Upload samples

Analyze samples

Already
scanned ? Scan again? End

Allocate tasks

Detection
engine 2

Detection results

Summarize

Detection
engine n

Detection
engine 1

yn

y n

Figure 6.1 : The virus detection flowchart.

engines. This mechanism guarantees that the uploaded confidential samples are not

exposed to the Internet, during either virus detection or system upgrade. (2) A web

interface is provided so that the system users can upload suspicious samples via web

browsers and the detection results from multiple anti-virus engines can be displayed

on the web interface. (3) The low-coupling design of this system is scalable to support

the distributed deployment mode.

The rest of this chapter is composed as follows. In section 6.2, we describe the virus

detection process of the proposed system. In section 6.3, we introduce the system design

specifications. In section 6.4, we present the system testing process. In section 6.5, we

provide the summary of this chapter.

6.2 The virus detection process

The system performs the virus detection process according to the flowchart illus-

trated in figure 6.1. After a sample is uploaded, the system will perform an immediate

analysis. If the sample has been scanned before, the system can inform the user and

provide the relevant detection history; the user can also request the system to scan the

sample again. For the virus detection, the SHA-1, SHA-256 and MD5 hash values of

the sample are generated, then the detection tasks are created and allocated to multiple

97

 HTTP protocol

HTTP proxy

VirtualBox

Detection
engine 1

 The detection engine
 management subsystem

 The sample
 management subsystem

Detection
engine 2

Detection
engine 3

The main
server

The virtual
machine

server

HTTP proxy

VirtualBox

Detection
engine 4

Detection
engine 5

Detection
engine 6

The virtual
machine

server

MULTISCAN

The update
management
subsystem

Figure 6.2 : The system architecture.

anti-virus engines based on their execution status. Finally, multiple detection results

are summarized and displayed on the web interface.

6.3 System design specifications

In overall, the system is composed of five core modules, including the web interface,

the sample management subsystem, the engine management subsystem, the packaging

scripts, and the update management subsystem. The system architecture is depicted

in figure 6.2. The system design is low-coupling, for the communications among the

system modules are launched with HTTP. The system is scalable with this kind of

design. Ubuntu Linux is the primary operational environment of the proposed system.

Apache2 is utilized for building the web server, accompanied with Laravel PHP and

MySQL. The open-source software VirtualBox is utilized for virtualization.

6.3.1 The web interface

The design style of the web interface is concise and similar to VirusTotal. Figure 6.3

represents the webpage for uploading suspicious samples. The web interface is a unified

API of the system for the interactions with the system administrator, system users, and

third-party applications. Compatibility is the main advantage of building the system

interface on web browsers. The browser-server design ensures that the accesses of users

98

 MultiScan Multi-engine anti-virus platform Engine Status User Center

MULTISCAN

Upload File

Click to choose the file to upload

Figure 6.3 : The webpage for uploading suspicious samples.

are not limited by hardware and operating systems. Users can also get access to the

system using mobile devices. E.g., if a user has an Android smartphone, the newly

downloaded APK files can be uploaded to the system immediately for virus detection.

As the web interface is the entry of the whole system and the control terminal for both

of regular users and the system administrator, the relevant access control mechanism is

essential. In the proposed system, the web interface is composed of multiple webpages,

which have various functionalities. The accessible webpages for regular users and the

system administrator are different. After logging into the system with username and

password, on the upload page, a user can upload a single suspicious sample or multiple

samples compressed in an archive. The detection results of multiple anti-virus engines

can be summarized and displayed on the result page for the user. On the management

pages of the web interface, the system administrator can check the system execution

status and conduct user management. Table 6.1 describes the webpages of the interface

and their functionalities.

JSON API is provided in the system to facilitate third-party applications uploading

samples and retrieving detection results automatically. The information is transmitted

in JSON format. As the proposed system utilizes RESTful API, third-party applica-

tions can upload samples, check the anti-virus engine status, and retrieve the detection

99

Table 6.1 : Webpages of the interface and their functionalities.

Class Webpage Functionalities User Types

The webpages
for virus
detection

Home page Introduction of the system. All users
Upload page Upload suspicious samples. Logged-in users,

system
administrator

Result page View the detection results of
one user’s uploaded samples.

The logged-in
user who
uploaded the
samples, system
administrator

The webpages
for system and
user
management

User center
page

Modify the password, renew the
access token, etc.

Logged-in users,
system
administrator

Upload
history page

View all uploaded samples of
one user and the relevant
detection results.

Logged-in users,
system
administrator

Full history
page

View all uploaded samples of all
users and the relevant detection
results.

System
administrator

User
management
page

Add or delete users, modify the
passwords of all users, etc.

System
administrator

System status
page

Check the status of CPU,
RAM, and network, etc.

System
administrator

Statistics
page

Check the statistics, such as the
number of samples uploaded
daily; the average detection
time of all anti-virus engines,
etc.

System
administrator

results. After logging in, on the user center page, a user can generate the access to-

ken required for JSON API access. The code below represents the status of anti-virus

engines in JSON format.

{

"result ": "success",

"engines ": [

{

"name": "f-prot",

100

"full_name ": "F-Prot",

"platform ": "Windows",

"library_date ": "01 -05 -2017" ,

"status ": "online"

},

...

{

"name": "symantec",

"full_name ": "Symantec Endpoint Protection",

"platform ": "Windows",

"library_date ": "02 -05 -2017" ,

"status ": "online"

}]

}

The “engines” part represents the status of anti-virus engines in the system, in-

cluding the name, the operational status (online, offline, or updating), the operating

system, and the update date of virus library. The code below represents the standard-

ized detection results returned in JSON format.

{

"results ": {

"symantec ": {

"result ": "OK",

"full_name ": "Symantec Endpoint Protection",

"library_date ": "02 -05 -2017"

},

...

"f-prot": {

"result ": "Virus",

"full_name ": "F-Prot",

"library_date ": "01 -05 -2017"

}

101

},

"total ": 32,

"nothreatsNum ": 20,

"errorNum ": 0,

"detectedNum ": 12

}

The “results” part represents the results of the anti-virus engines after a sample

has been uploaded to the system. If a result is “OK”, then the sample is benign

for the relevant anti-virus engine; if a result is “TIMEOUT” or “ERROR”, then the

corresponding anti-virus engine encounters errors or malfunctions; if a result is “Virus”,

then the sample is malicious. The “nothreatsNum” represents the number of engines

that report benign. The “errorNum” represents the number of engines that encounter

errors or malfunctions. The “detectedNum” represents the number of engines that

report malicious.

6.3.2 The sample management subsystem

The sample management subsystem manages the uploaded samples from users. Af-

ter the samples are uploaded, the sample management subsystem will analyze them

instantly. For an over-sized sample, the subsystem can prompt an error message on

the web interface, informing the maximum permitted size. For an archive of samples,

the subsystem can unzip it and create a batch task; if the archive contains an exces-

sive number of samples, the subsystem can also prompt an error message on the web

interface, informing the permitted number of maximum. If a sample has already been

scanned, then the relevant detection history can be retrieved, or the sample can be

re-scanned.

6.3.3 The engine management subsystem

The most unstable factor of the system is the condition of 32 anti-virus engines.

Some of the anti-virus engines are free to use without commercial redistribution, while

for some other engines the services have to be purchased. The anti-virus engines are

developed by various companies, the functionalities are different, and they require dif-

ferent operational environments. Uncertain detection results may be generated due to

102

the instability of execution or update. Therefore, it is critical for the status monitoring

and error handling of these anti-virus engines to make sure that they can execute and

update efficiently and proper detection results can be returned.

Therefore, each of the 32 anti-virus engines is installed in an independent virtual

machine and isolated with others so that they can execute independently and conflicts

can be avoided. The system can still execute normally even if some anti-virus en-

gines fail. The virtual machines can be distributed among multiple physical hosts, and

thus the scalability can be achieved. Operating systems such as Windows XP 32bit,

Windows Thin PC 32bit, CentOS 6.6 64bit are installed into the virtual machines, ac-

cording to the anti-virus engines’ requirements of operating systems. The 32 anti-virus

engines are enclosed in packages with customized and executable scripts. The engine

management subsystem manages these engines and communicates with the scripts with

HTTP. Information such as the status of anti-virus engines and the versions of virus

libraries are collected by this subsystem.

6.3.4 The packaging scripts

Composed with Python, the packaging scripts can monitor the anti-virus engines

in real-time and report their status including any errors occurred to the engine man-

agement subsystem. The scripts can request virus detection tasks from the engine

management subsystem regularly. When a detection task is allocated to one of the

anti-virus engines, the script of that engine downloads the sample to the local virtual

machine and calls the engine to scan. The detection results are collected using APIs

of the anti-virus engines. The scripts can also update the anti-virus engines regularly.

As the implementation methods are various for different anti-virus engines, customized

scripts are developed and summarized in table 6.2.

Engine calling methods

• Command line. In Windows and Linux, some engines support command line inter-

faces for calling.

• ShellMenu. In Windows system resource manager, each file has its shell context

menu, and an anti-virus engine often adds in its menu item. Windows provides calling

functions to a file’s shell context menu. Therefore, for some engines which do not

103

Table 6.2 : Packaging methods of 32 anti-virus engines.

Anti-virus
Engines

Operating
System

Engine Calling
Method

Result
Acquisition
Method

Library
Update Date
Acquisition
Method

Kingsoft, Rising Windows Command line GUI software log Configuration file

360 Windows Command line GUI software log VDF file
modification date

AVG, DrWeb Windows Command line Detection report Detection report

McAfee Windows Command line Detection report Configuration file

Norman Windows Command line Detection report VDF file
modification date

BitDefender,
eScan

Linux Command line Command line
output

Command line
output

Avast, ClamAV,
Emsisoft,
NOD32, F-Prot,
F-Secure,
IKARUS,
Kaspersky

Windows Command line Command line
output

Command line
output

G-DATA Windows Command line Command line
output

Detection report

Comodo Linux Command line Command line
output

VDF file
modification date

Microsoft Windows Command line System event log VDF file
modification date

ZoneAlarm Windows Command line Software log VDF file
modification date

Agnitum,
Defenx

Windows Trigger real-time
protection

SQLite file VDF file
modification date

Avira Windows Trigger real-time
protection

System event log VDF file
modification date

Symantec Windows Trigger real-time
protection

System event log Configuration file

K7, TrendMicro Windows Trigger real-time
protection

Software log VDF file
modification date

Fortinet, Panda,
Tencent

Windows ShellMenu GUI software log VDF file
modification date

Baidu Windows ShellMenu GUI detection
report

Configuration file

MalwareSecure Windows ShellMenu SQLite file VDF file
modification date

104

support command line interfaces, the ShellMenu method is utilized for calling.

• Trigger real-time protection. Most of the engines have real-time protection mecha-

nisms. Whenever a file is saved into a hard disk, it will trigger real-time protection.

Therefore, for those engines that do not support the command line or ShellMenu meth-

ods, the real-time protection triggering method is utilized for calling.

Result acquisition methods

• Command line output. Most engines can return standardized detection results in

command lines with the command line calling method.

• System event log. For some engines, the detection results are recorded into system

event logs. This method is often applied to those engines that utilize the calling method

of real-time protection triggering.

• Software log. Some engines save the detection results into software logs.

• SQLite file. Some engines save the detection results into SQLite databases.

• Detection report. Some engines generate the detection results as official detection

reports.

• GUI software log. For some engines, instead of outputting text-based detection

results directly, graphical windows are displayed for the results. For those engines, the

scripts acquire the results by simulating manual manipulating processes. The acquired

results are text-based software logs.

Virus library update methods

• Automatic update. Most engines can check the network connections and communi-

cate with official update servers. When there are available update packages, the virus

libraries will be automatically updated.

• Command line calling. Some engines have independent functions for calling to start

the update processes.

• Offline update package installation. Due to the network conditions, the online update

of some engines may fail. In this case, the relevant offline update packages need to be

downloaded from relevant official websites.

105

Acquisition methods of the virus library update dates

• Command line output. Some engines have command line interfaces, from which the

dates can be acquired.

• Configuration file. Some engines write the dates into configuration files.

• Detection report. Some engines record the dates into official detection reports.

• VDF file modification date. For those engines whose update dates cannot be acquired

from above methods, the modification dates of VDF files are regarded as the relevant

virus library update dates.

6.3.5 The update management subsystem

The technique of “isolated detection and update” guarantees that when scanning

samples, the anti-virus engines are isolated from the Internet; and when updating,

the anti-virus engines are isolated from the samples. In this case, the samples are

isolated from the Internet at all times. Therefore, the privacy can be maintained.

This technique is monitored by the update management subsystem, which controls

the operational status of virtual machines, such as: (1) Boot up and shut down; (2)

Network connection (Internet or host only); (3) Creation/deletion of snapshots. The

detailed process of “isolated detection and update” is explained as follows:

i. The original virtual machines are “updaters”, which have Internet connection.

However, the samples are never uploaded to “updaters”.

ii. Snapshots named “scanners” are created from the original virtual machines. The

“scanners” have no Internet connection since their network configurations are set

to “host only”. During detection, all of the uploaded samples are only scanned

by anti-virus engines in these “scanners”.

iii. After the anti-virus engines in the “updaters” are updated, new “scanners” are

created from these “updaters”. The old “scanners” are then replaced by the new

ones.

Figure 6.4 demonstrates the process of “isolated detection and update”.

106

 VirtualBox Snapshots

Host only

Internet accessible

Detection Engine
(Snapshot)

Detection Engine
(Snapshot with samples)

Detection Engine
(Snapshot updated)

Suspicious
Samples

Update virus library

Detection Engine Detection Engine
(updated)

Create
snapshot

Create
snapshot

Figure 6.4 : Isolated detection and update.

6.4 System testing

The aim of testing is to guarantee that the system can work according to the re-

quirements analysis. Via long-term testing, stability of the anti-virus engines can be

enhanced. The hardware requirement of the system can also be obtained via testing;

thus the recommended hardware configuration can be provided for deployment in real

enterprises. The system should present acceptable performance of fault-tolerance and

privacy-preservation, and it should be defensive when confronted with regular cyber

attacks. We use unit testing and end-to-end testing to guarantee the testing compre-

hensiveness. We test the system under the following hardware environment:

• Server: Lenovo ThinkServer TD340

• CPU: Xeon E5-2420 v2 2.2GHz 4 cores*2

• RAM: 32GB DDR3 1600MHz

• Hard-drive: Samsung 256GB SSD*2; 1TB 7200rpm HDD*2

107

MD5 Hash: 69630e4574ec6798239b091cda43dca0

SHA1 Hash: cf8bd9dfddff007f75adf4c2be48005cea317c62

SHA256 Hash: 131f95c51cc819465fa1797f6ccacf9d494aaaff46fa3eac73ae63ffBdfd8267

Detection result: 24/30

Anti-virus engine Detection result Library date

K7 found the Trojan (000139291) 30-04-2017

Defenx EICAR_Test_File 30-04-2017

IKARUS EICAR_Test_File 30-04-2017

ZoneAlarm ElCAR_Test_File 03-05-2017

Emsisoft EICAR_Test_File (not a virus) (B) 30-04-2017

Agnitum Outpost EICAR_Test_File 29-04-2017

Detection complete

Figure 6.5 : The detection result of an uploaded sample.

For testing of the web interface, we have simulated user activities such as logging

in, uploading samples, viewing the detection process, visiting the user center, and re-

trieving the detection history. The results have shown that the web interface layout is

correct and the website can normally be accessed; all other functions can execute nor-

mally. We use Apache Benchmark to test the performance of web interface. The result

has shown that the website is available for hundreds of user accesses simultaneously.

Figure 6.5 represents a screenshot of the detection result page.

For testing of the sample management subsystem, we have uploaded repeated sam-

ples, over-sized samples, and archived samples to the system. The results have shown

that the system can correctly handle these samples.

For testing of the engine management subsystem, we have designed multiple testing

cases based on the anti-virus engines’ status (online, updating, or offline). The results

have shown that the subsystem can correctly obtain the anti-virus engines’ status.

Via collaboration with the sample management subsystem, the engine management

subsystem can accurately assign detection tasks to the anti-virus engines, according

to their status. Figure 6.6 represents the status of anti-virus engines collected by this

subsystem.

108

Status of Engines

Engine Name Operating System Date of Virus Library Status

360 Antivirus Windows 20/04/2017 Online

Avira Server Security Windows 26/04/2017 Online

Malware Secure Windows 26/04/2017 Online

TrendMicro PC-cilin Windows 24/04/2017 Online

Rising Antivirus Windows 25/04/2017 Online

Microsoft Security Essentials Windows 27/04/2017 Online

F-Prot Windows 24/04/2017 Online

Baidu Windows 22/04/2017 Online

Tencent Windows 21/04/2017 Online

Fortinet Windows 22/04/2017 Online

Norman Antivirus Windows 22/04/2017 Online

Panda Antivirus Windows 21/04/2017 Online

Avast Windows 22/04/2017 Online

Figure 6.6 : The status of anti-virus engines.

For testing of the update management subsystem, a set of operations have been

applied to the virtual machines, such as generation and deletion of virtual machine

snapshots. The results have shown that the snapshots can be generated and deleted

properly.

For testing of the virtual machines, anti-virus engines and their packaging scripts, a

set of single samples and archives (ZIP or RAR) with more than one hundred samples

are uploaded to the system for testing. We have uploaded benign files (such as Windows

system files), EICAR (European Institute for Computer Antivirus Research) Standard

Anti-Virus Test File, and other suspicious samples collected from the Internet to the

system. The results have shown that the anti-virus engines can normally work in

regular conditions. The scripts can detect errors of anti-virus engines and return the

error messages to the engine management subsystem for troubleshooting. The average

overall detection time for a single sample is 60 seconds, and 70 percent of the anti-virus

engines can return the results in 30 seconds. For an archive with 119 samples, it takes

48 minutes to complete the task. The average detection speed is 24 seconds per sample.

Figure 6.7 demonstrates the average detection time of 32 engines.

109

40.0s

30.0s

20.0s

10.0s

 0.0s

Figure 6.7 : The average detection time of detection engines.

110

For testing of the system security, we use Acunetix Web Vulnerability Scanner to

scan the system to guarantee that the system has no high-risk vulnerabilities. Besides,

we have audited all codes to avoid SQL injection and XSS vulnerabilities. We have

simulated unauthorized accesses of attackers. We also have simulated XSS and SQL

injection attacks to the system and tried to obtain the uploaded samples from the

Internet. The results have shown that the system is defensive to these attacks.

According to the testing results, privacy of system users can be effectively enhanced

with the “isolated detection and update”. However, for the overall performance, the

detection speed of our system is slower than VirusTotal and VirSCAN. The hardware

environment for testing is limited. Another limitation is the speed of each engine.

Various companies have different engine design. Some anti-virus engines use GUI

interaction methods, which lower the speed. Therefore, the system performance can

be improved in three aspects, i.e., the improvement of web interface; the upgrade of

system hardware; and the selection of more stable enterprise-edition anti-virus engines.

6.5 Summary

In this chapter, we have proposed a multi-engine online virus detection system

that can perform “isolated detection and update”. This mechanism guarantees that

the uploaded confidential samples are not exposed to the Internet. As the system

can collect and store the suspicious samples, in the future, we will further improve

the system functionalities so that the system can analyze the distribution patterns of

different kinds of malicious samples. Moreover, as the low-coupling design of the system

ensures scalability, we will modify and build the system among virtual machines in an

IaaS cloud with cluster-based big data tools to further improve the system performance.

111

Chapter 7

Conclusion and Future Works

7.1 Summary of Contributions

This thesis has studied multiple aspects relating to host-based intrusion detection

system (HIDS). First, this thesis has proposed a review of the development of HIDS

with system calls. Second, this thesis provides inspirational future research trends in

the current big data and cloud computing environment. Third, this thesis contributes

to the community of HIDS by proposing a scalable HIDS approach using Spark in the

Google cloud, endeavoring to improve the detection efficiency and the scalability for

a new-generation system call-based HIDS. Fourth, this thesis has studied issues relat-

ing to threat intelligence information sharing, and has proposed a real-time scalable

threat intelligence information sharing framework to enhance the collaborative secu-

rity. Finally, this thesis has proposed a private online virus detection system, which

incorporates multiple anti-virus engines. The system is applicable to be integrated into

the forecast scalable real-time threat information sharing system.

Chapter 2 provides a review of host-based intrusion detection system with system

calls, from the perspectives of its origin, algorithms, datasets and application areas.

Instead of elaborating every detail, the main aim of this chapter is trying to provide

researchers with a clear overview of the development of system call-based HIDS.

Chapter 3 provides the future research trends of host-based intrusion detection

system with system calls. This chapter aims to inspire future researchers about the

three trends of HIDS, namely, the reduction of false positive rate, the improvement

of detection efficiency, and the enhancement of collaborative security. This chapter

also proposes a real-time scalable HIDS framework with big data tools in cloud for a

data center to enhance the collaborative security. The framework is comprised of three

layers, namely, data collection layer, data analytics layer, and data storage layer. The

framework is deployed in an open-source private cloud computing environment.

112

Chapter 4 proposes SCADS, a scalable approach using Spark in the Google cloud for

host-based intrusion detection system with system calls. Based on the experimental re-

sults, the proposed framework with Apache Spark and Google cloud computing services

can improve the detection efficiency of traditional system call-based HIDS. Besides the

algorithms used in our experiments, other existing intrusion detection algorithms may

also be incorporated into this proposed framework.

Chapter 5 briefly introduced cyber threat intelligence and the significance of auto-

mated threat information sharing. To design a comprehensive HIDS under the current

sophisticated threat environment, traditional HIDS should combine with other security

capabilities and the latest CTI. This chapter has introduced a scalable real-time CTI

information sharing system in the cloud, based on current researchers’ and commercial

companies’ achievements.

Chapter 6 proposed a multi-engine online virus detection system that can per-

form “isolated detection and update”. This mechanism guarantees that the uploaded

confidential samples are not exposed to the Internet. Meanwhile, a web interface is

provided so that the system users can upload suspicious samples via web browsers and

the detection results from multiple anti-virus engines can be displayed on the web in-

terface. Furthermore, the low-coupling design of this system is scalable to support the

distributed deployment mode.

7.2 Future works

Future works will concentrate on the three future research trends of HIDS, i.e.,

the reduction of false alarm rate, the improvement of detection efficiency, and the

enhancement of collaborative security.

For the reduction of false alarm rate, future works will concentrate on the data

preprocessing and feature extraction procedures. New datasets will be used for exper-

iments and system call arguments will be used for modeling. Meanwhile, standardized

evaluation metrics will be provided in every research work.

For the improvement of detection efficiency, future works will continue combining

cloud computing and big data tools to improve the detection efficiency of HIDS. The

DataFrame-based API in Spark MLlib will be used to construct and tune machine

learning pipelines for HIDS.

113

For the enhancement of collaborative security, future works will integrate HIDS

with other security mechanisms and the latest threat intelligence to design a complete

threat-defensive infrastructure. The reformatting methods between various information

sharing standards will be developed to make the exchange processes between different

communities more efficient.

114

Bibliography

[1] M. Abdel-Azim, A. Abdel-Fatah, and M. Awad, “Performance analysis of arti-

ficial neural network intrusion detection systems,” in Electrical and Electronics

Engineering, 2009. ELECO 2009. International Conference on. IEEE, 2009,

Conference Proceedings, pp. II–385–II–389.

[2] A. S. Abed, T. C. Clancy, and D. S. Levy, “Applying bag of system calls for

anomalous behavior detection of applications in linux containers,” in Globecom

Workshops (GC Wkshps), 2015 IEEE. IEEE, 2015, pp. 1–5.

[3] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly de-

tection techniques,” Journal of Network and Computer Applications, vol. 60, pp.

19–31, 2016.

[4] U. Ahmed and A. Masood, “Host based intrusion detection using rbf neural net-

works,” in Emerging Technologies, 2009. ICET 2009. International Conference

on. IEEE, 2009, Conference Proceedings, pp. 48–51.

[5] S. Alarifi and S. Wolthusen, “Anomaly detection for ephemeral cloud iaas vir-

tual machines,” in International Conference on Network and System Security.

Springer, 2013, Conference Proceedings, pp. 321–335.

[6] S. S. Alarifi and S. D. Wolthusen, “Detecting anomalies in iaas environments

through virtual machine host system call analysis,” in Internet Technology And

Secured Transactions, 2012 International Conference for. IEEE, 2012, Confer-

ence Proceedings, pp. 211–218.

[7] AlienVault, “Host-based intrusion detection system,” https://www.alienvault.

com/solutions/host-intrusion-detection-system, 2018.

[8] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion detection

system using a filter-based feature selection algorithm,” IEEE transactions on

computers, vol. 65, no. 10, pp. 2986–2998, 2016.

https://www.alienvault.com/solutions/host-intrusion-detection-system
https://www.alienvault.com/solutions/host-intrusion-detection-system

115

[9] A. Appleby, “Murmurhash,” https://sites.google.com/site/murmurhash/, 2017.

[10] J. Arshad, P. Townend, and J. Xu, “A novel intrusion severity analysis approach

for clouds,” Future Generation Computer Systems, vol. 29, no. 1, pp. 416–428,

2013.

[11] C. Azad and V. K. Jha, “Data mining in intrusion detection: a comparative

study of methods, types and data sets,” International Journal of Information

Technology and Computer Science (IJITCS), vol. 5, no. 8, p. 75, 2013.

[12] S. Barnum, “Standardizing cyber threat intelligence information with the struc-

tured threat information expression (stix),” MITRE Corporation, vol. 11, pp.

1–22, 2012.

[13] V. K. Base, “esxtop,” https://kb.vmware.com/selfservice/microsites/search.do?

language=en US&cmd=displayKC&externalId=1008205, 2017.

[14] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An

android application sandbox system for suspicious software detection,” in Ma-

licious and unwanted software (MALWARE), 2010 5th international conference

on. IEEE, 2010, pp. 55–62.

[15] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A

survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[16] Bsd, “Kernel virtual machine,” http://www.linux-kvm.org/page/Main Page,

2017.

[17] E. W. Burger, M. D. Goodman, P. Kampanakis, and K. A. Zhu, “Taxonomy

model for cyber threat intelligence information exchange technologies,” in Pro-

ceedings of the 2014 ACM Workshop on Information Sharing & Collaborative

Security. ACM, 2014, pp. 51–60.

[18] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based

malware detection system for android,” in Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices. ACM, 2011, pp.

15–26.

https://sites.google.com/site/murmurhash/
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1008205
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1008205
http://www.linux-kvm.org/page/Main_Page

116

[19] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,

“A quantitative study of accuracy in system call-based malware detection,” in

Proceedings of the 2012 International Symposium on Software Testing and Anal-

ysis. ACM, 2012, pp. 122–132.

[20] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM Comput-

ing Surveys, vol. 41, no. 3, pp. 1–58, 2009.

[21] ——, “Anomaly detection for discrete sequences: A survey,” IEEE Transactions

on Knowledge and Data Engineering, vol. 24, no. 5, pp. 823–839, 2012.

[22] Q. Chen, R. Luley, Q. Wu, M. Bishop, R. W. Linderman, and Q. Qiu, “An-

rad: A neuromorphic anomaly detection framework for massive concurrent data

streams,” IEEE Transactions on Neural Networks and Learning Systems, 2017.

[23] Q. Chen, Q. Wu, M. Bishop, R. Linderman, and Q. Qiu, “Self-structured confab-

ulation network for fast anomaly detection and reasoning,” in Neural Networks

(IJCNN), 2015 International Joint Conference on. IEEE, 2015, pp. 1–8.

[24] J. Connolly, M. Davidson, and C. Schmidt, “The trusted automated exchange of

indicator information (taxii),” The MITRE Corporation, 2014.

[25] T. M. Corporation, “Common vulnerabilities and exposures,” https://cve.mitre.

org/, 2017.

[26] D. L. Costa, M. L. Collins, S. J. Perl, M. J. Albrethsen, G. J. Silowash, and

D. L. Spooner, “An ontology for insider threat indicators development and ap-

plications,” CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE EN-

GINEERING INST, Tech. Rep., 2014.

[27] G. Creech, “Developing a high-accuracy cross platform host-based intrusion de-

tection system capable of reliably detecting zero-day attacks,” Ph.D. dissertation,

PhD thesis, University of New South Wales, 2014.

[28] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to retire

the kdd collection,” in Wireless Communications and Networking Conference

(WCNC), 2013 IEEE. IEEE, 2013, Conference Proceedings, pp. 4487–4492.

https://cve.mitre.org/
https://cve.mitre.org/

117

[29] ——, “Generation of a new ids test dataset: Time to retire the kdd collection,”

in Wireless Communications and Networking Conference (WCNC), 2013 IEEE.

IEEE, 2013, pp. 4487–4492.

[30] ——, “A semantic approach to host-based intrusion detection systems using con-

tiguous and discontiguous system call patterns,” Computers, IEEE Transactions

on, vol. 63, no. 4, pp. 807–819, 2014.

[31] M. K. Daly, “Advanced persistent threat,” Usenix, Nov, vol. 4, no. 4, pp. 2013–

2016, 2009.

[32] A. Danesh, B. Moshiri, and O. Fatemi, “Improve text classification accuracy

based on classifier fusion methods,” in Information Fusion, 2007 10th Interna-

tional Conference on. IEEE, 2007, pp. 1–6.

[33] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based online mal-

ware detection: Towards efficient real-time protection against malware,” IEEE

Transactions on Information Forensics and Security, vol. 11, no. 2, pp. 289–302,

2016.

[34] J. Davis and M. Goadrich, “The relationship between precision-recall and roc

curves,” in Proceedings of the 23rd international conference on Machine learning.

ACM, 2006, pp. 233–240.

[35] R. I. Davis, B. C. Lovell, and T. Caelli, “Improved estimation of hidden markov

model parameters from multiple observation sequences,” in Pattern Recognition,

2002. Proceedings. 16th International Conference on, vol. 2. IEEE, 2002, Con-

ference Proceedings, pp. 168–171.

[36] T. F. Duffy, “Cybersecurity information sharing act of 2015,” https://www.

cisecurity.org/newsletter/cybersecurity-information-sharing-act-of-2015/, 2015.

[37] H. T. Elshoush and I. M. Osman, “Alert correlation in collaborative intelligent

intrusion detection systems-a survey,” Applied Soft Computing, vol. 11, no. 7, pp.

4349–4365, 2011.

[38] ENISA, “Detect, share, protect - solutions for improving threat data exchange

among certs,” https://www.enisa.europa.eu/, 2013.

https://www.cisecurity.org/newsletter/cybersecurity-information-sharing-act-of-2015/
https://www.cisecurity.org/newsletter/cybersecurity-information-sharing-act-of-2015/
https://www.enisa.europa.eu/

118

[39] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature

selection in mobile malware detection,” Digital Investigation, vol. 13, pp. 22–37,

2015.

[40] S. Feldman, D. Stadther, and B. Wang, “Manilyzer: automated android malware

detection through manifest analysis,” in Mobile Ad Hoc and Sensor Systems

(MASS), 2014 IEEE 11th International Conference on. IEEE, 2014, pp. 767–

772.

[41] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden markov model: Anal-

ysis and applications,” Machine learning, vol. 32, no. 1, pp. 41–62, 1998.

[42] G. Fisk, C. Ardi, N. Pickett, J. Heidemann, M. Fisk, and C. Papadopoulos,

“Privacy principles for sharing cyber security data,” in Security and Privacy

Workshops (SPW), 2015 IEEE. IEEE, 2015, pp. 193–197.

[43] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system-call mon-

itoring,” in Computer Security Applications Conference, 2008. ACSAC 2008.

Annual. IEEE, 2008, Conference Proceedings, pp. 418–430.

[44] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self

for unix processes,” in Security and Privacy, 1996. Proceedings., 1996 IEEE

Symposium on. IEEE, 1996, Conference Proceedings, pp. 120–128.

[45] A. O. Foundation, “Alluxio,” http://www.alluxio.org/, 2017.

[46] A. S. Foundation, “Apache hadoop yarn,” https://hadoop.apache.org/docs/r2.7.

2/hadoop-yarn/hadoop-yarn-site/YARN.html, 2017.

[47] ——, “Apache kafka a distributed streaming platform,” https://kafka.apache.

org/, 2017.

[48] T. A. S. Foundation, “Apache flume,” https://flume.apache.org/, 2017.

[49] ——, “Spark,” http://spark.apache.org/, 2018.

[50] A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning program behavior

profiles for intrusion detection,” in Workshop on Intrusion Detection and Network

Monitoring, vol. 51462, 1999, Conference Proceedings, pp. 1–13.

http://www.alluxio.org/
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://kafka.apache.org/
https://kafka.apache.org/
https://flume.apache.org/
http://spark.apache.org/

119

[51] S. Godard, “mpstat,” http://linuxcommand.org/man pages/mpstat1.html, 2017.

[52] Y. Gu, W. Sheng, Y. Ou, M. Liu, and S. Zhang, “Human action recognition

with contextual constraints using a rgb-d sensor,” in Robotics and Biomimetics

(ROBIO), 2013 IEEE International Conference on. IEEE, 2013, pp. 674–679.

[53] S. Gupta and P. Kumar, “An immediate system call sequence based approach for

detecting malicious program executions in cloud environment,” Wireless Personal

Communications, vol. 81, no. 1, pp. 405–425, 2015.

[54] W. Haider, J. Hu, J. Slay, B. Turnbull, and Y. Xie, “Generating realistic intru-

sion detection system dataset based on fuzzy qualitative modeling,” Journal of

Network and Computer Applications, 2017.

[55] W. Haider, G. Creech, Y. Xie, and J. Hu, “Windows based data sets for evaluation

of robustness of host based intrusion detection systems (ids) to zero-day and

stealth attacks,” Future Internet, vol. 8, no. 3, p. 29, 2016.

[56] W. Haider, J. Hu, and M. Xie, “Towards reliable data feature retrieval and deci-

sion engine in host-based anomaly detection systems,” in Industrial Electronics

and Applications (ICIEA), 2015 IEEE 10th Conference on. IEEE, 2015, pp.

513–517.

[57] W. Haider, J. Hu, Y. Xie, X. Yu, and Q. Wu, “Detecting anomalous behavior

in cloud servers by nested arc hidden semi-markov model with state summariza-

tion,” IEEE Transactions on Big Data, 2017.

[58] W. Haider, J. Hu, X. Yu, and Y. Xie, “Integer data zero-watermark assisted

system calls abstraction and normalization for host based anomaly detection

systems,” in Cyber Security and Cloud Computing (CSCloud), 2015 IEEE 2nd

International Conference on. IEEE, 2015, pp. 349–355.

[59] F. F. Henry Ware, “vmstat,” http://www.linuxcommand.org/man pages/

vmstat8.html, 2017.

[60] X. D. Hoang, J. Hu, and P. Bertok, “A multi-layer model for anomaly intrusion

detection using program sequences of system calls,” in The 11th IEEE Interna-

http://linuxcommand.org/man_pages/mpstat1.html
http://www.linuxcommand.org/man_pages/vmstat8.html
http://www.linuxcommand.org/man_pages/vmstat8.html

120

tional Conference on Networks, 2003. ICON2003. Citeseer, 2003, Conference

Proceedings.

[61] ——, “A program-based anomaly intrusion detection scheme using multiple de-

tection engines and fuzzy inference,” Journal of Network and Computer Appli-

cations, vol. 32, no. 6, pp. 1219–1228, 2009.

[62] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[63] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences

of system calls,” Journal of computer security, vol. 6, no. 3, pp. 151–180, 1998.

[64] V. Hristidis, Y. Hu, and P. G. Ipeirotis, “Ranked queries over sources with

boolean query interfaces without ranking support,” in Data Engineering (ICDE),

2010 IEEE 26th International Conference on. IEEE, 2010, pp. 872–875.

[65] J. Hu, “Host-based anomaly intrusion detection,” Handbook of Information and

Communication Security, pp. 235–255, 2010.

[66] J. Hu, X. Yu, D. Qiu, and H.-H. Chen, “A simple and efficient hidden markov

model scheme for host-based anomaly intrusion detection,” Network, IEEE,

vol. 23, no. 1, pp. 42–47, 2009.

[67] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory

and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[68] M. Iannacone, S. Bohn, G. Nakamura, J. Gerth, K. Huffer, R. Bridges, E. Fer-

ragut, and J. Goodall, “Developing an ontology for cyber security knowledge

graphs,” in Proceedings of the 10th Annual Cyber and Information Security Re-

search Conference. ACM, 2015, p. 12.

[69] Ixia, “Perfectstorm,” https://www.ixiacom.com/products/perfectstorm, 2017.

[70] G. K. Jayasinghe, J. S. Culpepper, and P. Bertok, “Efficient and effective realtime

prediction of drive-by download attacks,” Journal of Network and Computer

Applications, vol. 38, pp. 135–149, 2014.

https://www.ixiacom.com/products/perfectstorm

121

[71] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-

ding,” in Proceedings of the 22nd ACM international conference on Multimedia.

ACM, 2014, pp. 675–678.

[72] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira, “Multiresolution abnormal

trace detection using varied-length n-grams and automata,” Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 37,

no. 1, pp. 86–97, 2007.

[73] P. Kampanakis, “Security automation and threat information-sharing options,”

IEEE Security & Privacy, vol. 12, no. 5, pp. 42–51, 2014.

[74] P. Kaur and S. Mehta, “Resource provisioning and work flow scheduling in clouds

using augmented shuffled frog leaping algorithm,” Journal of Parallel and Dis-

tributed Computing, vol. 101, pp. 41–50, 2017.

[75] W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining hidden markov

models for improved anomaly detection,” in IEEE International Conference on

Communications, 2009, pp. 1–6.

[76] W. Khreich, B. Khosravifar, A. Hamou-Lhadj, and C. Talhi, “An anomaly detec-

tion system based on variable n-gram features and one-class svm,” Information

and Software Technology, vol. 91, pp. 186–197, 2017.

[77] W. Khreich, S. S. Murtaza, A. Hamou-Lhadj, and C. Talhi, “Combining hetero-

geneous anomaly detectors for improved software security,” Journal of Systems

and Software, 2017.

[78] A. Kovács and T. Szirányi, “Improved harris feature point set for orientation-

sensitive urban-area detection in aerial images,” IEEE Geoscience and Remote

Sensing Letters, vol. 10, no. 4, pp. 796–800, 2013.

[79] S. Krishnan and J. L. U. Gonzalez, “Google compute engine,” in Building Your

Next Big Thing with Google Cloud Platform. Springer, 2015, pp. 53–81.

[80] M. Kulariya, P. Saraf, R. Ranjan, and G. P. Gupta, “Performance analysis of

network intrusion detection schemes using apache spark,” in Communication and

122

Signal Processing (ICCSP), 2016 International Conference on. IEEE, 2016, pp.

1973–1977.

[81] A. Laszka, W. Abbas, S. S. Sastry, Y. Vorobeychik, and X. Koutsoukos, “Optimal

thresholds for intrusion detection systems,” in Proceedings of the Symposium and

Bootcamp on the Science of Security. ACM, 2016, pp. 72–81.

[82] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[83] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detection,” in

Usenix security, 1998, Conference Proceedings.

[84] W. Lee, S. J. Stolfo, and P. K. Chan, “Learning patterns from unix process

execution traces for intrusion detection,” in AAAI Workshop on AI Approaches

to Fraud Detection and Risk Management, 1996, Conference Proceedings, pp.

50–56.

[85] W. Lee and D. Xiang, “Information-theoretic measures for anomaly detection,”

in Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium

on. IEEE, 2001, Conference Proceedings, pp. 130–143.

[86] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive datasets. Cam-

bridge university press, 2014.

[87] Y. Liao and V. R. Vemuri, “Using text categorization techniques for intrusion de-

tection,” in USENIX Security Symposium, vol. 12, 2002, Conference Proceedings,

pp. 51–59.

[88] P. Lichodzijewski, A. N. Zincir-Heywood, and M. I. Heywood, “Host-based intru-

sion detection using self-organizing maps,” in IEEE international joint conference

on neural networks, 2002, Conference Proceedings, pp. 1714–1719.

[89] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through system

call sequence and argument analysis,” Dependable and Secure Computing, IEEE

Transactions on, vol. 7, no. 4, pp. 381–395, 2010.

123

[90] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 darpa/lincoln labora-

tory evaluation data for network anomaly detection,” in International Workshop

on Recent Advances in Intrusion Detection. Springer, 2003, Conference Pro-

ceedings, pp. 220–237.

[91] ——, “Learning rules for anomaly detection of hostile network traffic,” in Third

IEEE International Conference on Data Mining, 2003. ICDM 2003. IEEE, 2003,

Conference Proceedings, p. 601.

[92] C. Marceau, “Characterizing the behavior of a program using multiple-length n-

grams,” in Proceedings of the 2000 workshop on New security paradigms. ACM,

2001, pp. 101–110.

[93] McAfee, “Mcafee host intrusion prevention for desktop,” https://www.mcafee.

com/uk/products/host-ips-for-desktop.aspx, 2018.

[94] J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and 1999

darpa intrusion detection system evaluations as performed by lincoln laboratory,”

ACM Transactions on Information and System Security (TISSEC), vol. 3, no. 4,

pp. 262–294, 2000.

[95] R. McMillan, “Definition: threat intelligence,” Gartner, 2013.

[96] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,

D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning in apache spark,”

Journal of Machine Learning Research, vol. 17, no. 34, pp. 1–7, 2016.

[97] Merriam-Webster, “Definition of intelligence,” https://www.merriam-webster.

com/dictionary/intelligence, 2017.

[98] E. Messina and D. Toscani, “Hidden markov models for scenario generation,” Ima

Journal of Management Mathematics, vol. volume 19, no. 4, pp. 379–401(23),

2008.

[99] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne, “Evaluating

computer intrusion detection systems: A survey of common practices,” ACM

Computing Surveys (CSUR), vol. 48, no. 1, p. 12, 2015.

https://www.mcafee.com/uk/products/host-ips-for-desktop.aspx
https://www.mcafee.com/uk/products/host-ips-for-desktop.aspx
https://www.merriam-webster.com/dictionary/intelligence
https://www.merriam-webster.com/dictionary/intelligence

124

[100] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “Sparknet: Training deep

networks in spark,” arXiv preprint arXiv:1511.06051, 2015.

[101] S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, and M. Couture, “Total ads: Auto-

mated software anomaly detection system,” in Source Code Analysis and Manip-

ulation (SCAM), 2014 IEEE 14th International Working Conference on. IEEE,

2014, pp. 83–88.

[102] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture, “A host-based

anomaly detection approach by representing system calls as states of kernel mod-

ules,” in Software Reliability Engineering (ISSRE), 2013 IEEE 24th International

Symposium on. IEEE, 2013, Conference Proceedings, pp. 431–440.

[103] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and S. Gagnon, “A trace ab-

straction approach for host-based anomaly detection,” in Computational Intel-

ligence for Security and Defense Applications (CISDA), 2015 IEEE Symposium

on. IEEE, 2015, Conference Proceedings, pp. 1–8.

[104] S. A. Musavi and M. Kharrazi, “Back to static analysis for kernel-level rootkit

detection,” IEEE Transactions on Information Forensics and Security, vol. 9,

no. 9, pp. 1465–1476, 2014.

[105] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call detec-

tion,” ACM Transactions on Information and System Security (TISSEC), vol. 9,

no. 1, pp. 61–93, 2006.

[106] M. Nauman, N. Azam, and J. Yao, “A three-way decision making approach to

malware analysis using probabilistic rough sets,” Information Sciences, vol. 374,

pp. 193–209, 2016.

[107] U. of New Mexico, “Sequence-based intrusion detection,” http://www.cs.unm.

edu/∼immsec/systemcalls.htm, 2017.

[108] OSSIM, “Alienvault ossim: The world’s most widely used open source siem,”

https://www.alienvault.com/products/ossim, 2018.

http://www.cs.unm.edu/~immsec/systemcalls.htm
http://www.cs.unm.edu/~immsec/systemcalls.htm
https://www.alienvault.com/products/ossim

125

[109] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang, “Hierarchical recurrent neural

encoder for video representation with application to captioning,” arXiv preprint

arXiv:1511.03476, 2015.

[110] J. Park and A. Tyagi, “Using power clues to hack iot devices: The power side

channel provides for instruction-level disassembly.” IEEE Consumer Electronics

Magazine, vol. 6, no. 3, pp. 92–102, 2017.

[111] J. Pfoh, C. Schneider, and C. Eckert, “Nitro: Hardware-based system call tracing

for virtual machines,” in International Workshop on Security. Springer, 2011,

Conference Proceedings, pp. 96–112.

[112] D. Puthal, S. P. Mohanty, P. Nanda, and U. Choppali, “Building security perime-

ters to protect network systems against cyber threats [future directions],” IEEE

Consumer Electronics Magazine, vol. 6, no. 4, pp. 24–27, 2017.

[113] Y. Qiao, X. Xin, Y. Bin, and S. Ge, “Anomaly intrusion detection method based

on hmm,” Electronics Letters, vol. 38, no. 13, p. 1, 2002.

[114] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[115] Rapid7, “Metasploit,” https://www.metasploit.com/, 2017.

[116] C. Sacca, S. Teso, M. Diligenti, and A. Passerini, “Improved multi-level protein–

protein interaction prediction with semantic-based regularization,” BMC bioin-

formatics, vol. 15, no. 1, p. 103, 2014.

[117] J. G. Shanahan and L. Dai, “Large scale distributed data science using apache

spark,” in Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2015, pp. 2323–2324.

[118] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed

file system,” in Mass storage systems and technologies (MSST), 2010 IEEE 26th

symposium on. Ieee, 2010, pp. 1–10.

[119] K. J. Singh and D. S. Kapoor, “Create your own internet of things: A survey of

iot platforms.” IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp. 57–68,

2017.

https://www.metasploit.com/

126

[120] M. Solaimani, M. Iftekhar, L. Khan, and B. Thuraisingham, “Statistical tech-

nique for online anomaly detection using spark over heterogeneous data from

multi-source vmware performance data,” in Big Data (Big Data), 2014 IEEE

International Conference on. IEEE, 2014, Conference Proceedings, pp. 1086–

1094.

[121] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. Ingram, and S. E.

Seker, “Online anomaly detection for multi-source vmware using a distributed

streaming framework,” Software: Practice and Experience, 2016.

[122] R. Sommer and V. Paxson, “Outside the closed world: On using machine learn-

ing for network intrusion detection,” in 2010 IEEE symposium on security and

privacy. IEEE, 2010, Conference Proceedings, pp. 305–316.

[123] Spark, “Spark programming guides,” https://spark.apache.org/docs/latest/

index.html, 2018.

[124] X. Su, M. Chuah, and G. Tan, “Smartphone dual defense protection framework:

Detecting malicious applications in android markets,” in Mobile Ad-hoc and Sen-

sor Networks (MSN), 2012 Eighth International Conference on. IEEE, 2012,

pp. 153–160.

[125] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative mod-

eling,” IEEE Transactions on fuzzy systems, vol. 1, no. 1, pp. 7–31, 1993.

[126] K. M. Tan and R. A. Maxion, “” why 6?” defining the operational limits of

stide, an anomaly-based intrusion detector,” in Security and Privacy, 2002. Pro-

ceedings. 2002 IEEE Symposium on. IEEE, 2002, Conference Proceedings, pp.

188–201.

[127] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “A system for denial-of-

service attack detection based on multivariate correlation analysis,” IEEE trans-

actions on parallel and distributed systems, vol. 25, no. 2, pp. 447–456, 2014.

[128] Z. Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and J. Hu, “Detection of denial-

of-service attacks based on computer vision techniques,” IEEE transactions on

computers, vol. 64, no. 9, pp. 2519–2533, 2015.

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/docs/latest/index.html

127

[129] Z. Tan, U. T. Nagar, X. He, P. Nanda, R. P. Liu, S. Wang, and J. Hu, “Enhancing

big data security with collaborative intrusion detection,” IEEE cloud computing,

vol. 1, no. 3, pp. 27–33, 2014.

[130] G. Tandon, “Machine learning for host-based anomaly detection,” Thesis, 2008.

[131] O. P. Team, “Ossec open source hids security,” http://ossec.github.io/, 2017.

[132] J. Thomas, C. Rose, and F. Charpillet, “A multi-hmm approach to ecg seg-

mentation,” in Tools with Artificial Intelligence, 2006. ICTAI’06. 18th IEEE

International Conference on. IEEE, 2006, pp. 609–616.

[133] E. Vasilomanolakis, S. Karuppayah, M. Muhlhauser, and M. Fischer, “Taxon-

omy and survey of collaborative intrusion detection,” ACM Computing Surveys

(CSUR), vol. 47, no. 4, p. 55, 2015.

[134] VirSCAN, “Virscan-on-line scan service,” http://www.virscan.org, 2017.

[135] VirusTotal, “Virustotal-free online virus, malware and url scanner,” https://

www.virustotal.com, 2017.

[136] vmware, “vsphere guest sdk,” https://www.vmware.com/support/developer/

guest-sdk/, 2017.

[137] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection sys-

tems,” in Proceedings of the 9th ACM Conference on Computer and Communi-

cations Security. ACM, 2002, Conference Proceedings, pp. 255–264.

[138] R. R. Walia, “Sequence-based prediction of rna-protein interactions,” Disserta-

tions and Theses - Gradworks, 2014.

[139] E. Walker, “Benchmarking amazon ec2 for high-performance scientific comput-

ing,” USENIX login, vol. 33, no. 5, pp. 18–23, 2008.

[140] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content anomaly detector

resistant to mimicry attack,” in International Workshop on Recent Advances in

Intrusion Detection, 2006. Springer, 2006, Conference Proceedings, pp. 226–248.

http://ossec.github.io/
http://www.virscan.org
https://www.virustotal.com
https://www.virustotal.com
https://www.vmware.com/support/developer/guest-sdk/
https://www.vmware.com/support/developer/guest-sdk/

128

[141] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system

calls: Alternative data models,” in Security and Privacy, 1999. Proceedings of the

1999 IEEE Symposium on. IEEE, 1999, Conference Proceedings, pp. 133–145.

[142] M. R. Watson, A. K. Marnerides, A. Mauthe, and D. Hutchison, “Malware de-

tection in cloud computing infrastructures,” IEEE Transactions on Dependable

and Secure Computing, vol. 13, no. 2, pp. 192–205, 2016.

[143] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg, “Feature

hashing for large scale multitask learning,” in Proceedings of the 26th Annual

International Conference on Machine Learning. ACM, 2009, pp. 1113–1120.

[144] A. Wespi, M. Dacier, and H. Debar, “Intrusion detection using variable-length

audit trail patterns,” in International Workshop on Recent Advances in Intrusion

Detection. Springer, 2000, pp. 110–129.

[145] X. Xiao, Z. Wang, Q. Li, Q. Li, and Y. Jiang, “Anns on co-occurrence matrices

for mobile malware detection,” KSII Transactions on Internet and Information

Systems (TIIS), vol. 9, no. 7, pp. 2736–2754, 2015.

[146] M. Xie and J. Hu, “Evaluating host-based anomaly detection systems: A pre-

liminary analysis of adfa-ld,” in Image and Signal Processing (CISP), 2013 6th

International Congress on, vol. 3. IEEE, 2013, pp. 1711–1716.

[147] M. Xie, J. Hu, and J. Slay, “Evaluating host-based anomaly detection systems:

Application of the one-class svm algorithm to adfa-ld,” in Fuzzy Systems and

Knowledge Discovery (FSKD), 2014 11th International Conference on. IEEE,

2014, pp. 978–982.

[148] M. Xie, J. Hu, X. Yu, and E. Chang, “Evaluating host-based anomaly detection

systems: Application of the frequency-based algorithms to adfa-ld,” in Interna-

tional Conference on Network and System Security. Springer, 2014, pp. 542–549.

[149] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel,

and Y. Bengio, “Show, attend and tell: Neural image caption generation with

visual attention,” arXiv preprint arXiv:1502.03044, vol. 2, no. 3, p. 5, 2015.

129

[150] L. Xu, D. Zhang, M. A. Alvarez, J. A. Morales, X. Ma, and J. Cavazos, “Dynamic

android malware classification using graph-based representations,” in Cyber Secu-

rity and Cloud Computing (CSCloud), 2016 IEEE 3rd International Conference

on. IEEE, 2016, pp. 220–231.

[151] C. Yang and J. Chen, “A scalable data chunk similarity based compression ap-

proach for efficient big sensing data processing on cloud,” IEEE Transactions on

Knowledge and Data Engineering, vol. 29, no. 6, pp. 1144–1157, 2017.

[152] C. Yang, C. Liu, X. Zhang, S. Nepal, and J. Chen, “A time efficient approach

for detecting errors in big sensor data on cloud,” IEEE Transactions on Parallel

and Distributed Systems, vol. 26, no. 2, pp. 329–339, 2015.

[153] C. Yang, D. Puthal, S. P. Mohanty, and E. Kougianos, “Big-sensing-data curation

for the cloud is coming: A promise of scalable cloud-data-center mitigation for

next-generation iot and wireless sensor networks,” IEEE Consumer Electronics

Magazine, vol. 6, no. 4, pp. 48–56, 2017.

[154] C. Yang, X. Zhang, C. Zhong, C. Liu, J. Pei, K. Ramamohanarao, and J. Chen,

“A spatiotemporal compression based approach for efficient big data processing

on cloud,” Journal of Computer and System Sciences, vol. 80, no. 8, pp. 1563–

1583, 2014.

[155] Z. Yang, Y. Yuan, Y. Wu, R. Salakhutdinov, and W. W. Cohen, “Encode,

review, and decode: Reviewer module for caption generation,” arXiv preprint

arXiv:1605.07912, 2016.

[156] Q. Ye, X. Wu, and B. Yan, “An intrusion detection approach based on system

call sequences and rules extraction,” in 2010 2nd International Conference on E-

business and Information System Security. IEEE, 2010, Conference Proceedings,

pp. 1–4.

[157] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and

static behavioral models,” Pattern recognition, vol. 36, no. 1, pp. 229–243, 2003.

[158] D. Yuxin, Y. Xuebing, Z. Di, D. Li, and A. Zhanchao, “Feature representation

and selection in malicious code detection methods based on static system calls,”

Computers & Security, vol. 30, no. 6, pp. 514–524, 2011.

130

[159] M. Zaharia, An architecture for fast and general data processing on large clusters.

Morgan & Claypool, 2016.

[160] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing,” in Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation.

USENIX Association, 2012, Conference Proceedings, pp. 2–2.

[161] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

streams: Fault-tolerant streaming computation at scale,” in Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013,

Conference Proceedings, pp. 423–438.

[162] X. Zhang, W. Dou, J. Pei, S. Nepal, C. Yang, C. Liu, and J. Chen, “Proximity-

aware local-recoding anonymization with mapreduce for scalable big data privacy

preservation in cloud,” IEEE transactions on computers, vol. 64, no. 8, pp. 2293–

2307, 2015.

[163] X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen, “A privacy leakage upper

bound constraint-based approach for cost-effective privacy preserving of interme-

diate data sets in cloud,” IEEE Transactions on Parallel and Distributed Systems,

vol. 24, no. 6, pp. 1192–1202, 2013.

[164] X. Zhang, C. Liu, S. Nepal, C. Yang, and J. Chen, “Privacy preservation over

big data in cloud systems,” in Security, Privacy and Trust in Cloud Systems.

Springer, 2014, pp. 239–257.

[165] X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou, and J. Chen, “A hybrid approach

for scalable sub-tree anonymization over big data using mapreduce on cloud,”

Journal of Computer and System Sciences, vol. 80, no. 5, pp. 1008–1020, 2014.

[166] X. Zhang, L. T. Yang, C. Liu, and J. Chen, “A scalable two-phase top-down spe-

cialization approach for data anonymization using mapreduce on cloud,” IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 2, pp. 363–373,

2014.

131

[167] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and big het-

erogeneous data: a survey,” Journal of Big Data, vol. 2, no. 1, p. 1, 2015.

	Title Page
	Certificate of Original Authorship
	Abstract
	Dedication
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Background
	1.2 Research Motivations
	1.3 Research Objectives
	1.4 Research Contributions
	1.5 Thesis Organization

	Chapter 2 Review of Host-based Intrusion Detection System with System Calls
	2.1 Introduction
	2.2 An overview of intrusion detection systems
	2.2.1 Categorization based on the types of analyzed data
	2.2.2 Categorization based on the types of attacks
	2.2.3 Combination of misuse detection with anomaly detection

	2.3 Algorithms and techniques of HIDS
	2.3.1 Preprocessing and feature selection
	2.3.2 Enumerating sequences
	2.3.3 Rule learning
	2.3.4 Bloom filter
	2.3.5 Classification and clustering
	2.3.6 Hidden Markov Model
	2.3.7 Neural networks
	2.3.8 Validation method and evaluation metrics

	2.4 HIDS datasets
	2.4.1 Current datasets for HIDS with system calls
	2.4.2 Dataset customization
	2.4.3 The challenge

	2.5 The application of system call-based HIDS on embedded systems
	2.5.1 The feasibility of applying system call-based HIDS to embedded systems
	2.5.2 Enhancement with hardware
	2.5.3 Cloud-based HIDS with system calls for embedded systems

	2.6 Summary

	Chapter 3 Future Trends of Host-based Intrusion Detection System and Constructing a Real-time Scalable HIDS in Cloud
	3.1 Introduction
	3.2 Reduction of false alarm rate
	3.2.1 System call arguments
	3.2.2 Improve feature extraction approaches
	3.2.3 Refine the decision-making process
	3.2.4 Threshold optimization
	3.2.5 The integration of decision engines
	3.2.6 Long short-term memory
	3.2.7 Challenges regarding this trend

	3.3 Improvement of detection e�ciency
	3.3.1 Refine the dataset quality
	3.3.2 Improvement of decision engines
	3.3.3 Capability of cloud computing
	3.3.4 Open-source big data tools
	3.3.5 Challenge regarding this trend

	3.4 Enhancement of the collaborative security
	3.4.1 Current system call-based HIDS approaches for virtual hosts
	3.4.2 Constructing a real-time scalable HIDS with big data tools in cloud
	3.4.3 CIDS for a data center
	3.4.4 Sharing threat information to enhance the collaborative security
	3.4.5 Current practices in the industry regarding this trend

	3.5 Summary

	Chapter 4 SCADS: A Scalable Approach Using Spark in Cloud for Host-based Intrusion Detection System with System Calls
	4.1 Introduction
	4.2 Related works
	4.2.1 Public cloud
	4.2.2 Apache Spark

	4.3 Scalable Approach Using Spark in Cloud for system call-based HIDS
	4.3.1 Symbols
	4.3.2 Preprocessing and feature extraction
	4.3.3 Classifier training and prediction

	4.4 Experiments
	4.4.1 The computational environment
	4.4.2 The ADFA-LD dataset
	4.4.3 Performance evaluation

	4.5 Summary

	Chapter 5 Enhancing the Collaborative Security with Cyber Threat Intelligence Information Sharing
	5.1 Introduction
	5.1.1 Motivation of attackers
	5.1.2 Conventional defensive approaches
	5.1.3 Using cyber threat intelligence to analyze the attack patterns of adversaries

	5.2 The threat information sharing ecosystem
	5.2.1 Drawbacks of conventional sharing methods
	5.2.2 New standards and platforms for the automatic sharing of structured threat information feeds

	5.3 Constructing a scalable real-time threat information sharing system in the cloud
	5.4 System design specifications
	5.4.1 Trust evaluation
	5.4.2 Threat data collection and caching
	5.4.3 Centralized threat data analytics and generation of the threat information feeds
	5.4.4 The indexed storage of the threat information feeds
	5.4.5 The API for automatic and secure integration of the threat information feeds
	5.4.6 Choosing the most valuable threat information feeds for integration

	5.5 Summary

	Chapter 6 A Private and Scalable Online Virus Detection System with Multiple Anti-virus Engines
	6.1 Introduction
	6.2 The virus detection process
	6.3 System design specifications
	6.3.1 The web interface
	6.3.2 The sample management subsystem
	6.3.3 The engine management subsystem
	6.3.4 The packaging scripts
	6.3.5 The update management subsystem

	6.4 System testing
	6.5 Summary

	Chapter 7 Conclusion and Future Works
	7.1 Summary of Contributions
	7.2 Future works

	Bibliography

