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Abstract
Matrix Factorization based methods, e.g., the Con-
cept Factorization (CF) and Nonnegative Matrix
Factorization (NMF), have been proved to be ef-
ficient and effective for data clustering tasks. In
recent years, various graph extensions of CF and
NMF have been proposed to explore intrinsic geo-
metrical structure of data for the purpose of better
clustering performance. However, many methods
build the affinity matrix used in the manifold struc-
ture directly based on the input data. Therefore,
the clustering results are highly sensitive to the in-
put data. To further improve the clustering perfor-
mance, we propose a novel manifold concept fac-
torization model with adaptive neighbor structure
to learn a better affinity matrix and clustering indi-
cator matrix at the same time. Technically, the pro-
posed model constructs the affinity matrix by as-
signing the adaptive and optimal neighbors to each
point based on the local distance of the learned new
representation of the original data with itself as a
dictionary. Our experimental results present supe-
rior performance over the state-of-the-art alterna-
tives on numerous datasets.

1 Introduction
Data clustering is an important and significant research topic
which has been widely studied in various applications, such
as image segmentation [Shi and Malik, 2000], document
analysis [Hammouda and Kamel, 2004] [Cai et al., 2011],
gene selection [Jiang et al., 2004] and so on. It aims to
partition a dataset into different groups based on similarities
among data points such that the data points which share high
similarities are assigned into the same group while the dissim-
ilar data points are in different groups. In the past decades, a
number of clustering algorithms have been proposed, includ-
ing K-means [Hartigan and Wong, 1979], spectral clustering
[von Luxburg, 2007] [Liu et al., 2015], subspace clustering
[Vidal, 2011] [Wang and Xu, 2016], and matrix-factorization-
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based algorithms [Wang and Zhang, 2013] [Hong et al.,
2016], etc.

Among the above methods, the matrix-factorization-(MF)-
based methods have become popular in recent few years.
Given a data matrix X, the basic goal of MF is to find two or
more low-rank matrix factors whose product provides a good
approximation to the original matrix X. For the MF-based
clustering, one of the matrix factors can be considered as an
ensemble of cluster prototypes that reveals the potential se-
mantic structure, while the other matrix factor can be referred
as the coefficient matrix that indicates the clustering results,
which meets the psychological and physiological interpreta-
tion of part-based representation in human brain. Therefore,
in real-world applications, the dimensionality of the decom-
posed matrix factors is set to the number of clusters, which is
usually much smaller than that of the original one. This fact
gives rise to compact representation of the data points, which
can facilitate other learning tasks such as clustering and clas-
sification. The most representative algorithms of MF include
Nonnegative Matrix Factorization (NMF) [Lee and Seung,
2001], Concept Factorization (CF) [Xu and Gong, 2004] [Cai
et al., 2011], Principal Component Analysis (PCA) and so on.

In particular, the NMF is different from the other matrix-
factorization-based approaches since it enforces a constraint
that all the elements of the matrix factors should be equal
or greater than zero. One of the major advantages of NMF
over other methods is that the inherent data nonnegativity is
preserved by the NMF method, as a result of constraints that
produce nonnegative lower rank factors. These factors can
be interpreted as semantic features or patterns in the collec-
tion of data. Thus, data with common features can be viewed
as a cluster [Shahnaz et al., 2006]. In NMF, the clustering
result can be easily obtained. Previous works have proved
that NMF is superior to other MF-based methods in docu-
ment clustering [Xu et al., 2003] [Shahnaz et al., 2006] and
image clustering [Kim and Park, 2008]. However, there are
two major limitations of NMF. First, it is still unclear how
to optimally perform clustering tasks by NMF method on the
data with negative inputs. Second, only original feature of the
data points is applied to NMF for clustering so that the data
to be clustered cannot be analyzed in a more compact and
discriminative feature space to further improve the clustering
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performance.
The CF method is an important variant of NMF in which

each cluster is regarded as a linear combination of the data
points and at the same time each data point is also expressed
as a linear combination of these cluster centers. Given a ma-
trix X, it is decomposed into three matrices, i.e., W , V and
X itself, among which the W and V are nonnegative, which
satisfies that X ≈ XWV T . The major advantage of CF
over NMF is that the clustering task can be performed by CF
model in any feature space, including data with negative num-
bers and any transformed data spaces, e.g., the reproducing
kernel Hilbert space, thus rendering the CF method a more
general clustering method [Cai et al., 2011] [Xu and Gong,
2004] [Pei et al., 2016].

However, the aforementioned CF, like NMF, does not in-
herently explore the geometric structure of the data, which
is important for clustering. Therefore, some geometry-based
extensions have been proposed. Cai [Cai et al., 2011] incor-
porates a manifold regularizer with CF to address the underly-
ing concepts which are consistent with the intrinsic manifold
structure to facilitate subsequent process, such as clustering.
Pei [Pei et al., 2016] extends the standard CF by utilizing
a sophisticated method to learn the affinity matrix by adap-
tively assigning the neighbors for each data point for docu-
ment clustering. However, most of these works share at least
one of the following drawbacks. First, the model of the affin-
ity matrix used in the graph regularizer is predefined (e.g., the
Graph Laplacian), which means the clustering results may be
sensitive to the selected model. Second, the affinity matrix is
constructed on the raw data to a large extent, which is unable
to well reveal the global manifold structure of data.

Alternatively, inspired by the successful way to exploit the
self-representation of data in which the original data is re-
garded as a dictionary [Guo, 2015] [Du et al., 2016], we con-
sider CF as an improved self-representation matrix factoriza-
tion method with a learning-based dictionary to efficiently re-
veal the global structure of original data. More importantly,
since the linear coefficients of CF carry clear semantic mean-
ings, which indicate they contain plentiful information of the
cluster label for each data point [Xu and Gong, 2004]. Thus,
the coefficients of CF model can be extracted to construct the
affinity matrix to relieve the disadvantage brought by using
the raw data. In our proposed model, we construct the affin-
ity matrix with adaptive neighbors based on the renewable
coefficient matrix and learn a sparse data representation si-
multaneously. In detail, several aspects of our model which
worth to be highlighted are as follows.

1. The proposed algorithm is a general framework that can
combine the power of CF model with two kinds of graph reg-
ularizers which contain comprehensive and complementary
structure information.

2. The proposed affinity matrix of the manifold structure
is constructed by adaptively assigning its nearest neighbors,
so that the clustering results are not sensitive to the input data
matrix. At the same time, a self-representation of original
data is learned to better construct the affinity matrix.

3. A graph regularizer based on the original data is added
to better reveal the local structure information in the original
data and learn a sparse clustering indicator matrix simultane-

ously. As the weight matrices of the graphs are highly sparse,
an efficient multiplicative update rule is proposed to solve the
proposed optimization.

The remainder of this paper is organized as follows: The
derivation of our algorithm is described in section 2. After
that, the optimization algorithm is proposed in section 3. The
experimental results are represented in section 4, followed by
the conclusion section.

2 The Proposed Method
In this section, we describe our proposed algorithm which
extends the standard CF model with the consideration of two
different manifold structures. In detail, the affinity matrix of
first manifold structure is constructed by adaptively assigning
its nearest neighbors in each iteration based on the renewable
self-representation of the raw data. The other graph regular-
izer is based on original data to complementally reveal the
local structure information of original data and learn the clus-
ter indicator matrix simultaneously. We will describe each
part of the objective function in the following subsections.

2.1 Graph Regularizer
In the CF modelX ≈ XWV T , the j-th row of matrix V , i.e.,
vTj = [vj1, vj2, · · · , vjn], can be regarded as a new represen-
tation of each data point with the new basis. Therefore, some
constraints can be added on matrix V to exploit the geomet-
ric structure of the data, which is beneficial for the subsequent
clustering task. A natural assumption needs to be mentioned
that if two data points xi, xj are close in the intrinsic geom-
etry of the data distribution, then their representations in the
new basis should be also close to each other [Cai et al., 2011]
[Pei et al., 2016]. This assumption plays an important role
in developing various kinds of algorithms, such as spectral
clustering and spectral-based dimensionality reduction algo-
rithms.

Before defining the introduced graph regularizer, let us
construct the edge weight matrix S first. Previous studies
have showed that the nearest-neighbor graph on data points
can effectively model the local geometric structure. There-
fore, we consider a graph with n vertices where each vertex
belongs to a concept. The weight matrix S is then defined as
follows:

Sij =

{
1, if xi ∈ Np(xj) or xj ∈ Np(xi),
0, otherwise,

(1)

where Np(xi) denotes the set of p-nearest neighbors of xi.
Then the graph regularizer can be defined to measure the
smoothness of the low-dimensional representations on the p-
nearest neighbor graph by [Belkin and Niyogi, 2002] [Belkin
and Niyogi, 2003]:

R =
1

2

n∑
i,j=1

‖vi − vj‖2Sij

=

n∑
i=1

vTi viDii −
n∑

i,j=1

vTi vjSij

= tr(V TDV )− tr(V TSV ) = tr(V TLV ),

(2)
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where tr(·) denotes the trace of a matrix. L = D − S is a
graph Laplacian[Chung, 1997], where S is the graph weight
matrix and D is a diagonal matrix whose entries are column
sums of S.

The graph regularizationR can well reveal the local intrin-
sic structure contained in the original data and learn a sparse
cluster indicator matrix at the same time. Although there are
a few drawbacks in this manifold structure and we will solve
them in the next subsection, we still incorporate it into our fi-
nal objective function for the purpose of obtaining better clus-
ter indicator matrix and the local structure information hidden
in the original data.

2.2 Adaptive Neighbor Structure based on Self
Representation

In the above subsection, the graph weight matrix (or affinity
matrix) S is predefined, which means that it may be sensitive
to the input raw data. In the literature, there are many ap-
proaches to construct the affinity matrix to solve this problem
[Guo, 2015]. Recently, a new idea has been proposed to learn
the affinity matrix by adaptively assigning neighbors for each
data point based on the local connectivity [Nie et al., 2014].
To be complete, we first introduce how to assign probabilis-
tic neighbors in this method. For simplicity, the Euclidean
distance is used as the distance measurement.

For the i-th data point xi, the Aij can be used to denote the
probability of any of the data point xj ∈ [x1, x2, · · · , xn] (ex-
cluding itself) being connected to xi as a neighbor. In general,
a smaller distance between two points xi and xj indicates a
larger probability Aij . So the probability Aij |nj=1 can be de-
termined by solving the following problem:

min
AT

i 1=1,0≤Ai≤1

n∑
j=1

‖xi − xj‖22Aij , (3)

where Ai ∈ Rn×1 is a vector with the j-th element as Aij .
The constraints ATi 1 = 1 and 0 ≤ Ai ≤ 1 are introduced to
guarantee the probability property of Ai.

However, there is a problem in eq. (3) that it has a trivial
solution, which means only the nearest data point can be de-
fined as the neighbor of xi with the probability 1, while all
the other data points can not be the neighbors of xi. Alterna-
tively, if we solve the following problem without taking into
consideration any distance information in the data:

min
AT

i 1=1,0≤Ai≤1

n∑
j=1

A2
ij . (4)

The ideal solution is that all the data points can be neighbors
of xi with the same probability 1

n .
By integrating eq. (3) and eq. (4), we have the following

optimization problem:

min
AT

i 1=1,0≤Ai≤1

n∑
j=1

(‖xi − xj‖22Aij + γA2
ij), (5)

where γ is a positive trade-off parameter to control the second
term.

However, there is still a drawback in this method that the
affinity matrix is constructed on the raw data, which is un-
able to well reveal the global subspace structure of data[Guo,
2015]. To solve this problem, we can naturally recall the as-
sumption mentioned before that if two data points xi, xj are
close in the intrinsic geometry of the data distribution, then
the representations of these two data points in the new basis
should also be close to each other[Cai et al., 2011] [Pei et al.,
2016]. Therefore, we decide to employ a new representation,
rather than the raw data, to construct the affinity matrix.

Meanwhile, inspired by the successful way to exploit the
self-representation of data in which the original data itself is
regarded as a dictionary [Guo, 2015] [Du et al., 2016], we ob-
serve that CF model can be considered as an improved self-
representation matrix factorization method with a learning-
based dictionary to efficiently reveal the global structure of
original data. More importantly, the linear coefficients of
CF carry clear semantic meanings, which indicates they con-
tain plentiful information of the cluster label for each data
point[Xu and Gong, 2004]. Therefore, the CF model can be
rewritten in the following form:

X ≈ XR, s.t.R = WV T , (6)

whereR = WV T denotes the coefficient matrix based on the
dictionary of the original data matrix, which is a meaningful
representation of the original data points.

Hence, by incorporating the self-representation with the
adaptive neighbor structure, we have the following problem
for each data point:

min
AT

i 1=1,0≤Ai≤1

n∑
j=1

(‖(WV T )i−(WV T )j‖22Aij+γA2
ij). (7)

For each data point xi, we can use eq. (7) to assign its
neighbors. Therefore, we can solve the following problem to
assign the neighbors for all the data points:

min
AT

i 1=1,0≤Ai≤1

n∑
i=1

n∑
j=1

(‖(WV T )i− (WV T )j‖22Aij +γA2
ij).

(8)
With slight algebraic transformation, it gives the following

formulation:

min
AT

i 1=1,0≤Ai≤1
tr(WV TLAVW

T ) + γ‖A‖2F , (9)

where LA is the Laplacian matrix of A, which is constructed
in the way of DA − A. The degree matrix DA is defined
as a diagonal matrix in which its i-th diagonal element is∑n
j=1Aij .

2.3 The Objective Function
Finally, by integrating the adaptive neighbor structure and
manifold regularizers into the original CF model, we have
the overall objective function of our proposed algorithm as
follows:

O = ‖X −XWV T ‖22 + λ1tr(WV TLAVW
T )

+ λ2tr(V
TLV ) + λ3‖A‖2F

s.t. W ≥ 0, V ≥ 0, ∀iATi 1 = 1, 1 ≥ Ai ≥ 0,

(10)
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where X ∈ Rm×n denotes the original data matrix, m is the
feature dimension, and n is the number of data points. W ∈
Rn×r and V ∈ Rn×r are the decomposed matrix factors.
A ∈ Rn×n is the affinity matrix which we have learned in an
adaptive approach with the new data representation. λ1, λ2,
and λ3 are three nonnegative regularization parameters.

3 Optimization Algorithm
The objective function in eq. (10) is not convex with both W
and V . Therefore, it is difficult to reach the global optimiza-
tion. However, the objective function is convex if we update
the variables alternatively. Thus, we introduce an iterative
algorithm which can achieve a local minimum as follows.

3.1 Update W and V with fixed A
Define K = XTX , then the objective function can be re-
formed as follows:

O = tr((X −XWV T )T (X −XWV T ))

+ λ1tr(WV TLAVW
T ) + λ2tr(V

TLV ) + λ3tr(A
TA)

= tr(K)− 2tr(VWTK) + tr(VWTKWV T )

+ λ1tr(WV TLAVW
T ) + λ2tr(V

TLV ) + λ3tr(A
TA).
(11)

Let ψjk, φjk be the Lagrangian multiplier for constraints
wjk ≥ 0 and vjk ≥ 0, respectively, and Ψ = [ψik],
Φ = [φik]. Since variable A is fixed here, we don’t consider
the Lagrangian multipliers here for the constraints ∀i ATi 1 =
1, Ai ≥ 0. Then the Lagrangian function L of O is:

L(O) =tr(K)− 2tr(VWTK) + tr(VWTKWV T )

+ λ1tr(WV TLAVW
T ) + λ2tr(V

TLV )

+ λ3tr(A
TA) + tr(ΨWT ) + tr(ΦV T ).

(12)

The partial derivatives of L with respect to W and V are:

∂L
∂W

= −2KV + 2KWV TV + 2λ1WV TLAV + Ψ, (13)

∂L
∂V

= −2KW+2VWTKW+2λ1LAVW
TW+2λ2LV+Φ,

(14)
Using the KKT conditions ψjkwjk = 0 and φjkvjk = 0,

we get the following equations for wjk and vjk:

0 =− (KV )jkwjk + (KWV TV )jkwjk

+ λ1(WV TLAV )jkwjk,
(15)

0 =− (KW )jkvjk + (VWTKW )jkvjk

+ λ1(LAVW
TW )jkvjk + λ2(LV )jkvjk.

(16)

Let LA = DA−A and L = D−S, then the equations can
lead to the following updating rules:

wjk ← wjk
(KV + λ1WV TAV )jk

(KWV TV + λ1WV TDAV )jk
, (17)

vjk ← vjk
(KW + λ1AVW

TW + λ2SV )jk
(VWTKW + λ1DAVWTW + λ2DV )jk

.

(18)

Regarding these updating rules, we have following theo-
rem:

Theorem 1. The objective functionO in eq. (10) is nonin-
creasing under the update rules in eq. (17) and eq. (18). The
objective function is invariant under these updates if and only
if W and V are at a stationary point.

Theorem 1 guarantees the convergence of W and V in eq.
(17) and eq. (18). Meanwhile, A has a closed-form solution.
So the final solution will be a local optimum. The proof of
Theorem 1 is omitted because of the size limitation.

3.2 Update A with fixed W and V
The update of A can be done via solving the following opti-
mization problem:

arg min
A
λ1tr(WV TLAVW

T ) + λ3‖A‖2F

s.t.∀iATi 1 = 1; 1 ≥ Ai ≥ 0.
(19)

Note that:

tr(WV TLAVW
T ) =

1

2

n∑
i,j=1

‖(WV T )i − (WV T )j‖22Aij .

(20)
Then the problem becomes:

arg min
A

λ1
2

n∑
i,j=1

‖(WV T )i − (WV T )j‖22Aij + λ3‖A‖2F .

(21)
To simplify the procedure, denote γ = 2λ3

λ1
. Note that

the problem (21) is independent between different i, which
means we can solve the following problem individually for
each i. So the problem reduces to:

min
Ai

n∑
j=1

(‖(WV T )i − (WV T )j‖22Aij + γA2
ij),

s.t. Ai1 = 1, 1 ≥ Ai ≥ 0.

(22)

Denote dij = ‖(WV T )i − (WV T )j‖22 and denote di ∈
Rn×1 as a vector with the j-th element as dij , then the prob-
lem can be written in the vector form as:

min
AT

i =1,1≥Ai≥0
‖Ai +

1

2γ
di‖22. (23)

For each i, the Lagrangian function is:

L(Ai, η, βi) =
1

2
‖Ai +

di
2γi
‖22− η(ATi 1− 1)−βTi Ai, (24)

where η and βi ≥ 0 are the Lagrangian Multipliers.
According to the KKT conditions, it can be verified that

the optimal solution Ai should be:

Aij = (− dij
2γi

+ η)+. (25)

To have a sparse similarity A, we have:

η =
1

k
+

1

2kγi

k∑
j=1

dij , (26)
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where k is the number of the nearest neighbors.
We could set γi to be:

γi =
k

2
di,k+1 −

1

2

k∑
j=1

dij . (27)

The overall γ could be set to the mean of γ1, γ2, . . . , γn,
which is:

γ =
1

n

n∑
i=1

(
k

2
di,k+1 −

1

2

k∑
j=1

dij). (28)

3.3 Extension to Negative Data Matrices
The updating rules we introduced in the above section only
take effect when the K is nonnegative. However, it is possi-
ble that the K contains negative entries. So in this section,
we will present a more general algorithm to handle any case.
Following [Xu and Gong, 2004], the algorithm is based on the
theorem proposed by Sha [Sha et al., 2007], which is stated
as follows.

Theorem 2. Define the nonnegative general quadratic form
as:

f(v) =
1

2
vTAv + bT v,

where v is an m-dimensional nonnegative vector, A is a
symmetric positive definite matrix and b is an arbitrary m-
dimensional vector. Let A+ and A− denote the nonnegative
matrices with elements:

A+
ij =

{
Aij , if Aij > 0,

0, otherwise.
A−
ij =

{
|Aij |, if Aij < 0,

0, otherwise.

It is easy to see thatA = A+−A−. Then, we can obtain the
solution v that minimizes f(v) through the following iterative
updating:

vi ← vi

[
−bi +

√
b2i + 4(A+v)i(A−v)i

2(A+v)i

]
. (29)

The Theorem 2 can naturally be applied because the objec-
tive function O is a quadratic form of W (or V ). We need to
identify the corresponding A and b in the objective function.

Fixing V , the part b can be attained by taking the first order
derivative with respect to W at W = 0:

∂O
∂wjk

∣∣∣∣∣
W=0

= −2(KV )jk. (30)

The part A for the quadratic form O(W ) can be obtained
by taking the second order derivative with respect to W :

∂2O
∂wjk∂wil

= 2(K)ji(V
TV )lk + 2λ1δji(V

TLAV )lk, (31)

where

δji =

{
1, if i = j,

0, otherwise.
δlk =

{
1, if l = k,

0, otherwise.

Let K+ and K− denote the nonnegative matrices with el-
ements:

K+
ij =

{
Kij , if Kij > 0,

0, otherwise.
K−
ij =

{
|Kij |, if Kij < 0,

0, otherwise.

where we have K = K+ −K−. Substituting A and bi using
eq. (30) and eq. (31), we get the multiplicative updating
equation for each element wjk of W :

wjk ← wjk
(KV )jk +

√
(KV )2jk + 4P+

jkP
−
jk

2P+
jk

, (32)

where P+ = K+WV TV + λ1WV TDAV and P− =
K−WV TV + λ1WV TAV .

Similarly, we can get the updating equation for each ele-
ment vjk in V as following:

vjk ← vjk
(KW )jk +

√
(KW )2jk + 4Q+

jkQ
−
jk

2Q+
jk

, (33)

where Q+ = VWTK+W + λ1DAVW
TW + λ2DV and

Q− = VWTK−W + λ1AVW
TW + λ2SV .

4 Experimental Results
In this section, we evaluate the performance of our proposed
method on some datasets to show the effectiveness of our al-
gorithm. We compare our method with some exist algorithms
including the K-means, CF [Xu and Gong, 2004], NMF [Lee
and Seung, 2001], SMCE [Elhamifar and Vidal, 2011], SSC
[Elhamifar and Vidal, 2013], and Normalized Cuts (Ncut)
[Shi and Malik, 2000]. For all the clustering methods, the
number of clusters is known as input.

Datasets. There are in total six datasets used in our experi-
ments, all from the UCI Machine Learning Repository. Table
2 summarizes the characteristics of the datasets used in our
experiments. All the datasets are nonnegative.

Evaluation Metrics. Following [Xu et al., 2003] [Huang
et al., 2014], we adopt three widely used evaluation metrics
to quantitatively measure the clustering performance of our
algorithm, i.e. Clustering Accuracy, Normalized Mutual In-
formation and Purity.

Parameters Setting. To compare these methods fairly, we
run them with some selected parameter combinations and re-
port the best result for comparison.

For K-means, NMF, CF and Ncut, we run them for 10
times and calculate both of the mean and standard deviation.
The experimental results of SMCE, SSC and our method are
relatively stable. So there is no need to average them. Thus,
they are only run for 1 time. During the experiments, we
set the cluster number and dimension of reduced data repre-
sentation equal to the number of ground truth classes for all
datasets and methods. For Ncut and our method, we con-
struct the predefined Laplacian matrices by 0-1 weight based
on the Euclidean distances between each data point. Also,
the neighbor size of these fixed Laplacian matrices is set to
be 5 for simplicity. For the Laplacian matrix in the adaptive
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Datasets Metric K-means CF NMF SMCE SSC Ncut ours
AC 52.38 ± 3.99 49.57 ± 6.79 52.22 ± 8.70 46.72 51.52 63.62 ± 0.77 70.08

Scale NMI 12.54 ± 7.00 8.96 ± 7.13 14.62 ± 10.52 2.08 12.97 22.61 ± 0.85 22.76
purity 66.67 ± 4.39 63.62 ± 6.77 65.50 ± 10.34 47.68 68.96 72.80 ± 0.51 75.20

AC 74.95 ± 4.50 60.00 ± 5.85 77.72 ± 6.28 46.53 47.52 45.74 ± 3.39 87.13
Zoo NMI 75.44 ± 5.28 62.04 ± 1.92 70.63 ± 4.69 42.15 56.81 34.91 ± 2.05 83.97

purity 83.37 ± 2.13 78.91 ± 1.55 80.79 ± 3.34 64.36 70.30 58.22 ± 2.37 87.13
AC 92.70 ± 0.00 38.15 ± 2.24 69.44 ± 14.25 44.94 94.94 50.45 ± 3.91 96.07

Wine NMI 77.03 ± 1.47 1.13 ± 0.72 49.54 ± 13.92 5.48 81.89 16.62 ± 3.36 86.86
purity 92.70 ± 0.00 41.35 ± 1.78 70.39 ± 13.24 44.94 94.94 51.46 ± 3.09 96.07

AC 87.60 ± 19.12 60.20 ± 10.63 75.07 ± 5.87 64.00 96.67 36.80 ± 0.28 97.33
Iris NMI 83.45 ± 13.45 36.61 ± 19.37 58.35 ± 6.09 32.19 88.46 1.23 ± 0.10 91.35

purity 90.67 ± 12.65 61.40 ± 9.83 75.07 ± 5.87 64.00 96.67 38.00 ± 0.00 97.33
AC 51.86 ± 2.34 50.58 ± 0.35 50.57 ± 0.15 52.25 51.35 51.81 ± 0.00 54.10

Chess NMI 0.23 ± 0.61 0.01 ± 0.01 5.26e-3 ± 3.20e-3 9.83e-3 0.31 5.50e-3 ± 0.00 2.03
purity 52.85 ± 1.99 52.22 ± 0.00 52.22 ± 0.00 52.25 52.22 52.22 ± 0.00 54.10

AC 79.77 ± 0.00 59.26 ± 7.36 80.69 ± 0.77 56.55 63.68 55.86 ± 0.00 82.99
Vote NMI 28.96 ± 0.15 4.26 ± 5.69 29.80 ± 1.17 7.95 3.34 0.36 ± 0.00 31.73

purity 79.77 ± 0.00 63.63 ± 3.98 80.69 ± 0.77 61.38 63.68 61.38 ± 0.00 82.99

Table 1: Clustering results ((mean± standard deviation)%) of different algorithms on six datasets

Dataset Number of Samples Dimensions Classes
scale 625 4 3
zoo 101 16 7

wine 178 13 3
iris 150 4 3

chess 3196 36 2
vote 435 16 2

Table 2: Description of datasets

neighbor structure in our model, the neighbor size is set by
searching in the range of {c− 1, c, c+ 1, c+ 2, c+ 3, c+ 4},
where c is the cluster number. For our method, the regu-
larization parameters λ1 and λ2 are set by searching from
{10−5, 10−4, · · · , 104, 105}. Since the regularization param-
eter λ3 can update automatically in each iteration based on the
value of λ1 and γ, we just initialize it empirically. We have
also initialized the W and V by PCAN [Nie et al., 2014]. For
SSC and SMCE, we use the codes provided by their authors
with the recommended parameters to achieve a good perfor-
mance. Note that there is no parameter selection required for
the K-means, NMF and CF, since the number of clusters is
given.

Clustering Results. Table 1 shows the clustering results
on six datasets in terms of accuracy, NMI and purity, respec-
tively. In the table, we can see that regardless of the dataset,
our proposed model always achieve the best clustering per-
formance in terms of all the measurements. In addition, we
can find some other detailed points:

1. For three matrix-factorization-based methods (NMF,
CF, our model), our model achieves a significant improve-
ment over both CF and NMF, which confirms that our model
has a better ability to capture the intrinsic geometrical struc-
ture of the original data by considering a self-representative
manifold regularizer with an adaptive neighbor structure.

2. Although some methods like SMCE have built a similar-
ity graph to explore the data manifold, our model construct a
better similarity matrix based on self-representation and em-
ploy an adaptive way to assign neighbors so that achieves bet-
ter performance.

3. The clustering performance of our method on datasets
which are of high dimensionality, such as Chess, Vote, is ex-
tremely better than other algorithms, especially in the mea-

surement of NMI, which indicates our model can effectively
handle the clustering problem of high dimensional data com-
paring with other methods. In these tables, we can observe
that most methods produce low NMI, less than 1%, on the
data set Chess. One possible reason is that the data in Chess is
both high dimensional and diverse, which renders it difficult
for clustering. Nevertheless, our method still has a relative
higher NMI, 2.03% comparing with other methods.

For datasets containing categorical attributes, such as Zoo
and Vote, our method also presents a great advantage over
other methods in all the three measurements. One possible
reason may be that the two kinds of manifold structures in
our algorithm can better extract comprehensive information
of the original data, no matter it is numerical, categorical or
mixed.

5 Conclusion
In this paper, we propose a novel graph regularized con-
cept factorization model with adaptive neighbor structure for
data clustering. Different from other graph regularized clus-
tering methods, our model constructs the affinity matrix by
adaptively assigning closest neighbors for each data point.
The manifold regularization term based on a learned affinity
matrix can better consider the intrinsic geometric structure
of data. Besides, the distances between each point used to
build the affinity matrix are calculated based on a sparse self-
representation of the original data. Therefore, the clustering
result is not sensitive to the input data. An efficient multi-
plicative update rule is proposed to optimize the problem.
Experimental results on several benchmark datasets show that
our algorithm outperforms many state-of-art clustering meth-
ods. In the further research, we may extend our current algo-
rithm to be implemented more effectively to address the task
of big data clustering.
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