UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Regularization in Deep Neural Networks

by

Guoliang Kang

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2019

Copyright@Data to Decision CRC

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis. This research is supported by the Australian Government Research Training Program.

Guoliang Kang

Feb. 2019

Production Note: Signature removed prior to publication.

ABSTRACT

Regularization in Deep Neural Networks

by

Guoliang Kang

Recent years have witnessed the great success of deep learning. As the deep architecture becomes larger and deeper, it is easy to overfit to relatively small amount of data. Regularization has proved to be an effective way to reduce overfitting in traditional statistical learning area. In the context of deep learning, some special design is required to regularize their training process. Generally, we firstly proposed a new regularization technique named "Shakeout" to improve the generalization ability of deep neural networks beyond Dropout, via introducing a combination of L_0 , L_1 , and L_2 regularization effect into the network training. Then we considered the unsupervised domain adaptation setting where the source domain data is labeled and the target domain data is unlabeled. We proposed "deep adversarial attention alignment" to regularize the behavior of the convolutional layers. Such regularization reduces the domain shift existing at the start in the convolutional layers which has been ignored by previous works and leads to superior adaptation results.

Dissertation directed by Professor Yi Yang Center of AI, School of Software

Acknowledgements

First and foremost, I am tremendously grateful for my supervisor Yi Yang for his continuous support and guidance throughout my PhD, and for providing me the freedom to work on a variety of problems. I am grateful for Prof. Dacheng Tao, who has ever supervised me and provided me support. I am grateful for my cosupervisor Jun Li for his beneficial suggestions for my research.

I am happy to collaborate with the previous postdoc in our team Liang Zheng. Thanks for his creative guidance and suggestions for my research and academic writing. I am happy to collaborate with many creative students in our team. I am grateful for the creative discussions with them and I really appreciate the kind and useful suggestions given by them.

Thanks for all the people that ever helped me and encouraged me.

Finally, this thesis is dedicated to my parents Zhongwen Kang, Fenglan Zhang, and my wife Mingyue You, for all the years of love and support. They are always the source of my power and the reason I insist on pursuing my dream.

> Guoliang Kang Sydney, 2019.

List of Publications

Journal Papers

J-1. G. Kang, J. Li, and D. Tao, "Shakeout: A new approach to regularized deep neural network training", IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 5, pp. 12451258, 2018.

Conference Papers

- C-1. G. Kang, J. Li, and D. Tao, "Shakeout: A new regularized deep neural networktraining scheme," in AAAI, 2016.
- C-2. G. Kang, L. Zheng, Y. Yan, and Y. Yang, "Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization", in ECCV, 2018

Contents

	Certificate		iii
	Abstract		iv
	Acknowledg	gments	V
	List of Pub	lications	vi
	List of Figu	ires	Х
1	Introduce 1.1 Backgr	c tion round	1 1
	1.2 Thesis	Organization	4
2	Literatu	re Survey	6
	2.1 Regula	rization for Supervised Learning	6
	2.1.1	Data Augmentation	6
	2.1.2	Model Ensemble.	7
	2.1.3	Weight Tying or Sharing	7
	2.1.4	Adversarial Training	8
	2.1.5	Teacher-student Framework	8
	2.1.6	Dropout	8
	2.2 Regula	rization for Unsupervised Domain Adaptation	9
	2.2.1	Explicitly Inducing Regularization Term	10
	2.2.2	Implicitly Imposing Regularization	11

3	Re	gulari	ization for Supervised Learning	12
	3.1	Introdu	action	12
	3.2	Related	d Work	14
	3.3	Methoo	d	16
		3.3.1	Regularization Effect of Shakeout	18
		3.3.2	Shakeout in Multilayer Neural Networks	26
	3.4	Experi	ments	29
		3.4.1	Shakeout and Weight Sparsity	30
		3.4.2	Classification Experiments	32
		3.4.3	Stabilization Effect on the Training Process	43
		3.4.4	Practical Recommendations	45
	3.5	Conclu	sion \ldots	47
4	Re	egulari	ization for Unsupervised Domain Adaptation	49
4	R e 4.1	e gular i Introdu	ization for Unsupervised Domain Adaptation	49
4	Re 4.1 4.2	e gular i Introdu Relateo	ization for Unsupervised Domain Adaptation action	494952
4	R (4.1) 4.2 4.3	egulari Introdu Relateo Methoo	ization for Unsupervised Domain Adaptation action	49 49 52 54
4	R e 4.1 4.2 4.3	egulari Introdu Related Method 4.3.1	ization for Unsupervised Domain Adaptation action	 49 52 54 55
4	Re 4.1 4.2 4.3	egulari Introdu Related Method 4.3.1 4.3.2	ization for Unsupervised Domain Adaptation action	 49 52 54 55 56
4	R6 4.1 4.2 4.3	egulari Introdu Related Method 4.3.1 4.3.2 4.3.3	ization for Unsupervised Domain Adaptation action	49 49 52 54 55 56 58
4	Re 4.1 4.2 4.3	egulari Introdu Related Method 4.3.1 4.3.2 4.3.3 4.3.4	ization for Unsupervised Domain Adaptation action	 49 49 52 54 55 56 58 61
4	Re 4.1 4.2 4.3	egulari Introdu Related Method 4.3.1 4.3.2 4.3.3 4.3.4 Experim	ization for Unsupervised Domain Adaptation action	 49 49 52 54 55 56 58 61 62
4	R6 4.1 4.2 4.3	egulari Introdu Related Method 4.3.1 4.3.2 4.3.3 4.3.4 Experin 4.4.1	ization for Unsupervised Domain Adaptation action attention d Adversarial Data Pairing Attention Alignment Training with EM Deep Adversarial Attention Alignment Setup	 49 49 52 54 55 56 58 61 62 62
4	R6 4.1 4.2 4.3	egulari Introdu Related Method 4.3.1 4.3.2 4.3.3 4.3.4 Experin 4.4.1 4.4.2	ization for Unsupervised Domain Adaptation action attention d Adversarial Data Pairing Attention Alignment Training with EM Deep Adversarial Attention Alignment Setup Implementation Details	 49 49 52 54 55 56 58 61 62 62 63

viii

	Bil	oliogr	aphy	73
5	Co	nclus	ion	72
	4.5	Conclu	sion	71
		4.4.7	Comparison with Different Variants of Attention	70
		4.4.6	Impact of Hyper-parameters	69
		4.4.5	Comparing Different Attention Discrepancy Measures	69
		4.4.4	Ablation Study	69

List of Figures

3.1Comparison between Shakeout and Dropout operations. This figure shows how Shakeout and Dropout are applied to the weights in a linear module. In the original linear module, the output is the summation of the inputs \boldsymbol{x} weighted by \boldsymbol{w} , while for Dropout and Shakeout, the weights \boldsymbol{w} are first randomly modified. In detail, a random switch \hat{r} controls how each w is modified. The manipulation of w is illustrated within the amplifier icons (the red curves, best seen with colors). The coefficients are $\alpha = 1/(1-\tau)$ and $\beta(w) = cs(w)$, where s(w) extracts the sign of w and c > 0, $\tau \in [0,1]$. Note the sign of $\beta(w)$ is always the same as that of w. The magnitudes of coefficients α and $\beta(w)$ are determined by the Shakeout hyper-parameters τ and c. Dropout can be viewed as a special case of Shakeout when c = 0 because $\beta(w)$ is zero at this 18 circumstance. 3.2Regularization effect as a function of a single weight when other weights are fixed to zeros for logistic regression model. The 243.3 The contour plots of the regularization effect induced by Shakeout in 2D weight space with input $\boldsymbol{x} = [1, 1]^T$. Note that Dropout is a special case of Shakeout with $c = 0. \ldots \ldots \ldots \ldots \ldots$ 27

3.4	Distributions of the weights of the autoencoder models learned by
	different training approaches. Each curve in the figure shows the
	frequencies of the weights of an autoencoder taking particular
	values, i.e. the empirical population densities of the weights. The
	five curves correspond to five autoencoders learned by standard
	back-propagation, Dropout ($\tau = 0.5$), Gaussian Dropout ($\sigma^2 = 1$)
	and Shakeout ($\tau = 0.5, c = \{1, 10\}$). The sparsity of the weights
	obtained via Shakeout can be seen by comparing the curves. \ldots 33
3.5	Features captured by the hidden units of the autoencoder models
	learned by different training methods. The features captured by a
	hidden unit are represented by a group of weights that connect the
	image pixels with this corresponding hidden unit. One image patch
	in a sub-graph corresponds to the features captured by one hidden
	unit
3.6	Classification of two kinds of neural networks on MNIST using
	training sets of different sizes. The curves show the performances of
	the models trained by standard BP, and those by Dropout and
	Shakeout applied on the hidden units of the fully-connected layer 36
3.7	Classification on CIFAR-10 using training sets of different sizes. The
	curves show the performances of the models trained by standard
	BP, and those by Dropout and Shakeout applied on the hidden
	units of the fully-connected layer
3.8	Comparison of the distributions of the magnitude of weights trained

by Dropout and Shakeout. The experiments are conducted using AlexNet on ImageNet-2012 dataset. Shakeout or Dropout is applied on the last two fully-connected layers, i.e. FC7 layer and FC8 layer. 39

3.9	Distributions of the maximum magnitude of the weights connected	
	to the same input unit of a layer. The maximum magnitude of the	
	weights connected to one input unit can be regarded as a metric of	
	the importance of that unit. The experiments are conducted using	
	AlexNet on ImageNet-2012 dataset. For Shakeout, the units can be	
	approximately separated into two groups and the one around zero is	
	less important than the other, whereas for Dropout, the units are	
	more concentrated. \ldots	40
3.11	The value of $-V(D,G)$ as a function of iteration for the training	
	process of DCGAN. DCGANs are trained using standard BP,	
	Dropout and Shakeout for comparison. Dropout or Shakeout is	
	applied on the discriminator of GAN	42
3.10	Relative accuracy loss as a function of the weight pruning ratio for	
	Dropout and Shakeout based on AlexNet architecture on	
	ImageNet-2012. The relative accuracy loss for Dropout is much	
	severe than that for Shakeout. The largest margin of the relative	
	accuracy losses between Dropout and Shakeout is 22.50% , which	
	occurs at the weight pruning ratio $m = 96\%$	43
3.12	The minimum and maximum values of $-V(D,G)$ within fixed	
	length intervals moving from the start to the end of the training by	
	standard BP, Dropout and Shakeout. The optimal value $\log(4)$ is	
	obtained when the imaginary data distribution $P(\hat{x})$ matches with	
	the real data distribution $P(\boldsymbol{x})$	44

- 4.1 Attention visualization of the last convolutional layer of ResNet-50. The original *target* input images are illustrated in (a). The corresponding attentions of the source network, the target network trained on labeled target data, and the target network adapted with adversarial attention alignment are shown in (b), (c), and (d) respectively.

4.2The framework of deep adversarial attention alignment. We train a source network and fix it. The source network guides the attention alignment of the target network. The target network is trained with real and synthetic images from both domains. For labeled real source and synthetic target data, we update the network by computing the cross-entropy loss between the predictions and the ground-truth labels. For unlabeled real target and synthetic source images, we maximize the likelihood of the data with EM steps. The attention distance for a pair of images (as illustrated in the "Data Pairs" block) passing through the source network and the target network, respectively, is minimized. 54Paired data across domains using CycleGAN. (a) and (c): real 4.3images sampled from source and target domain, respectively. (b): a synthetic target image paired with (a) through G^{ST} . (d): a synthetic source image paired with a real target image (c) through G^{TS} 56. . . . Analysis of the training process (EM is implemented). Left: The 4.4 trend of \mathcal{L}^{AT} during training with and without imposing the \mathcal{L}^{AT} penalty term. Right: The curves of test accuracy on the target domain. The results of tasks $\mathbf{W} \to \mathbf{A}$ and $\mathbf{D} \to \mathbf{A}$ are presented. The results for other tasks are similar. One iteration here represents one update of the network M^{post} (see Section 4.3.3). 67 4.5The impact of hyper-parameters on the classification accuracy of target model. The results for task $\mathbf{D} \to \mathbf{A}$ on Office-31 are illustrated, with a comparison to the previous state-of-the-art (SOTA). The trends are similar for other tasks. Left: Accuracy vs. p_t . **Right**: Accuracy vs. β . 70