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ABSTRACT

Regularization in Deep Neural Networks

by

Guoliang Kang

Recent years have witnessed the great success of deep learning. As the deep ar-

chitecture becomes larger and deeper, it is easy to overfit to relatively small amount

of data. Regularization has proved to be an effective way to reduce overfitting in

traditional statistical learning area. In the context of deep learning, some special de-

sign is required to regularize their training process. Generally, we firstly proposed a

new regularization technique named “Shakeout” to improve the generalization abil-

ity of deep neural networks beyond Dropout, via introducing a combination of L0,

L1, and L2 regularization effect into the network training. Then we considered the

unsupervised domain adaptation setting where the source domain data is labeled

and the target domain data is unlabeled. We proposed “deep adversarial attention

alignment” to regularize the behavior of the convolutional layers. Such regulariza-

tion reduces the domain shift existing at the start in the convolutional layers which

has been ignored by previous works and leads to superior adaptation results.

Dissertation directed by Professor Yi Yang

Center of AI, School of Software
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