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Abstract

Latent Variable Model (LVM) is the statistical model that aims to uncover
hidden information behind data. These models have been widely used for
real-world applications such as community detection, link prediction or rec-
ommender systems. However, LVM faces significant challenges in modeling
complex relations since LVM assumes that the data are independent and
identically distributed (IID). However, real-world data are often coupled in
terms of object attributes, object relations, or even hidden variable relations.
For example, in social networks, users that indicate a similar ‘age’, ‘location’
and ‘high school’ are often friends. To this end, non-IID learning has the po-
tential to describe the above hierarchical relations in real-world data which

are typically not independent or identically distributed (non-IID).

In this thesis, we are interested in determining the relations behind ob-
servations and hidden variables in LVM. More specifically, we focus on cou-
pling relations in non-IID data in terms of various LVM, including Latent
Class Model (LCM), Latent Feature Model (LFM), and Latent Factor Model-
Matrix Factorization (LFM-MF). In particular, we aim to model the following
relations: (1) relations between attributes in observed data (e.g., user/item
metadata such as ‘location’ of a user or ‘genre’ of a movie); (2) relations
between different sources of observed data (e.g., metadata and user’s friend-

ships); and (3) relations between latent variables in LVM. We also apply
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ABSTRACT

Bayesian Nonparametric (BNP) techniques to the proposed LVM models to
automatically tune the number of latent variables in LVM for efficient com-
putation. Furthermore, to work with large and sparse data, we introduce
several methods for better inference of the proposed LVM models.

The empirical analysis of both proposed models reveals that our models
significantly outperform state-of-the-art models in the same family. Together
with improved optimization techniques (i.e., BNP and inference methods),
our proposed models indicate their potential for online modeling of large,

sparse data.
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