FLOOD RISK ASSESSMENT USING MULTI-SENSOR REMOTE SENSING, GEOGRAPHIC INFORMATION SYSTEM, 2D HYDRAULIC AND MACHINE LEARNING BASED MODELS

By

HOSSEIN MOJADDADI RIZEEI

A Thesis Submitted in Fulfilment of the degree of Doctor of Philosophy

Faculty of Engineering and Information Technology
University of Technology Sydney (UTS), New South Wales, Australia

October 2018
CERTIFICATE OF AUTHORSHIP/ORIGINALLITY

I, Hossein Mojaddadi Rizeei declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctoral of Philosophy, in the FEIT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Hossein Mojaddadi Rizeei

Date: 29/01/2019
DEDICATION

This thesis is dedicated to my Father.

In memory of Mohammad Reza Mojaddadi Rizeei. You left fingerprints of grace on my life. You shan't be forgotten. May God almighty bless you.
ACKNOWLEDGEMENT

Praise belongs to God, the Lord of the world who inspires me everywhere.

There are a number of people without whom this thesis might not have been written, and to whom I am greatly indebted.

I would like to express the deepest appreciation to my supervisor distinguished professor Biswajeet Pradhan, who has shown the attitude and the substance of a genius. He continually and persuasively conveyed a spirit of adventure in regard to research and support. Without his supervision and constant help this dissertation would not have been possible.

In addition, I would like to thank my wife Maryam Adel Saharkhiz. She is being always there cheering me up and stood beside me through the good times and bad. I deeply appreciate her belief in me.

Last but not the least, I would like to thank my family, especially my dear mother who never gives up to supporting me spiritually throughout my life.
LIST OF PAPERS/PUBLICATIONS

Published journal articles

Published book chapter

Published conference paper

All the aforementioned papers have been published during my PhD candidature.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytical Hierarchy Process</td>
</tr>
<tr>
<td>LTM</td>
<td>Land Transformation Model</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>HRS</td>
<td>High Resolution Sub-grid</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under Curve</td>
</tr>
<tr>
<td>BSA</td>
<td>Bivariate Statistical Analysis</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DT</td>
<td>Decision Tree</td>
</tr>
<tr>
<td>EBF</td>
<td>Evidential Belief Function</td>
</tr>
<tr>
<td>FIS</td>
<td>Fuzzy Interface System</td>
</tr>
<tr>
<td>FR</td>
<td>Frequency Ratio</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>LN</td>
<td>Linear</td>
</tr>
<tr>
<td>LR</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td>LULC</td>
<td>Land use/cover</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MSA</td>
<td>Multivariate Statistical Analysis</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>PL</td>
<td>Polynomial</td>
</tr>
<tr>
<td>POF</td>
<td>Plateau Objective Function</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RS</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>InSAR/IFSAR</td>
<td>Interferometric Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SIG</td>
<td>Sigmoid</td>
</tr>
<tr>
<td>SPI</td>
<td>Stream Power Index</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>TRI</td>
<td>Topographic Roughness Index</td>
</tr>
<tr>
<td>TWI</td>
<td>Topographic Wetness Index</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>ARIMA</td>
<td>Autoregressive Integrated Moving Average</td>
</tr>
<tr>
<td>SCS</td>
<td>Soil Conservation Service</td>
</tr>
<tr>
<td>CN</td>
<td>Curve Number</td>
</tr>
<tr>
<td>FBIA</td>
<td>Feature Based Image Analysis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>PBIA</td>
<td>Pixel Based Image Analysis</td>
</tr>
<tr>
<td>OBIA</td>
<td>Object Based Image Analysis</td>
</tr>
<tr>
<td>FPP</td>
<td>Flash Pluvial Flood</td>
</tr>
<tr>
<td>FF</td>
<td>Fluvial Flood</td>
</tr>
<tr>
<td>RF</td>
<td>Random Forest</td>
</tr>
<tr>
<td>DSM</td>
<td>Digital Surface Model</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP/ORIGINALITY .. ii
DEDICATION ... iii
ACKNOWLEDGEMENT .. iv
LIST OF PAPERS/PUBLICATIONS ... v
LIST OF ABBREVIATIONS ... vi
TABLE OF CONTENTS ... 1
LIST OF TABLES ... 7
LIST OF FIGURES .. 8
ABSTRACT ... 12
INTRODUCTION ... 15
 1.1 General .. 15
 1.2 Problem statement ... 17
 1.2 Motivation behind the thesis ... 17
 1.5 Research objectives ... 22
 1.6 Scope of the Study ... 23
 1.2 Research Questions ... 24
 1.7 Thesis organization ... 26
LITERATURE REVIEW .. 28
 2.1 Introduction ... 28
 2.2 Important definitions in flood risk study .. 28
 2.3 GIS and remote sensing techniques .. 31
 2.3.1 Optical imagery ... 32
 2.3.2 Active imagery .. 33
 2.3.3 Interferometry SAR (InSAR) .. 34
2.4 Change detection and prediction methods ..35
2.5 LULC extraction methods ..40
2.6 Flood contributing factors ..43
2.7 Flood modelling approaches ..47
 2.7.1 Hydrological and hydraulic methods ...51
 2.7.2 GIS-based methods ..58
 2.7.3 Qualitative methods ...59
 2.7.3.1 Simple additive weighting .. 59
 2.7.3.2 Elimination and choice expressing reality .. 60
 2.7.3.3 Technique for order preference by similarity to ideal solutions62
 2.7.3.4 Analytical hierarchy process ...64
 2.7.4 Quantitative methods ...65
 2.7.4.1 Statistical data-driven methods ...65
 a) Logistic regression .. 66
 b) Frequency ratio ...68
 c) Fuzzy logic model ...69
 2.7.5 Machine learning methods ...69
 a) Artificial neural network ..70
 b) Decision tree ...71
 c) Support vector machine ...76
 2.7.6 Ensemble methods ...80
2.8 Flood inventory ..82
2.9 Validation ...85
 2.9.1 LULC accuracy assessment ...85
2.9.2 Flood probability accuracy assessment ... 86
2.10 Summary .. 87

MATERIALS AND METHODOLOGY ... 91
3.1 Overall Methodology ... 91
3.2 Study Areas .. 92
 3.2.1 Damansara, Malaysia ... 93
 3.2.2 Semenyih, Malaysia ... 95
3.3 Datasets .. 97
3.4 Monitoring and simulating surface runoff (First objective) 99
 3.4.1 Satellite image preprocessing .. 101
 3.4.2 Satellite image processing ... 103
 3.4.3 LULC modeling by LTM method ... 104
 3.4.4 Precipitation forecasting by ARIMA model .. 106
 3.4.4.1 Statistical Taguchi technique .. 108
 3.4.5 Runoff simulation by SCS-CN model ... 110
 3.4.5.1 Curve number calculation ... 111
3.5 LULC extraction for physical flood vulnerability analysis (Second objective) ... 113
 3.5.1 Training and testing sites ... 114
 3.5.2 Satellite image pre-processing ... 115
 3.5.3 Classification methods ... 117
 3.5.3.1 Pixel based image analysis .. 117
 3.5.3.2 Object based image analysis ... 118
 a) Image Segmentation .. 119
 b) Object Feature Extraction .. 121
3.5.3.3 Feature based image analysis ... 123
 a) Dempster-Shafer theory ... 123
 b) Feature-based fusion of classified maps .. 126
 c) Statistical evaluation of classified land use analysis 126

3.5.4 Vulnerability indices for element at risk .. 127

3.6 Probability and hazard assessment for two types of flooding (Third objective) .. 128

3.6.1 Preprocessing of geo-statistical GIS-based approach 130

3.6.2 Flood conditioning factors ... 131
 3.6.2.1 Surface elevation ... 133
 3.6.2.2 Surface slope ... 133
 3.6.2.3 Curvature ... 133
 3.6.2.4 Hydrological indices ... 134
 3.6.2.5 Surface runoff ... 136
 3.6.2.6 LULC ... 136
 3.6.2.7 Rainfall intensity ... 137
 3.6.2.8 Distance from river ... 137
 3.6.2.9 Lithological and soil type ... 138

3.6.3 Inventory of historical pluvial flood events 145

3.6.4 PFF probability assessment using GIS and physical-based model 147
 3.6.4.1 Optimizer method of PSO ... 148
 3.6.4.2 Ensemble of PSO-RF model ... 149

3.6.5 FF probability assessment using 2D-HRS inundation analysis 150
 3.6.5.1 Sub-grid resolution principals ... 152
 3.6.5.2 Flow hydrograph analysis ... 155
3.6.7 Combined FF and PFF probability analysis .. 156

3.7 Flood risk and hazard assessment using geospatial models (Forth objective) 159

3.7.1 Inventory of historical fluvial flood events .. 160

3.7.2 Flood Probability models .. 163

 3.7.2.1 Multivariate GIS data-driven models .. 164
 a) Frequency Ratio Model ... 164
 b) Logistic Regression model .. 165

 3.7.2.2 Machine Learning algorithm .. 167
 a) Support Vector Machine model ... 167

 3.7.2.3 Ensemble Models .. 169

 3.7.2.4 Qualitative Multi Criteria Decision Making (MCDM) Method 170
 Analytic Hierarchy Process (AHP) .. 170

3.7.3 Flood hazard and risk evaluation ... 171

3.7.4 Accuracy assessment, calibration, and validation ... 174

3.8 Summary ... 176

RESULTS AND DISCUSSION .. 180

4.1 Simulating surface runoff ... 180

 4.1.1 LULC Change detection and prediction forecasting 180

 4.1.2 Precipitation change analysis ... 183

 4.1.3 GIS-based SCS-CN model results ... 187

4.2 LULC map extraction results for physical vulnerability assessment 191

 4.2.1 PBIA results ... 192

 4.2.2 OBIA results .. 195

 4.2.3 FBIA Results ... 200

5
5.1 General .. 260
5.2 Conclusion .. 261
5.3 Implications and Implementation ... 268
5.4 Limitations ... 269
5.5 Recommendation for future works .. 269

REFERENCES .. 271

LIST OF TABLES
Table 3.1. Hydro-geomorphological details for Damansara River catchment.............. 94
Table 3.2. Geomorphological details for Semenyih catchment. 97
Table 3.3. The geometrical information for two subset study areas 97
Table 3.4. Streamflow and rainfall stations .. 99
Table 3.5. Optimized segmentation parameters ... 103
Table 3.6. The LTM driver variables applied for LULC forecasting 105
Table 3.7. CN indices under AMC II Conditions based on TR-55 table 111
Table 3.8. Adjustments to select CN for soil moisture conditions (Ward, and Trimble, 2003). .. 112
Table 3.9. The geometrical information for two subset study areas 114
Table 3.10. The optimized parameters in segmentations for both subsets..................... 120
Table 3.10. The object feature characteristics in detail .. 121
Table 3.11. Step by step PSO-RF technique ... 149
Table 3.12. Optimal values of Manning’s n ... 155
Table 4.1. ARIMA model optimization results ... 185
Table 4.2. Calibrated and Adapted CN look-up table .. 187
Table 4.3. Results of confusion matrix accuracy assessment for both sites 205
Table 4.4. Results of McNemar examination for each paired assessment 206
Table 4.5. Measured computational operating time of each image analysis approach .. 208
Table 4.6. Calibration and validation results for FF and PFF probabilities with observed data at metrological stations ... 222
Table 4.7. FR spatial correlation between flooded area and all conditioning factors 226
Table 4.8. Spatial relationship between each conditioning factor and flooding extracted by LR method ... 230
Table 4.9. AHP spatial correlation between flooded area and each conditioning factor ... 240
Table 4.10. Area percentage of the risk map of the Damansara River catchment 253

LIST OF FIGURES

Figure 1.1 Thesis conceptual framework ... 26
Figure 3.1. Overall methodology flowchart ... 92
Figure 3.2. Location of the Damansara River Catchment .. 94
Figure 3.3. Location of the second study area, Semenyih, Malaysia (Left map was adopted from National Geographic World Map) ... 96
Figure 3.4. The first objective computational methodology flowchart ... 100
Figure 3.5. The second objective computational methodology flowchart .. 115
Figure 3.6. The third objective computational methodology flowchart .. 130
Figure 3.7. Flood Contributing factors of Damansara: (a) surface elevation, (b) surface slope, (c) curvature, (d) SPI, (e) TWI, and (f) TRI, ... 139
Figure 3.7. (Continued) Flood Contributing factors of Damansara: (g) STI, (h) Surface runoff, (i) LULC, (j) rainfall intensity, (k) distance from river, and (l) soil type ... 140
Figure 3.7. (Continued) Flood Contributing factors of Damansara: (m) lithological geology. . 141
Figure 3.8. Flood contributing factors of Semenyih: (a) surface elevation and (b) surface slope, ... 141
Figure 3.8. (Continued) Flood Contributing factors of Semenyih: (c) curvature, (d) SPI, (e) TWI, and (f) TRI, .. 142
Figure 3.8. (Continued) Flood Contributing factors of Semenyih: (g) STI, (h) Surface runoff, (i) LULC, and (j) Rainfall intensity, .. 143
Figure 3.8. (Continued) Flood Contributing factors for Semenyih: (k) distance from river, (l) soil type, and (m) lithological geology. .. 144
Figure 3.9. PFF inventory of historical events .. 146
Figure 3.10. 2D-HRS modelling computational mesh terminology ... 154
Figure 3.11. The forth objective computational methodology flowchart ... 160
Figure 3.12. Historical inventory events of fluvial flooding nearby the NKVE highway 162
Figure 3.13. Historical inventory events of fluvial flooding in Semenyih catchment 163
Figure 4.1. Comparison of LULC dynamics in 2000, 2010 and predicted 2020 181
Figure 4.2. LULC maps for 2000, 2010 and 2020 .. 181
Figure 4.3. Trend analysis plot for the Kg. Pasir gauging station .. 184
Figure 4.4. ACF of residuals (with 5% significance limits for autocorrelations) 185
Figure 4.5. Optimized ARIMA time series forecasting results till 2020 (95% confidence limits). 186
Figure 4.6. Distributed-maximum surface runoff in three considered time periods 189

Figure 4.7. Compared Distributed-maximum surface runoff in three considered time periods within sub-basins. ... 190

Figure 4.8. LULC extraction results using PBIA classifiers in site A, a) Bayes, b) KNN, and c) SVM... 193

Figure 4.9. LULC extraction results of PBIA classifiers over Site B; a) Bayes, b) KNN, and c) SVM... 194

Figure 4.10. Range of spectral indices extracted from different LULC classes by the OBIA-DT approach ... 195

Figure 4.11. Range of ... 196

Figure 4.12. Range of textural values extracted from different LULC classes by the OBIA-DT approach ... 198

Figure 4.13. LULC extraction results using OBIA-DT for subsets (a) A and (b) B 199

Figure 4.14. Compared the accuracy of different Masses of Belief using ROC curve 200

Figure 4.15. LULC results from DS-FBIA fusion method for subsets A (a) and B (b) 201

Figure 4.16. Machine learning results in finer scale for visual comparison: a) Bayes, b) KNN, c) SVM, d) DT, e) fusion DS, and f) WV-3 satellite image ... 203

Figure 4.17. Extracted flood vulnerable index for Damansara basin 209

Figure 4.18. Optimized weightage of parameters extracted by PSO-RF model 211

Figure 4.19. PFF probability map using GIS-based PSO-RF model 213

Figure 4.20. PFF inundation depth hazard map using GIS-based PSO-RF model 214

Figure 4.21. a) Maximum FF probability map and b) maximum FF inundation depth map 216

Figure 4.22. Distribution of combined FF and PFF probability classes 218

Figure 4.23. Combined PFF and FF probabilistic map ... 218

Figure 4.24. Compared simulated FF inundation depths with observed water level depths over three gauged stations ... 221
Figure 4.25. Compared simulated PFF inundation depth with observed precipitation depth over three rainfall stations ... 222

Figure 4.26. ROC accuracy assessment of GIS-based PFF probability map 223

Figure 4.27. Flood probability map obtained by the FR model in Damansara 228

Figure 4.28. Flood probability map obtained by the FR model in Semenyih 229

Figure 4.29. Flood probability map obtained by the LR model in Damansara 232

Figure 4.30. Flood probability map obtained by the LR model in Semenyih 233

Figure 4.31. The assigned probability weightage for each parameter obtained by SVM 234

Figure 4.32. Flood probability map obtained by the SVM model in Damansara 235

Figure 4.33. Flood probability map obtained by the SVM model in Semenyih 236

Figure 4.34. The assigned weightage for each parameter obtained by the ensemble FR-SVM model ... 237

Figure 4.35. Flood probability map obtained by the ensemble FR-SVM model in Damansara 238

Figure 4.36. Flood probability map obtained by the ensemble FR-SVM model in Semenyih .. 239

Figure 4.37. Flood probability map obtained by AHP model in Damansara 242

Figure 4.38. Flood probability map obtained by AHP model in Semenyih 243

Figure 4.39. The ROC success rate represents the accuracy of applied flood probability models .. 245

Figure 4.40. The ROC prediction rate represents the accuracy of applied flood probability models .. 246

Figure 4.41. Hazardous triggering index of Damansara catchment 249

Figure 4.42. Flood hazard index map of Damansara catchment 250

Figure 4.43. Flood risk levels of Damansara ... 252

Figure 4.44. Field verification for Damansara catchment ... 255
ABSTRACT

Flooding events threaten the population, economy and environment worldwide. In recent years, several spatial methods have been developed to map flood susceptibility, hazard and risk for predicting and modelling flooding events. However, this research proposes multiple state-of-the-art approaches to assess, simulate and forecast flooding from recent satellite imagery.

Firstly, a model was proposed to monitor changes in surface runoff and forecast future surface runoff on the basis of land use/land cover (LULC) and precipitation factors because the effects of precipitation and LULC dynamics have directly affected surface runoff and flooding events. Land transformation model (LTM) was used to detect the LULC changes. Moreover, an autoregressive integrated moving average (ARIMA) model was applied to analyse and forecast rainfall trends. The parameters of the ARIMA time series model were calibrated and fitted statistically to minimise prediction uncertainty through modern Taguchi method. Then, a GIS-based soil conservation service-curve number (SCS-CN) model was developed to simulate the maximum probable surface runoff. Results showed that deforestation and urbanisation have occurred upon a given time and have been predicted to increase. Furthermore, given negative changes in LULC, surface runoff increased and was forecasted to exceed gradually by 2020. In accordance with the implemented model calibration and accuracy assessment, the GIS-based SCS-CN combined with the LTM and ARIMA model is an efficient and accurate approach to detecting, monitoring and forecasting surface runoff.
Secondly, a physical vulnerability assessment of flood was conducted by extracting detailed urban features from Worldview-3. Panchromatic sharpening in conjunction with atmospheric and topographic corrections was initially implemented to increase spatial resolution and reduce atmospheric distortion from satellite images. Dempster–Shafer (DS) fusion classifier was proposed in this part as a feature-based image analysis (FBIA) to extract urban complex objects. The DS-FBIA was investigated among two sites to examine the transferability of the proposed method. In addition, the DS-FBIA was compared with other common image analysis approaches (pixel- and object-based image analyses) to discover its accuracy and computational operating time. k-nearest neighbour, Bayes and support vector machine (SVM) classifiers were tested as pixel-based image analysis approaches, while decision tree classifier was examined as an object-based image analysis approach. The results showed improvements in detailed urban extraction obtained using the proposed FBIA with 92.2% overall accuracy and with high transferability from one site to another.

Thirdly, an integrated model was developed for probability analysis of different types of flood using fully distributed GIS-based algorithms. These methods were applicable, particularly where annual monsoon rains trigger fluvial floods (FF) with pluvial flash flood (PFF) events occur simultaneously. A hydraulic 2D high-resolution sub-grid model of hydrologic engineering centre river analysis system was performed to simulate FF probability and hazard. Moreover, machine learning random forest (RF) method was used to model PFF probability and hazard. The RF was optimised by particle swarm optimisation (PSO) algorithm. Both models were verified and calibrated by cross
validation and sensitivity analysis to create a coupled PFF–FF probability mapping. The results showed high accuracy in generating a coupled PFF–FF probability model that can discover the impact and contribution of each type to urban flood hazard. Furthermore, the results provided detailed flood information for urban managers to equip infrastructures, such as highways, roads and sewage network, actively.

Fourthly, the risk of a flood can be assessed through different stages of flood probability, hazard and vulnerability. A total of 13 flood conditioning parameters were created to construct a geospatial database for flood probability estimation in two study areas. To estimate flood probability, five approaches, namely, logistic regression, frequency ratio (FR), SVM, analytical hierarchy process and combined FR–SVM, were adopted. Then, a flood risk map was generated by integrating flood hazard and vulnerability. The accuracy of flood probability indices indicated that the combined FR–SVM method achieved the highest accuracy among the other approaches. The reliability of the results obtained from this research was also verified in the field. The most effective parameters that would trigger flood occurrence were rainfall and flood inundation depth.

In this research, transferable residency from one study area to another was verified through all the implemented methods. Therefore, the proposed approaches would be effectively and easily replicated in other regions with a similar climate condition, that condition that is, having a sufficient amount of flooding inventory events. Moreover, the results of the proposed approaches provided solid-detailed information that would be used for making favourable decisions to reduce and control future flood risks.