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AU change of system internal energy
AKE change of system kinetic energy
APE change of system potential energy
A thermal conductivity

A thermal conductivity of plain concrete
A, thermal conductivity of concrete
A thermal conductivity of steel fibre
g, heat flux

1D one-dimensional

2D two-dimensional

3D three-dimensional

o} stress

o, compressive stress in sample

3 strain

ultimate strain




&, ultimate strain under high temperature
€, strain measured on reflection bar

€, strain in sample

£, strain rate in sample

£, strain measured on transmission bar
A cross-section area or contacting area
A, bond area

A, cross-section area of sample

c specific heat

¢ wave velocity

c, specific heat of concrete

c, specific heat of steel fibre

D diameter

DA damage parameter

E modulus of elasticity

E initial modulus of elasticity
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E,, initial modulus of elasticity under high temperature
E, modulus of elasticity of steel fibre
EXP exponent in damage curve
f force
f. compressive strength
[ compressive strength under 20 °C or room temperature
f.s compressive strength under high temperature
f, yield strength
GB bond shear modulus
h convection or film coefficient
[ length of sample
q rate of heat transfer
0 heat
Q-0 UHPC sample with quartz sand as aggregate but without any
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Q-P UHPC sample with quartz sand as aggregate and with PP fibre

Q-S

UHPC sample with quartz sand as aggregate and with steel fibre
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Q-SP

UHPC sample with quartz sand as aggregate and with hybrid PP

fibre and steel fibre

R, outer radius

S-0 UHPC sample with steel slag as aggregate but without any fibre

S-Sp UHPC sample with steel slag as aggregate and with hybrid PP
fibre and steel fibre

S the maximum elastic slip

t time

T temperature

T, temperature of contacting fluid

T temperature of solid surface

u slip strain per unit length

U the maximum slip strain

v velocity

V volume

v, fibre content by volume

vol. volume
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BFS Boundary Face Subdivide

CH calcium hydroxide

C-S-H calcium silicate hydrate

CFS constraining facet set

CPS constraining point set

CSS constraining segment set

DOF degree of freedom

DTeS Delaunay tetrahedron set

DTS(CF) Delaunay triangle set of constraining facets
FEA finite element analysis

FRC fibre reinforced concrete

FSI Facet Subdivide Iterative

GGBFS ground granulated blast furnace slag
HPC high performance concrete

HSC high strength concrete

K&C Karagozian & Case
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LDPM

lattice discrete particle model

NSC normal strength concrete

PP polypropylene

RC reinforced concrete

RHT Riedel, Hiermayer and Thoma

SCC self-consolidating concrete

SCC-S self-consolidating concrete reinforced with steel fibre
SHPB split Hopkinson pressure bar

SFRC steel fibre reinforced concrete

SSI Segment Subdivide Iterative

UHPC ultra-high performance concrete

UHPFRCC ultra-high performance fibre-reinforced cementitious

composites
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ABSTRACT

Despite the use of state-of-the-art technology and materials, modern buildings are still
vulnerable to fire. Damage made to ultra-high performance concrete (UHPC) by fire or
high temperature is usually severer than normal strength concrete (NSC) or high
performance concrete (HPC) due to its compact internal structure. For example, strength
loss of UHPCs can reach up to 80% after exposure to 800 °C and explosive spalling is a
common disaster to UHPCs. To develop a UHPC with high fire resistance, a total of six
UHPC mixtures were designed and tested after subjected to elevated temperatures up to
1000 °C in this study. The effects of aggregate type, fibre type and heating rate were
investigated. Residual compressive strengths and stress-strain relationships were studied.
Besides, attention was paid to explosive spalling. Scanning electron microscope (SEM)
analysis was conducted to help understand the mechanism of variation of internal micro-
structure under different temperatures. It was found the mixture containing steel slag and
hybrid fibre, i.e. steel fibre and polypropylene (PP) fibre, had excellent fire resistance.
After being subjected to 1000 °C, this mixture retained a residual compressive strength

of 112.8 MPa or a relative value of 69%.

Furthermore, to study the behaviour of the newly developed UHPC under simultaneous
effect of fire and blast, both compressive and splitting tensile split Hopkinson pressure
bar (SHPB) tests were carried out under combined action of high temperatures up to
800 °C and impact loading. The dynamic tests were done both under high temperatures
(hot test) and after cooling down (cool test) and comparisons were made between the two
scenarios. Based on the tests on this UHPC, mechanic and physical characteristics under
the combined effect were studied. Besides, explosive spalling was observed in the tests
and analysed in this work. It was interesting to find PP fibre could play a negative role in

preventing explosive spalling between 320 and 380 °C.

To investigate the effect of steel fibre on thermal conductivity of steel fibre reinforced
concrete (SFRC) (including UHPC), a meso-scale model for heat analysis was developed.
Delaunay triangulation was employed to generate the unstructured mesh for SFRC

materials. The model was validated using existing experimental data. Then, it was used
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to study how model thickness affected simulation outcomes of thermal conductivity of
models with different fibre lengths, by which an appropriate thickness was determined
for the later analyses. The validated and optimised model was applied to study of
relationships between thermal conductivity and factors such as fibre content, fibre aspect
ratio and different parts of an SFRC block by conducting steady-state heat analyses with
the finite element analysis (FEA) software ANSYS. The simulation results reveal that
presence of steel fibres has an obvious impact on the distribution of temperature and heat
flux vector of the SFRC blocks. Besides, fibre content improves thermal conductivity

considerably, while fibre aspect ratio only has an insignificant effect.

Based on the Delaunay triangulation meshing method applied above for thermal analysis,
a 3D meso-scale model for mechanical analysis of SFRCs is also successfully developed
and verified, which has the potential to more accurately simulate behaviour of SFRCs
under elevated temperatures in the future. This approach modelling fibre and concrete
separately and linking them with slide line contact has the capability to truly reflect the
interfacial behaviour of fibre and mortar, and thus achieve high fidelity of numerical
simulations. However, meso-scale modelling usually means tremendous complexity and
long computational time. This study proposes a model to achieve relatively high
computation efficiency, as well as accuracy. Besides, the model has the ability to deal

with small specimens cut from SFRC blocks.
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