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irradiance experiments for this and other studies. Additional strains are included for 

comparative purposes and form the basis of data in Figure 3.8. 

Table 3.2: Summary of calculated growth parameters from temperature reaction norms 

for each strain of Gambierdiscus measured in this study, including maximum growth rate 

(µmax), the temperature (°C) at which maximum growth was reached (T µmax), the 

optimum temperature range for growth (Topt) and the minimum and maximum 

temperatures where growth terminated (Tmin and Tmax). 

Table 3.3. Summary of calculated growth parameters from the salinity reaction norms 

for each strain of Gambierdiscus measured in this study, including maximum growth rate 
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(µmax), the salinity at which maximum growth was reached (S µmax), the optimum salinity 

range for growth (Sopt) and the minimum and maximum salinity where growth terminated 

(Smin and Smax). 

Table 3.4. Summary of calculated growth parameters calculated from the irradiance 

reaction norm function for each strain of Gambierdiscus measured in this study, including 

maximum growth rate (µmax), the irradiance (µmol photons m-2 s-1) at which maximum 

growth was reached (I µmax), the optimum irradiance range for growth (Iopt) and the 

minimum and maximum irradiance where growth terminated (Imin and Imax). 

Table 4.1. Type of rafts collected in the East Australian Current (EAC) and associated 

oceanographic features (e.g. eddies), with the environmental conditions and location of 

sampling sites. Note that some samples contained more than one type of raft and were 

identified to genus level when possible. 

Table 4.2. Microalgal taxa associated with rafts collected in the East Australian Current 

(EAC) (Table 4.1) and associated water masses. The taxa classified as epibenthic are 

indicated with + symbol, planktonic with a – symbol, and NA denotes when information 

was not available or applicable. 

Table 5.1. Location and water quality information for sites used in natural epiphytic 

community colonisation experiment. 

Supplementary Table 5.1. Microalgal taxa identified from resident epibenthic 

communities of the three sites sampled for the natural community colonisation 

experiments (Lake Macquarie, Brisbane Water and Narrabeen Lagoon).  + indicates the 

taxa was present and – indicates the taxa were absent. 
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ANOVA Analysis of Variance 

ASP Amnesic Shellfish Poisoning 

aq Aqueous 

AZP Azaspiracid Shellfish Poisoning 

BHAB Benthic Harmful Algal Bloom 

bp Base Pair 

BSA Bovine Serum Albumin 

CFP Ciguatera Fish Poisoning 

CTX Ciguatoxin 

CO2 Carbon Dioxide 

DNA Deoxyribonucleic Acid 

DSP Diarrhetic Shellfish Poisoning 

EAC East Australian Current 

FBS Foetal Bovine Serum 

FLIPR Fluorescent Imaging Plate Reader 

Fv/Fm Maximum quantum yield of photosystem II 

GTR General Time Reversible 

GTR+G General Time Reversible with Gamma-shaped among site  

variation 

HA Haemolytic Assay 
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HAB Harmful Algal Bloom 

HPLC High Performance Liquid Chromatography 

LC-MS/MS Liquid Chromatography Tandem-Mass Spectrometry 

LD Lethal Dose 

LSU Large ribosomal subunit gene 

MBA Mouse Bioassay 

nMDS Non-metric Multidimensional Scaling 

MTX Maitotoxin  

NSP Neurotoxic Shellfish Poisoning 

N2a Mouse Neuroblastoma Assay 

PCO Principle Coordinate Analysis 

PCR Polymerase chain reaction 

PERMANOVA Permutational Analysis of Variance 

PSP Paralytic Shellfish Poisoning 

RBA Receptor Binding Assay 

RPMI Roswell Park Memorial Institute medium 

SH-SY5Y Human Neuronal Cell Line 

sp. Species (singular) 

spp. Species (plural) 

TFA Trifluoroacteic Acid 

UPLC Ultra Performance Liquid Chromatography 
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Abstract 

 

Some species from the epibenthic marine microalgal genus Gambierdiscus produce 

potent neurotoxins, such as ciguatoxins (CTXs) and maitotoxins (MTXs), which can 

accumulate in the marine food web and cause the human illness Ciguatera Fish Poisoning 

(CFP). The genus typically has a tropical distribution and is known to occur in the Great 

Barrier Reef region of north east Australia, although recently, populations have been 

documented in more temperate locations. In this thesis, a toxicological and ecological 

approach was used to investigate CFP causing organisms in Australia, with an emphasis 

on assessing the potential for temperate range extension of the genus in this region. 

Monoclonal isolates of Gambierdiscus were established from a tropical and a temperate 

location in eastern Australia and formed the foundation of experimental work. Four 

species of Gambierdiscus (G. cf. pacificus, G. cf. silvae, G. carpenteri and G. lapillus) 

were identified from the tropical location and only G. carpenteri was identified at the 

temperate location. Liquid Chromatography Tandem-Mass Spectrometry (LC-MS/MS) 

was used to assess whether isolates produced known microalgal CTXs (P-CTX-3B, 3C, 

4A and 4B) and MTX-1, but these characterised toxins were not detected in any of the 

Gambierdiscus strains. Putative MTX-3, however, was detected in all strains, except the 

temperate G. carpenteri isolates. Using the novel Ca2+ influx bioassay, compounds 

displaying CTX-like activity were identified in extracts of G. cf. pacificus, G. cf. silvae 

and G. lapillus, and compounds displaying MTX-like activity were detected in all species 

tested. Fitness curves across environmental gradients of temperature, salinity and 

irradiance showed Gambierdiscus species can grow across a broad range of 

environmental conditions. The environmental niche of the tropical strains was not 
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significantly different from that of the temperate strains, suggesting that tropical toxin 

producing Gambierdiscus species also have the capacity to occupy temperate locations. 

Rafting on detached macrophyte fragments that are transported poleward in the East 

Australian Current was identified as the likely natural long-distance dispersal mechanism 

for Gambierdiscus species in eastern Australia. The ability of Gambierdiscus to colonise 

new temperate locations was examined by studying the growth of different strains co-

cultured within both natural and artificial epibenthic microalgal communities. These 

experiments confirmed that it may only require a single pulse of very few cells for 

successful colonisation of Gambierdiscus. This thesis advances knowledge about the 

diversity and toxicology of Gambierdiscus in eastern Australia, identifies the potential 

cause of CFP from this region and provides experimental evidence of the mechanisms 

that could facilitate temperate range extension of the genus. Results from this thesis 

therefore provide fundamental information for developing a management strategy to 

mitigate the risk of human exposure to CFP in eastern Australia. 
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