Novel Design and Facile Synthesis of Porous Carbon Nanocomposites for Lithium Sulfur Battery

This thesis is presented in fulfilment of requirement for the degree of

DOCTOR OF PHILOSOPHY

of the

University of Technology Sydney

By

Weizhai Bao, B. Eng., M. Eng.

February 2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work presented in this thesis has not previously been submitted for a degree nor has been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Weizhai Bao

Production Note: Signature removed prior to publication.

2019-02-01

DEDICATION

This thesis is dedicated to my family. Thank you for all of your love and support.

ACKNOWLEDGEMENTS

I wish to express my deep appreciation for the encouragement, understanding, invaluable advice and constant support of my principle supervisor, Prof. Guoxiu Wang, director of Centre for Clean Energy Technology, during my study in University of Technology Sydney (UTS)

I would like to thank Professor Yury Gogotsi for his valuable guidance during my visit to Drexel University in Philadelphia. I wish to thank Dr. Dawei Su, my co-supervisor for his constantly rendering helps during my research work.

I would like to acknowledge Dr. Jane Yao. Her kind help and support is essential to my laboratory work.

Special thanks are given to my colleagues at UTS, Dr. Hao Liu, Dr. Bing Sun, Dr. Zhimin Ao, Mr. Xin Guo, Mr. Xiao Tang, Dr. Shuangqiang Chen, Dr. Anjon Kumar Mondal, Dr. Jianjun Song, Dr. Kefei Li, Dr. Xiuqiang Xie, Dr. Jinqiang Zhang, Dr. Yufei Zhao, Dr Katja Kretschmer, Dr Jing Xu, Dr. Dong Zhou, Dr. Huajun Tian, Miss Xiaochun Gao, Miss Xingxing Yu, Mr. Kang Yan, Mr. Yi Chen. Their kind collaboration and assistance were helpful. Also, I want to thank my friends in Philadelphia, Professor Xing Meng, Dr. Xu Xiao, Dr. Meikang Han, Dr. Xuehang Wang, Dr. David Pinto, Dr. Narendra Kurra, Dr. Babak Anasori, Miss Kathleen Maleski, Miss Linfan Cui, Miss. Adriana Navarro Suarez, Miss Christine Hatter, Mr. Hao Wang, Mr. Mr. Kanit Hantanasirisakul, Mr. Tyler Mathis, Mr. Ke Li, Mr. Jianmin Li, Dr. Xiaofeng Wang, Miss Meiping Zhu, Mr. Patrick Urbankowski, Mr. Mohamed Alhabeb, We have a lot of good memories in Philadelphia. In addition, I appreciate the administrative and technical support I received from Dr. Ronald Shimmon, Dr. Linda Xiao, Mr. Sorabh Jain, and Miss Emaly Black. I would also like to thank Danielle and Wendy at Drexel University for the help in many aspects.

I would like to give my thanks to Katie McBean, Mark Berkahn and Herbert Yuan from the MAU and Physics Research Labs in UTS for their help on material characterization.

The financial support from UTS and Australian Renewable Energy Agency (ARENA) to help finish my Ph.D. study are highly appreciated.

Last but not the least, I would like to thank my beloved wife, Miss Alice Xie and my parents for supporting me spiritually throughout writing this thesis and my life in general.

Weizhai Bao

RESEARCH PUBLICATIONS

- <u>Bao, W.</u>; Liu, L., Wang, C., Choi, S., Wang, D. and Wang, G., 2018. Facile Synthesis of Crumpled Nitrogen- Doped MXene Nanosheets as a New Sulfur Host for Lithium– Sulfur Batteries. *Advanced Energy Materials*. Impact factor: 21.875. (Selected as cover of the issue, and reported by WILEY Materials Views China in March 2018, one of the Top 10 most read articles of Advanced Energy Materials in March 2018)
- <u>Bao, W.</u>;Su, D.;Zhang, W.;Guo, X.; Wang, G. 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium–Sulfur Batteries. *Advanced Functional Materials* 2016, *26*, 8746-8756. Impact factor: 13.30. (Reported by WILEY Materials Views China at June 12, 2017)
- <u>Bao, W.</u>; X, Xie.; Xu, J.; Guo, X.; J, Song Su, D.; Wang, G. Confine sulfur in 3D flexible hybrid MXene/reduced graphene oxide nanosheets for lithium sulfur battery. *Chemistry– A European Journal*, 2017, 23, 1-8. Impact factor: 5.16. (One of the most downloaded *Chemistry–A European Journal* articles in 2017)
- <u>Bao, W.</u>; Tang, X., Guo, X., Choi, S., Wang, C., Gogotsi, Y. and Wang, G., Porous cryodried MXene for efficient capacitive deionization. *Joule* 2018, 2(4), 778-78 (Cell Publishing Group journal, highlight and preview paper by editor)
- <u>Bao, W.</u>;Mondal, A. K.;Xu, J.;Wang, C.;Su, D.; Wang, G. 3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors. *Journal of Power Sources* 2016, *325*, 286-291. Impact factor: 6.945.
- <u>Bao, W.</u>;Zhang, Z.;Zhou, C.;Lai, Y.; Li, J. Multi-walled carbon nanotubes @ mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes@metal-organic framework for lithium sulfur battery. *Journal of Power Sources* 2014, 248, 570-576. Impact factor: 6.945.
- <u>Bao, W.</u>;Zhang, Z.;Chen, W.;Zhou, C.;Lai, Y.; Li, J. Facile synthesis of graphene oxide@mesoporous carbon hybrid nanocomposites for lithium sulfur battery. *Electrochimica Acta* 2014, *127*, 342-348. Impact factor: 5.116.
- <u>Bao, W.</u>;Zhang, Z.;Qu, Y.;Zhou, C.;Wang, X.; Li, J. Confine sulfur in mesoporous metal–organic framework@reduced graphene oxide for lithium sulfur battery. *Journal* of Alloys and Compounds 2014, 582, 334-340. Impact factor: 3.779.

- <u>Bao, W.</u>;Zhang, Z.;Qu, Y.;Zhou, C.;Wang, X.; Li, J. Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder. *Journal of Energy Chemistry*, 2013, 22(5), pp.790-794. Impact factor: 4.385.
- Zhang, Z.; <u>Bao, W.</u>; Chen, W.;Zhou, C.;Lai, Y.; Li. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium–sulfur battery. *ECS Electrochemistry Letters*, 2012, 1(2), pp.A34-A37.
- Xu, J.; Su, D.; Zhang, W.; <u>Bao, W.</u>; Wang, G. A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries. *J. Mater. Chem. A*, 2016, *4*, 17381-17393. Impact factor: 9.931.
- Devaraj, S., Kretschmer, K., Sahu, T., <u>Bao, W</u>., Rojo, T., Wang, G. and Armand, M.B., 2018. Highly efficient, cost effective and safe sodiation agent for high performance sodium batteries. *ChemSusChem.* Impact factor: 7.411
- 13. Chen, W.;Zhang, Z.; <u>Bao, W.</u>; Lai, Y.;Li, J.;Gan, Y.; Wang, J. Hierarchical mesoporous γ–Fe₂O₃/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li–O₂ batteries. *Electrochimica Acta* 2014, *134*, 293-301. Impact factor: 5.116.
- 14. Song, J.;Su D, Xie X, Su, D.; Guo, X.; <u>Bao, W.</u>; Wang. Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. *ACS applied materials & interfaces*, 2016, 8(43): 29427-29433. Impact factor: 8.097.
- Xu, J.;Su, D.; <u>Bao, W.</u>; Wang, G. Rose flower–like NiCo₂O₄ with hierarchically porous structures for highly reversible lithium storage. *Journal of Alloys and Compounds*, 2016, 684: 691-698. Impact factor: 3.779.
- 16. Guo, X., Li, K., <u>Bao, W.</u>, Zhao, Y., Xu, J., Liu, H. and Wang, G., 2018. Highly Reversible Lithium Polysulfide Semiliquid Battery with Nitrogen- Rich Carbon Fiber Electrodes. Energy Technology, 6(2), pp.251-256. Impact factor: 3.385.

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP	I
DEDICATION	II
ACKNOWLEDGEMENTS	III
RESEARCH PUBLICATIONS	V
TABLE OF CONTENTS	VII
LIST OF TABLES	XVII
LIST OF FIGURES	XVIII
ABSTRACT	XXV
INTRODUCTION	XXVIII
Chapter 1 Literature Review	
1.1 Overview of Rechargeable Lithium-ion Batteries	
1.1.1 Electrochemistry of Lithium-ion Batteries	
1.1.2 Cathode materials for LIBs	
1.2 Rechargeable lithium-sulfur battery	
1.2.1 Basic principles of Lithium-sulfur battery	
1.2.2 Challenges towards Li-S battery	
1.3 Current approaches on cathode	
1.3.1 Porous carbon hosts	
1.3.2 Graphene and its oxide	
1.3.3 Metal oxides	
1.3.4 Two-dimensional (2D) metal carbides, carbonitrides and nitrides	
1.4 Current approaches on other aspects	
1.4.1 Polysulfide-insoluble electrolytes	
1.4.2 Interlayers and separator modification	
1.4.3 Anode protection	
1.5 Summary	
1.6 Scope of this thesis	
Chapter 2 Experimental	
2.1 Overview	
2.2 Materials preparation	

2.2.1 Solid-state reaction	
2.2.2 Hydrothermal method	
2.3 Materials characterization	
2.3.1 X-ray Diffraction (XRD)	
2.3.2 Raman Spectroscopy	
2.3.3 X-ray photoelectron spectroscopy (XPS)	22
2.3.4 N ₂ sorption/desorption measurement	22
2.3.5 Thermogravimetric Analysis (TGA)	
2.3.6 Scanning Electron Microscopy (SEM)	
2.3.7 Transmission Electron Microscopy (TEM)	
2.4 Electrochemical techniques	
2.4.1 Electrode preparation	
2.4.2 Cell assembly	
2.4.3 Galvanostatic cycling	
2.4.4 Cyclic voltammetry	
2.5.3 Electrochemical Impedance Spectroscopy	
Chapter 3 3D hybrid–porous carbon derived from carbonization of metal organic fra for Li-Sulfur Batteries with Long Cycle Life	ameworks 26
3.1 Introduction	
3.2 Experimental	
3.2.1 Preparation of 3D hybrid–porous carbon	
3.2.2 Preparation of hybrid-porous carbon/sulfur (HPC/S) multi-composites .	
3.2.3 Characterization	
3.2.5 Cell assembly and electrochemical testing	
3.3 Results and Discussion	
3.4 Conclusions	
Chapter 4 Facile synthesis of reduced graphene oxide @ mesoporous carbonanocomposites for lithium sulfur battery	on hybrid 42
4.1 Introduction	
4.2 Experimental	44
4.2.1 Materials	44
4.2.2 Structural and physical characterization	46
4.2.3 Cell assembly and electrochemical testing	47

4.3 Results and Discussion
4.4 Conclusions
Chapter 5 A New Sulfur Host based on Graphene-like Porous MXene Nanosheets for High Performance Lithium-Sulfur Batteries
5.1 Introduction
5.2 Experimental Section
5.2.1 Sample preparation
5.2.2 Structural and physical characterization
5.2.3 Cell assembly and electrochemical testing
5.3 Results and Discussions
5.4 Conclusion
Chapter 6 Confine sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium sulfur battery
6.1 Introduction
6.2 Experimental Section
6.2.1 Sample preparation
6.2.2 Structural and physical characterization
6.2.3 Cell assembly and electrochemical testing
6.3 Results and Discussion
6.4 Conclusion
Chapter 7 Three-Dimensional Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries
7.1 Introduction
7.2 Experimental 110
7.2.1 Materials preparation 110
7.2.2 Structural and physical characterization 112
7.2.3 Density functional theory (DFT) calculations 113
7.2.3 Cell assembly and electrochemical testing 114
7.3 Results and Discussion 114
7.4 Conclusions
Chapter 8 A Novel Synthesis of Porous Nitrogen doped MXene Nanosheets as a New Sulfur Host for Advanced Lithium-Sulfur Batteries
8.1 Introduction
8.2 Experimental

8.2.1 Sample preparation 139
8.2.2 Structural and physical characterization 140
8.2.3 Electrochemical testing
8.3 Results and Discussions 142
8.4 Conclusions
Chapter 9 Conclusions and Future Perspective
9.1 Conclusions 171
9.1.1Nanostructured electrode materials for high performance Li-S batteries 171
9.1.2 Understanding the interactions in MXene-based electrode materials 171
9.2 Future Perspective
APPENDIX: NOMENCLATURE 173
REFERENCES

LIST OF TABLES

Table 1.1 Some of the MAX phases reported Chemical list	. 12
Table 2.1 Chemical list	. 19

LIST OF FIGURES

exists not only on the shell but also inside the void space, reproduced from reference9

Figure 2.1 Framework of the experiments 18
Figure 2.2 Configuration of a coin cell used in this thesis
Figure 3.1 FESEM image of unique ZIF-8 frameworks matrix
Figure 3.2 FESEM image of 3D hybrid-porous carbon. Inset is the high magnification FESEM image
Figure 3.3 (a), (b) and (c) TEM images of 3D hybrid–porous carbon at different magnifications. (d) TEM image of the edge of 3D hybrid–porous carbon
Figure 3.4 (a) N ₂ adsorption–desorption isotherms curves for 3D hybrid–porous carbon, and (b) pore size distribution for 3D hybrid–porous carbon
Figure 3.5 (a) TGA curve of 3D hybrid–porous carbon from the pyrolysis of ZIF–8 precursor, and (b) Raman spectra of 3D hybrid–porous carbon
Figure 3.6 HPC/S composite, HPC/S mixed and elemental sulfur
Figure 3.7 Cyclic voltammogram curves of the Li/S cells with the ZIF-8/S composite sulfur cathode at a scan rate of 0.1 mV s^{-1}
Figure 3.8 (a) Cyclic voltammogram curves of the Li/S cells with the HPC/S composite sulfur cathode at a scan rate of 0.1 mV s^{-1}
Figure 3.9 Discharge/charge curves at 1st, 2nd, 10th, 50th cycle of the HPC/S composite sulfur cathode at 335 mA g^{-1}
Figure 3.10 Discharge/charge curves at 1st, 2nd, 10th, 50th cycle of the ZIF-8/S composite sulfur cathode at 335 mA g^{-1}
Figure 3.11 Cycle performance of the HPC/S composite sulfur cathode, ZIF-8/S mixed sulfur cathode at 335 mA g^{-1}
Figure 4.1 Schematic illustration for the preparation of RGO@Meso-C/S 48
Figure 4.2 TGA curves of the GO@ZIF-8 49
Figure 4.3 Raman spectra of RGO@Meso-C and Meso-C in the range of 500-2500 cm ⁻¹ . 49
Figure 4.4 SEM images of Meso-C (a), RGO@Meso-C (b), RGO@Meso-C/S multi- composites (c)
Figure 4.5 N_2 adsorption-desorption isotherm curves of GO@Meso-C sample 51
Figure 4.6 the pore size distribution of GO@Meso-C sample
Figure 4.7 N_2 adsorption-desorption isotherm curves of GO@Meso-C/S sample 52
Figure 4.8 the pore size distribution of GO@Meso-C/S sample
Figure 4.9 XRD pattern of the GO@Meso-C, the simple mixture of GO@Meso-C/sulfur powder, the as-prepared GO@Meso-C/S composite and elemental sulfur

Figure 4.10 Discharge/charge curves of GO@Meso-C/S composite sulfur cathode at 0.2C at the initial cycle initial and 100th cycle
Figure 4.11 Discharge/charge curves of GO@ZIF-8/S composite sulfur cathode at 0.2C at the initial cycle initial and 100th cycle
Figure 4.12 Cycle performance of the GO@Meso-C/S composite and GO@ZIF-8/S sulfur cathode at 0.2 C rate
Figure 4.13 Rate capability of GO@Meso-C/S composite sulfur cathode
Figure 5.1 Schematic illustration for the synthesis of 3D porous $Ti_3C_2T_x/S$ composites 65
Figure 5.2 Synthetic procedures of the porous $Ti_3C_2T_x/S$ composites
Figure 5.3 (a) Field emission scanning electron microscope (FESEM) image of "MAX phase" Ti_3AlC_2 (low magnification). (b) FESEM image of "MAX phase" Ti_3AlC_2 (high magnification)
Figure 5.4 (a) Field emission scanning electron microscope (FESEM) image of etched- $Ti_3C_2T_x$ (low magnification). (b) FESEM image of etched- $Ti_3C_2T_x$ composites (high magnification)
Figure 5.5 The corresponding elemental mapping of 3D porous $Ti_3C_2T_x$ nanosheets 68
Figure 5.6 (a) FESEM image of porous $Ti_3C_2T_x$ nanosheets. (b) FESEM image of porous $Ti_3C_2T_x$ nanosheets (high magnification). (c) FESEM image of porous $Ti_3C_2T_x/S$ composites (low magnification). (d) FESEM of porous $Ti_3C_2T_x/S$ composites (high magnification) 69
Figure 5.7 (a) and (b) FESEM image of porous $Ti_3C_2T_x/S$ composites (low magnification). (c) and (d) FESEM image of porous $Ti_3C_2T_x/S$ composites (high magnification)
Figure 5.8 Field emission scanning electron microscope (FESEM) of non-porous $Ti_3C_2T_x$ nanosheets
Figure 5.9 (a) TEM image of porous $Ti_3C_2T_x$ nanosheets. (b) TEM image of porous $Ti_3C_2T_x/S$ composites
Figure 5.10 (a) FESEM image of sulfur loaded porous $Ti_3C_2T_x/S$ hybrids, (b) EDS spectrum mapping and elemental distribution and the corresponding elemental mapping of porous $Ti_3C_2T_x/S$ composites
Figure 5.11 N_2 adsorption-desorption isotherm curves of the as-produced porous $Ti_3C_2T_x$ nanosheets
Figure 5.12 The pore size distribution of porous $Ti_3C_2T_x$ nanosheets
Figure 5.13 (a) N_2 adsorption-desorption isotherm curves of non-porous $Ti_3C_2T_x$. (b) the pore size distribution of non-porous $Ti_3C_2T_x$
Figure 5.14 (a) AFM image of porous $Ti_3C_2T_x$ nanosheets. (b) The thickness of porous $Ti_3C_2T_x$ nanosheets
Figure 5.15 XRD pattern of as-produced porous Ti ₃ C ₂ T _x /S composites

$Figure \ 5.16 \ TGA \ curve \ of \ porous \ Ti_3C_2T_x/S \ sample$
Figure 5.17 TGA curve of non-porous $Ti_3C_2T_x/S$ sample
Figure 5.18 (a) XPS spectrum of porous- $Ti_3C_2T_x$ nanosheets. (b) XPS spectrum of porous- $Ti_3C_2T_x/S$ composites
Figure 5.19 (a) Ti 2p XPS spectra of the as-produced porous $Ti_3C_2T_x$ nanosheets. (b) S 1s spectra of S ₈ . (c) Ti 2p spectra of as-produced porous $Ti_3C_2T_x/S$ electrode. (d) S 1s spectra of as-produced porous $Ti_3C_2T_x/S$ electrode
Figure 5.20 (a) Ti 2p XPS spectra of the as-produced porous $Ti_3C_2T_x$ nanosheets. (b) S 1s spectra of S ₈ . (c) Ti 2p spectra of as-produced porous $Ti_3C_2T_x/S$ electrode. (d) S 1s spectra of as-produced porous $Ti_3C_2T_x/S$ electrode. 80
Figure 5.21 (a) Li_2S_4 solution, (b) Initially mixed with porous- $Ti_3C_2T_x$ nanosheets, (c) Aging for 4 h, (d) Aging for 24 h
Figure 5.22 (a) Cyclic voltammogram curves of Li/S cells with the non-porous $Ti_3C_2T_x/S$ composites and the porous $Ti_3C_2T_x/S$ composites (b) at a scan rate of 0.1 mV s ⁻¹ (the first four cycles). Typical charge and discharge profiles of non-porous $Ti_3C_2T_x/S$ sulfur cathode(c) and the porous $Ti_3C_2T_x/S$ composites (d) for the 1 st and 500 th at 0.5 C. (e) Cycling performances of porous $Ti_3C_2T_x/S$ composites and non-porous $Ti_3C_2T_x/S$ composites at 0.5 C for 500 cycles (1C=1673 mA/g)
Figure 5.23 (a) Rate capability of porous $Ti_3C_2T_x/S$ composites at various current rates of 0.1 C - 5 C. (b) Discharge/charge profiles of porous $Ti_3C_2T_x/S$ sulfur cathodes at various current rates of 0.1 C - 5 C. (c) Cycling performances of porous $Ti_3C_2T_x/S$ composites and non-porous $Ti_3C_2T_x/S$ composites at 2C for 500 cycles. (d) Cycling performances of porous $Ti_3C_2T_x/S$ composites with a high sulfur loading of 4.8 mg/cm ² at 0.5 C for 500 cycles (1C=1673 mA/g)
Figure 6.1 The synthesis procedure of $Ti_3C_2T_x/RGO/S$ hybrid composites
Figure 6.2 Field emission scanning electron microscope (FESEM) of etched $-Ti_3C_2T_x$ 2D nanosheets: low magnification (a,b), high magnification(c,d)
Figure 6.4 XRD pattern of the Bulk Ti_3AlC_2 and etched $Ti_3C_2T_x 2D$ nanosheets
Figure 6.5 (a) TEM image of ultrathin single–layer $Ti_3C_2T_x$ MXene nanosheets. (b) TEM images of $Ti_3C_2T_x/RGO$ hybrid nanosheets. (c) $Ti_3C_2T_x/RGO/S$ composite
Figure 6.6 (a) Field emission scanning electron microscope (FESEM) image of etched– $Ti_3C_2T_x$. (b) FESEM image of exfoliated– $Ti_3C_2T_x$ nanosheets. (c) FESEM image of $Ti_3C_2T_x/RGO$ hybrid nanosheets. (d) FESEM image of $Ti_3C_2T_x/RGO/S$ composite
Figure 6.7 FESEM image of $Ti_3C_2T_x/RGO$ composites: low magnification (a); high magnification (b, c, d)
Figure 6.8 The corresponding elemental mapping $Ti_3C_2T_x/RGO/S$ composites

Figure 6.9 Low (a) and high (b,c) magnification TEM images of single layer $Ti_3C_2T_x$, high (d) magnification TEM images of muti- layer $Ti_3C_2T_x$
Figure 6.10 Raman spectra of Ti ₃ C ₂ T _x MXene nanosheets, RGO and Ti ₃ C ₂ T _x /RGO hybrid nanosheets sample
Figure 6.11 XRD pattern of $Ti_3C_2T_x/RGO$ hybrid nanosheets, as-prepared $Ti_3C_2T_x/RGO/S$ composite and elemental sulfur
Figure 6.12 TGA curve of $Ti_3C_2T_x/RGO/S$ composite
Figure 6.13 (a) XPS spectra of $Ti_3C_2T_x/RGO/S$ composites for C_{1s} spectral region. (b) XPS spectra of elemental sulfur for S_{2p} spectra region. (c) XPS spectra of $Ti_3C_2T_x/RGO/S$ composites for Ti_{2p} spectra region and (d) for S $_{2p}$ spectra region
Figure 6.14 (a) Cyclic voltammogram curves of the Li/S cells with the $Ti_3C_2T_x/RGO/S$ composite at a scan rate of 0.2 mV s ⁻¹ (the first three cycles). (b) Initial discharge/charge curves cycle of $Ti_3C_2T_x/RGO/S$ sulfur cathode and $Ti_3C_2T_x/S$ cathodes sulfur cathode. 101
Figure 6.15 (a) Discharge specific capacity of $Ti_3C_2T_x/RGO/S$ composites cathode and $Ti_3C_2T_x/S$ cathode at 0.2 C. (b) discharge/charge curves cycle of $Ti_3C_2T_x/RGO/S$ sulfur cathode at different rate performance of $Ti_3C_2T_x/RGO/S$ composites cathode. (c) Discharge specific capacity and Coulombic efficiency of $Ti_3C_2T_x/RGO/S$ composites cathode and $Ti_3C_2T_x/S$ cathode at 875 mA g ⁻¹ (0.5 C). (d) Rate performance of $Ti_3C_2T_x/RGO/S$ composites cathode and $Ti_3C_2T_x/S$ cathode ca
Figure 6.16 Cycle performance of the RGO/S composites cathode at a 0.5 C 105
Figure 6.17 (a) Nyquist plots for the Li/S cells with $Ti_3C_2T_x/RGO/S$ composites cathode and $Ti_3C_2T_x/S$ cathode: before cycling and (b) after 300 th cycle
Figure 6.18 (a) Li_2S_4 solution, (b) mixed with restacked- $Ti_3C_2T_x$ nanosheets aged for 24 h, (c) mixed with $Ti_3C_2T_x/RGO$ nanosheets aged for 24 h
Figure 7.1 Schematic illustration for synthesis procedure of the $Ti_3C_2T_x@Meso-C/S$ composites
Figure 7.2 (a) Field emission scanning electron microscopy (FESEM) image of etched– Ti_3AlC_2 . (b) FESEM image of $Ti_3C_2X_x$. (c) FESEM image of Meso-MOF-5. (d) FESEM image of Meso-C. (e) $Ti_3C_2T_x@Meso-C$ (high magnification). (f) $Ti_3C_2T_x@Meso-C/S$ composites
Figure 7.3 (a) SEM of $Ti_3C_2X_x@MOF-5$. (b) $Ti_3C_2T_x@Meso-C$ (low magnification) 117
Figure 7.4 SEM image of re-stacked $Ti_3C_2T_x$ (a), re-stacked $Ti_3C_2T_x$ /Meso-C-mix (b) and $Ti_3C_2T_x$ @Meso-C matrix (c)
Figure 7.5 (a,b) SEM image of $Ti_3C_2T_x$ @Meso-C(low magnification); (c,d) (high magnification)

Figure 7.6 (a) Transmission electron microscopy (TEM) image of $Ti_3C_2T_x$. (b) TEM image of Meso-C. (c) TEM image of $Ti_3C_2T_x$ @Meso-C. (d) TEM image of $Ti_3C_2T_x$ @Meso-C/S composites
Figure 7.7 High magnification TEM images of Meso-C sample 121
Figure 7.8 Low (a) and high (b) magnification TEM of $Ti_3C_2T_x$ @Meso-C/S sample 121
Figure 7.9 SEM and elemental mapping image of $Ti_3C_2T_x$ @Meso-C/S composites 122
Figure 7.10 (a) N ₂ adsorption-desorption isotherm curves of Meso-C, $Ti_3C_2T_x$ @Meso-C, restacked $Ti_3C_2T_x$ /Meso-C-mix, re-stacked $Ti_3C_2T_x$. (b) the pore size distribution
Figure 7.11 (a) XRD pattern of Ti ₃ C ₂ T _x @Meso-C, Ti ₃ C ₂ T _x @Meso-C/S composites and pure sulfur sample
Figure 7.12 (a) XRD of $Ti_3C_2T_x$ @Meso-C, $Ti_3C_2T_x$ @Meso-C/S composites and pure sulfur sample. (b) thermogravimetric (TG-SDA) curve of $Ti_3C_2T_x$ @Meso-C/S composites 124
Figure 1.13 The thermogravimetric (TGA) curve of Meso-C/S composites 125
Figure 7.14 (a) Ti 2p spectra of the $Ti_3C_2T_x$ sheets. (b) S spectra of the S ₈ . (c) Ti 2p spectra of $Ti_3C_2T_x@$ Meso-C/S electrode. (d) S spectra of $Ti_3C_2T_x@$ Meso-C/S electrode. (e) XPS spectrum of $Ti_3C_2T_x@$ Meso-C125
Figure 7.15 (a) Cyclic voltammogram of $Ti_3C_2T_x$ @Meso-C/S and Meso-C/S. (b) discharge- charge profiles of $Ti_3C_2T_x$ @Meso-C/S and Meso-C/S at C/2. (c) cycling performance of $Ti_3C_2T_x$ @Meso-C/S and Meso-C/S at C/2
Figure 7.16 (a) Rate capability of $Ti_3C_2T_x$ @Meso-C/S and Meso-C/S. (b) Discharge-charge profiles from C/2 to 5 C of $Ti_3C_2T_x$ @Meso-C/S
Figure 7.17 (a) Nyquist plots for the Li/S cells with $Ti_3C_2T_x@Meso-C/S$ composite sulfur cathode and Meso-C/S sulfur cathode: before cycling and (b) after 300th cycle 129
Figure 7.18 The calculated structures of S, Li ₂ S, and Li ₂ S ₄ adsorbed on Ti ₃ C ₂ (F) ₂ monolayer. The numbers are bond lengths of Li-S and Li-F in Å
Figure 7.19 (a) Schematic diagram showing the crystal structure of a $Ti_3C_2T_x$ monolayer with top and side view and after adsorbed the S atom (b) with corresponding adsorption energies in eV and atom Mulliken charge. Gray, blue, yellow, and purple balls represent C, Ti, S, and Li atoms, respectively
Figure 8.1 Synthesis procedure of the porous $N-Ti_3C_2T_x/S$ composites
Figure 8.2 Digital photographs of $Ti_3C_2T_x$ suspension, $Ti_3C_2T_x$ / bare melamine suspension and self-assembly $Ti_3C_2T_x$ precursor after aging for 15 minutes
Figure 8.3 TGA curve of porous N-Ti ₃ C ₂ T _x precursor and mixed $Ti_3C_2T_x$ precursor 143
Figure 8.4 (a) FESEM image of self-assembly $Ti_3C_2T_x$ precursor (low magnification). (b) TEM image of self-assembly $Ti_3C_2T_x$ precursor (high magnification). Scale bars, 1 um (a), scale bars, 500 nm (b)

Figure 8.5 The Transmission electron microscopy (TEM) image of the etched- $1_{13}C_2I_x$ after the hydrofluoric acid (HF) treatment
Figure 8.6 (a, b) FESEM image of porous N-Ti ₃ C ₂ T _x nanosheets. (c, d) HRTEM image and SAED pattern of porous N-Ti ₃ C ₂ T _x nanosheets. (e, f) FESEM image of porous N-Ti ₃ C ₂ T _x /S composites. (g) HRTEM image of porous N-Ti ₃ C ₂ T _x /S composites. (h) Schematic diagram of porous N-Ti ₃ C ₂ T _x monolayer. (i) HRTEM-EDS spectrum of porous N-Ti ₃ C ₂ T _x /S composites. (j) HRTEM image of porous N-Ti ₃ C ₂ T _x /S composites. (k) HRTEM image and EDS spectrum mapping: Ti, S, C, N elemental distribution of porous N-Ti ₃ C ₂ T _x /S composites. Scale bars: 2 um (a, e), 200 nm (b, f), 100 nm (c, g, k). 5 nm (d, j)
Figure 8.7 (a) FESEM of mechanical mixed-Ti $_3C_2T_x$ nanosheets. Scale bars, 2 um 147
Figure 8.8 (a) FESEM of mechanical mixed $Ti_3C_2T_x/S$ composites. Scale bars, 2 um 147
Figure 8.9 EDS spectrum mapping and elemental distribution and the corresponding elemental mapping of porous N-Ti ₃ C ₂ T _x /S composites. Scale bars, 10 um
Figure 8.10 FESEM image of mechanical mixed $Ti_3C_2T_x$ precursor. Scale bars, 2 um 151
Figure 8.11 (a) N ₂ adsorption-desorption isotherm curves of porous N-Ti ₃ C ₂ T _x . Intert figure: The pore size distribution of porous porous N-Ti ₃ C ₂ T _x . (b) FTIR spectrum of porous N-Ti ₃ C ₂ T _x and etched-Ti ₃ C ₂ T _x . (c) Ti 2p XPS spectrum of porous N-Ti ₃ C ₂ T _x nanosheets. (d)) XRD pattern of as-produced porous N-Ti ₃ C ₂ T _x nanosheets, porous N-Ti ₃ C ₂ T _x /S composites and element sulfur. (e) AFM image and thickness profiles of porous N-Ti ₃ C ₂ T _x . (f) Ti 2p spectrum of the porous N-Ti ₃ C ₂ T _x /S composites. (g) TGA curve of porous N-Ti ₃ C ₂ T _x /S composites. (h) S 1s spectrum of porous N-Ti ₃ C ₂ T _x /S composites. (i) N 1s spectrum of porous N-Ti ₃ C ₂ T _x nanosheets. Scale bars, 500 nm (e)
Figure 8.12 (a) N_2 adsorption-desorption isotherm curves of mixed-Ti ₃ C ₂ T _x . (b) the pore size distribution of mixed-Ti ₃ C ₂ T _x . 154
Figure 8.13 Raman spectrum of porous N-Ti $_3C_2T_x$ and etched-Ti $_3C_2T_x$ 155
$Figure \ 8.14 \ TGA \ curve \ of \ mixed-Ti_3C_2T_x/S \ composites. \ \dots \ 155$
Figure 8.15 XPS spectrum of etched $Ti_3C_2T_x$, porous N- $Ti_3C_2T_x$ nanosheets, porous N- $Ti_3C_2T_x/S$ nanosheets
Figure 8.16 N 1S XPS spectra of N-doped porous $Ti_3C_2T_x$ /S composite 156
Figure 8.17 C 1s XPS spectra (a) and O 1s. XPS spectra of $Ti_3C_2T_x$ nanosheets and N-doped porous $Ti_3C_2T_x$ nanosheets
Figure 8.18 F 1s XPS spectra of $Ti_3C_2T_x$ nanosheets (a) and N-doped porous $Ti_3C_2T_x$ nanosheets
Figure 8.19 Ti 2p XPS spectra of etched-Ti $_3C_2T_x$ sheets
Figure 8.20 (a) Cyclic voltammogram curves of Li/S cells with the porous $N-Ti_3C_2T_x/S$ composites at a scan rate of 0.1 mV s ⁻¹ (the first three cycles). (b) Typical charge and discharge profiles of the porous $N-Ti_3C_2T_x/S$ electrode for the 1 st , 50 th and 100 th at 0.2 C. (c)

Figure 8.22 The initial discharge/charge profiles of porous N-Ti₃C₂T_x/S sulfur cathodes and mixed Ti₃C₂T_x/S electrode with 5.1 mg at a current rate of 0.2 C...... 162

Figure 8.24 (a) Nyquist plots for the Li/S cells with porous- $Ti_3C_2T_x$ /S composite sulfur cathode and mixed $Ti_3C_2T_x$ /S sulfur cathode: before cycling and (b) after 300th cycle. . 166

Figure 8.25 (a) Li 1s XPS spectrum of the porous $N-Ti_3C_2T_x$ electrode after discharging down to 2.0 V. (b) N 1s XPS spectrum of the porous $N-Ti_3C_2T_x$ electrode after discharging down to 2.0 V. (c) Ultraviolet/ visible absorption spectra of a Li_2S_6 solution before and after the addition of porous $N-Ti_3C_2T_x$ and mixed $Ti_3C_2T_x$. Inset image shows a photograph of a Li_2S_6 solutionv before and 4 h after the addition of porous $N-Ti_3C_2T_x$ and mixed $Ti_3C_2T_x$. 167

Figure 8.26 XPS of Li_{1s} of the mixed Ti₃C₂T_x electrode after discharged down to 2.0 V. 168

ABSTRACT

Rechargeable energy storage devices are being seen as having a crucial role in thepowering of myriad portable electronic devices and hybrid electricalvehicles. The composition, morphology, structure and preparation method can affect the electrochemical performance. The properties of electrode materials are of extreme significance for the electrochemical performances of lithium-sulfur batteries.

Lithium-sulfur battery based on sulfur cathode has the advantages of high specific capacity, high energy density, low lost and natural abundance of sulfur. These advantages over conventional lithium-ion batteries have driven researchers to make a lot of efforts to understand the redox mechanisms and improve the electrode performance. In order to fully realize the potential of lithium-sulfur battery and to approach commercialization, there are still many problems to overcome. Among them are i) low conductivity nature of sulfur and the discharge product, ii) lithium polysulfide intermediates dissolution and shuttle phenomenon, iii) volumetric expansion upon discharge and iv) lithium metal dendrite formation on anode side. In this thesis, the work is mostly focused on the cathode materials in order to address the first two problems.

In the first part of the thesis, we report a rational design and synthesis of 3D hybrid–porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains nanopores (< 2 nm diameter) and mesopores (2 - 4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion–accessible surface area and low ion diffusion resistance, which is desired for high performance Li-S battery. The

initial and 50th cycle discharge capacity 3D hybrid–C/S sulfur cathode are as high as 1343 mAh g^{-1} and 540 mAh g^{-1} at a high current rate of 0.5 C.

3D hybrid–C@graphene nanocomposites were prepared by a hydrothermal and chemical vapor deposition method. When applied as an cathode material in lithium-sulfur batteries. 3D hybrid–C@graphene/S nanocomposite exhibited a high lithium storage capacity of 907 mAh g⁻¹. The materials also demonstrated an excellent high rate capacity and a stable cycle performance. 3D porous MXene/S sulfur composite was successfully prepared that demonstrated high reversible capacity, high Coulombic efficiency and excellent cyclability. MXene@graphene/S hybrid sulfur composite were synthesized using a chemical hydrothermal method, exhibiting a high specific capacity of 1284 mAh·g⁻¹ with a superior cycling stability and high rate capabilities.

The synthesis of 3D hybrid–C@MXene encapsulated sulfur composites were employed as cathode materials for Li-S batteries. The sulfur composite cathodes delivered a high specific capacity of 1378 mAh/g at 0.1 C current rate and exhibited a stable cycling performance. A rational synthesis of the novel porous N-Ti₃C₂T_x nanosheets via the electrostatic self-assembly and effective nitrogen doping process, achieving the porous-modification and nitrogen group surface decoration for porous N-Ti₃C₂T_x nanosheets, synchronously. The porous N-doped MXene nanosheets/sulfur composites electrodes with a high sulfur loading exhibits low polarization, stable cycling performance, and excellent rate capability, compared with mixed Ti₃C₂T_x/S electrodes showed electrochemical performance, including a high reversible capacity of 1144 mAh g⁻¹ at 0.2 C rate, a high level of capacity retention of 950 mAh g⁻¹ after 200 cycles and good cycling stability with a high sulfur loading of 5.1 mg cm⁻² and high current rate of 2 C rate.