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Abstract
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This thesis explores the relationship between quantum computation and combi-

natorial structures, with the goal of improving our understanding of the complexity

of quantum computation. We begin by studying the case when the complexity of

combinatorial structures can be used to provide evidence for the hardness of classi-

cally simulating quantum computations. To this end, we show that the complexity of

evaluating multiplicative-error approximations of Jones polynomials can be used to

bound the classical complexity of simulating random quantum computations. We then

proceed by studying the contrary case, that is, when do the combinatorial structures

allow for an efficient classical simulation of quantum computations? We establish

an efficient deterministic approximation algorithm for the Ising model partition func-

tion with complex parameters when the interactions and external fields are absolutely

bounded close to zero. This provides an efficient classical algorithm for simulating a

class of quantum computations with bounded interactions between the qubits.

In the second part of this thesis, we present some independent results on the ef-

ficient preparation of Fock states with a high number of photons from a resource of

single photons. These Fock states are a fundamental resource in many quantum in-

formation protocols.
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