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Abstract

Quantum Computation and Combinatorial Structures

by
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This thesis explores the relationship between quantum computation and combi-

natorial structures, with the goal of improving our understanding of the complexity

of quantum computation. We begin by studying the case when the complexity of

combinatorial structures can be used to provide evidence for the hardness of classi-

cally simulating quantum computations. To this end, we show that the complexity of

evaluating multiplicative-error approximations of Jones polynomials can be used to

bound the classical complexity of simulating random quantum computations. We then

proceed by studying the contrary case, that is, when do the combinatorial structures

allow for an efficient classical simulation of quantum computations? We establish

an efficient deterministic approximation algorithm for the Ising model partition func-

tion with complex parameters when the interactions and external fields are absolutely

bounded close to zero. This provides an efficient classical algorithm for simulating a

class of quantum computations with bounded interactions between the qubits.

In the second part of this thesis, we present some independent results on the ef-

ficient preparation of Fock states with a high number of photons from a resource of

single photons. These Fock states are a fundamental resource in many quantum in-

formation protocols.
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Chapter 1

Introduction

Quantum computation is a model of computation based on the postulates of quan-

tum mechanics. Feynman [Fey82] famously suggested that such a quantum model

of computation could provide an exponential improvement over classical computa-

tion. There has been some promising evidence of a separation between classical and

quantum computation in the field of quantum algorithms. Most notably, Shor’s algo-

rithm [Sho99] for integer factorisation, which achieves an exponential improvement

over the best-known classical algorithm. Another notable example is Grover’s al-

gorithm [Gro96] for searching an unstructured database, which achieves a provable

quadratic speedup over any classical algorithm. However, to date, there is no provable

exponential separation between classical and quantum computation.

The complexity of quantum computation is completely determined by the com-

plexity of quantum probability amplitudes. These amplitudes are known to be com-

putationally hard to evaluate exactly [FR98]. Unfortunately, quantummechanics does

not provide us with a method for directly measuring these amplitudes or their cor-

responding probabilities. We must instead infer additive-error approximations to

them via repeated computations. These amplitudes can encode evaluations of com-

binatorial structures, such as Tutte polynomials [AAEL07, She10], Jones polynomi-

als [AJL09], Ising model partition functions [DDVM11, ICBB14], and matrix perma-
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nents [Sch04, Rud09]. These structures are known to be computationally hard to eval-

uate exactly [JVW90] and even approximate up to a multiplicative error [Kup09]. Fur-

thermore, additive-error approximations of such structures are known to completely

capture the class of decision problems that can be efficiently solved by a quantum

computer with bounded error.

Until recently, it was not obvious how to use the computational hardness of

evaluating combinatorial structures, such as Tutte and Jones polynomials, to bound

the classical complexity of simulating quantum computation. A seminal result of

Aaronson andArkhipov [AA11a], and independently, Bremner, Montanaro, and Shep-

herd [BMS16], showed that the average-case complexity of evaluating multiplicative-

error approximations of certain combinatorial structures can be used to bound the

classical complexity of approximately sampling from the output probability distribu-

tion of certain restricted classes of quantum computations. This leads to the following

natural question: to what extent can the classical complexity of combinatorial struc-

tures improve our understanding of the complexity of quantum computation? In Part I

of this thesis we make some partial progress towards answering this question.

Part I of this thesis is structured as follows. In Chapter 2, we introduce the required

preliminaries, including computational complexity theory in Section 2.1 and quantum

computation in Section 2.2. Specifically, in Section 2.1, we introduce asymptotic no-

tation, computational problems, complexity classifications, and approximation algo-

rithms, and, in Section 2.2, we introduce quantum states, quantum circuits, quantum

algorithms, and the Hadamard test. More advanced topics are introduced as they are

required.

In Chapter 3, we introduce the combinatorial structures that arise in this thesis,

including the Tutte polynomial of graph and matroid theory in Section 3.1, the Jones

polynomial of knot theory in Section 3.2, and the Ising model partition function of sta-

tistical physics in Section 3.3. We discuss the complexity of exactly and approximately

evaluating each of these structures and their relation to quantum computation.
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In Chapter 4, we show that the combinatorial structures that arise in the output

probability amplitudes of quantum circuits can be used to provide evidence for the

classical hardness of simulating random quantum computations. In particular, we

show that the complexity of evaluating multiplicative-error approximations of Jones

polynomials can be used to bound the classical complexity of approximately simulat-

ing random quantum computations. Specifically, we show that under the assumption

that (1) the Polynomial Hierarchy does not collapse and (2) the average-case com-

plexity of multiplicative-error approximations of the Jones polynomial matches the

worst-case complexity, then there is no efficient classical algorithm for approximately

sampling from the output probability distribution of random quantum computations.

In Chapter 5, we consider the contrary case, that is, when the combinatorial struc-

tures that arise in the output probability amplitudes of quantum circuits admit an ef-

ficient classical approximation scheme. Any efficient classical approximation scheme

for these structures then directly implies an efficient classical algorithm for simulating

the corresponding quantum computation. In this chapter, we establish a deterministic

polynomial-time approximation scheme for the Ising model partition function when

the interactions and external fields are absolutely bounded close to zero. We then

proceed to show how our algorithm can be extended to approximate certain output

probability amplitudes of quantum circuits.

In Part II, we present some independent results on the efficient preparation of Fock

states, which are a key resource in many quantum information protocols. More pre-

cisely, in Chapter 6, we establish an efficient scheme for preparing Fock states with

a high number of photons from a resource of single photons. Finally, we conclude in

Chapter 7.
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Chapter 2

Preliminaries

In this chapter, we cover the preliminaries required for this thesis. In particular, we in-

troduce basic notions in computational complexity theory and quantum computation.

More specific material will be introduced as is necessary throughout this thesis.

2.1 Computational Complexity Theory

Computational complexity theory is the study and classification of the resources re-

quired to solve computational problems. An important aspect of computational com-

plexity theory is understanding the asymptotic behaviour of the resources required

to solve a computational problem with the size of the input. In this section we review

some basic notions in complexity theory.

2.1.1 Asymptotic Notation

We define the following standard asymptotic notation.

Definition 2.1 (O(f (n))). Let f and д be functions f ,д : N→ Z+. Say that

д(n) = O(f (n)) if there exists positive integers c and n0 such that, for all n ≥ n0,

д(n) ≤ c f (n). Whenд(n) = O(f (n))we say that that f (n) is an asymptotic upper bound

for д(n).
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Definition 2.2 (Ω(f (n))). Let f and д be functions f ,д : N→ Z+. Say that

д(n) = Ω(f (n)) if there exists positive integers c and n0 such that, for all n ≥ n0,

д(n) ≥ c f (n). When д(n) = Ω(f (n))we say that that f (n) is an asymptotic lower bound

for д(n).

Definition 2.3 (Θ(f (n))). Let f and д be functions f ,д : N→ Z+. Say that

д(n) = Θ(f (n)) if there exists positive integers c1, c2, and n0 such that, for all n ≥ n0,

c1 f (n) ≤ д(n) ≤ c2 f (n).

Definition 2.4 (o(f (n))). Let f and д be functions f ,д : N→ Z+. Say that

д(n) = o(f (n)) if for any real number c > 0, there exists an integer n0 such that, for all

n ≥ n0, д(n) ≤ c f (n). This is equivalent to saying that limn→∞ [д(n)/f (n)] = 0.

Definition 2.5 (ω(f (n))). Let f and д be functions f ,д : N→ Z+. Say that

д(n) = ω(f (n)) if for any real number c > 0, there exists an integer n0 such that,

for all n ≥ n0, д(n) ≥ c f (n). This is equivalent to saying that limn→∞ [д(n)/f (n)] = ∞.

2.1.2 Computational Problems

Computational problems are conveniently defined in terms of alphabets, strings, and

languages. An alphabet is any non-empty finite set Σ. An element of an alphabet is

called a symbol. A string over an alphabet Σ is a finite sequence of symbols from that

alphabet. The length of a string x , denoted by |x |, is the number of symbols that it

contains. The string of length zero is called the empty string. The set of all possible

strings is denoted by Σ∗. A language over an alphabet Σ is a subset of Σ∗. If L is a

language over an alphabet Σ, then its complement L̄ is given by L̄ = Σ∗ \ L.
A computational problem is a function that takes as input an instance and outputs

a solution. We encode both instances and solutions as strings over an alphabet Σ, and

so computational problems are functions mapping strings over Σ to strings over Σ.

Typically we take Σ to be the binary alphabet, i.e., Σ = {0, 1}.
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A fundamental class of computational problems are decision problems. A decision

problem is a Boolean function, i.e., a function of the form f : Σ∗ → {0, 1}. We identify

such a function f with the language Lf := {x ∈ Σ∗ | f (x) = 1}. Any decision problem

can be expressed as a language recognition problem, that is, given a string x , decide

if x is in Lf . An algorithm solves a language recognition problem for a language L by

accepting any input string in L and rejecting any input string not in L.

A closely related class of problems are search problems. In a search problem, given

an input x ∈ Σ∗, we want to find a solution y ∈ Σ∗ that is in some relation to x , if

such a solution exists. A search problem can be expressed as a relation R ⊆ Σ∗ × Σ∗,

where (x ,y) ∈ R if and only if y is a solution to the input x ; such a relation is called a

search relation. A counting problem is a function f : Σ∗ → N that asks for the number

of solutions to a given search problem. More precisely, for a search relation R, the

corresponding counting problem is the function fR(x) := |{y | (x ,y) ∈ R}|.

2.1.3 Complexity Classifications

Complexity Classes

Complexity classes are used to classify problems by the resources required to solve

them. The most notable complexity classes are P (Polynomial Time) and NP (Non-

Deterministic Polynomial Time). Informally, P is the class of decision problems that

can be solved in polynomial time and NP is the class of decision problems for which

the accept instances can be verified in polynomial time.

Definition 2.6 (P). The classP consists of all languages L that have a polynomial-time

algorithm A such that for any input x ∈ Σ∗,

• x ∈ L =⇒ A(x) accepts.
• x � L =⇒ A(x) rejects.

Definition 2.7 (NP). The classNP consists of all languages L that have a polynomial-

time algorithm A such that for any input x ∈ Σ∗,
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• x ∈ L =⇒ ∃y ∈ Σ∗, |y | = O(poly(|x |)): A(x ,y) accepts.
• x � L =⇒ ∀y ∈ Σ∗: A(x ,y) rejects.

Obviously P ⊆ NP, since we can take y in the definition of NP to be the empty

string. It is a famous open problem to decide if P is equal to NP. We shall now define

the complexity class coNP (Complement of Non-Deterministic Polynomial Time), that

is, the class of decision problems whose complement is inNP. Informally, coNP is the

class of decision problems for which the reject instances can be verified in polynomial

time.

Definition 2.8 (coNP). The class coNP consists of all languages L that have a

polynomial-time algorithm A such that for any input x ∈ Σ∗,

• x ∈ L =⇒ ∀y ∈ Σ∗: A(x ,y) accepts.
• x � L =⇒ ∃y ∈ Σ∗, |y | = O(poly(|x |)): A(x ,y) rejects.

It follows from the definition of coNP, that P ⊆ coNP. Note that coNP is not the

complement of NP. In fact, they have non-empty intersection, since every problem in

P is also in NP ∩ coNP. A notable example of a problem in NP ∩ coNP that is not

known to be in P is integer factorisation.

An important complexity class is #P, which is the class of counting problems as-

sociated with decision problems in NP. More precisely, #P is the class of functions

which count the number of accepting paths to a problem in NP.

Definition 2.9 (#P [Val79]). The class #P consists of all functions f : {0, 1}∗ → N
for which there exists a polynomial p : N→ N and a polynomial-time algorithm A

such that for any x ∈ {0, 1}∗,

f (x) =
���{ y ∈ {0, 1}p(|x |)

��� A(x ,y) accepts }��� .
It is often useful for algorithms to employ randomness in their logic. This ran-

domness allows us to reduce the complexity of solving a problem, however, this typi-

cally causes the success of the algorithm to become probabilistic. We now define the
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probabilistic complexity classes RP (Randomised Polynomial Time), BPP (Bounded-

Error Probabilistic Polynomial Time), and FBPP (Function Bounded-Error Probabilis-

tic Polynomial Time) that allow for randomised algorithms.

Definition 2.10 (RP [Gil77]). The class RP consists of all languages L that have a

polynomial-time randomised algorithm A such that for any input x ∈ Σ∗,

• x ∈ L =⇒ Pr[A(x) accepts] ≥ 1
2 .

• x � L =⇒ Pr[A(x) accepts] = 0.

RP is the class of decision problems solvable by a randomised algorithm in poly-

nomial time such that accept instances are accepted with probability at least 1/2 and
reject instances are always rejected. Note that the error probability of 1/2 is com-

pletely arbitrary. In fact, we could have chosen any constant non-zero probability less

than one, since repeating the algorithm gives an exponentially small probability of

error in the number of repetitions.

Definition 2.11 (BPP [Gil77]). The class BPP consists of all languages L that have

a polynomial-time randomised algorithm A such that for any input x ∈ Σ∗,

• x ∈ L =⇒ Pr[A(x) accepts] ≥ 2
3 .

• x � L =⇒ Pr[A(x) accepts] ≤ 1
3 .

BPP is the class of decision problems solvable by a randomised algorithm in poly-

nomial time such that accept instances are accepted with probability at least 2/3 and
reject instances are accepted with probability at most 1/3. Again, the error proba-

bility of 1/3 is completely arbitrary and can be replaced by any constant non-zero

probability less than 1/2. It is often useful to consider the functional version of BPP.

Definition 2.12 (FBPP). The class FBPP consists of all search problems R ⊆ Σ∗ × Σ∗

that have a polynomial-time randomised algorithm A such that for any input x ∈ Σ∗,

Pr[(x ,A(x)) ∈ R] ≥ 2

3
.
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We shall now introduce the quantum complexity classBQP (Bounded-Error Quan-

tum Polynomial Time), which is the quantum analogue of the complexity class BPP.

Essentially, BQP is the same as BPP, except that instead of a polynomial-time ran-

domised algorithm we allow a polynomial-time quantum algorithm, which we intro-

duce in Section 2.2. More precisely, BQP is the class of decision problems solvable by

a quantum algorithm in polynomial time such that accept instances are accepted with

probability at least 2/3 and reject instances are accepted with probability at most 1/3.

Definition 2.13 (BQP [BV97]). The class BQP consists of all languages L that have

a polynomial-time quantum algorithm A such that for any input x ∈ Σ∗,

• x ∈ L =⇒ Pr[A(x) accepts] ≥ 2
3 .

• x � L =⇒ Pr[A(x) accepts] ≤ 1
3 .

Oracles

It is often useful to consider oracles which can solve certain computational problems

in a single operation. These oracles are an essential tool for investigating the relation-

ship between complexity classes. We shall consider complexity classes of problems

solvable by an algorithm with access to an oracle.

Definition 2.14 (Oracle Complexity Class). For complexity classes A and O, we

define the complexity class AO to be the problems solvable by an algorithm in A with

access to an oracle that can solve problems in O.

Reductions

A reduction is an algorithm for mapping one problem into another problem in such

a way that we can obtain a solution to the first problem by solving the second prob-

lem. We shall be interested in polynomial-time reductions, i.e., reductions that run in

polynomial time.
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Definition 2.15 (Polynomial-Time Reduction). Given two functions f ,д : Σ∗ �→
N we say that f is polynomial-time reducible to д if there is an algorithm with oracle

access to д that computes f in time polynomial in the size of the input. We say that

such an algorithm is a polynomial-time reduction from f to д.

Hardness and Completeness

Rather remarkably, there exists problems such that any problem in a given complex-

ity class can be reduced to it. We say that these problems are hard for the complexity

class. If these problems are also contained in that class then we say that these prob-

lems are complete for that class. For example, the Boolean satisfiability problem is

NP-complete since every problem in NP can be reduced to it [Coo71, Lev73].

Definition 2.16 (Hardness). A problem is said to be hard for a complexity class if

every problem in that class can be reduced to it.

Definition 2.17 (Completeness). A problem is said to be complete for a complexity

class if it is hard for that class and contained in that class.

The Polynomial Hierarchy

The Polynomial Hierarchy (PH) is an infinite tower of complexity classes that gener-

alise P, NP, and coNP to oracle machines.

Definition 2.18 (Polynomial Hierarchy [Pap03]). The Polynomial Hierarchy is an

infinite set of complexity classes
{
Δ
P
k
,ΣP

k
,ΠP

k
| k ∈ N}

, such that ΔP
0 = Σ

P
0 = Π

P
0 = P

and for all k ≥ 1,

• Δ
P
k
= PΣ

P
k−1 .

• Σ
P
k
= NPΣ

P
k−1 .

• Π
P
k
= coNPΣ

P
k−1 .

The complexity class PH is defined by PH :=
⋃

k Σ
P
k
.
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It follows from the definition of the Polynomial Hierarchy, that the first level com-

prises the classes ΔP
1 = P, ΣP

1 = NP, and ΠP
1 = coNP. The second level of the Polyno-

mial Hierarchy comprises the classes ΔP
2 = PNP, ΣP

2 = NPNP, and Π
P
2 = coNPNP. We

have the following relations between the complexity classes. For each k ∈ N,
• Σ

P
k
⊆ Δ

P
k+1 ⊆ Σ

P
k+1.

• Π
P
k
⊆ Δ

P
k+1 ⊆ Π

P
k+1.

Furthermore, if there is any k ∈ N such that ΣP
k
= Σ

P
k+1, then it follows that for all

l > k , ΣP
k
= Δ

P
k
= Π

P
k
= Σ

P
l
. In this case, we say that the Polynomial Hierarchy has

collapsed to the k th level. It is widely believed that the Polynomial Hierarchy does

not collapse. A classic result of Toda [Tod91] states that the Polynomial Hierarchy is

contained in P#P.

Theorem 2.19 (Toda [Tod91]).

PH ⊆ P#P.

Worst-Case and Average-Case Complexity

Definition 2.20 (Worst-Case Complexity). Worst-case complexity is the complex-

ity of solving a computational problem for the worst instance.

Definition 2.21 (Average-Case Complexity). Average-case complexity is the com-

plexity of solving a computational problem for an average instance.

Worst-case complexity tells us how many resources are required to solve any in-

stance of a problem. Whereas, average-case complexity is useful for understanding

how hard a typical instance of a problem is to solve. The average-case and worst-case

complexity of a problem are equivalent if a problem is random self-reducible. Infor-

mally, a problem is random self-reducible if solving any instance of the problem can

be reduced to solving one or more random instances of the problem.
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2.1.4 Approximation Algorithms

Many computational problems are too hard to solve exactly and often an approxima-

tion is sufficient. This is especially relevant in quantum computation as BQP can be

expressed as an approximation problem.

Notions of Approximation

There are several types of approximations that one might consider. The most common

of these are additive approximations and multiplicative approximations.

Definition 2.22 (Additive ϵ-Approximation). Let α , α̂ , and ϵ be positive real num-

bers. Say that α̂ is an additive ϵ-approximation of α if |α − α̂ | ≤ ϵ .

Definition 2.23 (Multiplicative ϵ-Approximation). Let α , α̂ , and ϵ be positive real

numbers. Say that α̂ is a multiplicative ϵ-approximation of α if |α − α̂ | ≤ ϵα .

Approximating Complex Numbers

To obtain a multiplicative ϵ-approximation of a complex number we require that we

have amultiplicative ϵ-approximation of the norm and an additive ϵ-approximation of

the argument. This is natural as when wemultiply two complex numbers together the

norms are multiplied and the arguments are added, and so we have the usual property

that multiplicative approximations are preserved under multiplication.

Approximation Schemes

We shall now define the following classes of approximation algorithms.

Definition 2.24 (FPTAS). A fully polynomial-time approximation scheme (FPTAS)

for a counting problem f : Σ∗ → N is an algorithm A that takes as input an instance

x ∈ Σ∗ and a positive real number ϵ and outputs a multiplicative ϵ-approximation of

f (x) in time polynomial in |x | and 1/ϵ .
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Definition 2.25 (FPRAS). A fully polynomial-time randomised approximation

scheme (FPRAS) for a counting problem f : Σ∗ → N is an algorithm A that takes as

input an instance x ∈ Σ∗ and a positive real number ϵ and outputs a multiplicative

ϵ-approximation of f (x) with probability at least 2/3 in time polynomial in |x | and
1/ϵ .

We can extend the above definitions to complex-valued functions by requiring that

the algorithm produces a multiplicative ϵ-approximation to the complex numbers.

2.2 Quantum Computation

In this section we introduce some basic notions in quantum computation.

2.2.1 Quantum States

A pure state is described by a unit vector |ψ 〉 in a complex Hilbert space. We denote

its dual vector by 〈ψ |. The inner product between two vectors |ψ 〉 and |ϕ〉 is denoted
by 〈ϕ |ψ 〉. If |ψ 〉 is pure state then the probability amplitude for observing the system

in the state |ϕ〉 is given by the inner product 〈ϕ |ψ 〉. The probability of observing the

system in that state is given by the absolute value of the probability amplitude squared,

i.e., |〈ϕ |ψ 〉|2.
Any pure state can be expressed as a linear combination of basis elements of

the Hilbert space. More precisely, if {|k〉}k is a basis of the Hilbert space, then any

pure state in that Hilbert space can be written in the form |ψ 〉 = ∑
k αk |k〉 and its

dual vector expressed as 〈ψ | = ∑
k αk

∗ 〈k |. Then, for two pure states |ψ 〉 = ∑
k αk |k〉

and |ϕ〉 = ∑
k βk |k〉, the inner product is given by 〈ϕ |ψ 〉 = ∑

k αkβk
∗. Quantum states

combine though the tensor product, which, for two vectors |ψ 〉 and |ϕ〉, is defined

by (|ψ 〉 ⊗ |ϕ〉)ij = ψiϕj . A mixed state ρ is a probabilistic mixture of pure states

ρ =
∑

k pk |ψk〉 〈ψk | with
∑

k pk = 1.
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The fundamental object in quantum computation is the quantum bit or qubit. A

qubit is a vector in a two-dimensional complex Hilbert space and can therefore be rep-

resented as a linear combination of basis elements of the Hilbert space. We shall define

the computational basis to be such a basis given by the set of vectors {|0〉 , |1〉}, where
|0〉 = [1, 0]ᵀ and |1〉 = [0, 1]ᵀ . Another useful basis is the Hadamard basis, given by

the set of vectors {|+〉 , |−〉}, where |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). The

above notions may of course be generalised to qudits, i.e., a vector in a d-dimensional

complex Hilbert space.

2.2.2 Quantum Circuits

A quantum circuit is a unitary operator described by a sequence of elementary quan-

tum gates, which each represent a unitary operation. A quantum circuit C takes as in-

put an n-qubit pure state |ψ 〉 and outputs the n-qubit pure state C |ψ 〉. We can express

the output state of the quantum circuit as a linear combination of computational basis

states C |ψ 〉 = ∑
x∈{0,1}n αx |x〉. The probability amplitude for observing the system in

the state |x〉 is then given by αx = 〈x | C |ψ 〉 and the probability by |αx |2 = |〈x | C |ψ 〉|2.
This observation is called a measurement of the system in the computational basis.

Note that the above definitions can be generalised to qudits in the natural way.

An important class of quantum circuits are those comprising gates from a uni-

versal set. We say that a set of gates G is universal if any unitary U ∈ SU(dn) can be

approximated to error ϵ > 0 by a quantum circuit on n qudits comprising gates from

G. The Solovay-Kitaev theorem [KSV02] guarantees that universal gate sets can ef-

ficiently approximate each other. More precisely, the Solovay-Kitaev states that any

gate that acts on a constant number of qudits can be approximated to error ϵ > 0 by

a sequence of gates of length polylog(1/ϵ) drawn from any universal set.

The output probability amplitudes of quantum circuits are of particular interest

as they are #P-hard to evaluate [FR98]. Furthermore, they can encode the solution

to several combinatorial structures, including the Tutte polynomial, the Jones poly-
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nomial, and the Ising model partition function. Unfortunately, it is not possible to

directly access these amplitudes; we can, however, obtain an additive-error approxi-

mation to them by using the Hadamard test.

2.2.3 Quantum Algorithms

A quantum algorithm can be expressed as a quantum circuit applied to an initial pure

state and terminating with a measurement. The result of the measurement is the out-

put of the algorithm. We are typically interested in polynomial-time quantum algo-

rithms, i.e., quantum algorithms where the quantum circuit is described by a sequence

of quantum gates that has length polynomial in size of the input.

A notable example of a quantum algorithm is Shor’s algorithm for prime factori-

sation [Sho99]. Given an integer n = p × q, which is the product of two unknown

primes p and q, prime factorisation is the problem of determining p and q. Shor’s

algorithm solves this problem in polynomial time, which is a substantial improve-

ment over the best known heuristic classical algorithm — the general number field

sieve [BLP93] — which requires sub-exponential time. This has important implica-

tions for public-key cryptosystems, in particular, the RSA (Rivest-Shamir-Adleman)

cryptosystem [RSA78], which relies on the hardness of prime factorisation. Shor’s al-

gorithm implies that the RSA cryptosystem is insecure against quantum computation.

Another notable quantum algorithm is Grover’s algorithm for unstructured

search [Gro96]. Given a function f : {0, 1}n → {0, 1}, unstructured search is the prob-
lem of finding an x such that f (x) = 1, if such an x exists. It is easy to see that any clas-

sical algorithm that solves the unstructured search problem requires Ω(N ) evaluations
of f , where N = 2n. Rather remarkably, Grover’s algorithm solves this problem using

O(√N ) evaluations of f . Furthermore, it is known that any quantum algorithm that

solves the unstructured search problem requires Ω(√N ) evaluations of f [BBBV97],

and therefore, Grover’s algorithm is asymptotically optimal. There are many other



CHAPTER 2. PRELIMINARIES 17

interesting quantum algorithms — we refer the reader to Ref. [Mon16] for a broad

overview.

2.2.4 The Hadamard Test

The Hadamard test is a method for producing a random variable with expectation

value equal to either the real or imaginary part of a quantum probability amplitude.

This allows us to obtain an additive-error approximation to any quantum probability

amplitude. Let U be a unitary operator, then the Hadamard test allows us to produce

a random variable with expectation value Re (〈0n |U |0n〉) by the following procedure.

(1) Prepare the state |+〉 |0n〉.

(2) Apply a controlled-U operation to obtain

1√
2
(|0〉 |0n〉 + |1〉U |0n〉) = 1

2
[|+〉 (|0n〉 +U |0n〉) + |−〉 (|0n〉 −U |0n〉)] .

(3) Measure the first qubit in the |±〉 basis.

(4) For a measurement outcome of ± output ±1.

The measurement outcome probabilities are given by

Pr(±) =1
4
| |0n〉 ±U |0n〉|2

=
1

2
[1 ± Re (〈0n |U |0n〉)] .

Therefore, the expectation value of the output is Re (〈0n |U |0n〉). To get the expec-

tation value of Im (〈0n |U |0n〉), repeat the procedure except begin by preparing the

state 1√
2
(|0〉 ± i |1〉) |0n〉. It then follows from the Chernoff-Hoeffding bound that re-

peating this procedure a polynomial number of times in the number of qubits gives a

(1/poly(n))-additive approximation to 〈0n |U |0n〉.
It is worth noting that when the unitary operator is a quantum circuit of polyno-

mial length, the Hadamard test completely captures the complexity class BQP. Fur-
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thermore, the Hadamard test allows us to obtain an additive-error approximation to

a number of interesting combinatorial structures.
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Chapter 3

Combinatorial Structures

In the previous chapter, we showed that quantum computation can be expressed as an

approximation problem. This suggests a natural question: how can we describe the

functions that are approximated by quantum computation?

In this chapter, we briefly review the combinatorial structures that arise in this

thesis, this includes the Tutte polynomial, the Jones polynomial, and the Ising model

partition function. We note that the Jones polynomial and the Ising model partition

function are specialisations of the Tutte polynomial, and so, any result that applies to

these structures also applies to the Tutte polynomial for certain classes of graphs and

parameters. These combinatorial structures are interesting from a quantum compu-

tational perspective as they emerge in the output probability amplitudes of quantum

circuits. Furthermore, these structures have the property that they are BQP-hard to

approximate up to an additive error. Furthermore, they are known to be #P-hard to

compute exactly and even up to a multiplicative factor.

3.1 The Tutte Polynomial

The Tutte polynomial is a combinatorial structure with important applications in

graph and matroid theory. We now define the Tutte polynomial of a graph and a ma-
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troid. We then discuss the classical and quantum complexity of evaluating the Tutte

polynomial.

The Tutte polynomial is a bivariate polynomial defined for graphs [Tut47], and

more generally, matroids [Cra69].

Definition 3.1 (Tutte Polynomial of a Graph). Let G = (V ,E) be a finite graph.

Define k(A) to be the number of connected components in the subgraph (V ,A). Then
the Tutte polynomial of G is a polynomial in x and y, defined by

T(G;x ,y) :=
∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V | .

The multivariate Tutte polynomial generalises the Tutte polynomial of a graph by

assigning a weight to each edge in the graph.

Definition 3.2 (Multivariate Tutte Polynomial of a Graph [Tut47]). Let

G = (V ,E) be a finite graph with the weights Ω = {ωe}e∈E assigned to its edges. De-

fine k(A) to be the number of connected components in the subgraph (V ,A). Then
the multivariate Tutte polynomial of G is a polynomial in Ω and an extra variable q,

defined by

TM(G;Ω,q) :=
∑
A⊆E

qk(A)
∏
e∈A

ωe .

When the weights are all equal to a constantω, the standard Tutte polynomial can

be recovered by

T(G;x ,y) = (x − 1)−k(E)(y − 1)−|V |TM(G;ω,q),

where ω = y − 1 and q = (x − 1)(y − 1).
We shall now briefly introduce the theory of matroids. The interested reader is

referred to the classic textbook of Welsh [Wel76] for a detailed treatment. Matroids

were introduced by Whitney [Whi35] as a structure that generalises the notion of

linear dependence. There are many equivalent ways to define a matroid. We shall

define a matroid by the independence axioms.
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Definition 3.3 (Matroid [Wel76]). A matroid is a pair M = (S,I) consisting of a

finite set S, known as the ground set, and a collection I of subsets of S, known as the

independent sets, such that the following axioms are satisfied.

(1) The empty set is a member of I.

(2) Every subset of a member of I is a member of I.

(3) If A and B are members of I and |A| > |B |, then there exists an x ∈ A \ B such

that B ∪ {x} is a member of I.

The rank of a subsetA of I is given by the rank function r : 2I → N of the matroid

defined by r (A) := max (|X | | X ⊆ A,X ∈ I). The rank of a matroidM , denoted r (M),
is the rank of the set S .

Every finite graphG = (V ,E) induces a matroidMG as follows. Let the ground set

ofMG be the set of edges E and let the independent sets ofMG be the subsets of E that

are a forest, i.e., they do not contain a simple cycle. It is easy to check thatMG satisfies

the independence axioms. We call such a matroid a graphic matroid. Note that not all

matroids are graphic.

We shall now define the Tutte polynomial of a matroid, which is such that the

Tutte polynomial of a graph G is the Tutte polynomial of the graphic matroidM(G)

Definition 3.4 (Tutte Polynomial of aMatroid [Cra69]). LetM = (S,I) be a finite
matroid. Define r (A) to be the rank of the submatroid A. Then the Tutte polynomial

ofM is a polynomial in x and y, defined by

T(M ;x ,y) :=
∑
A⊆S

(x − 1)r (M)−r (A)(y − 1)|A|−r (A). (3.1)

A classic result of Jaeger, Vertigan, and Welsh [JVW90] showed that exactly eval-

uating the Tutte polynomial is #P-hard, except when (x ,y) are some special points.

Theorem 3.5 (Jaeger, Vertigan, and Welsh [JVW90]). The problem of evaluating

the Tutte polynomial of a graph at a point in the (x ,y)-plane is #P-hard except when
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(x − 1)(y − 1) = 1 or when (x ,y) equals (1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i),
(j, j2), (j, j2), or (j2, j), where j = exp(2πi/3).

Aharonov et al. [AAEL07] established a quantum algorithm for additively approx-

imating the multivariate Tutte polynomial for certain classes of planar graphs with

complex edge weightings and a complex parameter q. The algorithm involves en-

coding these multivariate Tutte polynomials in the output probability amplitudes of

quantum circuits. The Hadamard test is then used to approximate the amplitude and,

therefore, the multivariate Tutte polynomial. Furthermore, Aharonov et al. [AAEL07]

proved that for many of these classes, approximating the multivariate Tutte polyno-

mial is universal for quantum computation, i.e., BQP-hard.

Theorem 3.6 (Aharonov et al. [AAEL07]). There exists several classes of complex

weights and complex parameters q, for which additively approximating the multivariate

Tutte polynomial to within a certain scale is BQP-hard.

It is not known whether a classical algorithm exists for additively approximating

the Tutte polynomial to the same scale achieved by the quantum algorithm.

3.2 The Jones Polynomial

The Jones polynomial is an important knot invariant in topology discovered by

Vaughan Jones [Jon85]. We briefly introduce the theory of knots, braids, and the Jones

polynomial. We then discuss the classical and quantum complexity of evaluating the

Jones polynomial.

Definition 3.7 (Knot). A knot K is subset of points in R3 that is homeomorphic to a

circle.

Informally, a knot is a tangled strand of string with the open ends closed to form

a loop. Much like the everyday knots that we use when we tie our shoelaces, ties,

and so on — mathematical knots are exactly that, except that the open ends are fused
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together. The most simple knot you can think of is the unknot, also called the trivial

knot, which is a closed loopwithout a knot (Fig. 3.1a). Other examples of knots include

the trefoil knot (Fig. 3.1b), and the figure eight knot (Fig. 3.1c).

(a) The unknot. (b) The trefoil knot.
(c) The figure eight
knot.

Figure 3.1: Examples of basic knots.

We have seen how a knot is an embedding of a circle in R3. We can now generalise

this idea by considering an embedding of multiple circles in R3.

Definition 3.8 (Link). A link L is a finite disjoint union of knots L =
⋃

i Ki . Each

knot Ki in the union is called a component of the link.

Definition 3.9 (Oriented Link). An oriented link is a link in which each component

is assigned an orientation.

We can now see that a knot is a link of only one component. The generalisation

of the unknot to a link on n components is called the unlink, which is a collection of

n unknots that are not interlinked. An example of a slightly more interesting link is

the Borromean rings link (Fig. 3.2), which has the property that removing any single

component of the link gives the two component unlink.

Figure 3.2: The Borromean rings link.
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An central problem in knot theory is the link recognition problem— given two links

are they the same? To answer this, we must first ask, what does it mean for two links

to be the same?

Definition 3.10 (Link Equivalence). Two links L1 and L2 are said to be equivalent if

there exists a orientation-preserving homeomorphism f : R3 → R3 so that f (L1) = L2.

Essentially, two links are equivalent if they can be deformed into one another. We

can prove that two links are equivalent by producing a set of instructions that will

deform one link into the other. However, proving that two links are not equivalent is

much more difficult, as we would need to prove that no set of instructions exist.

Link invariants are an important concept in knot theory as they allow us to study

the link recognition problem.

Definition 3.11 (Link Invariant). A link invariant is a function from the set of links

to some other set, such that the output of the function depends only on the equivalence

class of the link.

Definition 3.12 (Jones Polynomial [Jon85]). The Jones polynomialVL(ω) is a link
invariant, which assigns to each oriented link a Laurent polynomial in the variable

ω1/2 with integer coefficients, that is, a polynomial in the variables ω1/2 and ω−1/2

with integer coefficients.

The Jones polynomial is characterised by the skein relation and the normalisation

that the Jones polynomial of the unknot V©(ω) = 1.

Definition 3.13 (Skein Relation). Given three links L−, L0, and L+ that are identical,

except for a local region where they differ according to Fig. 3.3, then the following

skein relation holds

(ω1/2 − ω−1/2)VL0(ω) = ω−1VL+(ω) − ωVL−(ω).

The skein relation is sufficient for a recursive computation of the Jones polyno-

mial of a link. It follows that the Jones polynomial of a link can be computed in
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Figure 3.3: Diagrams for the skein relation.

time exponential in the number of crossings. A classic result of Jaeger, Vertigan, and

Welsh [JVW90] states that exactly computing the Jones polynomial VL(ω) of a link is

#P-hard except when ω is one of a few special points. Bordewich et al. [BFLW05]

showed that it is BQP-hard to approximate the Jones polynomial up to an additive

error. Kuperberg [Kup09] proved that it remains #P-hard to approximate the Jones

polynomial up to a multiplicative error.

Theorem 3.14 (Jaeger, Vertigan, andWelsh [JVW90]). Evaluating the Jones poly-

nomialVL(ω) of a link is #P-hard except when ω = ± exp(2πi/k) with k ∈ {1, 2, 3, 4, 6}
when it can be evaluated in polynomial time.

Thistlethwaite [Thi87] showed that along the hyperbola xy = 1 the Tutte polyno-

mial of a planar graph specialises to the Jones polynomial of an associated alternating

link, i.e, a link where the crossings alternate over and under.

We now introduce the theory of braids, which provides us with a convenient way

to represent any link.

Definition 3.15 (Braid). Let

A = {(x , 0, 0) | x ∈ Z+,x ≤ n },
B = { (x , 0, 1) | x ∈ Z+,x ≤ n }.

Then, an n-strand braid is a collection of non-intersecting smooth paths in R3 con-

necting the points in A to the points in B.



CHAPTER 3. COMBINATORIAL STRUCTURES 26

Informally, a braid is a collection of strands of string that may cross over and under

each other, and must always move from left to right. An example of a braid is given

in Fig. 3.4.

Figure 3.4: An example of a braid on 4 strands.

The set of all braids on n strands form an infinite group Bn, generated by the n − 1

generators {σi} and their inverses {σ−1
i }. The generator σi crosses the ith strand over

the (i + 1)th strand and its inverse σ−1
i crosses the ith strand under the (i + 1)th strand.

Definition 3.16 (Braid Group). The braid group on n strands Bn is the group given

by the Artin presentation〈
{σi}ni=1

������σiσi+1σi =σi+1σiσi+1 for 1 ≤ i ≤ n − 2

σiσj =σjσi for |i − j | ≥ 2

〉
.

Each braid can be described by a braid word.

Definition 3.17 (Braid Word). A braid word is word on the set of generators {σi}
and their inverses {σ−1

i }.

It will be convenient for us to define the length and depth of a braid.

Definition 3.18 (Braid Length). The length of a braid is the number of characters

in its word.

Definition 3.19 (Braid Depth). The depth of a braid is the number of steps required

to apply the generators of its braid word in order with the assumption that consecutive

generators can be applied in parallel if they act on different strands.
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We can connect the endpoints of any braid in a number of ways to form a link. For

a braid with an even number of strands a natural way to do this is by the plat closure.

Definition 3.20 (Plat Closure). The plat closure of a 2n-strand braid b ∈ B2n is the

link formed by connecting pairs of adjacent strands on the left and the right of the

braid. The link that is formed by the plat closure of the braid is often denoted bpl .

Alexander [Ale23] showed that we can generate all possible links this way. There-

fore, we can describe any link as the closure of a braid given by its braid word.

Theorem 3.21 (Alexander [Ale23]). Every link can be represented by the closure of

some braid.

Freedman, Kitaev, and Wang [FKW02] established a quantum algorithm for addi-

tively approximating the Jones polynomial at any principal root of unity in polynomial

time. This algorithm was later formalised by Aharonov, Jones, and Landau [AJL09].

Freedman, Larsen, and Wang [FLW02] proved that when ω = exp(2πi/k) is a princi-
pal non-lattice root of unity, i.e. k = 5 or k ≥ 7, the problem of additively approx-

imating the Jones polynomial is universal for quantum computation. Aharonov and

Arad [AA11b] extended this result to values of k that grow polynomially with the

number of strands and crossings.

Theorem 3.22 (Aharonov and Arad [AA11b]). Let ω be a principal non-lattice root

of unity, and let b ∈ B2n be a braid. Then, the problem of additively approximating the

Jones polynomial Vbpl (ω) to within the same accuracy as the Aharonov-Jones-Landau

algorithm [AJL09] is BQP-hard.

In Chapter 4, we show that the complexity of evaluating multiplicative-error ap-

proximations of Jones polynomials can be used to bound the classical complexity of

approximately simulating random quantum computations.
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3.3 The Ising Model

The Ising model plays an vital role in combinatorics and statistical physics. The model

is described by a graphG = (V ,E), with the vertices representing spins and the edges

representing interactions between them. A set of edge weights {ωe}e∈E characterise

the interactions and a set of vertex weights {υv}v∈V characterise the external fields at

each spin. A configuration of the model is an assignment σ of each spin to one of two

possible states {−1,+1}. The Ising model partition function is defined as follows.

Definition 3.23 (Ising Model Partition Function). LetG = (V ,E) be a graph with

the weights Ω = {ωe}e∈E assigned to its edges and the weights ϒ = {υv}v∈V assigned

to its vertices. Then the Ising model partition function is defined by

ZIsing(G;Ω, ϒ) :=
∑

σ∈{−1,+1}V
wG(σ ),

where

wG(σ ) = exp

��

∑
{u,v}∈E

ω{u,v}σuσv +
∑
v∈V

υvσv
��� .

The model is called ferromagnetic if ωe > 0 for all e ∈ E and anti-ferromagnetic if

ωe < 0 for all e ∈ E. Otherwise, the model is called non-ferromagnetic.

A classic result of Jerrum and Sinclair [JS93] establishes a fully polynomial-time

randomised approximation scheme for the Ising model partition function for all

graphs in the ferromagnetic regime with real vertex weights. In contrast, they showed

that no such scheme could exists in the anti-ferromagnetic regime unlessRP=NP. Fur-

thermore, they showed that exactly computing the Ising model partition function in

the anti-ferromagnetic regime is #P-hard.

The Tutte polynomial specialises to the Ising model partition function along the

hyperbola (x − 1)(y − 1) = 2 [Wel93]. It then follows directly from the theorem of

Jaeger, Vertigan, and Welsh [JVW90] that evaluating the Ising model partition func-

tion is #P-hard in general. The result of Jerrum and Sinclair then corresponds to fully
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polynomial-time randomised approximation scheme for the Tutte polynomial along

the positive branch of the hyperbola (x − 1)(y − 1) = 2.

Isingmodel partition functionswith complex parameters arise naturally in the out-

put probability amplitudes of quantum circuits. Furthermore, additive-error approxi-

mations of such partition functions are known to be BQP-hard [DDVM11, ICBB14].

Goldberg and Guo [GG17] showed that multiplicative-error approximations of these

partition functions is #P-hard.

In Chapter 5, we establish a deterministic polynomial-time approximation scheme

for the Ising model partition function with complex parameters when the interac-

tions and external fields are absolutely bounded close to zero. We then show how our

algorithm can be extended to approximate certain output probability amplitudes of

quantum circuits.
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Chapter 4

The Complexity of Random

Quantum Computations

In this chapter, we show that the combinatorial structures that arise in the output

probability amplitudes of quantum circuits can be used to provide evidence for the

classical hardness of simulating random quantum computations. Specifically, we show

that the complexity of evaluating multiplicative-error approximations of Jones poly-

nomials can be used to bound the classical complexity of simulating random quantum

computations. We prove that random quantum computations cannot be classically

simulated up to a constant total variation distance, under the assumption that (1)

the Polynomial Hierarchy does not collapse and (2) the average-case complexity of

multiplicative-error approximations of the Jones polynomial matches the worst-case

complexity over a constant fraction of random links. Our results provide a straight-

forward relationship between the approximation of Jones polynomials and the com-

plexity of random quantum computations.

This chapter is based on joint work with Michael J. Bremner and is available as

the preprint “On the Complexity of Random Quantum Computations and the Jones

Polynomial” [MB17].
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4.1 Introduction

As discussed previously, many quantum circuit classes can be associated with func-

tions that are #P-hard to evaluate up to a multiplicative error. This feature has

been used to construct arguments in favour of a separation between the power of

classical and quantum computation (for a review on this topic see Ref. [LBR17] and

Ref. [HM17]). While we do not believe that quantum computers can efficiently eval-

uate such functions, they play a vital role in defining the complexity of sampling

from the output probability distribution of quantum circuits. Terhal and DiVin-

cenzo [TD04] first used this feature to bound the capability of classical computers to

simulate constant-depth quantum computations. This was later extended to the prob-

lem of sampling from linear optical networks [AA11a] and Instantaneous Quantum

Polynomial-time (IQP) circuits [BJS10].

Aaronson and Arkhipov [AA11a] proved an important relationship between

the complexity of approximate sampling and the average-case complexity of

multiplicative-error approximations to counting problems. They showed that the

complexity of evaluating multiplicative-error approximations to matrix permanents

can be used to bound the classical complexity of sampling from random linear optical

networks up to a constant total variation distance — a notion of approximation that

is realistic for quantum computation. They conjecture that (1) the average-case com-

plexity of the permanent of Gaussian matrices is #P-hard and (2) the permanent of

Gaussian matrices satisfies a certain anti-concentration bound. Assuming that these

conjectures are true, they show that the existence of an efficient classical algorithm

which can approximately sample from these networks would imply the collapse of the

Polynomial Hierarchy [AA11a]. A similar result was proven for IQP circuits [BMS16]

— extending this argument to the quantum circuit model under a different average-

case complexity conjecture, where the equivalent anti-concentration conjecture could

be proven.
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These sampling problems are not just a good candidate for proving a separa-

tion between classical and quantum computation, but also for providing experimental

benchmarks [BIS+18, HM17]. This has motivated the study of many other sampling

problems. Each of these conjecture the equivalence of the average-case and worst-

case complexity of multiplicative-error approximations of a given function. These

include: (1) the permanent of Gaussian matrices [AA11a], (2) the gap of degree-three

polynomials over F2 [BMS16, MSM17], (3) output probabilities of conjugated Clif-

ford circuits [BFK17], and (4) complex-temperature Ising model partition functions

over dense [BMS16], sparse [BMS17], and bounded degree graphs [BIS+18, GWD17,

BVHS+18, HBVSE18].

These average-case complexity conjectures are each associated with a class of

quantum circuits. These quantum circuits are not thought to be universal for quan-

tum computation, with the exception of some of the bounded degree Ising models,

but nonetheless become universal under post-selection. Understanding the distinc-

tions between these conjectures is essential for understanding the relationship be-

tween these classes of quantum circuits. However, resolving such conjectures would

require non-relativising techniques [AC16]. We therefore expect this to be a hard open

problem. Recent work by Bouland et al. [BFNV18] proved average-case hardness for

the output probability amplitudes of random quantum computations drawn from one

of a family of discretisations of the Haar measure.

In this chapter, we show that the complexity of evaluating multiplicative-error

approximations of Jones polynomials can be used to bound the classical complexity

of approximately simulating random quantum computations. Under the assumption

that (1) the Polynomial Hierarchy does not collapse and (2) the average-case com-

plexity of multiplicative-error approximations of the Jones polynomial matches the

worst-case complexity over a constant fraction of random links (Conjecture 4.19), we

prove that random quantum computations cannot be classically simulated up to a

constant total variation distance (Theorem 4.18). This argument follows as a natu-

ral extension to those given for IQP circuits [BJS10, BMS16] and for other classes of
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random quantum circuits [BIS+18], when combined with results on approximate de-

signs [HL09, BHH16]. Our results provide a straightforward relationship between the

approximation of Jones polynomials and the complexity of random quantum compu-

tations.

We begin by considering the problem of sampling from random quantum compu-

tations that are distributed according to an approximate unitary (t ≥ 2)-design. We

observe that these approximate unitary designs produce output probability distribu-

tions that satisfy an anti-concentration bound. This bound is used to prove that if there

exists an efficient classical algorithmwhich can sample from these distributions up to a

constant total variation distance, then Stockmeyer’s Counting Theorem (Theorem 4.8)

can be used to produce multiplicative-error approximations to a constant fraction of

their output probabilities (Theorem 4.6). This same observation has been used to es-

tablish arguments for the complexity of random quantum circuits [BIS+18, HBVSE18]

and conjugated Clifford circuits [BFK17].

We define a natural model of random links via the braid group. A random braid is

generated by applying generators of the braid group uniformly at random. A random

link is then the plat closure of a random braid. We show that the output probability

amplitudes of random quantum computations are proportional to the Jones polyno-

mial of a random link. Furthermore, we show that in thek th pathmodel representation

with k = 5 or k ≥ 7, random braids on 2n strands of length Ω[n(n + log(1/ϵ))] form
an ϵ-approximate unitary 2-design (Corollary 4.17). This leads us to conjecture that

it is #P-hard to approximate the Jones polynomial, up to a multiplicative error, on

at least a constant fraction of random links (Conjecture 4.19). This provides a natu-

ral conjecture for bounding the classical complexity of simulating random quantum

computations. Our results can be seen as an extension to arguments concerning the

complexity of sampling from random quantum circuits [BIS+18, HBVSE18] to a topo-

logical model with a natural average-case complexity conjecture.

Finally, we study to what extent random braids can be performed in parallel. We

consider applying the generators of a random braid in order and assume that consec-
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utive generators can be applied in parallel if they act on different strands. Recall that

the depth of a braid is the number of steps required to apply the generators in order

with the assumption that consecutive generators can be applied in parallel if they act

on different strands. We prove that random braids on n strands of length t = poly(n)
have depth at most O

(
t log(n)

n

)
with probability at least 1 − 1

quasipoly(n) .

This chapter is structured as follows. In Section 4.2, we provide an introduction to

random quantum computations and approximate unitary designs. We then state our

result on the classical simulation of random quantum computations, which we prove

in Section 4.3. In Section 4.4, we review the relationship between Jones polynomials

and quantum computing. In Section 4.5, we relate the complexity of random quantum

computations to the complexity of approximating the Jones polynomial of random

links. In Section 4.6, we investigate the parallelisation of random braids. Finally, we

conclude in Section 4.7 with some remarks and open problems.

4.2 Random Quantum Computations

A random quantum computation is the action of (1) preparing an initial state, (2) ap-

plying a randomly chosen unitary matrix, and (3) measuring in the computational

basis. This is equivalent to sampling from a probability distribution DU , whereU is a

randomly chosen unitary matrix.

Definition 4.1 (DU ). For a d × d unitary matrix U , define DU to be the probability

distribution over integers x ∈ [d], given by

DU [x] := |〈x |U |0〉|2 .

It is natural to consider unitary matrices drawn from the uniform distribution.

The uniform distribution over the unitary group U(d) is defined by the Haar mea-

sure, which is the unique translation-invariant measure on the group. Unfortunately,

random unitary matrices drawn from the Haar measure cannot be implemented effi-

ciently by a quantum computer [Kni95].
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For our purposes, it is important that the random quantum computations can be

implemented efficiently. We achieve this by weakening the requirement that the uni-

tary matrices are drawn from the Haar measure. Instead, we require only that the

unitary matrices are drawn from a distribution that is close to the Haar measure.

A unitary t-design is a distribution over a finite set of unitary matrices which im-

itates the properties of the Haar measure up to the t th moment. For convenience,

let Hom(t ,t)(U(d)) be the set of polynomials homogeneous of degree t in the matrix

elements ofU and homogeneous of degree t in the matrix elements ofU ∗.

Definition 4.2 (Unitary t-Design [RS09]). A distributionD = {pi ,Ui} over unitary
matrices in dimensiond is a unitary t-design if, for any polynomial f ∈ Hom(t ,t)(U(d)),∑

Ui∈D
pi f (Ui) =

∫
U(d)

f (U )dU .

It will be sufficient for us to consider unitary matrices drawn from an approximate

unitary t-design, which are often much easier to construct than exact designs.

Definition 4.3 (ϵ-Approximate Unitary t-Design). A distribution D = {pi ,Ui}
over unitary matrices in dimension d is an ϵ-approximate unitary t-design if, for any

polynomial f ∈ Hom(t ,t)(U(d)),

(1 − ϵ)
∫

U(d)

f (U )dU ≤
∑
Ui∈D

pi f (Ui) ≤ (1 + ϵ)
∫

U(d)

f (U )dU .

Brandao, Harrow, and Horodecki [BHH16] showed thatG-local random quantum

circuits acting onn qudits composed of polynomially many gates form an approximate

unitary poly(n)-design. Here,G = {дi}mi=1 is a universal set of gates containing inverses
with each дi ∈ U(d2) composed of algebraic entries.

Definition 4.4 (G-Local Random Quantum Circuit). At each time step, two in-

dices, i and j, are chosen uniformly at random from [m] and [n − 1], respectively. The
gate дi is then applied to the two neighbouring qudits j and j + 1.
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Theorem 4.5 (Brandao, Harrow, and Horodecki [BHH16]). Fix d ≥ 2. Let

G = {дi}mi=1 be a universal set gates containing inverses with eachдi ∈ U(d2) composed of

algebraic entries. There exists a constant λ = λ(G) > 0 such that G-local random quan-

tum circuits of length

λn
⌈
logd(4t)

⌉2
t5t3.1/log(d) [nt log (d) + log(1/ϵ)]

form an ϵ-approximate unitary t-design.

We shall, therefore, restrict our attention to random quantum computations where

the unitary matrices are drawn from an ϵ-approximate unitary (t ≥ 2)-design. We are

interested in a classical simulation of random quantum computations, for which we

have the following result.

Theorem 4.6. LetU be ad×d unitarymatrix distributed according to an ϵ-approximate

unitary (t ≥ 2)-design and let DU be its corresponding probability distribution. Suppose

that there is a classical polynomial-time algorithm C , which, for any U , samples from

a probability distribution D′, such that | |D′ − DU | |1 ≤ μ. Then, for any γ such that

0 < γ < 1 − ϵ , there is an FBPPNPC algorithm which approximates |〈0|U |0〉|2 up to a

multiplicative error
4μ(1+ϵ)2
γ (1−ϵ−γ )2 + o(1) on at least a

(1−ϵ−γ )2
4(1+ϵ) fraction of matrices.

We prove Theorem 4.6 and several supporting lemmas in Section 4.3. Theorem 4.6

tells us that, if there exists an efficient classical algorithm which can approximately

sample from any random quantum computation, then, there is an FBPPNP algorithm

which can approximate |〈0|U |0〉|2 up to a multiplicative error for a fraction of matri-

ces U . Suppose that this algorithm solves a #P-hard problem, then, by Toda’s Theo-

rem, the Polynomial Hierarchy collapses to its third level.

In Section 4.5, we show that |〈0|U |0〉|2 is proportional to the Jones polynomial of

a random link, which is known to be #P-hard to approximate up to a multiplicative

error in the worst case [Kup09]. We conjecture that this remains true in the average

case.
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4.3 Proof of Theorem 4.6

We now prove Theorem 4.6, which is restated below for convenience. Our proof re-

quires several lemmas which we prove in the remainder of the section.

Theorem 4.6. LetU be ad×d unitarymatrix distributed according to an ϵ-approximate

unitary (t ≥ 2)-design and let DU be its corresponding probability distribution. Suppose

that there is a classical polynomial-time algorithm C , which, for any U , samples from

a probability distribution D′, such that | |D′ − DU | |1 ≤ μ. Then, for any γ such that

0 < γ < 1 − ϵ , there is an FBPPNPC algorithm which approximates |〈0|U |0〉|2 up to a

multiplicative error
4μ(1+ϵ)2
γ (1−ϵ−γ )2 + o(1) on at least a

(1−ϵ−γ )2
4(1+ϵ) fraction of matrices.

Proof. Lemma 4.7 tells us that, for any 0 < δ < 1, there is an FBPPNPC algorithm,

which approximates |〈x |U |0〉|2, up to an additive error

O

[
(1 + o(1))μ(1 + ϵ)

δd
+
|〈x |U |0〉|2
poly(n)

]
,

with probability at least 1 − δ over the choice of U . Combining this with Lemma 4.9

and setting δ =
(1−ϵ−γ )2
4(1+ϵ) , it follows that there is an FBPPNPC algorithm, which ap-

proximates |〈0|U |0〉|2 up to a multiplicative error 4μ(1+ϵ)2
γ (1−ϵ−γ )2 + o(1) on at least a (1−ϵ−γ )2

4(1+ϵ)
fraction of matricesU . �

We now prove Lemma 4.7, which relates the simulation of random quantum com-

putations to approximating individual output probabilities. Our proof closely follows

that of Lemma 4 from Ref. [BMS16].

Lemma 4.7. LetU be a d ×d unitary matrix distributed according to an ϵ-approximate

unitary (t ≥ 1)-design and let DU be its corresponding probability distribution. Suppose

that there is a classical polynomial-time algorithm C , which, for any U , samples from

a probability distribution D′, such that | |D′ − DU | |1 ≤ μ. Then, for any δ such that

0 < δ < 1, there is an FBPPNPC algorithm, which approximates |〈0|U |0〉|2, up to an

additive error

O

[
(1 + o(1))μ(1 + ϵ)

δd
+
|〈0|U |0〉|2
poly(n)

]
,
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with probability at least 1 − δ over the choice ofU .

Proof. Define

QU := |〈0|U |0〉|2 , TU := Pr[C outputs 0 on inputU ].

For any U , we can use Stockmeyer’s Counting Theorem (Theorem 4.8) to obtain a

multiplicative-error approximation T ′
U to TU in FBPPNPC ,��TU −T ′

U

�� ≤ TU
poly(n) .

Then, ��QU −T ′
U

�� ≤ |QU −TU | +
��TU −T ′

U

��
≤ |QU −TU | + TU

poly(n)
≤ |QU −TU | + (QU + |QU −TU |)

poly(n)
= |QU −TU |

(
1 +

1

poly(n)

)
+

QU

poly(n) .

As C approximates DU up to an l1 error μ, it follows from Markov’s inequality and

the approximate design condition (Lemma 4.11) that, for any 0 < δ < 1,

Pr
U

[
|QU −TU | ≥

μ(1 + ϵ)
δd

]
≤ δ .

Therefore, ��QU −T ′
U

�� ≤ μ(1 + ϵ)
δd

(
1 +

1

poly(n)

)
+

QU

poly(n) ,

with probability at least 1 − δ over the choice ofU . �

The proof of Lemma 4.7 requires a classic result of Stockmeyer [Sto85], which

allows us to approximately count in the Polynomial Hierarchy.

Theorem 4.8 (Stockmeyer’s Counting Theorem [Sto85]). Let f : {0, 1}n → {0, 1}
be a function, and let

p = Pr
x
[f (x) = 1] = 1

2n

∑
x∈{0,1}n

f (x).
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Then there exists an FBPPNPf algorithm, which, for any ϵ = Ω
(

p
poly(n)

)
, outputs a value

α , such that

|α − p | < ϵ .

We now prove that unitary matrices distributed according to an ϵ-approximate

unitary (t ≥ 2)-design satisfy certain anti-concentration bounds. A similar result was

proven independently by Hangleiter et al. [HBVSE18] in the context of qubit systems.

Lemma 4.9. LetU be a d ×d unitary matrix distributed according to an ϵ-approximate

unitary (t ≥ 2)-design, then, for any unit vectors |α〉, |β〉 and a constant 0 ≤ γ ≤ 1 − ϵ ,

the following holds

Pr
U

[
|〈α |U |β〉|2 > γ

d

]
≥ (1 − ϵ − γ )2

2(1 + ϵ) .

Proof. The Paley-Zygmund inequality (Lemma 4.10) tells us that

Pr
Z

[
Z >

γ

d

]
≥

(
1 − γ

dE[Z ]

)2
E[Z ]2
E [Z 2] ,

for any 0 ≤ γ ≤ dE[Z ]. Setting Z = |〈α |U |β〉|2, it follows from the approximate de-

sign condition (Lemma 4.11), that

Pr
U

[
Z >

γ

d

]
≥1

2

(
1 − γ

(1 − ϵ)

)2 (1 − ϵ)2
(1 + ϵ)

(d + 1)
d

≥1

2

(
1 − γ

1 − ϵ

)2 (1 − ϵ)2
1 + ϵ

=
(1 − ϵ − γ )2
2(1 + ϵ) ,

for any 0 ≤ γ ≤ 1 − ϵ . �

The proof of Lemma 4.9 combines the Paley-Zygmund inequality and the approx-

imate design condition. The Paley-Zygmund inequality bounds the probability that a

non-negative random variable is small in terms of its first and second moment.
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Lemma 4.10 (Paley-Zygmund Inequality). IfZ ≥ 0 is a random variable with finite

variance, and if 0 ≤ θ ≤ 1, then

Pr
Z
[Z > θE[Z ]] ≥ (1 − θ )2E[Z ]

2

E[Z 2] .

We are interested in bounding the probability that the random variable

Z = |〈α |U |β〉|2 is small. In the case of an exact unitary (t ≥ 2)-design the first

and second moments of Z match those of the Haar measure. For an ϵ-approximate

(t ≥ 2)-design the approximate design condition bounds the distance of the first and

second moments of Z from those of the Haar measure.

Lemma 4.11 (Approximate Design Condition [BH13]). If U is a d × d unitary

matrix distributed according to an ϵ-approximate unitary t-design, then, for any unit

vectors |α〉, |β〉 and an integer k ≤ t ,

(1 − ϵ)(k+d−1
d−1

) ≤ E
[
|〈α |U |β〉|2k

]
≤ (1 + ϵ)(k+d−1

d−1
) .

4.4 The Jones Polynomial and Quantum Computing

The Aharonov-Jones-Landau algorithm as in Section 3.2 is based on the path model

representation of the braid group [Jon83, Jon85], which is unitary whenω = exp(2πi/k)
is a principal root of unity. For an integer k , the k th path model representation of the

braid group B2n is defined on the vector space spanned by walks of length 2n, on a

k − 1 vertex path graph Gk , which start and finish on the first vertex.

To calculate the dimension of this vector space it is sufficient to count the number

of walks of length 2n on the graphGk . From a combinatorial perspective, the walks on

the graph Gk can be seen as Dyck paths of length 2n, which never go above a height

k − 2. It is well known that the number of Dyck paths of length 2n is the nth Catalan

number, which provides an upperbound for the dimension of the vector space.

Definition 4.12 (Catalan number). The nth Catalan number is defined by

Cn :=
1

(n + 1)

(
2n

n

)
.
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Claim 4.13. For n ≥ 1,

Cn < 4n .

Proof. The claim follows directly from Stirling’s approximation for factorials. �

In this representation, each braid b ∈ B2n is mapped to a unitary matrix ρk(b) com-

posed of algebraic entries. These unitary matrices have the property that the expec-

tation value 〈0| ρk(b) |0〉 is proportional, up to an efficiently computable factor, to the

Jones polynomialVbpl (ω) of the plat closure ofb. Aharonov, Jones, and Landau [AJL09]
showed that such representations can be implemented efficiently on a quantum com-

puter.

In their construction, the unitary representation of each generator ρk(σ±
i ) of the

braid group B2n acts on a subspace of the Hilbert space of qudits. The Solovay-Kitaev

theorem [KSV02] guarantees that these unitary matrices can be implemented effi-

ciently. An entire braidb ∈ B2n is implemented efficiently by applying the correspond-

ing unitary matrix of each generator in the order of the braid word of b.

4.5 Random Jones Polynomials

We now relate random quantum computations and the Jones polynomial of random

links. We define a random link to be the plat closure of a random braid.

Definition 4.14 (Random Braid). A random braid on 2n strands is generated by

uniformly at random choosing generators from the set {σ±
i }2n−1i=1 .

Definition 4.15 (Random Link). A random link is generated by the plat closure of

a random braid.

In the k th path model representation the generators of the braid group {σ±
i } are

mapped to unitary matrices {ρk(σ±
i )}. In this representation, a random braid is equiv-

alent to a product of random matrices chosen uniformly at random from the set
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{ρk(σ±
i )}. Since each ρk(σ±

i ) acts on a subspace of theHilbert space of qudits, a random
braid is equivalent to a G-local random quantum circuit, with the number of strands

proportional to the number of qudits. When k = 5 or k ≥ 7 these gates are universal

for quantum computation [FLW02, AA11b].

Theorem 4.16. In the k th path model representation with k = 5 or k ≥ 7, there exists a

constant λ > 0, such that random braids on 2n strands of length

λn
⌈
log2(4t)

⌉2
t5t3.1/log(2) [t log (Cn) + log(1/ϵ)] ,

form an ϵ-approximate unitary t-design.

Proof. Since a random braid in the pathmodel representation is equivalent to aG-local

random quantum circuit, we can apply Theorem 4.5 to obtain an upperbound on the

length of random braids required to form an ϵ-approximate unitary t-design. Com-

bining this with the fact that the dimension of the vector space in the path model

representation is bounded from above by the nth Catalan number and that the local

dimension is bounded from below by 2 gives the desired result. �

We note that in the proof of Theorem 4.16, the length of a random braid is chosen

to be sufficient forG-local random quantum circuits on a larger Hilbert space of qudits

to form an ϵ-approximate unitary t-design, and so, is sufficient for a random braid

in the path model representation to form an ϵ-approximate unitary t-design. This

may be more than necessary, and, in fact, numerical evidence suggests that in the

5th path model representation, random braids are likely to form an ϵ-approximate

unitary t-design in a shorter length than G-local random quantum circuits of certain

other universal gate sets [YMKC18].

Corollary 4.17. In the k th path model representation with k = 5 or k ≥ 7, there exists

a constant λ > 0, such that random braids on 2n strands of length

λn [n + log(1/ϵ)] ,

form an ϵ-approximate unitary 2-design.
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Proof. The proof follows from setting t = 2 in Theorem 4.16 and from the upperbound

for the nth Catalan number found in Claim 4.13. �

We now relate the classical simulation of random quantum computations and the

complexity of approximating the Jones polynomial of random links.

Theorem 4.18. Fix 0 < ϵ < 1. Let k = 5 or k ≥ 7 be an integer, and ω = exp(2πi/k)
its corresponding root of unity. Let b ∈ B2n be a random braid on 2n strands of length

Ω [n(n + log(1/ϵ))]. Let ρk(b) be the k th path model representation of b, and letDρk (b) be

its corresponding probability distribution. Suppose that there is a classical polynomial-

time algorithmC , which, for any b, samples from a probability distributionD′, such that����D′ − Dρ(b)
����
1 ≤ μ and assume that Conjecture 4.19 holds. Then, there is a BPPNP algo-

rithm for solving any problem in P#P and by Toda’s Theorem the Polynomial Hierarchy

collapses to its third level.

Proof. The proof follows from combining Theorem 4.6, Corollary 4.17, and Toda’s

Theorem. �

Conjecture 4.19. In the notation of Theorem 4.18. For some 0 < γ < 1 − ϵ , it is

#P-hard to approximate the Jones polynomial Vbpl (ω) up to a multiplicative error

4μ(1+ϵ)2
γ (1−ϵ−γ )2 + o(1) on at least a

(1−ϵ−γ )2
4(1+ϵ) fraction of random braids.

Conjecture 4.19 is based on the average-case complexity of multiplicative-error

approximations of Jones polynomials. It is known that it is #P-hard to approximate

the Jones polynomial up to a multiplicative error in the worst case [Kup09]. There-

fore, Conjecture 4.19 states that this worst-case hardness result can be extended to an

average-case hardness result.

Assuming that Conjecture 4.19 holds and the Polynomial Hierarchy does not col-

lapse, Theorem 4.18 tells us that there is no efficient classical algorithm which can

sample from any random quantum computation. This implies that random quantum

computations can not be efficiently simulated by a classical computer.



CHAPTER 4. THE COMPLEXITY OF RANDOM QUANTUM COMPUTATIONS 44

Remark 4.20. It is worth noting that the 5th path model representation is equivalent

to the Fibonacci representation of the braid group [SJ08]. Therefore, our results extend

to the random braiding of Fibonacci anyons.

4.6 Parallelisation of Random Braids

We now study to what extent random braids can be performed in parallel. We prove

that random braids on n strands of length t = poly(n) have depth at most O
(
t log(n)

n

)
with probability at least 1 − 1

quasipoly(n) . Our proof closely follows that of Brown and

Fawzi [BF12], who proved a similar result for random quantum circuits.

Definition 4.21 (En,m,k ). Let En,m,k be the event that a random braid on n strands of

lengthm has depth at least k .

Theorem 4.22. The probability that a random braid on n strands of length t = poly(n)
has depth at most O

(
t log(n)

n

)
is at least 1 − 1

quasipoly(n) .

Proof. We begin by bounding the probability that a braid on n strands of length m

forms a braid of depth at least k . Combining Lemma 4.23 with the fact that there are(m
k

)
ways to choose a braid of length k from a braid of lengthm, it follows from the

union bound that

Pr[En,m,k] ≤
(
m

k

) (
3

n − 1

)k−1
≤

(em
k

)k (
3

n − 1

)k−1
.

Settingm = (n − 1)/(3e) and k = log(n), we obtain

Pr[En,m,k] ≤
(n − 1)

3nlog log(n)

≤ 1

nlog log(n)−1
.

This proves that every random braid on n strands of length at most (n − 1)/(3e) has
depth at most log(n) with probability at least 1 − 1

nlog log(n)−1 . Suppose that we have a
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random braid on n strands of length t , then the braid has depth at most O
(
t log(n)

n

)
with probability at least 1 − 1

quasipoly(n) . �

Lemma 4.23. The probability that a random braid on n strands of length k has depth k

is at most
( 3
n−1

)k−1
.

Proof. The proof follows directly from Claim 4.24. �

Claim 4.24. For a random braid on n strands,

Pr[En,k+1,k+1] ≤
(

3

n − 1

)
Pr[En,k,k].

Proof. Let us begin with the conditional probability,

Pr[En,k+1,k+1] = Pr[En,k+1,k+1 |En,k,k]Pr[En,k,k].

Since each generator acts on two neighbouring strands and at most six of the 2(n − 1)
generators can act on these strands, we have

Pr[En,k+1,k+1 |En,k,k] ≤
(

3

n − 1

)
.

Therefore,

Pr[En,k+1,k+1] ≤
(

3

n − 1

)
Pr[En,k,k].

This completes the proof. �

4.7 Conclusion & Outlook

We have provided strong evidence that simulating random quantum computations is

intractable for classical computers. Specifically, we have shown that if Conjecture 4.19

holds and the Polynomial Hierarchy does not collapse, then there is no efficient clas-

sical algorithm which can approximately sample from the output probability distribu-

tion of random quantum computations.
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There are a number of natural problems that remain to be solved, the most ob-

vious of which is to resolve Conjecture 4.19. Unfortunately, we are unaware of any

proof techniques which are capable of extending the worst-case hardness result to

an average-case hardness result. Moreover, the results of Aaronson and Chen [AC16]

imply that any proof of this conjecture would require non-relativising techniques. Re-

cent work by Bouland et al. [BFNV18] proved average-case hardness for the output

probability amplitudes of random quantum computations drawn from one of a family

of discretisations of the Haar measure. However, such a proof would need to hold for

multiplicative-error approximations for random quantum computations drawn from

an approximation to the Haar measure in order to resolve Conjecture 4.19.

Another natural problem is whether Corollary 4.17 can be strengthened to random

braids of a shorter length. In Theorem 4.18, the length of a random braid is determined

by the requirement that in the path model representation it is distributed according to

an ϵ-approximate unitary 2-design. Therefore, any improvement to this bound yields

a stronger version of Theorem 4.18. It is an open problem whether this bound can be

improved.

It would also be interesting to adapt our results to other combinatorial structures,

such as Tutte polynomials [AAEL07], Turaev-Viro invariants [AJKR10], and matrix

permanents [Rud09], which are known to be #P-hard to compute in the worst case

and BQP-hard to approximate up to an additive error.
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Chapter 5

Approximation Algorithms for

Complex-Valued Ising Models

In the previous chapter we showed that the complexity of combinatorial structures can

be used to provide evidence for the classical hardness of simulating random quantum

computations. In this chapter, we consider the contrary case, that is, when do the

combinatorial structures allows for an efficient classical simulation of quantum com-

putations?

In this chapter, we establish a deterministic polynomial-time approximation

scheme for the Isingmodel partition functionwhen the interactions and external fields

are absolutely bounded close to zero. Furthermore, we prove that for this class of Ising

models the partition function does not vanish. Our algorithm is based on an approach

due to Barvinok for approximating evaluations of a polynomial based on the location

of the complex zeros and a technique due to Patel and Regts for efficiently computing

the leading coefficients of graph polynomials on bounded degree graphs. Finally, we

show how our algorithm can be extended to approximate certain output probability

amplitudes of quantum circuits.
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This chapter is based on joint work with Michael J. Bremner and is available as the

preprint “Approximation Algorithms for Complex-Valued Ising Models on Bounded

Degree Graphs” [MB18].

5.1 Introduction

We study the problem of approximating the Ising model partition function in the

complex parameter regime on bounded degree graphs. This work is motivated by

the close relationship to quantum computation, where it can be shown that approxi-

mate evaluations of these partition functions can encode arbitrary quantum compu-

tations [DDVM11]. A classic result of Jaeger, Vertigan, and Welsh [JVW90] showed

that exactly evaluating these partition functions is #P-hard. This was shown to re-

main true in the approximate case [GG17] and when restricted to graphs of bounded

degree [FM17]. Therefore, it seems unlikely that an efficient algorithm exists for ap-

proximating the partition function for general parameters on bounded degree graphs.

Furthermore, it has been conjectured that this problem remains hard on average over

certain classes of interactions and external fields [GWD17, BIS+18, BVHS+18]. Resolv-

ing these conjectures is crucial for understanding the complexity of quantum comput-

ing.

We establish a deterministic polynomial-time approximation scheme for the Ising

model partition function on bounded degree graphs when the interactions and exter-

nal fields are absolutely bounded close to zero (Corollary 5.29). This provides a lower

bound on when the interactions and external fields cause approximations of the Ising

model partition function to transition from being contained in P to being #P-hard.

Our algorithm is based on an approach due to Barvinok [Bar15, Bar16b] for approxi-

mating evaluations of a polynomial based on the location of the complex zeros and a

technique due to Patel and Regts [PR17] for efficiently computing the leading coeffi-

cients of graph polynomials on bounded degree graphs.
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Barvinok’s approach considers the Taylor expansion of the logarithm of a poly-

nomial about an easy to evaluate point. Suppose that we can show that the complex

zeros of the polynomial lie in the exterior of a closed disc centred at this point, then

it follows that a truncated Taylor expansion provides an additive approximation to

the logarithm of the polynomial at any point in the interior of this closed disc. Now

observe that an additive approximation of the logarithm of a polynomial corresponds

to a multiplicative approximation of the polynomial.

To construct an algorithm from this approach we need to be able to compute the

coefficients of the truncated Taylor expansion. Barvinok showed that computing these

coefficients can be reduced to computing the leading coefficients of the polynomial it-

self. However, to achieve the accuracy required for an approximation scheme, we

require a number of leading coefficients that is logarithmic in the degree of the poly-

nomial. For many combinatorial structures, directly computing these coefficients re-

quires quasi-polynomial time.

Patel and Regts [PR17] showed that, for several classes of graph polynomials on

bounded degree graphs, the leading coefficients can be computed in polynomial time.

Their approach is based on expressing the coefficients as linear combinations of con-

nected induced subgraph counts of size logarithmic in the size of the graph. It then

follows from a result due to Borgs et al. [BCKL13], which states that, for bounded

degree graphs, we can efficiently enumerate all connected induced subgraphs of log-

arithmic size.

Barvinok and Soberón [BS17] established a deterministic quasi-polynomial time

algorithm for approximating the multivariate graph homomorphism partition func-

tion on bounded degree graphs when the matrix entries are absolutely bounded close

to one. In the case that all matrix entries are exactly equal to one the partition func-

tion is easy to evaluate. Barvinok and Soberón proved that for bounded degree graphs

when the matrix entries are absolutely bounded close to one, the partition function

does not vanish. Finally, they proved that the leading coefficients can be computed

in quasi-polynomial time. Patel and Regts [PR17] improved this to a deterministic
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polynomial-time algorithm by showing that the coefficients can be expressed as lin-

ear combinations of connected induced subgraph counts.

In order to establish a polynomial-time approximation scheme for the Ising model

partition function, we provide an approximation-preserving polynomial-time reduc-

tion to a restricted version of the multivariate graph homomorphism partition func-

tion (Proposition 5.27). We extend the results of Barvinok and Soberón [BS17] and

Patel and Regts [PR17] to give an algorithm for approximating this restricted ver-

sion of the multivariate graph homomorphism partition function on bounded degree

graphs when the matrix entries are absolutely bounded close to one (Theorem 5.7).

As a consequence, we obtain a deterministic polynomial-time approximation scheme

for the Ising model partition function on bounded degree graphs when the interac-

tions and external fields are absolutely bounded sufficiently close to zero. Further-

more, we prove that in this case the Ising model partition function does not vanish

(Corollary 5.31). This may be of independent interest in statistical physics as the pos-

sible points of physical phase transitions are exactly the real limit points of complex

zeros [S+05].

Previous work by Liu, Sinclair, and Srivastava [LSS17] studied the problem of ap-

proximating the ferromagnetic Ising model partition function based on the location of

complex zeros. They gave a deterministic polynomial-time approximation scheme for

the Isingmodel partition function in the ferromagnetic regime for all complex external

fields that are not purely imaginary. This can be seen as an algorithmic consequence

of the classic Lee-Yang Theorem [LY52], which states that the ferromagnetic Ising

model partition function does not vanish except when the external fields are purely

imaginary. Peters and Regts [PR18] generalised this result by determining the exact

location of zeros in the ferromagnetic and anti-ferromagnetic regime as a function of

the inverse temperature and the maximum degree.

Further work has considered the problem of approximating the Ising model parti-

tion function on bounded degree graphs based on the decay of correlations property.

Sinclair, Srivastava, and Thurley [SST14] established a deterministic polynomial-time
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approximation scheme for the anti-ferromagnetic Ising model partition function on

graphs of maximum degree at most Δ when the interactions and external fields lie in

the uniqueness region of the Gibbs measure on the infinite Δ-regular tree, which is

exactly the region that the decay of correlation property holds. Sly and Sun [SS12]

showed that for interactions outside of this region, unless RP=NP, there is no fully

polynomial-time randomised approximation scheme for the anti-ferromagnetic Ising

model partition function on graphs of maximum degree at most Δ ≥ 3. Independent

work by Galanis, Štefankovič, and Vigoda [GŠV16] established a similar result in the

case of no external field. Liu, Sinclair, and Srivastava [LSS18] showed that, in the case

of no external field, the Isingmodel partition function has no zeros in a complex neigh-

bourhood of the decay of correlation regime. This establishes a formal relationship

between these two approaches.

Our final result is a polynomial-time algorithm for approximating certain output

probability amplitudes of quantum circuits (Corollary 5.37). Our algorithm is based

on the observation that complex-valued Ising model partition functions arise in the

output probability amplitudes of quantum circuits [DDVM11, ICBB14]. We focus on a

class of commuting quantum circuits, known as Instantaneous Quantum Polynomial-

time (IQP) circuits [SB09], where the mapping to the Ising model partition function

is the most straightforward [SB09, She10, FM17]. Our algorithm allows us to approx-

imate a certain output probability amplitude of a quantum circuit when the corre-

sponding graph has bounded degree and the interactions and external fields are ab-

solutely bounded close to zero. Eldar and Mehraban [EM17] used a similar approach

to derive a quasi-polynomial time algorithm for approximating the permanent of a

random matrix with unit variance and vanishing mean in the context of linear optical

quantum computing.

This chapter is structured as follows. In Section 5.2, we introduce the multivariate

graph homomorphism partition function and establish a deterministic polynomial-

time algorithm for approximating a restricted version of this partition function on

bounded degree graphs when the matrix entries are absolutely bounded close to one.
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To establish our algorithm, we require several lemmas, which we prove in Section 5.3

and Section 5.4. In Section 5.5, we provide an approximation-preserving polynomial-

time reduction from the Ising model partition function to this restricted version of the

multivariate graph homomorphism partition function. We then use this reduction to

establish a deterministic polynomial-time approximation scheme for the Ising model

partition function on bounded degree graphs when the interactions and external fields

are absolutely bounded sufficiently close to zero. In this regime, we prove that the

partition function does not vanish. In Section 5.6, we show how our algorithm can be

extended to approximate certain output probability amplitudes of quantum circuits.

Finally, we conclude in Section 5.7 with some remarks and open problems.

5.2 Graph Homomorphism Partition Functions

A graph homomorphism between two graphsG andH is an adjacency-preserving map

between the vertex sets, i.e., a map h : V (G) → V (H ) such that {u,v} ∈ E(G) implies

{h(u),h(v)} ∈ E(H ). Graph homomorphisms generalise the notion of graph colour-

ing [HN04]; for example, a graph homomorphism from a graph G to the complete

graph Kq is equivalent to a proper q-colouring of G.

Hell and Nešetřil [HN90] proved that the problem of deciding if a homomorphism

between two graphs G and H exists is NP-complete. Dyer and Greenhill [DG00]

showed that the corresponding counting problem is #P-hard, unless the graph has

some special structure; otherwise it is in P. Furthermore, they showed that this prob-

lem remains #P-hard when restricted to graphs of bounded degree. The graph homo-

morphism partition function is defined as follows.

Definition 5.1 (Graph Homomorphism Partition Function). LetG = (V ,E) be a
graph and let A = (aij)m×m be am ×m symmetric matrix. Then the graph homomor-

phism partition function is defined by

Hom(G;A) :=
∑

ϕ:V→[m]

∏
{u,v}∈E

aϕ(u)ϕ(v),
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where the sum is taken over all maps ϕ from the set of vertices V to the set of matrix

indices [m] and the product is taken over all edges E.

The graph homomorphism partition function evaluates to many important combi-

natorial quantities, including counting the number of graph homomorphisms, proper

colourings, and independent sets [Bar16a]. For example, whenA is the adjacency ma-

trix of a graph H , Hom(G;A) counts the number of graph homomorphisms fromG to

H .

The complexity of computing graph homomorphism partition functions has been

widely studied. Dyer and Greenhill [DG00] showed that computing Hom(G;A) when
A is a fixed symmetric binary matrix is either in P or #P-hard. Moreover, they showed

that these hardness results hold even for graphs of maximum degree three. These

results were later generalised to non-negative symmetric matrices [BG05], real sym-

metric matrices [GGJT10], and complex symmetric matrices [CCL10]. Furthermore,

the tractability criterion for the matrix is decidable in polynomial time.

The graph homomorphism partition function can be generalised by assigning a

m×m symmetric matrix to each edge. Themultivariate graph homomorphism partition

function is defined as follows.

Definition 5.2 (Multivariate Graph Homomorphism Partition Function). Let

G = (V ,E) be a graph with them×m symmetric matricesA = {(aeij)m×m}e∈E assigned
to its edges. Then the multivariate graph homomorphism partition function is defined

by

HomM(G;A) :=
∑

ϕ:V→[m]

∏
{u,v}∈E

a{u,v}
ϕ(u)ϕ(v).

When thematrices are all equal, it is clear that the multivariate and standard graph

homomorphism partition functions are equivalent.

For convenience, let us define the polydisc consisting of all sets ofm×m symmetric

matrices with matrix entries absolutely bounded close to one.
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Definition 5.3 (DG,m(δ)). For a graph G = (V ,E), m ∈ Z+, and δ > 0, we define

DG,m(δ ) to be the closed polydisc consisting of all sets of m ×m symmetric matri-

ces A = {(aeij)m×m}e∈E , such that
���1 − aeij

��� ≤ δ for all e ∈ E and all i, j ∈ [m].

Barvinok and Soberón [BS17] gave a quasi-polynomial time algorithm for approx-

imating HomM(G;A) whenG is a graph of maximum degree at most Δ and A lies in

the interior of the closed polydiscDG,m (δΔ). Here, δΔ > 0 is an absolute constant. The

absolute constants come from Barvinok’s monograph [Bar16a], where a simpler proof

was presented with better constants. Patel and Regts [PR17] improved this algorithm

to run in polynomial time.

Definition 5.4 (δΔ). For Δ ∈ Z+, we define the absolute constant δΔ by

δΔ := max
0<α< 2π

3Δ

[
sin

(α
2

)
cos

(
αΔ

2

)]
.

Remark 5.5. A simple numerical search gives δ3 = 0.18, δ4 = 0.13, δ5 = 0.11, and

δ6 = 0.09. In general, we have δΔ = Ω(1/Δ).

We shall consider a restricted version of the multivariate graph homomorphism

partition function, in which the sum is restricted to map a subset of vertices to a fixed

index.

Definition 5.6 (Restricted Multivariate Graph Homomorphism Partition

Function). Let G = (V ,E) be a graph with the m × m symmetric matrices

A = {(aeij)m×m}e∈E assigned to its edges. Further let S ⊆ V be a subset of V and let

k ∈ [m] be an integer. Then the restricted multivariate graph homomorphism parti-

tion function is defined by

HomM(G, S,k ;A) :=
∑

ϕ:V→[m]
ϕ(s)=k,∀s∈S

∏
{u,v}∈E

a{u,v}
ϕ(u)ϕ(v).

The advantage of considering the restricted multivariate graph homomorphism

partition function is that, when reduced from the Ising partition function, it will allows
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us to implement an external magnetic field. This reduction is described in detail in

Section 5.5.

We extend the results of Barvinok and Soberón [BS17] and Patel and Regts [PR17]

to give a deterministic polynomial-time approximation scheme for the restricted mul-

tivariate graph homomorphism partition function. We have the following theorem.

Theorem 5.7. Fix Δ ∈ Z+ and 0 < δ < δΔ. There is a deterministic polynomial-time ap-

proximation scheme for the restricted multivariate graph homomorphism partition func-

tion HomM(G, S,k ;A) for all graphs G = (V ,E) of maximum degree at most Δ and all

A = {(aeij)m×m}e∈E in the closed polydisc DG,m (δ ).

Proof. Define P(G; z) := HomM(G, S,k ;A(z)), with A(z) = {(1 + z(aeij − 1))m×m}e∈E
and note that A = A(1). By Lemma 5.8, we have that P(G; z) does not vanish when-

ever A(z) lies in the closed polydisc DG,m(δΔ). Since A(1) lies in the closed polydisc

DG,m(δ ), P(G; z) does not vanish for all |z | ≤ δΔ/δ . Let {ri}|E |i=1 be the roots of P(G; z).
Then, by setting C = (1 − δ/δΔ)−1 in Lemma 5.9, we have that, for any 0 < ϵ < 1,

there is a deterministic (|V | /ϵ)O(1)-time algorithm for computing P(G, 0) and the in-

verse power sums
{∑|E |

i=1 r
−j
i

}m
j=1

form = (1 − δ/δΔ)−1 log(|V | /ϵ). Then, it follows from
Lemma 5.11 that there is a deterministic (|V | /ϵ)O(1)-time algorithm for computing a

multiplicative ϵ-approximation to P(G, z) for all |z | < δΔ/δ . Since δ < δΔ, we can take

z = 1. Hence, we have a deterministic polynomial-time algorithm for computing a

multiplicative ϵ-approximation to HomM(G, S,k ;A). This completes the proof. �

Our proof of Theorem 5.7 requires a result of Barvinok [Bar16a], which states that

HomM(G, S,k ;A) does not vanish on graphs of maximum degree at most Δ when A
lies in the interior of the closed polydisc DG,m (δΔ).

Lemma 5.8 (Barvinok [Bar16a]). Fix Δ ∈ Z+. For any graph G = (V ,E) of de-

gree at most Δ and any A = {(aeij)m×m}e∈E in the closed polydisc DG,m (δΔ), the re-
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stricted multivariate graph homomorphism partition function does not vanish, i.e.,

HomM(G, S,k ;A) � 0 for all S ⊆ V and all k ∈ [m].

Our proof also requires the following lemma, which states that we can ef-

ficiently compute the constant term and inverse power sums of the roots of

HomM(G, S,k ;A(z)). We prove Lemma 5.9 in Section 5.3.

Lemma 5.9. Fix Δ ∈ Z+, 0 < ϵ < 1, andC > 0. LetG = (V ,E) be a graph of maximum

degree at most Δ with the m ×m symmetric matrices A(z) = {(1 + z(aeij − 1))m×m}e∈E
assigned to its edges. Further let {ri}|E |i=1 be the roots of the polynomial

P(G, S,k ; z) := HomM(G, S,k ;A(z)). Then there is a deterministic (|V | /ϵ)O(1)-time

algorithm for computing P(G, 0) and the inverse power sums
{∑|E |

i=1 r
−j
i

}m
j=1

for

m = C log(|V | /ϵ).

For convenience, let us define the closed disc D of radius δ centred at the origin.

Definition 5.10 (D(δ)). For δ > 0, we define D(δ ) to be the closed disc consisting of

all complex numbers z, such that |z | ≤ δ .

Finally, we require the following lemma, which arises from the error analysis of

Barvinok’s interpolation method [Bar15, Bar16b] (see Barvinok [Bar16a]). The lemma

states that, in order to get a multiplicative approximation to a polynomial inside its

zero-free disc, it is sufficient to compute the constant term and inverse power sums of

its roots.

Lemma 5.11 (Barvinok [Bar15, Bar16b, Bar16a]). Fix 0 < ϵ < 1. Let {ri}ni=1 be the
roots of the polynomial p(z) := ∑n

k=0 akz
k . Suppose that, for some δ > 0, the roots of p

lie in the exterior of the closed disc D(δ ). Suppose further that we can compute a0 and

the inverse power sums
{∑n

i=1 r
−j
i

}m
j=1

in time τ (m). Then, for any t in the interior of

the closed disc D(δ ), we can compute a multiplicative ϵ-approximation to p(t) in time

O
[
τ

(
log(n/ϵ)
1−|t |/δ

)]
.

We prove Lemma 5.11 in Section 5.4.
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5.3 Proof of Lemma 5.9

We shall now prove Lemma 5.9. Our proof follows from a generalisation of a result

due to Patel and Regts [PR17] (Lemma 5.25) and an additional lemma (Lemma 5.26),

which we prove in the remainder of the section.

Lemma 5.9. Fix Δ ∈ Z+, 0 < ϵ < 1, andC > 0. LetG = (V ,E) be a graph of maximum

degree at most Δ with the m ×m symmetric matrices A(z) = {(1 + z(aeij − 1))m×m}e∈E
assigned to its edges. Further let {ri}|E |i=1 be the roots of the polynomial

P(G, S,k ; z) := HomM(G, S,k ;A(z)). Then there is a deterministic (|V | /ϵ)O(1)-time

algorithm for computing P(G, 0) and the inverse power sums
{∑|E |

i=1 r
−j
i

}m
j=1

for

m = C log(|V | /ϵ).

Proof. The proof follows from combining Lemma 5.25 and Lemma 5.26. �

We shall begin with the following definitions.

Definition 5.12 (Gn). For n ∈ Z+, define Gn to be the collection of all edge-coloured

graphs on at most n vertices.

Definition 5.13 (G[U ]). For a graphG and a subset of verticesU ⊆ V (G), defineG[U ]
to be the subgraph induced byU .

Definition 5.14 (IndC(G,H)). For two edge-coloured graphs G and H , define

IndC(G,H ) to be the number of induced subgraphs of G that are edge-colour isomor-

phic to H .

Definition 5.15 (Multiplicative Graph Polynomial). A graph polynomial P(G; z)
is said to be multiplicative if P(�; z) = 1 and P(G ∪ H ; z) = P(G; z)P(H ; z) for any two

graphs G and H .

Patel and Regts [PR17] proved that, for any edge-coloured bounded induced graph

counting polynomial, there is an efficient algorithm for computing the constant term

and inverse power sums of its roots.
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Definition 5.16 (Edge-Coloured Bounded Induced Graph Counting Poly-

nomial [PR17]). Let P(G; z) be a multiplicative graph polynomial defined by

P(G; z) := ∑d(G)
n=0 αG,nz

n with P(G; 0) = 1. We say that P(G; z) is an edge-coloured

bounded induced graph counting polynomial if there exists constants μ,ν ∈ Z+, such
that (1) the coefficients αG,n satisfy αG,n =

∑
H∈Gμn

βH ,nInd(H ,G), for certain βH ,n and

(2) the coefficients βH ,n can be computed in time O
(
ν |V (H )|

)
.

Lemma 5.17 (Patel and Regts [PR17]). Fix Δ ∈ Z+, 0 < ϵ < 1, and C > 0. Let

G = (V ,E) be an edge-coloured graph of maximum degree at most Δ. Further let P(G; z)
be an edge-coloured bounded induced graph counting polynomial and let {ri}deg(P)i=1 be

its roots. Then there is a deterministic (|V | /ϵ)O(1)-time algorithm for computing P(G, 0)
and the inverse power sums

{∑deg(P)
i=1 r−ji

}m
j=1

form = C log(|V | /ϵ).

We shall now generalise the result of Patel and Regts [PR17] to the restricted case,

that is, where the graph polynomial is restricted to map a subset of vertices to a fixed

index. We begin by extending the previous definitions.

Definition 5.18 (Restricted Graph). A restricted graph is a pair (G, S), where
G = (V ,E) is a graph and S ⊆ V is a subset of V .

Definition 5.19 (Rn). For n ∈ Z+, define Rn to be the collection of all edge-coloured

restricted graphs on at most n vertices.

Definition 5.20 (Induced Restricted Subgraph). For a restricted graph (G, S) and
a subset of vertices U ⊆ V (G), the restricted subgraph induced by U is given by

(G[U ], S ∩U ).

Definition 5.21 (Isomorphic Restricted Graphs). Two restricted graphs (G, S) and
(H ,T ) are said to be isomorphic if and only if there is an isomorphism φ from G to H

and T is the image of S under φ.
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Definition 5.22 (IndC [(G, S), (H,T )]). For two edge-coloured restricted graphs (G, S)
and (H ,T ), define IndC [(G, S), (H ,T )] to be the number of induced restricted sub-

graphs of (G, S) that are edge-colour isomorphic to (H ,T ).

Definition 5.23 (Multiplicative Restricted Graph Polynomial). A restricted

graph polynomial P(G, S,k ; z) is said to be multiplicative if P(�,�,k ; z) = 1 and

P(G ∪ H , S ∪T ,k ; z) = P(G, S,k ; z)P(H ,T ,k ; z) for any two restricted graphs (G, S)
and (H ,T ) and integer k ∈ Z+.

Definition 5.24 (Edge-Coloured Bounded Induced Restricted Graph Count-

ing Polynomial). Let P(G, S,k ; z) be a multiplicative restricted graph polyno-

mial defined by P(G, S,k ; z) := ∑d(G)
n=0 αG,S,k,nz

n with P(G, S,k ; 0) = 1. We say that

P(G, S,k ; z) is an edge-coloured bounded induced restricted graph counting polyno-

mial if there exists constants μ,ν ∈ Z+, such that (1) the coefficients αG,S,k,n satisfy

αG,S,k,n =
∑

(H ,T )∈Rμn
βH ,T ,k,nIndC [(G, S), (H ,T )], for certain βH ,T ,k,n and (2) the coeffi-

cients βH ,T ,k,n can be computed in time O
(
ν |V (H )|

)
.

The restricted version of Lemma 5.17 is then obtained by following the proof of

Patel and Regts [PR17] with the definitions extended in the natural way.

Lemma 5.25. Fix Δ ∈ Z+, 0 < ϵ < 1, and C > 0. Let G = (V ,E) be an edge-coloured

graph of maximum degree at most Δ. Further let P(G, S,k ; z) be an edge-coloured

bounded induced restricted graph counting polynomial with roots {ri}deg(P)i=1 . Then there

is a deterministic (|V | /ϵ)O(1)-time algorithm for computing P(G, S,k, 0) and the inverse
power sums

{∑deg(P)
i=1 r−ji

}m
j=1

form = C log(|V | /ϵ).

Lemma 5.26. Let G = (V ,E) be a graph with the m × m symmetric matrices

A(z) = {(1 + z(aeij − 1))m×m}e∈E assigned to its edges and let each edge e ∈ E be assigned

a distinct colour. Further let S ⊆ V be a subset ofV and letk ∈ [m] be an integer. Then, up
to an efficiently computable factor, the restricted multivariate graph homomorphism par-

tition functionHomM(G, S,k ;A(z)) is an edge-coloured bounded induced graph counting
polynomial.
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Proof. Define P(G, S,k ; z) by

P(G, S,k ; z) :=m−|V \S |HomM(G, S,k ;A(z)).

Then,

P(G, S,k ; z) =m−|V \S |
∑

ϕ:V→[m]
ϕ(s)=k,∀s∈S

∏
{u,v}∈E

[
1 + z

(
a{u,v}
ϕ(u)ϕ(v) − 1

)]

=m−|V \S |
|E |∑
n=0

zn
∑
F⊆E
|F |=n

⎡⎢⎢⎢⎢⎢⎢⎣
∑

ϕ:V→[m]
ϕ(s)=k,∀s∈S

∏
{u,v}∈F

(
a{u,v}
ϕ(u)ϕ(v) − 1

)⎤⎥⎥⎥⎥⎥⎥⎦
=

|E |∑
n=0

zn
∑
F⊆E
|F |=n

⎡⎢⎢⎢⎢⎢⎢⎣m
−|V (G[F ])\S |

∑
ϕ:V (G[F ])→[m]

ϕ(s)=k,∀s∈(S∩V (G[F ]))

∏
{u,v}∈F

(
a{u,v}
ϕ(u)ϕ(v) − 1

)⎤⎥⎥⎥⎥⎥⎥⎦ ,
where G[F ] is the subgraph of G induced by F . Since the number of vertices in G[F ]
is at most 2 |F |, we can write

P(G, S,k ; z) =
|E |∑
n=0

zn
∑

(H ,T )∈R2n
|E(H )|=n

⎡⎢⎢⎢⎢⎢⎢⎣m
−|V (H )\T |

∑
ϕ:V (H )→[m]
ϕ(t)=k,∀t∈T

∏
{u,v}∈E(H )

(
a{u,v}
ϕ(u)ϕ(v) − 1

)⎤⎥⎥⎥⎥⎥⎥⎦
× IndC [(G, S), (H ,T )] .

Therefore, we have

P(G, S,k ; z) =
|E |∑
n=0

αG,S,k,nz
n,

with

αG,S,k,n =
∑

(H ,T )∈R2n
|E(H )|=n

βH ,T ,k,nIndC [(G, S), (H ,T )]

and

βH ,T ,k,n =m
−|V (H )\T |

∑
ϕ:V (H )→[m]
ϕ(t)=k,∀t∈T

∏
{u,v}∈E(H )

(
a{u,v}
ϕ(u)ϕ(v) − 1

)
.
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It is clear that P(G, S,k ; z) is a multiplicative restricted graph polynomial with

P(G, S,k ; 0) = 1. Furthermore, for any restricted graph (H ,T ) ∈ R2n, the coefficients

βH ,T ,k,n can be computed in timeO
(
m |V (H )\S |

)
. Hence, P(G, S,k ; z) is an edge-coloured

bounded induced restricted graph counting polynomial with constants μ = 2 and

ν =m. This completes the proof. �

5.4 Proof of Lemma 5.11

We shall now prove Lemma 5.11. The lemma is due to Barvinok [Bar15, Bar16b,

Bar16a], however, our proof closely follows that of Patel and Regts [PR17].

Lemma 5.11 (Barvinok [Bar15, Bar16b, Bar16a]). Fix 0 < ϵ < 1. Let {ri}ni=1 be the
roots of the polynomial p(z) := ∑n

k=0 akz
k . Suppose that, for some δ > 0, the roots of p

lie in the exterior of the closed disc D(δ ). Suppose further that we can compute a0 and

the inverse power sums
{∑n

i=1 r
−j
i

}m
j=1

in time τ (m). Then, for any t in the interior of

the closed disc D(δ ), we can compute a multiplicative ϵ-approximation to p(t) in time

O
[
τ

(
log(n/ϵ)
1−|t |/δ

)]
.

Proof. Define the function f (z) on the closed disc D(δ ) by

f (z) := log(p(z)),

where the branch of the logarithm is chosen by taking the principal value at p(0). By
Taylor’s Theorem about the point t = 0, for each t in the interior of the closed disc

D(δ ),

f (t) =
∞∑
j=0

t j

j!
f (j)(0).

Define the Taylor expansion truncated at orderm by

Tm(f )(t) := f (0) +
m∑
j=1

t j

j!
f (j)(0).
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Now, let us write p(z) in terms of its roots. By the Factor Theorem,

p(z) = an

n∏
i=1

(z − ri).

Then,

f (z) = log(an) +
n∑
i=1

log(z − ri).

Therefore,

f (j)(0) = −(j − 1)!
n∑
i=1

r−ji .

Let sj be the jth inverse power sum given by

sj :=
n∑
i=1

r−ji .

Then, by noting that f (0) = log(a0),

Tm(f )(t) = log(a0) −
m∑
j=1

sjt
j

j
.

We shall now show that, for any 0 < ϵ < 1, the Taylor expansion truncated at order

m = O(log(n/ϵ)) gives an additive ϵ-approximation to f (t).

| f (t) −Tm(f )(t)| ≤
����� ∞∑
j=m+1

sjt
j

j

�����
≤ 1

m + 1

∞∑
j=m+1

��sjt j �� .
Since the roots {ri}ni=1 lie in the exterior of the closed disc D(δ ), we have

��sj �� < n/δ j .
Therefore,

| f (t) −Tm(f )(t)| ≤ n

m + 1

∞∑
j=m+1

( |t |
δ

) j
.

Since |t | < δ , by the geometric series formula,

| f (t) −Tm(f )(t)| ≤ n(|t | /δ )m+1
(m + 1)(1 − |t | /δ ) .



CHAPTER 5. APPROXIMATION ALGORITHMS FOR COMPLEX-VALUED ISING

MODELS 63

Takingm = (1 − |t | /δ )−1 log(n/ϵ), it follows that

| f (t) −Tm(f )(t)| ≤ ϵ .

We shall now show that the truncated Taylor expansion is a multiplicative

ϵ-approximation to p(t). For the norm, we have���eTm(f )(t)−f (t)
��� ≤ e |Tm(f )(t)−f (t)|

≤ eϵ ,

and ���e f (t)−Tm(f )(t)
��� ≤ eϵ .

Now, for the argument,���Arg (
eTm(f )(t)−f (t)

)��� = ���Im [
log

(
e f (t)−Tm(f )(t)

)] ���
≤

���log (
e f (t)−Tm(f )(t)

)���
≤ ϵ .

This completes the proof. �

5.5 Ising Model Partition Functions

We shall extend the result of Theorem 5.7 to the Ising model partition function. This is

achieved by an approximation-preserving polynomial-time reduction from the Ising

model partition function to the restrictedmultivariate graph homomorphism partition

function.

Proposition 5.27. There is an approximation-preserving polynomial-time reduction

from the Ising model partition function to the restricted multivariate graph homomor-

phism partition function.
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Proof. LetG = (V ,E) be a graph with the 2 × 2 symmetric matrices A = {(aeij)2×2}e∈E
assigned to its edges. Let us construct a new graphG′ fromG by the following vertex

gadget. For every vertexv ∈ V , add a new vertex sv and an edge ev = {v, sv}with a 2×2
symmetric matrix (bevij )2×2 assigned to it. Let S = {sv}v∈V , and let B = {(bevij )2×2}v∈V .
Then,

HomM(G′, S, 2;A ∪ B) =
∑

ϕ:V (G ′)→[2]
ϕ(s)=2,∀s∈S

∏
{u,v}∈E(G)

a{u,v}
ϕ(u)ϕ(v)

∏
v∈V (G)

bev
ϕ(v)ϕ(sv )

=
∑

ϕ:V (G)→[2]

∏
{u,v}∈E(G)

a{u,v}
ϕ(u)ϕ(v)

∏
v∈V (G)

bev
ϕ(v)(2).

Taking aeij = exp [ωe(2i − 3)(2j − 3)] and bevij = exp [υv(2i − 3)(2j − 3)],

HomM(G′, S, 2;A ∪ B) =
∑

ϕ:V (G)→{−1,+1}
exp


��
∑

{u,v}∈E(G)
ω{u,v}ϕ(u)ϕ(v) +

∑
v∈V (G)

υvϕ(v)���
=

∑
σ∈{−1,+1}V

exp

��

∑
{u,v}∈E(G)

ω{u,v}σuσv +
∑

v∈V (G)
υvσv

���
= ZIsing(G;Ω, ϒ),

where Ω = {ωe}e∈E and ϒ = {υv}v∈V . Hence, we have an approximation-preserving

polynomial-time reduction from the Ising model partition function to the restricted

multivariate graph homomorphism partition function. This completes the proof. �

Let us define the following closed polyregion, which arises naturally from applying

Proposition 5.27 to Theorem 5.7.

Definition 5.28 (RG(δ)). For a graphG = (V ,E) and δ > 0, we define RG(δ ) to be the
closed polyregion consisting of all sets of weights Ω = {ωe}e∈E and ϒ = {υv}v∈V , such
that |1 − e±ωe | ≤ δ for all e ∈ E and |1 − e±υv | ≤ δ for all v ∈ V .

We have the following corollary of Theorem 5.7 and Proposition 5.27.

Corollary 5.29. Fix Δ ∈ Z+ and 0 < δ < δΔ+1. There is a deterministic polynomial-time

approximation scheme for the Ising model partition function ZIsing(G;Ω, ϒ) for all graphs
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G = (V ,E) of maximum degree at most Δ and all Ω = {ωe}e∈E and all ϒ = {υv}v∈V in

the closed polyregion RG (δ ).

Proof. The proof follows directly fromTheorem 5.7 and Proposition 5.27, while noting

that the reduction from the Ising model partition to the restricted multivariate graph

homomorphism partition function increases the maximum vertex degree by one. �

Remark 5.30. It is possible to marginally increase the size of the polyregion by ap-

plying the k-thickening technique of Jaeger, Vertigan, and Welsh [JVW90].

It is worth mentioning that the bounds of Corollary 5.29 are not sharp in gen-

eral. To see this, let us compare the results in the anti-ferromagnetic regime with

no external field, to those of Sinclair, Srivastava, and Thurley [SST14]. In this case,

Corollary 5.29 tells us that there is a deterministic polynomial-time approximation

scheme for the Ising model partition function on graphs of maximum degree at most

Δwhenωe > − log(δΔ + 1) for all e ∈ E (noting that in the case of no external field the

reduction preserves maximum degree). The results of Sinclair, Srivastava, and Thur-

ley [SST14] give a deterministic polynomial-time approximation scheme when Δ ≥ 3

and ωe > −1
2 log

( Δ
Δ−2

)
for all e ∈ E. Hence, the bound of Corollary 5.29 is not sharp.

It is an open problem to prove a sharp bound in the complex case.

We also have the following corollary concerning the location of the complex zeros

of the Ising model partition function on bounded degree graphs.

Corollary 5.31. Fix Δ ∈ Z+. For any graph G = (V ,E) of degree at most Δ and any

Ω = {ωe}e∈E and ϒ = {υv}v∈V in the closed polyregion RG (δΔ+1), the Ising model parti-

tion function does not vanish, i.e., ZIsing(G;Ω, ϒ) � 0.

Proof. The proof follows directly from Lemma 5.8 and Proposition 5.27. �

This may be of independent interest in statistical physics as the possible points

of physical phase transitions are exactly the real limit points of such complex ze-

ros [S+05].
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5.6 Quantum Simulation

Complex-valued Ising model partition functions arise naturally in the output proba-

bility amplitudes of quantum circuits [DDVM11, ICBB14]. In particular, for the class

of commuting quantum circuits, known as Instantaneous Quantum Polynomial-time

(IQP) circuits [SB09, She10, FM17]. In this section we shall show how the results of

Corollary 5.29 allow us to approximate output probability amplitudes of IQP circuits

and, more generally, universal quantum circuits. First introduced by Shepherd and

Bremner [SB09], IQP circuits comprise only gates that are diagonal in the Pauli-X

basis. An IQP circuit is described by an X-program.

Definition 5.32 (X-Program). An X-program is a pair (P ,θ ), where P = (pij)m×n is

a binary matrix and θ ∈ [−π ,π ] is a real angle. The matrix P is used to construct

a Hamiltonian of m commuting terms acting on n qubits, where each term in the

Hamiltonian is a product of Pauli-X operators,

H(P ,θ ) := −θ
m∑
i=1

n⊗
j=1

X
pi j
j .

Thus, the columns of P correspond to qubits and the rows of P correspond to interac-

tions in the Hamiltonian.

An X-program induces a probability distribution P(P ,θ ) known as an IQP distribu-

tion.

Definition 5.33 (P(P,θ)). For an X-program (P ,θ ) with P = (pij)m×n, we define P(P ,θ )

to be the probability distribution over binary strings x ∈ {0, 1}n, given by

Pr[x] :=
��〈x | exp (−iH(P ,θ )

) |0n〉��2 .
We shall consider X-programs that are induced by a weighted graph.

Definition 5.34 (Graph-Induced X-Program). For a graph G = (V ,E) with the

weights {ωe ∈ [−π ,π ]}e∈E assigned to its edges and the weights {υv ∈ [−π ,π ]}v∈V
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assigned to its vertices, we define the X-program induced by G to be an X-program

XG such that

HXG
= −

∑
{u,v}∈E

ω{u,v}XuXv −
∑
v∈V

υvXv .

It will be convenient for us to defineψG as a specific probability amplitude induced

by a weighted graph G.

Definition 5.35 (ψG). For a graphG = (V ,E) with the weights {ωe ∈ [−π ,π ]}e∈E as-
signed to its edges and theweights {υv ∈ [−π ,π ]}v∈V assigned to its vertices, we define

ψG to be the probability amplitude given by

ψG :=
〈
0|V |

��� exp (−iHXG

) ���0|V |
〉
.

We note that any X-program can be efficiently represented by a graph-induced

X-program [SB09]. Moreover, X-programs are known to become universal for quan-

tum computation under postselection [BJS10]. Therefore, any quantum amplitude can

be expressed in the form of ψG . The output probability amplitudes of such a graph-

induced X-program are proportional to Ising model partition functions with imagi-

nary weights.

Proposition 5.36. Let G = (V ,E) be a graph with the weights Ω = {ωe ∈ [−π ,π ]}e∈E
assigned to its edges and the weights ϒ = {υv ∈ [−π ,π ]}v∈V assigned to its vertices, then,

ψG =
1

2|V |ZIsing(G; iΩ, iϒ).

Proof. By definition,

ψG =
〈
0|V |

��� exp 
��i
∑

{u,v}∈E
ω{u,v}XuXv + i

∑
v∈V

υvXv
���
���0|V |

〉
=

〈
+|V |

��� exp 
��i
∑

{u,v}∈E
ω{u,v}ZuZv + i

∑
v∈V

υvZv
���
���+|V |

〉
=

1

2|V |
∑

x ,y∈{0,1} |V |
〈y | exp 
��i

∑
{u,v}∈E

ω{u,v}ZuZv + i
∑
v∈V

υvZv
��� |x〉
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=
1

2|V |
∑

x∈{0,1} |V |
exp


��i
∑

{u,v}∈E
ω{u,v}(−1)xu⊕xv + i

∑
v∈V

υv(−1)xv ���
=

1

2|V |
∑

z∈{−1,+1} |V |
exp


��i
∑

{u,v}∈E
ω{u,v}zuzv + i

∑
v∈V

υvzv
���

=
1

2|V |ZIsing(G; iΩ, iϒ).

This completes the proof. �

We now apply Corollary 5.29 to Proposition 5.36 to achieve a deterministic

polynomial-time approximation scheme for computing ψG for all graphs of bounded

maximum degree with weights absolutely bounded sufficiently close to zero.

Corollary 5.37. Fix Δ ∈ Z+ and 0 < δ < δΔ+1. There is a deterministic polynomial-

time approximation scheme for the probability amplitude ψG for all graphs G = (V ,E)
of maximum degree at most Δ with the edge weights {ωe ∈ [−π ,π ]}e∈E satisfying

|ωe | ≤ 2 arcsin(δ/2) for all e ∈ E and the vertex weights {υv ∈ [−π ,π ]}v∈V satisfying

|υv | ≤ 2 arcsin(δ/2) for all v ∈ V .

Proof. It follows fromCorollary 5.29 and Proposition 5.36 that we have a deterministic

polynomial-time approximation scheme for computingψG for all graphs of maximum

degree at most Δ with Ω = {iωe}e∈E and ϒ = {iυv}v∈V in the closed polyregion RG (δ ).
For weights in the range [−π ,π ], this is achieved when |ωe | ≤ 2 arcsin(δ/2) for all
e ∈ E and |υv | ≤ 2 arcsin(δ/2) for all v ∈ V . This completes the proof. �

It is known that approximatingψG up to a multiplicative factor for bounded degree

graphs with arbitrary weights in [−π ,π ] is #P-hard [FM17], and so it seems unlikely

that Corollary 5.37 can be extended to hold in this case. We note that Corollary 5.37

holds for classes of graphs with treewidth growing as the square root of the number of

vertices; for example, square lattices. For classes of graphs with logarithmic treewidth

a deterministic polynomial-time algorithm is known [MS08].
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5.7 Conclusion & Outlook

We have established a deterministic polynomial-time approximation scheme for the

Ising model partition function with complex parameters on bounded degree graphs

when the interactions and external fields are absolutely bounded by a constant de-

pending on the maximum degree of the graph. Furthermore, we have proven that

the partition function does not vanish for this class of Ising models. Finally, we have

shown how our algorithm can be extended to approximate certain output probability

amplitudes of quantum circuits.

This work gives rise to many interesting open problems, the most obvious of

which is to sharpen the bounds of Corollary 5.29. One approach would be to improve

Lemma 5.8, i.e., prove that the restricted multivariate graph homomorphism partition

function does not vanish on a polydisc of a greater radius. It may also be possible to

prove sharper bounds for specific graphs of interest. An alternative approach would

be to use decay of correlation based arguments [Wei06, Sly10, SST14]. It is an impor-

tant open problem to understand the relationship between the location of complex

zeros, decay of correlations, and the computational complexity of a function.

The work of Liu, Sinclair, and Srivastava [LSS18] showed that in the case of no

external field, the Ising model partition function has no complex zeros in a complex

neighbourhood of the regime where the decay of correlation property holds. This

implies a deterministic polynomial-time approximation scheme for the Ising model

partition function in the decay of correlation regime based on the location of complex

zeros.
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Part II

Other Results
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Chapter 6

Efficient Preparation of Fock States

from Single-Photon Sources

In this chapter, we establish an efficient scheme for preparing Fock states with a high

number of photons from a resource of single photons. Our scheme achieves this by

iteratively and non-deterministically fusing Fock states together via a beamsplitter

with a number-resolved photo-detector on one of the output modes. We show that by

recycling the output Fock states that arise from failed attempts, we are able to produce

high-photon Fock states in time polynomial in the number of photons. Our scheme

requires single-photon sources, beamsplitters, number-resolved photo-detectors, and

an optical quantum memory.

This chapter is based on joint work with Keith R. Motes, Jonathan P. Olson,

Nicholas M. Studer, E. Annelise Bergeron, Alexei Gilchrist, Jonathan P. Dowling, Do-

minic W. Berry, and Peter P. Rohde, and has been published previously as “Efficient

recycling strategies for preparing large Fock states from single-photon sources — Ap-

plications to quantum metrology” [MMO+16].
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6.1 Introduction

Fock states are a fundamental resource in quantum information [KL10] with appli-

cations in communication, cryptography, metrology [Yur86, Yue86, Dow98, GC01,

KD07], information processing [BM95, KLM01, PJF01], and quantum walks [SRK15].

While there has been several advances in producing Fock states with a low number of

photons, producing Fock states with a high number of photons remains challenging.

It is of course possible to produce Fock states with an arbitrary number of photons

using non-deterministic linear optics, however, in this case, the success probability

decays exponentially with the number of photons.

In this chapter, we establish an efficient scheme for preparing Fock states with a

high number of photons from a resource of single photons. The idea of our scheme

is to prepare high-photon Fock states by iteratively and non-deterministically fusing

lower-photon Fock states together via a beamsplitter with a number-resolved photo-

detector on one of the output modes. Crucially, we show that by recycling the output

Fock states that arise from failed attempts, we are able to produce high-photon Fock

states in time polynomial in the number of photons. Our scheme requires many of

the same resources as universal linear-optical quantum computing [KLM01], includ-

ing single-photon sources, beamsplitters, number-resolved photo-detectors, and an

optical quantum memory.

Fock states with a high number of photons are an essential resource for preparing

NOON states [KD07], which are known to be the optimal state for quantum enhanced

metrology [Dow08], i.e., they achieve the Heisenberg limit of phase sensitivity. There-

fore, our scheme is an important milestone for the realisation of optimal quantum

enhanced metrology.

This chapter is structured as follows. In Section 6.2, we review Fock state prepara-

tion by spontaneous parametric down-conversion with postselection. In Section 6.3,

we present a naïve approach to preparing Fock states with a high number of photons

by a single-shot linear optics network with postselection — an approach that requires
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exponential time and resource states. In Section 6.4, we present an improved boot-

strapped approach, where high-photon Fock states are prepared by iteratively fusing

lower-photon Fock states together. We then introduce state recycling, which allows

us to efficiently prepare high-photon Fock states. In Section 6.5 we discuss several

different approaches to fusing Fock states. In Section 6.6, we discuss a scheme for

reducing the number of photons in a Fock state. We present our simulation results in

Section 6.7. Finally, we conclude in Section 6.8

6.2 Spontaneous Parametric Down-Conversion

with Postselection

The most common approach to preparing high-photon Fock states is to employ

spontaneous parametric down-conversion with postselection. Spontaneous para-

metric down-conversion (SPDC) is a non-linear optical process that converts pho-

tons of higher energy from a coherent pump into pairs of photons of lower energy

across two modes, known as the signal and idler mode. The interaction Hamilto-

nian of an SPDC process is given by HSPDC = ξ âpumpâ
†
signal

â†
idler
+ ξ ∗â†pumpâsignalâidler,

where ξ denotes the interaction strength. This process gives an output state of the

form |ψ 〉SPDC =
√
1 − |λ |2 ∑∞

n=0 λ
n |n〉signal |n〉idler. Notice that there is perfect photon-

number correlation between the signal and idler modes, and so, by postselecting on

detecting n photons in one mode, we obtain a Fock state of exactly n photons in the

other (Fig. 6.1). This approach has been experimentally demonstrated for Fock states

of up to three photons [CWSS13].

We shall now investigate the efficiency of preparing high-photon Fock states using

this approach. Suppose that our goal is to produce a Fock state with at least d photons,

then, the probability of success using this approach is given by

Psuccess(d) =
(
1 − |λ |2) ∞∑

n=d

|λ |2n = |λ |2d ,
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Figure 6.1: Preparation of an d-photon Fock state via a spontaneous parametric
down-conversion process with postselection. A non-linear crystal is pumped with
a coherent state |α〉 giving a two-mode superposition with perfect photon-number
correlations. Detecting d photons in the second mode guarantees an d-photon Fock
state in the first.

which clearly decays exponentially with d and, therefore, typically takes an expo-

nential number of trials to succeed. Furthermore, the experimental value of |λ |2 is

typically much less than one [FIJ+15], making this approach impractical for preparing

Fock states with a high number of photons.

6.3 Single-Shot Linear Optics with Postselection

An alternative approach to preparing high-photon Fock states is via linear optics

with postselection and a resource of single photons (Fig. 6.2). More precisely, con-

sider an n-mode interferometer with exactly one photon in each input mode, i.e., a

state of the form |ψin〉 =
(∏n

i=1 â
†
i

)
|0〉⊗n, where â†i is the photonic creation operator

for the ith mode. Now, apply a linear optical network described by the unitary map

Û â†i Û
† �→ ∑n

j=1Ui,jâ
†
j on the photonic creation operators to obtain the output state

|ψout〉 =
(∏n

i=1

∑n
j=1Ui,jâ

†
j

)
|0〉⊗n. Finally, by postselecting on n photons in the first

mode, i.e., observing no photons in the other modes, we obtain the projected state��ψprojected

〉
=
√
n!

(∏n
i=1Ui,1â

†
1

)
|n〉 |0〉⊗(n−1). This succeeds with probability

Psuccess(n) = n!
����� n∏
i=1

Ui,1

�����2 ,
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which is maximised for a balanced interferometer, i.e., when
��Ui,1

�� = 1/√n for all i , and
so, Psuccess(n) ≤

√
2πn
en e

1
12n . Therefore, this approach succeeds with probability inverse

exponential in the number of photons.

Figure 6.2: Preparation of an n-photon Fock state via single-shot linear optics with
postselection. A photon is incident on eachmode of ann-mode linear optical network.
We postselect on obtaining n photons in the first mode by detecting no photons in any
of the other modes.

6.4 Bootstrapped Linear Optics with Postselection

To improve upon the exponentially small success probability of the single-shot linear

optics approach, we now consider a bootstrapped approach, where we prepare high-

photon Fock states by iteratively and non-deterministically fusing lower-photon Fock

states together via a beamsplitter with a number-resolved photo-detector on one of

the output modes. More precisely, consider a beamsplitter with m photons in the

first input mode and n photons in the second. Suppose that we detect s photons

in the first output mode, then we obtain a Fock state of m + n − s photons in the

second output mode (Fig. 6.3). The input state to the fusion operation is the state

|ψin〉 = 1√
m!n!

(â†1)m(â†2)n. Applying a beamsplitter with reflectivity η we obtain the out-

put state

|ψout〉 = 1√
m!n!

(
ηâ†1 +

√
1 − η2â†2

)m (√
1 − η2â†1 − ηâ†2

)n
|0, 0〉

=
1√
m!n!

m∑
j=0

n∑
k=0

(
m

j

) (
n

k

)
ηn+j−k

√
1 − η2

m+k−j(−1)n−k(â†1)j+k(â†2)m+n−j−k |0, 0〉 .
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Now, suppose that we detect s photons in the first mode, then the projected state is��ψprojected

〉
=

√
1

m!n!

m∑
j=0

(
m

j

) (
n

s − j

)
ηn+2j−s

√
1 − η2

m+s−2j(−1)n+j−s(â†1)s(â†2)m+n−s |0, 0〉 .

The probability of detecting s photons is then

Pfusion(s |m,n,η) =
s!(m + n − s)!

m!n!
η2(n−s)

(
1 − η2

)m+s ����� m∑
j=0

(
m

j

) (
n

s − j

) (
η2

1 − η2

) j �����2 .
This fusion operation will have been successful if the number of photons in the out-

put state is greater than the number of photons in either of the inputs, i.e., when

s < m + n −max(m,n). Therefore, the fusion operation succeeds with probability

Psuccess(m,n,η) =
m+n−maxm,n−1∑

s=0

Pfusion(s |m,n,η).

In the case that the Fock states are not recycled, we accept only the s = 0 outcome,

and so we eliminate the sum and leave only the s = 0 term. The probability of success

can be optimised over the choice of beamsplitter reflectivity η, and so, for each choice

ofm and n, we obtain the optimal beamsplitter reflectivity

ηoptimal(m,n) := argmax
η

[Psuccess(m,n,η)] ,

and the optimal success probability

Poptimal(m,n) := max
η

[Psuccess(m,n,η)] .

Figure 6.3: The Fock state fusion operation. Two Fock states |m〉 and |n〉 are incident
on a beamsplitter with reflectivity η. By detecting s photons in the first output mode
of the beamsplitter, we obtain the Fock state |m + n − s〉 at the second output mode.
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6.5 Fusion

Numerically, we observe that the fusion success probability is maximised when fusing

two Fock states of equal photon number. This suggests that the optimal strategy for

performing the fusion operation is to always fuse together states of equal size, i.e.,

m = n. This is analogous with the cluster state literature [RB01, RBB03], where Rohde

and Barrett [RB07] showed that bonding cluster states of equal size is optimal. In

this instance, the only probabilities of interest are Pfusion(s |m,m,η) and therefore the

optimised success probability is Poptimal(m,m) = 1/2 for allm, which is very favourable

for preparing high-photon Fock states. In the case that the Fock states are not recycled,

we observe that the success probability is maximised only for fusing a Fock state with

a single photon, i.e.,m = 1 or n = 1.

Clearly, preparing a high-photon Fock state by iteratively fusing lower-photon

Fock states will typically require time exponential in the number of photons. To im-

prove on this approach, we borrow the concept of recycling from the cluster state

literature [Nie04, BR05, GKE06, RB07] and the closely related parity-encoded scheme

for linear optical quantum computation [GHR07]. We consider recycling the output

state of a failed fusion operation and using as the input for future fusion attempts.

6.5.1 Generalised Fusion Protocol

To describe a generalised fusion protocol, we begin with the assumption that we can

produce single-photon Fock states on demand. Now, suppose that we have a series

of buckets (quantum memories) such that the nth bucket contains only n-photon Fock

states. Let cn(t) denote the number of n-photon Fock states in bucket n after the t th

fusion operation. By our first assumption, we set c1(0) = ∞, and set all other buckets

to be empty, i.e., ci>1(0) = 0.

We then remove two Fock states from the buckets in accordance with our fusion

strategy, and apply the fusion operation between them with beamsplitter reflectivity

η. For Fock states drawn from bucketm and n, we obtain a Fock state withm + n − s
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photons with probability Pfusion(s |m,n,η), which updates the buckets according to the

transitions

cm → cm − 1,

cm → cm − 1,

cm+n−s →
⎧⎪⎪⎨⎪⎪⎩
cm+n−s + 1 with recycling

cm+n−s + δs,0 without recycling.

Now, suppose that our goal is to prepare a resource of Fock states with photon number

at least d . Then we are interested in the quantity c≥d(t) =
∑∞

j=d cj(t). The rate at which
these state are prepared is then r (d) = limt→∞

c≥d (t)
t . We consider the t → ∞ limit to

establish the steady state flow dynamics of the states through the buckets.

6.5.2 Analytic Approximations

For certain schemes, we are able to establish analytic results that demonstrate an

exponential improvement over the single-shot linear optics approach discussed in

Section 6.3. Firstly, we consider a non-recycled scheme, where we attempt to con-

struct a Fock state with 2n photons. To achieve this, we fuse single-photon Fock states

until we obtain 2-photon Fock states, we then fuse 2-photon Fock states until we ob-

tain 4-photon Fock states, and so forth, until we obtain a 2n-photon Fock state.

The success probability for this scheme is maximised for a balanced beamsplitter.

To estimate the rate of producing 2n-photon Fock states, we will estimate the average

number of single-photons states needed to produced one 2n-photon Fock state. The

rate of preparing d-photon Fock states per fusion operation will then scale as the

inverse of this number, since there can be no more than a factor of two between the

number of single-photon states needed and the number of fusion operations.

To prove this, first consider the case where every fusion operation is success-

ful. To prepare a 2n-photon Fock state, we require 2n−1 fusion operations to fuse the

single-photon Fock states, followed by 2n−2 fusion operations to fuse the 2-photon
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Fock states, and so forth. This gives the total number of fusion operations required to

be 2n − 1, which is one less than the number of single-photon Fock states. Now, when

the success rate is decreased, the number of fusion operations can only be reduced for

a given number of single photons. Therefore, the number of fusion operations cannot

be higher than the number of single photons. Now, since the fusion operation is ap-

plied on all pairs of single photons, the number of fusion operations must be at least

half of the number of single photons.

We shall now estimate the average number of single-photon Fock states re-

quired to prepare a 2n-photon Fock state. The average number of attempts to

fuse two 2n−1-photon Fock states to prepare a 2n-photon Fock state is given by

1/Pfusion(0|2n−1, 2n−1, 2−1/2). This gives the average number of 2n−1-photon Fock

states to be 2/Pfusion(0|2n−1, 2n−1, 2−1/2), since each fusion operation requires two

states. Then, the average number of 2n−2-photon Fock states required to prepare a

2n−1-photon Fock state is given by 2/Pfusion(0|2n−2, 2n−2, 2−1/2). As a consequence, the
expected number of 2n−2-photon Fock states required to prepare a 2n-photon Fock

state is given by 4/[Pfusion(0|2n−2, 2n−2, 2−1/2) · Pfusion(0|2n−1, 2n−1, 2−1/2)]. It then fol-

lows that the average number of single photons required to prepare a 2n-photon Fock

state is given by

2n−1
n−1∏
k=1

1

Pfusion(0|2k , 2k , 2−1/2)
.

To estimate this quantity, we observe that

Pfusion(0|d,d, 2−1/2) =
(2d)!

(22d)(d!)2

∼ 1√
πd
,

where the approximation follows from Stirling’s formula. Then the average number

of single photons required to prepare a 2n-photon Fock state scales as

2n−1
n−1∏
k=1

√
π2k = π

1
2 (n−1)2

1
4 (n−1)(n+4).
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The rate of preparing 2n-photon Fock states r (2n) then scales as the inverse of this

expression, that is,

r (2n) ∼ 1

π
1
2 (n−1)2

1
4 (n−1)(n+4)

.

Therefore, we observe an exponential improvement in the preparation rate over the

single-shot linear optics approach.
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Figure 6.4: ProbabilityP of a successful fusion operation of twon-photon Fock states,
where we require that no more than �n/2� photons are lost. We observe that the
probability of success approaches ≈ 1/3 in the limit n → ∞.

To improve upon this further, we shall consider the case with limited recycling,

that is, rather than requiring that no photons are lost at each fusion operation, we

instead require that no more than �n/2� photons are lost when fusing two n-photon

Fock states. The probability of a successful fusion operation is then given by

P(n) =
�n/2�∑
s=0

Pfusion(s |n,n, 2−1/2).

We numerically observe that the probability of success approaches ≈ 1/3 in the limit

n → ∞, as shown in Fig. 6.4. Equivalently, we require that a successful fusion gives a
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photon number of at least �3n/2�. If the photon number is higher than �3n/2�, then
we can reduce the photon number with the Fock state reduction scheme described in

Section 6.6. Now, to obtain a 2n-photon Fock state we require a number of levels of

fusion operations that scales as n/log2(3/2). Taking the success probability to be 1/3,
we obtain that the average number of single-photon Fock states required to prepare a

2n-photon Fock state scales as 6n/log2(3/2). This corresponds to a preparation rate that

scales as 1/6n/log2(3/2), which is strictly polynomial in the number of photons.

6.5.3 Fusion Schemes

An analytic bound for more advanced recycling schemes is non-trivial, and so, we

instead simulate these schemes as a classical Markov process between the buckets

with probabilities given by Pfusion(s |m,n,η) and the bucket transition rules. While

we numerically observe that the balanced strategy may be optimal, we consider the

following strategies.

(1) Balanced: Fuse the two highest available Fock states of equal size.

(2) Modest: Always fuse the highest available Fock state with a single photon.

(3) Random: Two Fock states are fused uniformly at random from buckets with

available states.

(4) Frugal: The same as balanced, except that we do not attempt to fuse two equally

sized states if m = n > �d′/2�, where d′ ≥ d , and instead, we attempt to fuse

available states such that d ≤ m + n ≤ d′. The intuition behind this is that be-

cause high-photon Fock states are costly to prepare, it is wasteful to fuse two

states with total photon number in excess of the target d .

The optimisation technique for the frugal strategy differs from the other strategies

in that if the total input photon numberm + n ≥ d , thenwe optimiseη to maximise the

probability of obtaining at least d photons, i.e., we maximise
∑m+n−d

s=0 Pfusion(s |m,n,η).
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Otherwise, ifm + n < d , then we optimise η to maximise the photon number with an

increased weighting for obtaining a higher photon number, i.e., we optimise

m+n−max(m,n)∑
s=0

[m + n − s −max(m,n)] · Pfusion(s |m,n,η).

6.5.4 Hybrid Schemes

Previously, we have considered preparation schemes where a resource of single-

photon Fock states is freely available. This is appropriate when our sources produce

single photons, however, emerging technologies, such as quantum dot sources, have

the ability to directly produce Fock states with a low number of photons. Intuitively,

by starting with a resource of Fock states with higher photon number, we could fur-

ther improve preparation rates. Suppose that we have a free resource of n-photon

Fock states, then our framework easily accommodates for this by setting cn = ∞.

6.6 Fock State Reduction

In our analysis, we have defined our state preparation rate r (d) to be the rate at which
Fock states of at least d photons are prepared. For many protocols that require high-

photon Fock states, this is appropriate. However, other applications may require Fock

states with exactly d photons. For these applications, we require a protocol for reduc-

ing the photon number of a Fock state.

This can be efficiently implemented using linear optics with postselection. We

simply input the prepared Fock state into a beamsplitter with low reflectivity and

vacuum at the other input mode. Due to the low reflectivity of the beamsplitter, with

high probability no photons will be detected in the reflected mode. However, occa-

sionally a single photon will be detected and with higher order probability more than

one photon will be detected. By choosing a sufficiently small reflectivity, the higher

order probabilities can be made arbitrarily small, so that, with probability close to one

at most one photon is detected. When a single photon is detected we have reduced



CHAPTER 6. EFFICIENT PREPARATION OF FOCK STATES FROM SINGLE-PHOTON

SOURCES 83

the photon number of the input Fock state by one. We repeat this procedure until the

desired number of photons has be subtracted, giving the desired photon-number Fock

state. Note that this protocol typically requiresO(s) beamsplitter operations to reduce

the Fock state by s photons.

6.7 Results
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Figure 6.5: Rate of preparation r of Fock states with at least d photons for the recy-
cled and non-recycled bootstrapped protocols, the single-shot linear optics protocol,
and the SPDC protocol. We observe that, with the exception of the recycled boot-
strapped protocol, these protocols exhibit an exponential decay in the preparation
rate with d . It is evident that the recycled bootstrapped protocol gives an exponential
improvement over the non-recycled or single-shot protocols. The exponential decays
of SPDC protocol depends on the mean photon number n̄ of the source, which is cho-
sen such that the SPDC and recycled bootstrapped protocol have approximately the
same 20-photon preparation rate.

In Fig. 6.5, we plot the rate r (d) of preparing Fock states with at least d photons

for the SPDC protocol (Section 6.2), the single-shot linear optics protocol (Section 6.3),
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and the recycled and non-recycled bootstrapped protocols (Section 6.4). In both boot-

strapped protocols we employ the balanced strategy and assume an infinite resource

of single photons. The cost of performing these bootstrapped protocols is measured

by the number of fusion (beamsplitter) operations required.

In the case of the single-shot linear optics protocol, the rate of preparing states

of at least d photons in terms of the number of interferometer operations is given by

d!/dd . To convert this into a cost in terms of the number of beamsplitter operations,

we observe that a d-mode interferometer can be most easily constructed from d beam-

splitters in a linear array. Therefore, the rate of preparing Fock states with at least d

photons in terms of the number of beamsplitter operations is given by d!/dd+1.
In the case of the SPDC protocol, there is no natural measure of the resource re-

quirements in terms of beamsplitter operations. Instead, we shall measure the rate

of preparing Fock states by the number of repetitions of the SPDC source, which is

given by the pump repetition rate. Note that this is a different measure of the re-

source requirements than that used for other protocols. In Fig. 6.5, we have chosen

the mean photon number n̄ of the SPDC source to be such that the SPDC and recycled

bootstrapped protocol have approximately the same 20-photon preparation rate. This

occurs when n̄ ≈ 1.7, which is far beyond what is typically achieved in present-day

experiments.

It is clear from Fig. 6.5 that in all cases except the recycled bootstrapped scheme,

we have an exponential decay in the preparation rate with d . Furthermore, the re-

cycled bootstrapped scheme exhibits an exponential improvement in the preparation

rate of these schemes. For example, the recycled bootstrapped protocol improves the

20-photon preparation rate by a factor of ≈ 104 over the non-recycled bootstrapped

approach.

In Fig. 6.6, we present the preparation rate for the fusion strategies introduced in

Section 6.5. It is clear that the preparation rate exhibits a polynomial decay with the

number of photons d for the frugal and balanced strategies, and an exponential decay

for the random and modest strategies. This provides an exponential improvement in
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Figure 6.6: Comparison of the rate r of preparing Fock states with at least d photons
for the frugal, balanced, random, and modest recycled fusion strategies. We observe
that the frugal and balanced strategies exhibit a polynomial decay of preparation rate
with d , whereas the random and modest strategies exhibit an exponential decay of the
preparation rate with d .

the rate of state preparation for the recycled frugal and balanced strategies. The frugal

strategy scales as ∼ 1/d2.8, while the balanced strategy scales as ∼ 1/d3.7.
In Fig. 6.7, we present the performance of hybrid schemes employing the frugal

fusion strategy beginning with resource states of different photon number. We only

include the results of the frugal strategy, since this hybrid scheme was observed to

exhibit the most improved preparation rates.

6.8 Conclusion & Outlook

We have established a scheme for non-deterministically preparing Fock states with a

high number of photons from a resource of single-photon Fock states by using lin-

ear optics with postselection to iteratively fuse low photon states into higher ones.
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Figure 6.7: Rate of preparation r of Fock states with at least d photons for hybrid
schemes employing the recycled frugal fusion strategy, where we begin with resource
states of different photon numbers x , i.e., cx = ∞. We observe an increased efficiency
of the preparation rate with higher photon resource states.

We observe that by recycling Fock states we achieve an exponential improvement in

the state preparation rate over conventional schemes. This allows us to efficiently

prepare Fock states with a high number of photons. Our scheme requires many of

the same resources as universal linear-optical quantum computing, including single-

photon sources, beamsplitters, number-resolved photo-detectors, and an optical quan-

tum memory.

In our analysis, we have assumed that there are no experimental imperfections, i.e.,

the resource of single photons are perfect Fock states, and the beamsplitters, number-

resolved photo-detectors, and quantum memory have perfect efficiency. In practice,

any experimental implementation will exhibit inefficiencies, which would result in an

output state mixed in the photon-number basis, and so, future experimental imple-

mentations would need to take this into account.
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Furthermore, we have assumed that the photons in the protocol have perfect mode

overlap. In practice, photons will exhibit some extent of distinguishability, resulting

in reduced visibility of the Hong-Ou-Mandel effect. This will alter the photon-number

distribution at the the output modes of the fusion operation, causing a change in the

state preparation rate and photon distinguishability. This can be easily modelled using

the mode-operator formalism [RR05, RR06, RRM06, RMS07].
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Chapter 7

Conclusion & Outlook

In this thesis, we studied the relationship between quantum computation and combi-

natorial structures. In particular, we have studied to what extent the classical com-

plexity of combinatorial structures can improve our understanding of the complexity

of quantum computation. We have made some partial progress towards resolving this,

however, this fundamentally remains an open problem.

The results of Chapter 4 provide strong evidence that simulating random quan-

tum computations is intractable for classical computers. Specifically, we showed that

under the assumption that (1) the Polynomial Hierarchy does not collapse and (2) the

average-case complexity of multiplicative-error approximations of the Jones polyno-

mial matches the worst-case complexity, then there is no efficient classical algorithm

for approximately sampling from the output probability distribution of random quan-

tum computations. However, resolving this average-case complexity conjecture seems

beyond the reach of existing techniques.

In Chapter 5, we considered the contrary case, that is, what is the strongest state-

ment that can be made about efficiently simulating quantum computation by classical

computation? We established a deterministic polynomial-time approximation scheme

for the Ising model partition function when the interactions and external fields are ab-

solutely bounded close to zero.
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The results of this chapter add to existing results on approximating Ising model

partition functions for restricted classes of graphs and parameters. However, it is

clear that by taking all of these result into account, there is still a a large gap between

the combinatorial structures that we can efficiently classically simulate and those re-

quired for an average-case hardness result. Furthermore, the behaviour of combina-

torial structures where an efficient approximation scheme is known, is very different

from that of a typical instance. It remains an interesting open problem to identify a

complexity transition, at which, the structures that arise in this thesis transition from

having an efficient approximation scheme to being #P-hard.

In Part II of this thesis, we established an efficient scheme for preparing Fock states

with a high number of photons from a resource of single photons, which a fundamen-

tal resource in many quantum information protocols.
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