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Summary 

Interactions between marine phytoplankton and heterotrophic bacteria are emerging as 

key ecological processes that control marine biogeochemical cycles and ecosystem 

productivity. While these interactions have large-scale implications, they are generally 

played out across very small spatiotemporal scales and often involve intimate ecological 

relationships involving the exchange of a diverse suite of metabolites and infochemicals. 

Previous studies have focussed on the ecological relationships between heterotrophic 

bacteria and large phytoplankton cells, such as diatoms and dinoflagellates, however, the 

photosynthetic biomass across much of the global ocean is dominated by 

picocyanobacteria, mainly comprising two genera, Prochlorococcus and Synechococcus. 

It has recently been suggested that the nitrogen-rich exudates of Synechococcus may be 

consumed by heterotrophic bacteria, potentially establishing metabolic, and eventually 

physical interactions. Yet, due to extremely small size of both partners (0.8-2 µm), it is 

extremely challenging to observe and quantify their metabolic exchanges at the single-

cell level using conventional methods. This means that some of the ecological and 

biogeochemical consequences of these interactions have potentially been overlooked 

until now. Recently, technological breakthroughs in high-resolution single-cell imaging 

techniques, such as Secondary Ion Mass Spectrometry (SIMS), have opened the door for 

studying microbial associations at relevant scales, allowing for more accurate 

quantification of their impact on nutrient cycling and oceanic productivity. 

This thesis focused on the associations between the picocyanobacteria Synechococcus 

and heterotrophic bacteria, I applied a combination of stable isotope labelling approaches 

and SIMS to study the metabolic exchanges and the behavioural mechanisms 

underpinning the onset of the interaction between these two partners, at the single-cell 

level. First, I compared bulk-scale mass spectrometry with two SIMS techniques 

(NanoSIMS and ToF-SIMS) to define their advantages and limitations in measuring 

nutrient uptake at both community and single-cell level. After determining that 

NanoSIMS was the most suitable tool to investigate Synechococcus-heterotrophic 

bacteria interactions, I applied this technique to determine if nutrient exchanges between 

Synechococcus and two of its culture-associated bacterial isolates were reciprocal. 

Finally, I determined the role that bacterial behaviour may have on the exploitation of 

Synechococcus-derived nutrients. 
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This thesis demonstrates the single-cell variability and heterogeneity of the nutrient 

uptake and cycling between these small and ubiquitous marine microbes, this observed 

heterogeneity would have been completely missed by large-scale approaches. The 

associations between Synechococcus and different bacterial species lead to species-

specific differences in nutrient exchanges. Cells can access significantly more 

Synechococcus derived nutrients by means of physical attachment and despite the small 

size of Synechococcus cells, this association is likely mediated by bacterial behaviour 

such as chemotaxis. The dynamics that determine these single-cell microbial interactions 

can have vast implications for global-scale processes. 
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