

Robot Confidence Modeling and Role Change in Physical Human-Robot Collaboration

by

Antony Tran

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

at the Centre for Autonomous Systems Faculty of Engineering and Information Technology **University of Technology Sydney**

March 2019

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by the Australian Government Research Training Program

Production Note: Signed: Signature removed prior to publication.

21/02/2019 Date:

Robot Confidence Modeling and Role Change in Physical Human-Robot Collaboration

by

Antony Tran

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Abstract

In physical Human-Robot Collaboration, the human is generally in control of the interaction while the robot provides assistance to its human co-worker. However, with the increasing level of intelligence of robot co-workers, peer-to-peer interaction is expected and believed to be an ideal approach to collaboration between the human and the robot in a collaborative activity. In the peerto-peer collaboration, the human and its robot co-worker would observe each other's actions and intervene if one detects changes of their counterpart during the interaction which could negatively impact the task. Current research on safe pHRC only considers role change to be initiated from the human's perspective, not from the robot's perspective. This thesis aims to address three research challenges in pHRC: the robot's perception of its human co-worker during pHRC, modeling the robot's confidence in its human co-worker and how a robot would decide whether and when it should intervene (by taking control) in its human co-worker's actions during pHRC.

This research first developed effective methods that enable the robot's perception of its human co-worker during pHRC. The human's grasping pattern and grasping strength on a handlebar, the commonly used interface in pHRC, are used by the robot to identify the orientation of the human co-worker's hand and monitor the human's reaction to unexpected events. A method for identifying the human's hand orientation and detecting the human's reaction to unexpected events was developed by analyzing the human's grasping pattern and grasping strength.

The thesis then explored how the robot's confidence in its human co-worker during pHRC can be modeled. A novel robot confidence framework was developed for modeling the robot's confidence using the robot's perception of the human's performance. The framework was evaluated in a number of pHRC case studies where a robot and its human co-worker worked collaboratively.

Finally, this thesis explored how the robot's confidence in its human co-worker can be used to decide whether and when the robot should initiate a role change. A confidence-based role change method was developed. Experimental verification of the role change method was conducted in a collaborative grit-blasting operation between a human and a robot. The results demonstrated that the method successfully identified the points during a pHRC where the robot should initiate a role change and take the control away from its human co-worker.

Acknowledgements

I would like to take this opportunity to acknowledge and give thanks for those who have stuck by me and assisted me throughout my candidature. Without their support and encouragement this work would not have been possible.

Firstly would like to thank my supervisor Prof. Dikai Liu who started me on the path of robotics research many years ago. Without the opportunity that he provided me and the direction and support he has given me over the years this work would not have been possible.

I would also like to thank my co-supervisor Dr. Ravindra Ranasinghe and Dr. Marc Carmichael who provided their technical expertise and advice during my candidature. The work in this thesis may not have gone as smoothly as it had if it were not for the both of you.

To the professors, researchers, engineers and students at the Center for Autonomous systems at the UTS, I give my thanks for giving me inspiration for being there when I needed someone to bounce some crazier ideas off.

Finally, I'd like to thank my family for their love and support over the last four years. Without you I would not be who and where I am today.

Contents

De	eclara	tion of Authorship	iii
Al	bstrac	t	v
A	cknow	vledgements	vii
Li	st of I	Figures	xiii
Li	st of]	Tables	xix
No	omenc	clature x	xiii
1	Intro	oduction	1
	1.1	Background and Motivation	3
	1.2	Research Question	7
	1.3	Scope	9
	1.4	Contributions	10
	1.5	Publications	11
	1.6	Thesis Outline	12
		1.6.1 Chapter 2	12
		1.6.2 Chapter 3	12
		1.6.3 Chapter 4	13
		1.6.4 Chapter 5	13
		1.6.5 Chapter 6	13
2	Revi	iew of Related Work	15
	2.1	physical Human-Robot Collaboration	16
		2.1.1 physical Human-Robot Collaboration (pHRC) in Manufacturing	16
		2.1.2 pHRC in Healthcare	18
	2.2	Trust and Confidence in pHRC	20
	2.3	Role Change in pHRC	24
		2.3.1 The Robot's Role in pHRC	24
		2.3.2 Role Change in pHRC	27

	2.4	Summ	ary	32
3	Rob	ot Perce	eption of its Human Co-worker in physical Human-Robot Collaboration	35
	3.1	Humar	n Grasping Pattern Detection	36
	3.2	Humar	n Hand Orientation Identification	38
		3.2.1	Experiment Design	39
		3.2.2	Classification of Hand Orientation	43
		3.2.3	Experiment Results and Discussion	46
		0.210	3231 Scenario 1 Experimental Results	46
			3232 Scenario 2 Experimental Results	49
			3.2.3.2 Discussion	51
	33	Humar	n Hand Grasning Strength	52
	5.5	2 2 1	Experimental Design	52
		5.5.1	2.2.1.1 Experimental Uncorrected Debat Debation	54
			3.3.1.1 Experiment 1 - Unexpected Robot Benavior	50
			3.3.1.2 Experiment 2 - Human Initiated Change	57
		3.3.2	Experimental Results	58
			3.3.2.1 Experiment 1 Experimental Results	58
			3.3.2.2 Experiment 2 Experimental Results	59
		3.3.3	Discussion	61
	3.4	Summ	ary	64
4	AR	abat Ca	unfidence Framework for physical Human-Robot Collaboration	65
•	4.1	Motiva	ation for the Robot Confidence Framework	66
	4.2	Robot	Confidence Framework	67
		421	Performance Model	67
		7.2.1	4.2.1.1 Decomposing the pHPC into task components	67
			4.2.1.2 Modelling a performance in a task component	60
		122	4.2.1.2 Modeling a performance in a task component	09 73
	12	4.2.2		75
	4.3		Case Studies 1. Assistance on Needed apport (ANDOT) Callebrating	/4
		4.3.1	Case Study 1: Assistance-as-Needed-roBOI (ANBOI) - Collaborative	77
				11
			4.3.1.1 Performance modelling	81
			4.3.1.2 Confidence modelling	91
			4.3.1.3 Experimental Results	92
		4.3.2	Case Study 2: Smart Hoist - Maneuvering in an Indoor Environment through	
			pHRC	94
			4.3.2.1 Performance modelling	97
			4.3.2.2 Confidence modelling	104
			4.3.2.3 Experimental Results	104
		4.3.3	Case Study 3: Remote Operation of a Robotic Arm's End-Effector in a	
			Complex Simulated Environment	107
			4.3.3.1 Performance modelling	109
			4.3.3.2 Confidence modelling	114
			4.3.3.3 Experimental Results	115
	44	Further	r Generalization of the Robot Confidence Framework	117
		1 01 010		I

x

		441	Identifying task components for the interaction	118
		4.4.2	Identifying how the robot would observe the human's performance in the	110
		4 4 2	task components	119
		4.4.3	Determining expected values for the robot's observations	119
		4.4.4	Generate rewards, penalties and enabling functions for the task components	120
	45	4.4.5	Categorize components into critical and non-critical components	122
	4.5	Summa	ary	124
5	Rob	ot Conf	idence-Based Role Change	127
	5.1	Confid	ence-Based Role Change Method	128
		5.1.1	Effect of Confidence on Control Value	129
		5.1.2	Effect of the First Derivative of Robot Confidence on Control Value	132
		5.1.3	Effect of the Second Derivative of Robot Confidence on Control Value	136
	5.2	Experi	ments	138
	5.3	Experi	mental Results	143
		5.3.1	Experiment 1 Results	143
		5.3.2	Experiment 2	146
	5.4	Discus	sion	151
	5.5	Summa	ary	153
6	Con	clusion		155
	6.1	Summa	ary of Contributions	155
		6.1.1	A Method for Identifying the Human Hand Orientation when grasping a	
			handlebar	155
		6.1.2	A Method for Detecting the Human's Reaction to Unexpected Events Dur-	
			ing pHRC	156
		6.1.3	A Framework for Modeling a Robot's Confidence in its Human Co-worker	
			during pHRC	156
		6.1.4	A Robot Confidence-Based Role Change Method	157
	6.2	Discus	sion and Limitations	157
		6.2.1	Grasp Sensor Integration	158
		6.2.2	Observability of the Human's Actions and Performance	158
		6.2.3	Subjectivity of the models for Performance and Confidence measurement	159
	6.3	Future	Work	159
		6.3.1	Incorporating Hand Grasping Information to improve the Robot's Model	
			of the Human during pHRC	159
		6.3.2	Discussion on the Robot Confidence Framework	160
		6.3.3	Confidence-Based Role Change in non-physical Human-Robot Interaction (HRI)	161
		6.3.4	Confidence-Based Role Change Method for Sliding Autonomy	161
		6.3.5	Human Confidence-Based Role Change in pHRC	162
		6.3.6	Negotiation of Control and Role Change in pHRC	162

A	Hand Orientation Identification Complete Results				
	A.1	Scenario 1	164		
	A.2	Scenario 2	166		

Bibliography

169

List of Figures

1.1	Examples of pHRC. (a) A collaborative robot arm designed to assist its human co-worker perform a sawing task [1]. (b) A robotic exoskeleton that augments the strength of its human co-worker during pHRC [2]	2
1.2	Examples of robotic systems. (a) Traditional industrial robot used in production lines [3]. (b) Collaborative robot arm used for pHRC [4]	4
1.3	Robotic grit-blasting. (a) The SABER robot used for autonomous grit-blasting on the Sydney Harbour Bridge. (b) The ANBOT, a grit-blasting robot designed for	_
1.4	pHRC	5
	Intergenerational Report of 2007 [5]	6
2.1	An example of an industrial robot arm [6]	16
2.2	An example of a collaborative Human-Robot assembly task [7].	17
2.3	An example of a smart wheelchair used for pHRC capable of semi-autonomous navigation [8]	18
2.4	Examples of assistive devices which also have some of the technologies used in	
	smart wheelchairs. (a) Smart walker [8]. (b) Smart Hoist	19
2.5	An example of a exoskeleton used for pHRC designed to assist in the recovery of stroke patients [9].	19
2.6	Factors affecting trust development in HRI [10]	21
2.7	An example of a Likert scale used to determine a human's trust in its robot co- worker [11].	22
2.8	A visual representation of the Auto-Regressive Moving Average Vector Form (ARMA model [12].	AV) 23
2.9	Beer's Proposed Taxonomy of Levels of Autonomy for HRI [13]. H and R refer to which of the agents(human or robot) is responsible for the Sense, Plan and Act	
	components of an interaction at each Level of Autonomy	26
2.10	A simplified representation of role change [14] where the machine/robot's control over the system is represented in purple and the human's control is represented in	
	orange.	27
2.11	A representation of roles and role change using a state machine [15]	28
2.12	Left: H-Mode assisted. Middle: H-Mode highly automated (contact). Right: H-	
• • • •	Mode highly automated (no contact) [16].	29
2.13	Execution plan for the trust-based handover strategy presented by Rahman [17].	32

3.1	The Thrumode Matrix Array Sensor used in this thesis to record the grasping pat-	27
3.2	The Thrumode Matrix Array Sensor wrapped around a cylindrical handlebar and covered in a polyurethane compound. Reproduced from [18].	37
3.3	(a) A human hand print (b) The Thrumode Matrix Array Sensor (TMMAS) sensor reading generated by the grasping pattern shown in Figure 3.3a. Reproduced from [18]	38
3.4	How changes in hand orientation can influence the pose of the human operator when the position of the hands and feet are fixed and wrist angle is approximately zero degrees.	39
3.5	(a) The position of the reference marker position on the subject's hand (b) A subject performing a power grip on the handlebar with the reference position on their hand aligned with a reference position on the handlebar. Reproduced from [18].	40
3.6	Comparison of the sensor readings from 5 subjects with the marker on their right hand aligned to the 2nd marked reference position. Reproduced from [18]	41
3.7	The total pressure applied to the handlebar and the number of cells with values over 25 as the subject grasps the handlebar. Reproduced from [18]	42
3.8	The number of Principal Component Analysis (PCA) components required to maintain 95% of the original dataset's information based on the number of sub-	
3.9	jects included in the dataset. Reproduced from [18]	45
3.10	A example of the probability of the subject's hand being at each marked refer- ence position for an incorrect classification in Scenario 2. The red vertical line	48
3.11	represents the labeled position. Reproduced from [18]	50
3.12	The blasting path that the subject follows in Scenario 1. The subject moves the laser pointer clockwise around the path in the direction shown. Reproduced from	53
3.13	[19]	56
3.14	and is able to travel between the two paths. Reproduced from [19] (a) A sample result from Experiment 1. F_H and F_R are measured in N and the grasping force is measured in mV (b) A magnified view of the forces during robot misbehavior at $t = 15.5$ s from the sample result shown above. Reproduced from [19]	57
3.15	(a) A sample result from Experiment 1. F_H and F_R are measured in N and the grasping force is measured in mV (b) A magnified view of the forces when the human initiates a change in task at $t \approx 31.5$ s from the sample result shown above. Reproduced from [19]	50
3.16	(a) A graph depicting the grasping force F_G and the applied operator load F_H during Experiment 1. (b) A graph depicting the grasping force F_G and the applied	00
	operator load F_H during Experiment 2	62

4.1	A flowchart showing the flow of information for the robot confidence framework in a pHRC. The robot confidence framework is composed of $n_{(c+n)}$ task components	
	where $n_{(c+n)}$ is the sum of the number critical and non-critical components in the	(0
1 2	task	68 70
4.2	Example of a FSPN model for a generic task component A	70
4.3	The equations used in this thesis to model the robot's expectations of its human	
	co-worker's performance in a task component. The graphs display equations (4.0)	76
1 1	ANDOT acquire and hear mounted for collaborative grit blocking	70
4.4	Reproduced from [20]	78
15	A flowebert showing the flow of information for the robot confidence framework	70
4.5	for Case Study 1: ANBOT - Collaborative Grit-Blasting	70
16	An example of (a) wand (b) Aw from a previous pHPC using the ANBOT where	1)
4.0	the human was grit-blasting normally (blue) and attempting to put the ANBOT	
	into singularity (red)	82
47	Penalty functions for the manipulability task component	84
4.8	An example of F and ΔF from a previous experiment where the human was grit-	01
4.0	blasting normally	85
49	Penalty functions for the operator force task component	87
4 10	An example of θ and $\Lambda \theta$ from a previous experiment where the human was grit-	07
1.10	blasting normally.	88
4 11	Penalty functions for the blasting angle task component	89
4.12	An example of p and Δp from a previous experiment where the human was grit-	0,
	blasting normally.	90
4.13	Penalty functions for the variation in blasting path task component.	91
4.14	The robot's observations (top) and the robot's perception of its human co-worker's	
	performance (bottom) in the (a) manipulability (b) operator force (c) blasting angle	
	(d) variation in blasting path task components.	92
4.15	Confidence of the robot in its human co-worker during the grit-blasting operation.	94
4.16	Smart Hoist: A robotic patient lifter designed to assist carers in transporting pa-	
	tients through pHRC.	95
4.17	A map of the two rooms being navigated with the path (red line) that the human is	
	expected to maneuver the Smart Hoist	96
4.18	A flowchart showing the flow of information for the robot confidence framework	
	for Case Study 2: Smart Hoist - Maneuvering in an Indoor Environment through	
	pHRC	97
4.19	Graphs representing the functions for the reward (left) and penalty (right) in the	
	distance to walls/obstacles task component.	98
4.20	Graphs representing the functions for the reward (left) and penalty (right) in ve-	
	locity task component.	100
4.21	An example of the acceleration of the Smart Hoist during a previous pHRC	101
4.22	Graphs representing the functions for the reward (left) and penalty (right) in the acceleration task component.	102
4.23	An example of the operator force applied by the human during a pHRC	103

4.24	Graphs representing the functions for the reward (left) and penalty (right) in the operator force task component.	103
4.25	The robot's observations (top) and the robot's perception of its human co-worker's	
	performance (bottom) in the (a) velocity (b) acceleration (c) operator force (d)	105
	distance to walls/obstacles task components	105
4.26	Confidence of the robot in its human co-worker during a pHRC using the Smart	
	Hoist.	106
4.27	The Phantom Omni teleoperation input device.	107
4.28	The simulated environment which the human co-worker attempts to navigate. The path shown in the right image is a recording of a human co-worker's attempt to	
	maneuver through the environment.	108
4.29	A flowchart showing the flow of information for the robot confidence framework for Case Study 3: Remote Operation of a Robotic Arm's End-Effector in a Com-	
	plex Simulated Environment.	109
4.30	Graphs representing the functions for the reward (left) and penalty (right) in the	
	progress task component.	111
4.31	An example of the tactile feedback received when an experienced operator com-	
	pletes the task	112
4.32	Graphs representing the functions for the reward (left) and penalty (right) in the	
	tactile feedback task component.	112
4.33	An example of Δ received when an experienced operator completes the task	113
4.34	Graphs representing the functions for the reward (left) and penalty (right) in the control task component.	114
4.35	The robot's observations (top) and the robot's perception of its human co-worker's	
	performance (bottom) in the (a) progress (b) tactile feedback (c) control task com-	
	ponents	116
4.36	Confidence of the robot in its human co-worker during a pHRC using the Phantom	
	Omni	117
	<u>_</u>	
5.1	Examples of ω_3 . Where $\omega_{3,max} = 100$, C_{thresh} is 0.2 (blue), 0.4 (red), 0.6 (yellow)	
	and 0.8 (purple)	133
5.2	Examples of ω_2 where $\omega_{2,max} = 100$, $t_{step} = 100ms$, $n_C = 20$. The shape of the	
	ω_2 plots are dependent on the value of β which are -7.33 (blue), -13.92 (red) -3.0 (yellow) and -100.00 (purple).	135
5.3	Examples of ω_1 where $\omega_{1,max} = 100$, $t_{step} = 100ms$, $n_{\dot{C}} = 19$. The shape of the	
	ω_1 plots are dependent on the value of α which are -0.366 (blue), -0.696 (red)	
	-0.01(yellow) and -10.00 (purple)	138
5.4	(a) The experimental setup where human co-worker uses the ANBOT to complete	
	a collaborative grit-blasting task. (b) The paths on the wall that the human follows	
	using the blasting point projected by a laser pointer mounted on the ANBOT. The	
	human co-worker follows the blue path in the first experiment and the dashed black	
	line in the second experiment.	139
5.5	Graphs representing the functions for the reward R_a and the penalty $P_a(a)$ for the	
	blasting path accuracy task component.	141

5.6	One example result from Experiment 1 where the human followed the blue path using the ANBOT. The actual blasting path of the human on the wall during the experiment is shown in green, red, blue, purple for Section 1, Section 2, Section 3 and Section 4 respectively.	143
5.7	The distance between the blasting point and the blue path (top) and the robot's per- ception of the human's performance in the blasting path accuracy task component (bottom) during Experiment 1. The colored regions shown in the graphs repre- sent the time when B_b is pressed and the blasting point was in Section 1 (green), Section 2 (red) Section 3 (blue) and Section 4 (purple) of the blasting path	144
5.8	An example result for Experiment 1 derived from the human's actual blasting path An example result for Experiment 1 derived from the human's actual blasting path in Figure 5.6 and the robot's perception of the human's performance in Figure 5.7. From top to bottom: The control value Ω , \overline{C} and ω_1 , \overline{C} and ω_2 , \overline{C} and ω_3 . The regions shown in the graphs represent the time when B_b is pressed and the blasting point was in Section 1 (green), Section 2 (red), Section 3 (blue) and Section 4 (pur-	144
	ple) of the blasting path.	145
5.9	One example result from Experiment 2 where the human co-worker followed the dashed black path using the ANBOT. The actual blasting path of the human on the wall during Experiment 2 is shown in green, red, blue, purple for Section 1,	
	Section 2, Section 3 and Section 4 respectively.	146
5.10	The distance between the blasting point and the blue path (top) and the robot's perception of the human's performance in the blasting path accuracy task component (bottom) during Experiment 2. The red horizontal line in the top graph represents the error boundary. The colored regions represent when B_b is pressed and the blasting point is in Section 1 (green), Section 2 (red), Section 3 (blue) and Section 4 (purple) of the blasting path	147
5.11	Example result from Experiment 2 based on the human's blasting path in Figure 5.9 and the human's performance in Figure 5.10. From top to bottom: The control value Ω , \overline{C} and ω_1 , \overline{C} and ω_2 , \overline{C} and ω_3 . The regions shown in the graphs represent the time when B_b is pressed and the blasting point was in Section 1 (green), Section 2 (red). Section 3 (blue) and Section 4 (purple) of the blasting path.	149
5.12	The points during Experiment 2 where the robot would have initiated a role change based on the control value Ω . The actual blasting path of the human during the experiment is shown in green, red, blue, purple for Section 1, Section 2, Section 3 and Section 4 respectively, and the points where a role change would have occurred are represented as red (robot takes the control away from the human) and blue	177
5.13	(robot gives the control to the human) circles	150
	the experiment (see also Figure 5.12) are represented as red (robot takes the control away from the human) and blue (robot gives the control to the human) vertical lines	.151

List of Tables

3.1	Labels being used for the collected datasets. Reproduced from [18]	43
3.2	Scenario 1 Example - Classification result of Subject 1 using Subject 1's data as	
	the training data. Reproduced from [18]	46
3.3	Scenario 1 - Combined Results. The mean and standard deviation of the results	
	for all 10 subjects for Scenario 1. Reproduced from [18]	46
3.4	Scenario 2 Example - Classification result of Subject 1 when using Subject 10's	
	data as the training data. Reproduced from [18]	49
3.5	Scenario 2 Example - Classification result of Subject 1 when using the data of all	
	subjects excluding Subject 1 as the training data. Reproduced from [18]	49
3.6	Scenario 2 - Combined Results. The mean and standard deviation of the results	
	for all 10 subjects for Scenario 2. Reproduced from [18]	50
3.7	Table shows the statistics concerning the increase a human's grasping strength	
	in response to an unexpected event and a human initiated change in the task in	
	Experiment 1 and Experiment 2 respectively.	63
5.1	Guidelines for selecting values for \bar{C}_{thresh} based on the type of pHRC	131
A.1	Complete results for Scenario 1 using the Support Vector Machine (SVM) classi-	
	fier without PCA from Section 3.2.	164
A.2	Complete results for Scenario 1 using the SVM classifier with PCA from Section 3.2	.164
A.3	Complete results for Scenario 1 using the Bayesian Inference classifier without	
	PCA from Section 3.2.	165
A.4	Complete results for Scenario 1 using the Bayesian Inference classifier with PCA	
	from Section 3.2.	165
A.5	Complete results for Scenario 2 using the SVM classifier without PCA from Sec-	
	tion 3.2.	166
A.6	Complete results for Scenario 2 using the SVM classifier with PCA from Section 3.2	.166
A.7	Complete results for Scenario 2 using the Bayesian Inference classifier without	
	PCA from Section 3.2.	167
A.8	Complete results for Scenario 2 using the Bayesian Inference classifier with PCA	
	from Section 3.2.	167

Acronyms & Abbreviations

CAS	Centre for Autonomous Systems	
UTS	University of Technology, Sydney	
pHRI	physical Human-Robot Interaction	
HRI	Human-Robot Interaction	
HHI	Human-Human Interaction	
НСІ	Human-Computer Interaction	
ANBOT	Assistance-as-Needed-roBOT	
FSPN	Fluid Stochastic Petri Net	
SVM	Support Vector Machine	
pHRC	physical Human-Robot Collaboration	
TMMAS	Thrumode Matrix Array Sensor	
PCA	Principal Component Analysis	
LoA	Level of Autonomy	
ARMAV	Auto-Regressive Moving Average Vector Form	

Nomenclature

General	Formatting	Style
---------	------------	-------

$\sum \{\cdot\}$	•	Summation

- $\prod\{\cdot\}$ Product.
- ☐ First derivative.
- $\ddot{\Box}$ Second derivative.
- $|\Box|$ Absolute value.
- $\overline{\Box}$ Average.
- σ Standard Deviation.

Human Grasping

Р	Pressure applied to a single cell in the TMMAS where $0 \le P \le 127$.
LF-SX	Grasping dataset at fixed orientations around the handlebar collected in the

- lab for Subject X.
- LR-SX Grasping dataset at random orientations around the handlebar collected in the lab for Subject X.
- F_H The force applied by the human measured using a load cell.
- F_R The virtual guidance force applied by the robot.
- F_G The grasping force applied by the human measured using the TMMAS.

Confidence Based Role Change

Performance Model

A Generic task component.

ϕ_A	The robot's perception of the human's performance in task component A .
$\frac{\phi_A}{dt}$	The instantaneous change in the robot's perception of the human's perfor-
	mance.
$\phi_{A,0}$	The robot's initial perception of the human's performance in task compo-
	nent A.
$P_{p_1}(p_1)$	Penalty dependent on the observation p_1 .
$R_{r_1}(r_1)$	Reward dependent on the observation r_1 .
τ	Maximum reward or penalty in a single time step.
G_{p_1}	Enabling function for Penalty P_{A,p_1} .
G_{r_1}	Enabling function for Reward R_{A,r_1} .
В	Enabling condition which define situations where fluid is allowed to flow
	through the fluid arc.
	Confidence Model
$\phi_{A,c}$	The robot's perception of the human's performance in a generic critical
	component A.
$\phi_{A,n}$	component A. The robot's perception of the human's performance in a generic non-
$\phi_{A,n}$	component <i>A</i> . The robot's perception of the human's performance in a generic non- critical component <i>A</i> .
$\phi_{A,n}$ γ_A	component <i>A</i>.The robot's perception of the human's performance in a generic non-critical component <i>A</i>.The weighting of a non-critical component <i>A</i>.
$\phi_{A,n}$ γ_A C_{min}	 component <i>A</i>. The robot's perception of the human's performance in a generic non-critical component <i>A</i>. The weighting of a non-critical component <i>A</i>. The minimum confidence if the robot in the human if the human's perfor-
$\phi_{A,n}$ γ_A C_{min}	 component A. The robot's perception of the human's performance in a generic non-critical component A. The weighting of a non-critical component A. The minimum confidence if the robot in the human if the human's performance in the critical components is at its maximum value.
$\phi_{A,n}$ γ_A C_{min} C	 component A. The robot's perception of the human's performance in a generic non-critical component A. The weighting of a non-critical component A. The minimum confidence if the robot in the human if the human's performance in the critical components is at its maximum value. The robot's current confidence in its human co-worker.
$\phi_{A,n}$ γ_A C_{min} C	 component <i>A</i>. The robot's perception of the human's performance in a generic non-critical component <i>A</i>. The weighting of a non-critical component <i>A</i>. The minimum confidence if the robot in the human if the human's performance in the critical components is at its maximum value. The robot's current confidence in its human co-worker.

Control Model

t_H	A previous time horizon.
<i>t</i> _{step}	The time between each update of the robot's confidence in the human.
Ω	The control value which determines whether a role change is initiated.
ω_1	The second derivative of confidence component of Ω .
ω_2	The first derivative of confidence component of Ω .
ω_3	The confidence component of Ω .
\bar{C}	Average value of confidence in the time interval t_H .

Ċ	Average value of the first derivative of confidence in the time interval t_H .
Ē	Average value of the second derivative of confidence in the time interval
	t_H .
\bar{C}_{thresh}	The confidence threshold under which the value of ω_3 will be negative.
$\omega_{1,max}$	The maximum value of ω_1 .
$\omega_{2,max}$	The maximum value of ω_2 .
$\omega_{3,max}$	The maximum value of ω_3 .
$\lambda_{\dot{C}}$	The sensitivity of ω_2 to changes in $\overline{\dot{C}}$.
$\lambda_{\ddot{C}}$	The sensitivity of ω_1 to changes in $\ddot{\ddot{C}}$