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Abstract

In physical Human-Robot Collaboration, the human is generally in control of the interaction while

the robot provides assistance to its human co-worker. However, with the increasing level of in-

telligence of robot co-workers, peer-to-peer interaction is expected and believed to be an ideal

approach to collaboration between the human and the robot in a collaborative activity. In the peer-

to-peer collaboration, the human and its robot co-worker would observe each other’s actions and

intervene if one detects changes of their counterpart during the interaction which could negatively

impact the task. Current research on safe pHRC only considers role change to be initiated from the

human’s perspective, not from the robot’s perspective. This thesis aims to address three research

challenges in pHRC: the robot’s perception of its human co-worker during pHRC, modeling the

robot’s confidence in its human co-worker and how a robot would decide whether and when it

should intervene (by taking control) in its human co-worker’s actions during pHRC.

This research first developed effective methods that enable the robot’s perception of its human

co-worker during pHRC. The human’s grasping pattern and grasping strength on a handlebar,

the commonly used interface in pHRC, are used by the robot to identify the orientation of the

human co-worker’s hand and monitor the human’s reaction to unexpected events. A method for

identifying the human’s hand orientation and detecting the human’s reaction to unexpected events

was developed by analyzing the human’s grasping pattern and grasping strength.
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The thesis then explored how the robot’s confidence in its human co-worker during pHRC can be

modeled. A novel robot confidence framework was developed for modeling the robot’s confidence

using the robot’s perception of the human’s performance. The framework was evaluated in a

number of pHRC case studies where a robot and its human co-worker worked collaboratively.

Finally, this thesis explored how the robot’s confidence in its human co-worker can be used to

decide whether and when the robot should initiate a role change. A confidence-based role change

method was developed. Experimental verification of the role change method was conducted in a

collaborative grit-blasting operation between a human and a robot. The results demonstrated that

the method successfully identified the points during a pHRC where the robot should initiate a role

change and take the control away from its human co-worker.
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Chapter 1

Introduction

Robots were initially incorporated in the industrial sector as a means to automate physically de-

manding or repetitive tasks in isolated environments. Through advancements in robotic technol-

ogy, the intelligence of the robots increased and the role that the robots played in industry began

to change. Robot co-workers are the result of an emerging field of robotics which aims to in-

tegrate robots into the human workspace. These robot co-workers are able to complete tasks au-

tonomously as well as adapt to the intentions of their human co-workers. In physical Human-Robot

Collaboration (pHRC), the human physically interacts with the robot as they work collaboratively

towards a shared goal. A collaborative Human-Robot interaction is defined as one where only

both the human and the robot make meaningful decisions during the interaction. Examples of

collaborative robots designed for industrial applications are shown in Figure 1.1

In pHRC, the human would generally be in control of the interaction while the robot provides

assistance to its human co-worker. This is partially due to the human’s ability to quickly assess

and react appropriately to any situations that may transpire during pHRC. With the increasing

level of intelligence of robot co-workers, peer-to-peer interaction is expected and believed to be an

ideal approach for the collaboration between the human and the robot in a shared activity. In peer-

to-peer collaboration, the human and its robot co-worker would observe each other’s actions and

intervene if one detects changes in their counterpart during the interaction which could negatively

impact the task. Current research for safe pHRC only considers role change to be initiated from

the human’s perspective and not from the robot’s perspective. However, in these situations there

1
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(a)

(b)

FIGURE 1.1: Examples of pHRC. (a) A collaborative robot arm designed to assist its human
co-worker perform a sawing task [1]. (b) A robotic exoskeleton that augments the strength of its

human co-worker during pHRC [2]
.

should be a mechanism which would allow the robot co-worker to take the initiative and intervene

in the pHRC.

This thesis explores effective methods of enabling the robot’s perception of its human co-worker’s

intention during pHRC and aims to address the question of how a robot co-worker would decide

whether and when it should intervene in its human co-worker’s actions and initiate a role change

during pHRC. One factor that determines whether a human intervenes in its robot co-worker’s

actions is the human’s self-confidence and the human’s confidence in its robot co-worker. By
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using the robot’s confidence in its human co-worker to determine whether the robot should initiate

a role change, a reciprocal interaction dynamic between the human and the robot can be created

which may result in a more intuitive peer-to-peer interaction.

This thesis presents a method for using the grasping pattern and grasping strength of the human

hand for determining the human co-worker’s hand orientation and monitoring the human’s reaction

to unexpected events during pHRC. A confidence-based role change method for determining

whether and when the robot should intervene in the actions of its human co-worker during pHRC is

also presented. The method utilizes a robot confidence framework that uses the robot’s perception

of the human’s actions and performance during pHRC to quantify the robot’s confidence in its

human co-worker. The robot’s perception of its human co-worker’s performance during pHRC is

obtained by comparing the robot’s observations of the human’s actions during the pHRC with the

robot’s expectations of the task. If the human’s actions are within the robot’s expectations, the

robot’s perception of the human’s performance will increase. If the human’s actions deviate from

the robot’s expectations, then the robot’s perception of the human co-worker’s performance will

decrease based on the difference between the robot’s observations and the robot’s expectations.

The robot uses its confidence in its human co-worker to determine whether it should initiate a role

change or if it should allow the human co-worker to continually take control during pHRC.

1.1 Background and Motivation

Robots have been used for many years to provide physical assistance to humans in physically

demanding tasks. However, it has only been in recent times that robots have been able to interact

directly with humans. Traditional industrial robots, like those seen in Figure 1.2a, generally do

not physically interact with humans but perform physically intensive or repetitive tasks in isolated

environments due to the safety risks associated with heavy payloads and the lack of compliancy in

the robot.

Technological advances in the field of robotics such as compliant actuators [21], improved sensing

technology [22, 23] and safe control algorithms [24, 25] have allowed robots to slowly transition

out of their isolated environments and into the human workspace. One recent example is the

Sawyer robot produced by Rethink Robotics (Figure 1.2b) which boasts a number of cameras that
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(a) (b)

FIGURE 1.2: Examples of robotic systems. (a) Traditional industrial robot used in production
lines [3]. (b) Collaborative robot arm used for pHRC [4].

it uses to observe the environment and its human co-worker and elastic actuators allowing the

Sawyer robot to instantly come to a halt when a collision is detected during pHRC. However,

the decreased distance between the human and the robot during the interaction introduces the risk

of the human suffering physical injuries. Although there has been a lot of research into safety

paradigms which can be implemented in pHRC to mitigate some of the risks towards the human

co-worker [26], the safety risks cannot be completely removed from the interaction.

In the industrial sector which includes fields such as aerospace, defense, industrial machinery,

tools, construction and metal fabrication [27], one of the ways that safety risks have been mitigated

is to automate as much of the task as possible and reduce the amount of contact between the human

and the robot. An example of a field which has embraced the assistance provided by robots is the

grit-blasting industry where autonomous grit-blasting robots such as those seen in Figure 1.3a are

used [28, 29].

However, in more complex environments where objects may obstruct the robot’s sensors or the

environment undergoes constant change, having a human operator in the loop can improve the
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(a)

(b)

FIGURE 1.3: Robotic grit-blasting. (a) The SABER robot used for autonomous grit-blasting on
the Sydney Harbour Bridge. (b) The ANBOT, a grit-blasting robot designed for pHRC.

.

safety of the task and the robot’s ability to complete the task [30]. Robots designed for Human-

Robot collaboration, or Cobots, have broadened the research field of Human-Robot Interaction

(HRI) or more specifically physical Human-Robot Interaction (pHRI) where the human comes

into direct physical contact with the robot and pHRC which is a subset of pHRI where the human

and robot work collaboratively to complete a task. The Assistance-as-Needed-roBOT (ANBOT)

shown in Figure 1.3b is an example of a robot designed for pHRC. With a human in the loop, the

expertise of the grit-blaster can be taken advantage of and the variety of applications that the robot

can be used for increases. When a human works collaboratively with the ANBOT, the human



6 Chapter 1. Introduction

is generally in control and responsible for the safety aspects of the interaction while the robot

provides physical assistance to its human co-worker and monitors the human’s performance.

Another sector which has seen an increase in the number of collaborative robots is the healthcare

sector which specializes in products and services related to health and medical care [31]. The

healthcare sector has been trying to use robots as a means to cope with the aging population. In

Australia, there were approximately 2.8 million people (13.4% percent of the population) aged 65

or older in 2007. The population projections, shown in Figure 1.4, estimate that the population

over 65 years of age will nearly triple to 7.2 million (25.3% of the population) by the year 2047 [5].

In 2016, there were 3.67 million people aged 65 years and over in June 2016, accounting for over

15.2% of the total population [32]. With the decreasing working population unable to handle the

pressure created by the aging population requiring increased medical services [33], robots present

a possible solution to the problem.

FIGURE 1.4: A projection for the age of the Australian population by 2047. Reproduced from
Intergenerational Report of 2007 [5].

Although the introduction of robots into the healthcare sector provides many benefits, it also in-

troduces robots into an environment where the robot would come into contact with those who may

not be familiar with robots and how robots operate such as the elderly. In the industrial sector,

the people who physically interact with a robot would have received training in how to operate the

robot and the required safety precautions that must be observed when interacting with the robot.
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The purpose of the training is not only to teach the functionality of the robot but also to familiarize

the human operators with the appropriate actions to take when problems arise.

Without the required training, the risk of accidents involving robots occurring in the workplace

increases. These accidents can be caused by factors such as the inexperience or the negligence of

the human co-worker or unrelated personnel coming into contact with the robot. The consequences

of these accidents on the environment and the human co-worker may be more severe as those who

work in the healthcare sector may not know the appropriate response to take or the environment

may be more complex or chaotic. This is especially true in pHRC where the human is in physical

contact with the robot while completing a task. Generally, the human is the one who is responsible

for managing the safety aspects of a pHRC. However, if a situation arises where the human does

not know how to react, cannot react in time or their performance during the task is brought into

question, the robot should have a method for intervening in the pHRC to protect the human and

the environment.

1.2 Research Question

This thesis aims to answer the research questions raised when considering the robot perceives its

human co-workers intentions during pHRC and how a robot co-worker would determine whether

and when it should intervene in the actions of its human co-worker and initiate a role change during

pHRC. The first research question explores how the robot perceives the human’s intention in

pHRC. The second research question explores how the robot’s confidence in its human co-worker

during pHRC can be modeled. The final research question explores how the robot’s confidence

can be used to decide whether it should initiate a role change during pHRC.

To determine whether the robot should intervene during pHRC, the robot must have strong sit-

uational awareness, a clear understanding of the task goals and must be able to identify actions

or events which have a negative influence on the task outcomes. For a human, this knowledge is

ingrained through the accumulation of their past experiences and the lessons they have learned.

Therefore, it would be difficult for a robot to perfectly replicate a human’s understanding of the

pHRC. This is especially true if the robot has a limited number of sensors which is often the case in

some pHRC scenarios where the robot must infer the human’s intention through a handlebar which
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is a commonly used interface in pHRC. The work in this thesis explores how information such as

the grasping pattern and the grasping strength of the human hand on a handlebar during pHRC can

be used to further the robot’s understanding of the task and its human co-worker’s intentions.

Once a model of the robot’s perception of a task is obtained, the robot must consider the human’s

actions and intentions in the context of the task being performed. In pHRC, the human generally

intervenes in its robot co-worker’s actions when the human’s trust or confidence in the robot’s abil-

ity to complete the task decreases or the human believes that they are better equipped to complete

the task [34, 35]. Confidence and trust are both considered to be subjective measures which makes

accurately modeling the robot’s trust or the robot’s confidence in its human co-worker a difficult

task. Given that the trust or confidence of two human observers may differ, attempting to create an

absolute measure of robot’s trust or confidence in its human co-worker which could be applied to

any pHRC would be unfeasible in practical applications. Therefore, a generic framework for mod-

eling the robot’s trust or confidence in its human co-worker which can be adapted to any pHRC

is required. Most definitions of confidence agree that measures of confidence are relative to the

observer’s understanding of a task [36]. Therefore, the solution is to model the robot’s expecta-

tions of the human co-worker’s actions during pHRC and use it to calculate the robot’s confidence

for a specific task or operation. Although the expected performance in some aspects of pHRC are

subjective, factors such as industry standards or the quality of the end result are objective. By mea-

suring the human’s performance relative to a baseline performance in a task, an objective measure

of the robot’s confidence in its human co-worker during pHRC can be obtained.

The decision of whether to initiate a role change during pHRC can be difficult to model. This is

especially true considering that the decision of whether to initiate a role change is based on the

robot’s confidence in its human co-worker. The ideal confidence-based role change method should

not only consider the robot’s current confidence in the human when deciding whether to initiate

a role change but also how the robot’s confidence in its human co-worker has changed during the

pHRC. The previous actions of the human should have some influence on whether the role change

is initiated as it adds context to the robot’s decision of whether it should intervene.
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1.3 Scope

This thesis investigates a method for using the grasping pattern and grasping strength of the human

hand to improve the robot’s understanding of its human co-worker’s intention during pHRC and

a method for determining whether and when a robot should intervene in the actions of its human

co-worker and initiate a role change. The work presented in this thesis focuses on pHRC where

the human co-worker physically controls the robot and the robot observes the actions of its human

co-worker as the human and robot work collaboratively to complete a task. The confidence-based

role change method presented in this work utilizes a robot confidence framework and a method for

using the robot’s confidence in its human co-worker to determine whether the robot should initiate

a role change during pHRC.

In most pHRC scenarios presented in this thesis, the interaction between the human and the robot

occurs through a handlebar. The method for exploring the use of the human hand’s grasping

information during pHRC utilizes a cylindrical handlebar which is a common interface in pHRC.

The grasping pattern and grasping strength of the human hand is gathered using a flexible pressure

sensor array wrapped around the handlebar. The grasping pattern and grasping strength of the

human hand are used to identify the orientation of the human hand around the cylindrical handlebar

and to detect the changes in the human’s grasping in reaction to unexpected events during pHRC.

The method for identifying the orientation of the human hand only considers the static grasping

scenario where the human has a firm grip on the handlebar. The dynamic aspects of grasping

during pHRC are not explored in this thesis but are considered in a future work.

The robot confidence framework presented in this thesis is comprised of a performance model

and a confidence model. The framework is used to quantify the robot’s confidence in its hu-

man co-worker during pHRC. The performance model quantifies the robot’s perception of its

human co-worker’s performance in task components using the robot’s observations of its human

co-worker and its expectations of the pHRC. The robot’s expectations of the pHRC are generally

defined by creating a baseline for performance in aspects of the task which the robot can perceive

using its sensors. Factors such as social or cultural norms which may bias the robot’s perception

of the human’s performance in a task component are not addressed in this work but are considered

in a future work. The confidence model utilizes the robot’s perception of its human co-worker’s
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performance in the task components and the relative importance of the task components to de-

termine the robot’s confidence in its human co-worker in real-time. The more important the task

component to the integrity of the task or the safety of the human or the robot, the larger impact the

task component has on the robot’s confidence in its human co-worker.

This thesis also presents a method that utilizes the robot’s confidence in its human co-worker

to determine whether and when the robot should intervene in its human co-worker’s actions and

initiate a role change to take the control away from the human. In this thesis, the pHRC scenarios

used to verify the confidence-based role change method is limited to those where the robot has a

supervising role in the pHRC and is the one who decides whether the human is in control of the

pHRC or the robot is in control of the pHRC. It is understood that to have a truly reciprocal peer-to-

peer interaction dynamic between the human and the robot, whether the role change occurs should

be the result of a negotiation between the human’s desire for role change and the robot’s desire

for role change. The application of the method in peer-to-peer interactions, where the human and

the robot share control of the pHRC is not addressed in this work but its implementation in future

works is discussed.

1.4 Contributions

The following are the main contributions from the work presented in this thesis:

• A method for identifying the orientation of a human operator’s hand around a cylindrical

handlebar using the grasping pattern of the human operator collected using flexible sensor

array wrapped around a cylindrical handlebar (Chapter 3).

• A method for detecting the human’s reaction to unexpected events during pHRC where the

only point of contact between the human and the robot is a handlebar (Chapter 3).

• A robot confidence framework which calculates the robot’s confidence in its human co-

worker based on the robot’s perception of its human co-worker’s actions during pHRC. The

robot confidence framework consists of a performance model and a confidence model. The

performance model quantifies the robot’s perception of its human co-worker’s performance
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in task components. The confidence model uses the human’s performance in the task compo-

nents and the relative importance of each task component to calculate the robot’s confidence

its human co-worker (Chapter 4).

• A method for using the robot’s confidence in its human co-worker to determine whether and

when the robot should intervene during pHRC and initiate a role change to take the control

of the interaction away from its human co-worker (Chapter 5).
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1.6 Thesis Outline

This thesis is organized as follows:

1.6.1 Chapter 2

Chapter 2 provides a review of works related to contributions presented in this thesis. Firstly, an

overview of HRI and how advancements in technology contributed to the development of the field

of pHRC. A review of pHRC and its usage in the industrial and healthcare sectors is also provided.

Following this, an overview of trust and confidence and how trust and confidence contribute to-

wards safe pHRC is discussed. Previous approaches towards modeling the trust and confidence of

the human in its robot co-worker are also presented and discussed.

Finally, the concept of roles and role change in pHRC is explored. A review of different ap-

proaches used in the literature to define the role of the human and the robot during an interaction

are discussed. After which, an overview of methods for initiating a role change in pHRC are also

presented and discussed.

1.6.2 Chapter 3

Chapter 3 presents a method for using the grasping pattern and grasping strength of the human

hand to identify the human’s hand orientation around a cylindrical handlebar and to monitor the

human’s reaction to unexpected events in a pHRC. The human hand’s grasping pattern and grasp-

ing strength is obtained using a flexible pressure sensor array wrapped around a cylindrical handle-

bar. The grasping pattern of the human is used to identify the human’s hand orientation around the

cylindrical handlebar and the hand orientation of other humans. The grasping force of the human

during pHRC is also analyzed to observe the differences in the human hand’s grasping strength

when the human initiates a change in the task and when an unexpected event occurs during the

pHRC.
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1.6.3 Chapter 4

Chapter 4 introduces the robot confidence framework that quantifies the robot’s confidence in its

human co-worker. The framework uses the robot’s perception of its human co-worker’s perfor-

mance in task components and the relative importance of the task components to calculate the

robot’s confidence in its human co-worker. The performance of the operator is modeled as a Fluid

Stochastic Petri Net (FSPN) that uses the robot’s observations of its human co-worker and the

robot’s expectations of the task component to calculate the human’s performance in the task. The

framework is then demonstrated using a range of pHRC case studies. Each case study explores

how the pHRC can be decomposed into task components and how the robot’s perception of its

human co-worker’s performance in each task component can be modeled. Finally, sample results

from the pHRC case studies where the robot confidence framework was applied are presented and

the implications and significance of the robot’s confidence in these case studies is discussed.

1.6.4 Chapter 5

In Chapter 5, a method for confidence-based role change is presented which allows the robot to

determine whether and when it should intervene in the human’s actions and initiate a role change

during pHRC. The method is verified using a collaborative grit-blasting operation where the hu-

man and the robot work collaboratively to complete a task.

1.6.5 Chapter 6

Finally, a summary of the thesis and its conclusions is presented in Chapter 6 which includes an

objective discussion of its limitations and how the presented work can be expanded upon in the

future.





Chapter 2

Review of Related Work

This chapter reviews work related to the work presented in this thesis. This thesis aims to answer

the question of how a robot would decide whether it should intervene in its human co-worker’s

actions and initiate a role change during physical Human-Robot Collaboration (pHRC). The re-

search in this thesis explores effective methods for enabling the robot’s perception of its human

co-worker’s intention during pHRC and how the use of the robot’s confidence in its human co-

worker can be used as a trigger to initiate a role change and take control away from the human

during pHRC.

Section 2.1 provides a review of Human-Robot Interaction (HRI) and how advancements in tech-

nology have led to the development of the field of pHRC. An overview of the robots designed

for pHRC which are currently being used in the industrial sector and the healthcare sector is also

provided. The focus of this section is on robotic systems where a human must physically interact

with the robot and how the robot perceives the environment and the actions and intentions of its

human co-worker during pHRC.

Section 2.2 provides a review of safety mechanisms which are commonly utilized in pHRC to

ensure the safety of the human co-worker. The concept of trust and confidence in pHRC and the

potential effect of trust and confidence on the safety of pHRC are discussed. The confidence-based

role change method presented in this thesis uses robot’s confidence to determine whether the robot

should initiate a role change during pHRC, hence a review of the research on trust and confidence

in pHRC is required.

15
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Section 2.3 reviews role change methods in pHRC. This section focuses on how the roles of

humans and robots are defined and changed over the course of a pHRC. Different approaches

towards role change and their suitability for use in pHRC are discussed.

2.1 physical Human-Robot Collaboration

Robots that can work collaboratively or cooperatively with their human counterparts have gained

attention in recent years. Such robots work alongside their human co-workers, providing physical

assistance and sharing the workload in applications such as manufacturing, healthcare, and mate-

rial handling [37–40]. Through new research innovation, the intelligence of the robot co-workers

continues to increase. This allows for more complex and diverse tasks to be assigned to the robotic

co-workers as well as allowing them to work in closer proximity to their human operators [41, 42].

This section presents examples of robots used for pHRC with emphasis on robots that are used in

many industry sectors.

2.1.1 pHRC in Manufacturing

FIGURE 2.1: An example of an industrial robot arm [6].

Initially, traditional (industrial) robots were designed for use in the industrial sector where they

would provide assistance to humans in physically demanding tasks such as construction and man-

ufacturing. The original purpose of traditional robots was to automate manufacturing processes
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in production lines which were too physically demanding for human workers [43, 44]. One of

the most common robots seen in the manufacturing industry is the robot arm. In Figure 2.1, an

industrial robot arm is shown performing a manufacturing task. From the figure, it can be seen that

the conditions under which the robot is performing the task are unsuitable for a human co-worker.

Additionally, these traditional robot arms were unsuitable for pHRC due to safety risks posed by

their size, force and primitive sensing technology [45]. Robots such as these work in isolated

environments to minimize the risks during the manufacturing process.

As technology advanced, the miniaturization of the traditional robot arm began and the applica-

tions that these smaller robot arms could be used for increased. With the advent of technology such

as compliant joints [46–48], improved sensing and control[49–51], these smaller robot arms can

now work in closer proximity to their human co-workers [52–55]. Like their larger counterparts,

the human-safe robot arms are designed to provide physical assistance to their human co-workers

and to automate a part of the manufacturing process. Therefore, it is not surprising that a large

number of human-safe robots designed for pHRC are found in the manufacturing industry. Using

cameras attached to the end-effectors of the robot arms, the robot arms are able to observe their

human co-worker’s actions as they assemble components [56, 57].

FIGURE 2.2: An example of a collaborative Human-Robot assembly task [7].

An example of a robot arm designed for pHRC can be seen in Figure 2.2. In the figure, the robot

arm works collaboratively with its human co-worker and provides assistance by holding parts and

tools that its human co-worker requires. These robots use their observations to predict the needs

of their human co-workers and transfer materials to the human when needed [58]. Research has

been done to optimize the handover process between the human and the robot to maximize the

user experience and to ensure the safety of the human during the pHRC [59, 60].
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2.1.2 pHRC in Healthcare

Robots have recently been seeing use in healthcare and aged care. The healthcare sector has seen a

rise in the use of robots to assist patients with their daily living and to reduce the physical strain on

healthcare workers [61–63]. Assistive robots are a subcategory of collaborative robots which have

become more common place with the most well known assistive robot used in the healthcare sector

being the motorized wheelchair. Motorized wheelchairs may be able to interpret the human’s

intention through a joystick which the human uses to control the motorized wheelchair’s motion

[64–66].

Advanced technologies including obstacle avoidance [64, 67], step climbing [68, 69], navigation

[70–72] and hands-free driving [73–76] have started to be incorporated into motorized wheelchairs.

These technologies improved the maneuverability of motorized wheelchairs and further assisted

human operators in safely navigating their environment. An example of a smart wheelchair used

for pHRC is shown in Figure 2.3.

FIGURE 2.3: An example of a smart wheelchair used for pHRC capable of semi-autonomous
navigation [8].

The advanced technologies applied to motorized wheelchairs have also recently been incorporated

into many other devices found in the healthcare sector such as in motorized walkers [77, 78] and

patient hoists [79] shown in Figure 2.4. The purpose of these robots is to improve the mobility of

its human operator and reduce the physical strain on the human operator during the pHRC.





20 Chapter 2. Review of Related Work

2.2 Trust and Confidence in pHRC

This section provides an overview of how trust and confidence have been represented and used

in pHRC. The human has generally been responsible for the collaborative operation and safety

during pHRC [87, 88]. Based on the human’s experience and knowledge, the human is able to

determine the appropriate time to intervene in the actions of the robot during pHRC [34, 35]. In

pHRC where the human is in physical contact with the robot, other factors need to be taken into

account when determining whether the current interaction is safe for the human and the robot.

De Santis [89] compiled a guide which outlined factors that need to be addressed as well as a

number of benchmarks for safe pHRC. One factors that determines whether the human intervenes

in the robot’s actions during a pHRC is the human’s trust and/or confidence in its robot co-worker

[90, 91]. Previous works have shown how increased trust and/or confidence of the human in its

robot co-worker has a positive effect on the interaction outcomes [92]. A human’s trust and/or

confidence are subjective measures which represent the human’s belief about whether its robot

co-worker is able to complete the task.

Most works in HRI consider trust and confidence to be equivalent; however there is an important

difference between the two. The confidence of an observer is based on a specific referent. In most

cases, this referent is the observer’s expectation for an action or behavior during an interaction.

On the other hand, trust is a more general term and is generally based on more esoteric measures

and does not need to be based on observations [36]. It is possible for a human to have trust in its

robot co-worker without having previously interacted with the robot. Factors such as the robot’s

reputation or the human’s intuition will contribute to the human’s initial trust in the robot [93].

Once the human begins to interact with the robot, the human’s trust in the robot will increase

or decrease based on whether the robot succeeds or fails at the task respectively [94–96]. A

categorization of the factors which influence the human’s trust in its robot co-worker can be seen

in Figure 2.6. In his work, Hancock [10] performed a meta-analysis to determine the effect of each

of these factors on the human’s trust in its robot co-worker. It was found that the performance

based factors had the largest influence on the human’s trust in its robot co-worker. Therefore,

based on the differences between confidence and trust, this thesis will be using the confidence of

the robot in its human co-worker rather than its trust by using the robot’s expectations of the pHRC
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FIGURE 2.7: An example of a Likert scale used to determine a human’s trust in its robot co-
worker [11].

decisions on how to react to changes in the interaction. To improve safety in pHRC, both the

human and the robot should be responsible for intervening when the other is behaving abnormally.
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Although both trust and confidence in pHRC have generally been seen from the human’s perspec-

tive, there have recently been works which have used the confidence of the robot in its human

co-worker to affect the interaction. In his work, Sanders [101] uses the performance of the human

in a navigation task to calculate the confidence of the robot in the human. He uses the calculated

confidence value as a gain to scale the velocity of the wheelchair. One of the short comings of this

work is that it dismisses the effects of past performance and bias on trust and confidence [102–

104]. The research presented by Walker [105] and Sadrfaridpour [106] are works related to the

robot confidence framework presented in this thesis in terms of using the robot’s perception of its

human operator to calculate its confidence in its human co-worker. It adopts the Auto-Regressive

Moving Average Vector Form (ARMAV) approach of modeling trust proposed by Lee [12] and

uses the human’s performance, the robot’s performance and the robot’s previous trust to describe

the dynamics of trust in a pHRC as a function of time. A block diagram of the ARMAV model can

be seen in Figure 2.8.

FIGURE 2.8: A visual representation of the ARMAV model [12].

Using the ARMAV model, Walker and Sadrfaridpour quantified the robot’s trust in its human co-

worker. The robot’s trust in its human co-worker increased when the human was able to complete

the handover and decreased when the human was unable to complete the handover respectively.

When the trust of the robot in its human co-worker during a handover task decreased below a

threshold, the pose of the robot arm would change to better accommodate its human co-worker.

Although Walker and Sadrfaridpour referred to the robot’s trust in their work, because they used

the robot’s expectations of the human’s behavior as a basis of their analysis, it may be better

to classify it as confidence rather than trust for their application. One of the shortcomings of

the ARMAV model of trust proposed by Lee [12] is its scalability. In a pHRC, there could be a
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number of components of the interaction which contribute to the robot’s perception of the human’s

performance. As more components of the human’s performance are considered when quantifying

the robot’s confidence using the ARMAV model, normalizing the robot’s confidence in its human

co-worker may result in trivializing the human’s performance in some of the components due

to their low weightings. Without a normalized value of confidence, determining whether a role

change should occur in an interaction becomes a more difficult problem.

2.3 Role Change in pHRC

The division of roles between participants in an interaction is an increasingly important area of

research in robotics. This section provides a non-exhaustive review of how the notion of roles and

role change has evolved in the context of pHRC. In the past, robots would generally be operated

in isolation, either performing set tasks in sectioned off areas or being controlled remotely via

teleoperation. Over the years, as the intelligence of robots increased, the segregation between the

human and robot decreased. As the distance between the human and the robot decreased, the safety

of the human during the interaction became a pressing concern [107, 108]. The implementation of

roles and role change began as a means to define the responsibilities of the human and the robot

and their boundaries during an interaction [109–112].

2.3.1 The Robot’s Role in pHRC

The interaction between a human and a robot can be categorized as either cooperative, collabora-

tive or competitive [113]. In cooperative and collaborative interactions, both the human and the

robot work towards the same goal. However, in a cooperative interaction, only one of the partic-

ipants makes meaningful decisions about the actions being performed while the other participant

takes on a purely supportive role. In collaborative interactions, both participants of the interaction

contribute to the decision making process. Competitive interactions differ from cooperative and

collaborative interactions in that the two participants of the interaction either do not share a goal

or are antagonistic towards each other [114–116].

pHRC is a subset of HRI where the human and the robot are in physical contact and work collab-

oratively to complete a task. In pHRC, the robot is generally the one who takes on the supportive



Chapter 2. Review of Related Work 25

role and assists the human as they work towards completing their shared goal. However, the robot

may intervene when the safety of the human and the robot are at risk. Examples of robots de-

signed for pHRC include assistive robotic devices such as the Smart Hoist [79] or exoskeletons

[117–119]. In interactions involving these two types of robots, the path planning and movement of

the robots is controlled by the human while the robot assists the human by reducing the physical

load experienced by its human co-worker and adjusting the human’s plans to avoid collisions in

the case of the Smart Hoist and singularities in the case of the exoskeletons.

In this thesis, the role of the human or the robot in an interaction is defined by the responsibilities

of the human or robot during the interaction. Assigning roles to the robot and the human in the

interaction sets the expectations of the human and the robot for the other’s behavior during the

interaction [120]. These roles can be generalized into one of two categories, leader and follower

[121]. In pHRC, as the robot is generally providing support to the human in the interaction, the

human will generally have the leader role while the robot will have the follower role [122, 123].

Previous works [124], have stated that in an interaction between a human and robot, the human

should:

• always remain in control, but should be able to experience or initiate smooth shifts between

Level of Autonomy (LoA)

• receive continuous feedback about the robot’s boundaries and functionality

• continuously interact with the robot

• benefit from increased performance and/or reduced workload.

The LoA of the robot has been defined as the negligence tolerance of the robot [125]. Many

taxonomies have been proposed for a robot’s LoA which define the relationship between the robot

and the human and describe to what degree a robot can act on its own [126, 127]. A robot with

a high LoA is one that does not require human intervention for a long period of time when they

operate, while a robot with a low LoA requires the human to guide their actions during pHRC. As

the LoA of a robot changes during an interaction, the role of the robot during the interaction also

changes.
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FIGURE 2.9: Beer’s Proposed Taxonomy of Levels of Autonomy for HRI [13]. H and R refer to
which of the agents(human or robot) is responsible for the Sense, Plan and Act components of an

interaction at each Level of Autonomy.

A more recent example of a taxonomy for a robot’s LoA can be seen in Figure 2.9 [13]. In this

taxonomy, the three components of an interaction, sense, plan and act [128] are considered. The

responsibilities of the human and the robot in each of these components is assigned and a brief

description of the interaction is provided. In the taxonomy of robot LoA shown in Figure 2.9, a

robot’s LoA during pHRC would be classified within the range Batch Processing and Executive

Control where both the human and the robot contribute to the planning component of the interac-

tion. Because the taxonomy is defining the LoA of the robot from the human’s perspective, there

is an exception which is not shown in the figure when considering true peer-to-peer interactions.



Chapter 2. Review of Related Work 27

The exception is when the robot’s LoA is Supervisory Control where the robot allows the human

to perform all aspects of the task but the robot monitors the human, the environment and and the

task and can intervene in the interaction to set new goals or plans.

2.3.2 Role Change in pHRC

In pHRC, where the human is in physical contact with the robot, it is necessary to establish the

roles of the human and the robot during the interaction and the policy for role change during pHRC.

The concept of role change (or role adaptation) was proposed as a model to help human operators

adapt to changes in an environment [129]. Studies have also shown that system efficiency is higher

in a collaborative interaction than in a cooperative interaction [130].

There are two general approaches towards role change in the literature. In the first approach,

role change can be defined as the change in the robot’s LoA during the course of an interaction

[115, 131]. The second approach can be defined as the increase or decrease in the human or

robot’s control over the interaction [16, 132]. In Figure 2.10, a simplified representation of control

between the human and the robot is shown. The change in roles can be interpreted as either a shift

in the leader of the interaction or as a gradual shift in control between the human and the robot

depending on the application.

FIGURE 2.10: A simplified representation of role change [14] where the machine/robot’s control
over the system is represented in purple and the human’s control is represented in orange.

The current trend for role change is on decision making and action selection during interactions

and on how changes in the degree of control the robot and human have over the system can improve
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safety during pHRC [14, 124]. One method of representing the relationship between roles and role

change in pHRC used in the past was the use of state machines. In a state machine, each LoA of

the robot is represented as a state and the conditions for transitioning between each state is defined.

Using this method to represent the interaction dynamics makes the relationship between the human

and the robot clearer. An example of this approach can be seen in Figure 2.11 [15].

FIGURE 2.11: A representation of roles and role change using a state machine [15].

In pHRC a role change is generally triggered as a result of an event in the interaction. Emergency

stops or other physical switches can be used to trigger a role change. In his work, Lyu [133] used

a method for role change where the robot’s behavior would change when the robot detected the

presence of the human in the workspace. When the robot did not detect the human’s presence, it

would complete the task autonomously. However, if the robot detected the presence of the human

then the robot’s LoA would shift and the robot would work collaboratively with its human co-

worker to complete the task. A more common approach towards role change in pHRC is to initiate

a role change when the force applied by the human to the robot exceeds a predefined threshold

[134].

Some researchers have adapted the force threshold method for role change and have implemented

a dynamic threshold for role change that is more natural for the human during pHRC [135]. This

field of research is often referred to as adaptive role change. In systems which implement adaptive

role change, probabilistic models based on previous interactions are used to determine whether a

role change should occur during the interaction [136, 137].
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Regardless of the methods for triggering a role change, the human is generally the one who initiates

the role change during pHRC. Examples in the literature where the robot intervenes in the human’s

actions during pHRC are generally limited to situations such as collision avoidance or singularity

avoidance including the NavChair [138] and the Smart Hoist [38] where the human maneuvers

the robots in cluttered environments. Whether the implementation of collision avoidance and

singularity avoidance are a form of role change is ambiguous as the robot’s LoA or role in the

interaction must change to be considered a role change. In the Smart Hoist and and Navchair

examples, a role change does occur as the robot’s role in the pHRC changes from observing the

human’s actions in the task to creating a new path plan and implementing it to avoid collision

before changing its role back to observing the human.

Flemisch in his work on autonomous driving proposed a method for determining whether a role

change is initiated [16]. Inspired by the way human riders interact with their horses, H-Mode inter-

prets the human’s desire for a role change by considering the differences between tight and loose

rein control of a horse which represent the rider controlling the horse’s movement and allowing

the horse to move freely respectively. A graphical representation of the different states is shown in

Figure 2.12.

FIGURE 2.12: Left: H-Mode assisted. Middle: H-Mode highly automated (contact). Right:
H-Mode highly automated (no contact) [16].

In the interaction, the robot (or vehicle) would normally operate autonomously by controlling

the steering wheel and the speed of the vehicle. The human initiates a role change by resisting the

change in the steering wheel’s orientation. When the force resisting the steering wheel’s movement

surpasses a threshold, a role change is triggered which decreases the robot’s LoA. When the

resistance force exerted by the human decreases to a value below another threshold or the human
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releases the steering wheel completely, the robot’s LoA increases and the robot once again operates

in an autonomous state.

Another approach focuses on a gradual shift in control between the human and the robot to facil-

itate a smooth transition [139, 140]. This approach is commonly referred to as shifting or sliding

autonomy. In Abbink’s work [124], the stiffness of the foot pedal and the steering wheel in a

semi-autonomous vehicle was used to express the robot’s desire for a role change. When the robot

disagreed with the human driver’s actions or detected an event where it should intervene to avoid

collisions with other vehicles, the stiffness of the foot pedal and the steering wheel would increase.

The increase in the stiffness would resist the human driver’s actions as they control the vehicle and

if the stiffness of the foot pedal and steering wheel increased to the point where the human cannot

override the stiffness, the robot is considered to have transitioned into an autonomous state.

Although Abbink’s work was on semi-autonomous vehicles, it is possible to transfer the model

to other applications. In this model, the robot is an autonomous vehicle with collision avoidance

capabilities. Unlike previous examples where the robot will automatically take control of the

system in order to avoid collisions, this model makes the robot’s intention to avoid collision known

to the human operator (driver) by increasing the stiffness of the foot pedal and steering wheel.

When the human can no longer overcome the stiffness of the robot, then a role change is considered

to have occurred as the LoA of the robot changed from Shared Control with Human Initiative to

Full Autonomy.

In a more recent work, Whitsell [135] took the concept of role change a step further when he

proposed the use of the method referred to as shared responsibility. Shared responsibility considers

that the robot and the human are simultaneously leaders and followers in the interaction. This was

done by decomposing interaction into subtasks. Whether the robot or the human is the leader

or the follower in a subtask is independent of their role in the other subtasks. When the human

initiates a role change in the interaction, the human takes the leader role in one of the subtasks

away from the robot. In return, the human relinquishes the leader role in one of the subtasks to the

robot so that the number of subtasks that the human has a leader role in remains the same. This is

in line with Long’s research which defined role change as the process of relinquishing one role and

assuming another [141]. In the example presented by Whitsell, the task being performed by the

human and the robot is divided into two subtasks where the robot was the leader in the first subtask
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while the human was the leader in the second subtask. When the human initiated a role change,

the roles of the human and the robot switched resulting in the human being the leader of the first

subtask while the robot became the leader in the second subtask. It is unclear from his work how

the shared responsibility method of role change would change in tasks with more subtasks and

whether the human or the robot must relinquish control of a subtask to becoming the leader in

another subtask. When implementing the shared responsibility approach towards role change, it is

possible for situations to arise where both the human and the robot attempt to take the leader role

in a subtask or both the human and the robot wish to relinquish the leader role in a subtask at the

same time. It is situations like these where factors for effective interaction and negotiation come

into play [130, 142, 143].

A human’s confidence in its robot co-worker is one of the factors determining whether the human

initiates a role change. However, to date, there has yet to be a role change method which uses the

confidence of the robot in its human co-worker to determine whether the robot should intervene

in its human co-worker’s actions and initiate a role change. The research by Sanders mentioned

in Section 2.2 and Rahman [17] are to date the closest work relevant to the research presented in

this thesis in terms of using the confidence or trust of the robot in its human co-worker to initiate

a role change. In his work, Sanders directly uses the human’s performance in doing the task to

scale the gains on the robot’s velocity [101]. As the human’s performance decreased, the robot

would decrease its maximum velocity to reduce the control the human has. In Rahman’s work,

the robot’s trust in its human co-worker is used to determine whether a handover occurs and what

type of handover will occur. The execution plan for the trust-based handover strategy proposed by

Rahman is shown in Figure 2.13.

When the robot’s trust in its human co-worker decreased below a threshold, the behavior of the

robot would change. From this point onwards, the type of handover the robot performed would

depend on the robot’s current trust in its human co-worker. Based on the definition of role change

used in this thesis, the robot’s response to its change in trust presented in Rahman’s work is not

considered to be a role change. This is because the robot’s LoA in the interaction does not change,

nor does its role in the interaction. For all values of the robot’s trust, the robot is the one who

decides how the handover will proceed in the pHRC. Unlike the method presented by Rahman

that only considers the robot’s current trust, the confidence-based role change method presented

in this thesis takes into account how the robot’s confidence in its human co-worker has changed,
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FIGURE 2.13: Execution plan for the trust-based handover strategy presented by Rahman [17].

the robot’s current confidence in its human and the robot’s bias when determining whether a role

change should be triggered in the pHRC.

2.4 Summary

Robots designed for pHRC have been developed for a variety of applications in both the industrial

and healthcare sectors. As the technology used in these robots improves, the robots are expected
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to be able to make more informed and nuanced decisions on how to react to changes in the en-

vironment and its human co-worker’s intentions. Previously, humans would be responsible for

the safety of the interaction. However, with the increased intelligence of robot co-workers, the

responsibility for maintaining the safety of the human and the robot during a pHRC can be shared.

Trust and confidence are key factors in determining whether a human intervenes in the actions of

its robot co-worker. Trust and confidence in pHRC is generally considered from the human’s per-

spective. Most existing models for trust and confidence cannot be used in real-time applications as

the trust and confidence of the human in its robot co-worker is obtained from a statistical analysis

of survey results following the interaction. For the robot to intervene in the actions of its human

co-worker, a role change must be initiated. Current models of role change in pHRC are generally

focused on the forces applied by the human and how they are applied.

This thesis aims to conduct systematic research, in the context of pHRC, from methods for user

intention identification in pHRC, modeling of robot confidence in its human co-worker, a general

framework for interaction modeling, to a method for confidence-based role change. It also aims to

verify the proposed methods through various experiments with different collaborative robots that

are designed for providing physical assistance to human co-workers.





Chapter 3

Robot Perception of its Human

Co-worker in physical Human-Robot

Collaboration

In order for a robot to determine whether it should intervene in the actions of its human co-worker

and initiate a role change during physical Human-Robot Collaboration (pHRC), one of the im-

portant capabilities the robot should have is to perceive its human co-worker’s actions. A robot’s

perception of a pHRC is limited by the number of sensors and the type of sensors it has access to.

The greater the variety in the robot’s sensors, the greater the amount of information the robot can

collect, allowing the robot to make more meaningful decisions.

In pHRC, the human generally interacts with the robot through a handlebar attached to the robot

[87][144][79]. This handlebar is often the only point of contact between the human and the robot.

The robot typically interprets the human’s intention through the handlebar by either directly mea-

suring the forces applied by the human through sensors such as load cells or strain gauges, or

indirectly by sensing the changes in its joint torques [145]. These methods provide force and

torque measurements but overlook information such as how the human grasps the handlebar. In-

corporating the human’s grasping information provides the robot with more information during

pHRC, improving the robot’s perception of the human’s actions.

35
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This chapter investigates the contribution the human’s grasping pattern and grasping strength to-

wards the robot’s perception of the human during pHRC. A method for identifying the orientation

of the human hand around a cylindrical handlebar [18] is presented (Section 3.2). Machine learn-

ing algorithms such as Support Vector Machine (SVM) and Bayesian Inference are used to classify

the orientation of a human’s hand during a static grasping scenario. This method is evaluated in

two scenarios. In the first scenario, the training data and the test data are different but from the

same subject. In the second scenario, the training data and the test data are from different sub-

jects. The changes in grasping strength as the human co-worker works collaboratively with a

robot to complete a task [19] are explored (Section 3.3). The changes in grasping strength when

the robot’s behavior is within the human’s expectations and when the robot behaves unexpectedly

are compared and contrasted. Finally, the benefits of incorporating the human’s hand orientation

and grasping strength in pHRC are discussed.

3.1 Human Grasping Pattern Detection

The sensor used in this thesis to detect the grasping pattern of the human co-worker is the Thrumode

Matrix Array Sensor (TMMAS) shown in Figure 3.1. The TMMAS is a flexible array of 10x16

pressure sensor cells from Sensitronics [146]. When pressure is applied to any of the 160 cells of

the TMMAS, the resistance of the cell changes. Each individual cell on the TMMAS is capable of

measuring pressures up to 16psi. The TMMAS was used in this thesis because it is a force sensi-

tive resistors which was both flexible and able to record both the pressure and the location where

the pressure was applied for multiple points of contact. Unlike most force sensitive resistors, the

sensor reading at each individual cell of the TMMAS is independent of the pressure applied to the

other cells which allows the TMMAS to simultaneously record the pressure applied at each of the

160 cells.

The average maximum grip strength of males and females between the ages of 20 and 49 is approx-

imately 122.65lb and 77.1lb respectively under the assumption that the right and left hands of the

subjects have equal strength [147]. The sensing area of the TMMAS is 2x3.5 inches. This results

in an average pressure of approximately 17.5psi and 11.0psi on the sensing area of the TMMAS

for men and women respectively. When grasping a handlebar, the grasping force applied by the

human is not equally distributed over the sensing area of the TMMAS due to the distribution of
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FIGURE 3.1: The Thrumode Matrix Array Sensor used in this thesis to record the grasping pat-
terns of the human co-worker. Reproduced from [18].

muscle, fat and bone in the human hand [148][149]. Taking into consideration the sensing range

of the TMMAS and the average maximum grip strengths for males and females, it is unlikely that

the pressure applied during data collection would saturate the cells in the TMMAS.

FIGURE 3.2: The Thrumode Matrix Array Sensor wrapped around a cylindrical handlebar and
covered in a polyurethane compound. Reproduced from [18].

The TMMAS was wrapped around the surface of a 27mm outer diameter steel cylinder with a

vertical slit used to feed the sensor’s cables into the interior of the handlebar. The diameter of the

handlebar was chosen so that the sensing area of the TMMAS would cover as much of the han-

dlebar’s circumference as possible without overlapping itself. A 3mm layer of polyurethane com-

pound with a 20A Shore hardness was placed over the TMMAS and secured as seen in Figure 3.2.
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The rubber compound increased the diameter of the handlebar closer to the optimal diameter for

grasping [150] while also transferring the grasping force of the human to the TMMAS.

As the TMMAS was designed to be laid flat, wrapping the TMMAS around the handlebar intro-

duced an initial bias to the pressure values in the sensor cells. In this thesis, the raw values of

pressure (P) from the TMMAS are used. The values obtained from the TMMAS fall within the

range 0≤ P≤ 127 where P = 0 represents that no pressure is being applied to the cell and P = 127

represents a saturated cell. It was found that the bias in the TMMAS cells generated by the vertical

slit and the flexing of the sensor would generally be below P = 25. The sensor reading seen in

Figure 3.3b depicts the pressure at each of the 160 cells of the TMMAS generated by the hand

print seen in Figure 3.3a. The 160 cells of the TMMAS are sampled at a rate of 50Hz through a

Snowboard, 3rd party data acquisition device designed specifically for the TMMAS [151].

(a) (b)

FIGURE 3.3: (a) A human hand print (b) The TMMAS sensor reading generated by the grasping
pattern shown in Figure 3.3a. Reproduced from [18].

3.2 Human Hand Orientation Identification

In this section, the orientation of the human hand around a cylindrical handlebar is identified

using the data from the TMMAS. Recognizing the human’s hand orientation around a cylindrical

handlebar can contribute to the robot’s understanding of how the human interacts with the robot

during a pHRC.
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FIGURE 3.4: How changes in hand orientation can influence the pose of the human operator when
the position of the hands and feet are fixed and wrist angle is approximately zero degrees.

Figure 3.4 shows an operator interacting with a robot arm designed for collaborative grit-blasting.

In the images, the position of the human operator’s feet are fixed and the operator’s hands are

placed on the handlebars with their wrist angles at approximately zero degrees. From the images,

it can be seen how the operator’s pose is affected by the relative orientation of the human’s hands

and the handlebars. Although the change in pose can be counteracted by a change in the human

operator’s wrist angle, having a large bend in wrist angle is unintuitive and results in increased

discomfort in the operator [152]. The human’s hand orientation can be used to provide insight into

the human’s arm posture and pose [153][154]. This information can be used in conjunction with

musculoskeletal models to gain insight into the operator’s strength and fatigue [155] which may

be a factor in prolonged pHRC.

3.2.1 Experiment Design

For identifying the orientation of the human hand when grasping a handlebar, two different sce-

narios are considered as follows:

• Scenario 1 - The training data and the test data are different but from the same subject. This

is useful in applications where the robot is used by known operators who would have had
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their grasping patterns recorded.

• Scenario 2 - The training data and the test data are from different subjects. This is useful

in applications where the robot can be used by any operator, even if their grasping patterns

have not been recorded.

Ten subjects were asked to participate in this study. Nine of the subjects participating in the exper-

iments were male and one was female. All of the subjects were right handed and all experiments

were performed using the right hand of the subjects. The length of the subjects’ right hands ranged

from 167mm to 202mm measured from the tip of the middle finger to the wrist crease and the width

of their right hands ranged between 77mm to 94mm measured along the metacarpal.

(a) (b)

FIGURE 3.5: (a) The position of the reference marker position on the subject’s hand (b) A subject
performing a power grip on the handlebar with the reference position on their hand aligned with

a reference position on the handlebar. Reproduced from [18].

Seventeen positions were marked and numbered around the circumference of the handlebar. These

marked reference positions were used to evaluate the accuracy of the identification methods. The

first sixteen positions were aligned with the sixteen columns of the TMMAS, the final reference

position was placed between the sixteenth and first marked positions in the small region where the

TMMAS did not cover. During the data collection process, a reference marker was also placed

onto the right hand of each subject between their thumb and forefinger; the position of the marker

is shown in Figure 3.5a. The marker on the subject’s hand serves as a reference point across all of

the subjects when aligning their hands for data collection. This reference marker is used purely to
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generated by wrapping the TMMAS around the handlebar is generally less than 800 which is an

average of P = 5 per cell. In Figure 3.7, less than 17 cells have a reading of P > 25 when the

human grasps the handlebar.

FIGURE 3.7: The total pressure applied to the handlebar and the number of cells with values over
25 as the subject grasps the handlebar. Reproduced from [18].

After the subject grasps onto the handlebar, both the Ptotal and the number of cells with values P >

25 increases. Following the increase in pressure, the subject’s grasping force generally decreases

slightly as they relax their grip to a comfortable level which is a natural reaction when grasping

and picking up objects [157]. From Figure 3.6 it can be seen that when a subject grasps the

handlebar only the fingers, thumb and a section of the palm are able to generate pressure values

of P > 25 so it can inferred that P > 25 is a relatively high value of pressure. Therefore, when

the human grasps the handlebar, although the pressure applied to each of the 160 cells of the

TMMAS increases, the majority do not surpass P > 25. The training data was collected once the

subject had maintained a stable grasp on the handlebar which can be seen between 32.5 seconds

and 35 seconds in Figure 3.7. 200 grasping readings were recorded whenever data was collected.

After the grasping pattern was recorded, the data was labeled with its corresponding marked ref-

erence position. The subject was then asked to release the handlebar. Once the sensor had settled,

the subject would regrasp the handle aligning their hand with the same marked reference position.

This process was repeated three times for each subject at each of the seventeen marked reference

positions around the handlebar. Releasing and regrasping the handlebar introduced variability into

the training data. When the subjects regrasp the handlebar, it is unlikely for the subject’s grasp to

be identical to the previous samples due to differences in grasping force and/or finger positioning.
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In practical applications, an operator’s hand orientation will not be limited to 17 predetermined

hand orientations around a cylindrical handlebar. To simulate this, additional datasets were recorded

where the subjects would grasp the handlebars at random orientations. After each dataset was col-

lected, the marked reference position closest to the marker on the subject’s hand was recorded as

the subject’s hand orientation for that dataset.

3.2.2 Classification of Hand Orientation

The TMMAS readings consisted of 160 pressure values, each representing the pressure at an in-

dividual cell around the cylindrical handlebar. Two classifiers, i.e. SVM and Bayesian Inference,

were used to identify the position of the subject’s hand. The collected datasets were labeled using

the convention shown in Table 3.1 and used as the input to the classifiers. The datasets could be

categorized as either a dataset where the subject aligned the marker on their hand with the marked

reference positions on the handlebar (LF) or a dataset where the subject grasped the handlebar at

random orientations (LR).

TABLE 3.1: Labels being used for the collected datasets. Reproduced from [18].

Label Description
LF-SX Dataset collected in a lab, where the marker on the subject’s hand is aligned with the

fixed reference points on the cylindrical handlebar for subject(s) A, where A can be
any number of subjects between 1 & 10. e.g. LF-S1 (one subject) or
LF-S12345678 (8 subjects)

LR-SX Dataset collected in a lab, where the subject A grasped the handlebar at random
orientations without aligning the marker on their hand with the reference points on
the handlebar.

The output of the classifiers was the estimated hand orientation of the subject. If the identification

system is to be implemented in a real-time pHRC scenario, the classifier must have a high accuracy

and classification speed. According to previous literature, human reaction time to tactile stimulus

is approximately 155ms [158] and human response time is approximately 385ms [159]. The dif-

ference between the two times signifies the time period where the human has felt the stimuli but is

unable to react to it. Ideally, the time required for the classification of the hand position should be

well below these times.
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SVM and Bayesian Inference were selected as the two identification systems used to classify the

orientation of the human hand in this thesis. SVM was chosen as it is known to be a powerful

tool for non-linear multi-class classification and has been used extensively for pattern recognition

and classifying human responses in pHRC [160][161]. It has also been previously implemented

in conjunction with the TMMAS to identify the direction in which the subject is pushing when

the operator is grasping the handlebar [162]. The libsvm library [163] was implemented in C++

and compiled for Matlab configured with Support Vector Clustering and a one vs. one multi-class

approach [164].

Bayesian Inference [165] on the other hand, was selected as the other identification system as

it allows the fusing of the prior into the new prediction. This can be relevant when considering

the changes in hand orientation over time during pHRC. It has also been used in a number of

previous works for real time estimation of robot grasping [166][167]. In this work, the world was

modeled as a finite space s = {s1...sn} of states where 1 ≤ n ≤ 17 with a finite observation space

z = {z1...zm} where 1≤ m≤ 160.

The sensor model uses the conditional probability of seeing the pressure reading zk for the hand

orientation (state) si, i.e. P(zk|si). A state vector ϕ is the probabilistic distribution over all hand

orientations. Given a prior estimate of the position vector ϕt−1, a new estimate for ϕt can be

obtained after observing zk by updating the probability distribution using Bayes’ Rule as seen

below where N is a normalizing factor:

ϕt(si|z) = ϕt−1

k=160

∏
k=1

P(zk|si)

N
(3.1)

The classification of the subject’s hand orientation was performed in Matlab, running on a PC

with a 3.47 GHz CPU on a Linux Operating System. In this work, training data was generated by

randomly sampling 200 TMMAS readings for each marked reference position from the datasets

where the reference marker on the subject’s hand was aligned with the reference positions on the

handlebar. While there is a risk of overfitting with SVM if the amount of training samples is too

high, the variability of the data across the 3 data collection instances per position per subject also

needs to be accounted for. The number of training data samples was empirically determined by

considering the relationship between the number of samples and the accuracy of the classification.
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Principal Component Analysis (PCA) [168] is often used as a tool to transform a high-dimensional

dataset into a smaller-dimensional subspace [169]. In this research, PCA was used to transform

the sensor readings obtained from the TMMAS to reduce the number of inputs for the classifiers.

By applying PCA to the input of the classifiers, the time required to identify the human’s hand

orientation should decrease. In previous works, PCA was adopted as a method to simplify the

classification of different human grasp types [170][171]. A result is considered to be statistically

significant if its accuracy is above 95% [172][173]. Figure 3.8 shows the number of principal

components required to represent 95% of the training data as the number of subjects increases.

As training data from more subjects are included, the variety of grasping patterns represented

within the training data increases which should improve the accuracy of the classifier in correctly

identifying the subject’s hand position.

FIGURE 3.8: The number of PCA components required to maintain 95% of the original dataset’s
information based on the number of subjects included in the dataset. Reproduced from [18].

It can be seen in Figure 3.8 that there is a general trend where the number of required principal

components increases as the number of subjects contributing to the training data increases. It

can also be seen that the number of principal components begins to plateau with the addition of

more subjects. In this work, the test data is classified against the training data, before and after

applying PCA in order to verify the effect PCA has on the accuracy and time required for the hand

orientation classification.
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3.2.3 Experiment Results and Discussion

In this section, an extract of the results from the experiments is provided. The complete results of

the experiments can be found in Appendix A. The results from the experiments are split into two

categories, accuracy and computation time. In the following tables, Exact refers to the accuracy

of the classifier for a correct classification. Within 1 refers to the accuracy of the classifier if the

adjacent marked reference position to the subject’s actual hand orientation is also considered to be

a correct classification. For example, if the subject’s hand was at the 15th position but the classifier

believed the subject’s hand was at the 14th position. The mean refers to the average accuracy of

the classifiers for the 10 subjects.

3.2.3.1 Scenario 1 Experimental Results

The purpose of Scenario 1 was to verify that Bayesian Inference and SVM were capable of identi-

fying the position of the subject’s hand around a cylindrical handlebar. In this scenario, the train-

ing and test data are different but come from the same subject. The training data is comprised of

datasets when the subject’s hands were aligned with the marked positions on the handlebar and the

test data consists of the datasets where the subjects grasped the handlebars at random orientations.

TABLE 3.2: Scenario 1 Example - Classification result of Subject 1 using Subject 1’s data as the
training data. Reproduced from [18].

Scenario 1 - Subject 1
Training Data Test Data Classifier Exact Identification Identification Within 1 Average Time (ms)

LF-S1 LR-S1 SVM Without PCA 76.27% 100.00% 0.31
LF-S1 LR-S1 SVM With PCA 76.92% 100.00% 0.05
LF-S1 LR-S1 Bayesian Without PCA 68.47% 95.17% 0.96
LF-S1 LR-S1 Bayesian With PCA 63.53% 85.03% 0.14

TABLE 3.3: Scenario 1 - Combined Results. The mean and standard deviation of the results for
all 10 subjects for Scenario 1. Reproduced from [18].

Classifier Exact Mean Exact Std Within1 Mean Within1 Std Time (ms) Mean Time (ms) Std
SVM Without PCA 69.83% 16.69% 93.79% 6.79% 0.32 0.03

SVM With PCA 70.06% 16.63% 93.67% 6.57% 0.05 0.005
Bayesian Without PCA 49.56% 20.30% 77.35% 18.20% 0.78 0.06

Bayesian With PCA 48.04% 13.48% 67.80% 14.22% 0.15 0.02
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Table 3.2 and Table 3.3 show the results from the experiments for Scenario 1. Looking at the

average time required for the classification, it is clear that the computational requirements for both

identification systems are sufficient for real-time pHRC.

In general, the accuracy of the SVM classifier exceeds that of the Bayesian Inference classifier.

The application of PCA had a negligible effect on the accuracy of the SVM classifier but had a

negative effect on the accuracy of the Bayesian inference classifier. Most works agree that the

accuracy of a Bayesian Inference classifier should increase or be similar after PCA is applied

[174][175]; however, that appears to not be the case . One possible explanation is because the

same PCA transform was applied to both the training and the test data, which represent the datasets

where the human’s hand orientation was aligned to the marked reference positions and randomly

oriented respectively. In previous works, the training data and the test data used for Bayesian

PCA classification were similar, i.e. the expectation is that the test data matches one of the states

in the training data. Therefore, even after a PCA transform, the training and test data are still

similar. However, in this application, the data used to generate the PCA transform is the dataset

where the hand orientation of the subject was aligned with the marked reference positions on the

handlebar and the human’s hand was randomly oriented in the test data. It is believed that the

accuracy of the Bayesian Inference classifier after PCA was similar when the orientation of the

subject’s hand in the test data was close to a marked reference position but decreased when the

marker on the subject’s hand was not near a marked reference position. From the tables, it can be

seen that the mean accuracy of the classifiers in Scenario 1 increases from 69.83%(σ = 13.48%)

to 93.79%(σ = 6.79%) for the SVM classifier and 49.56%(σ = 20.30) to 77.35%(σ = 18.20%)

for the Bayesian Inference classifier when considering the Exact Mean and Within 1 Mean cases

respectively.

During the classification process, the classifiers calculate the probability of the subject’s hand be-

ing at each of the marked reference positions. Figure 3.9 shows an example of the calculated

probabilities when the Exact classification was incorrect but the Within 1 classification was cor-

rect. It can be seen from the figure that the classifiers have a strong belief that the orientation

of the subject’s hand is at either the 9th marked reference position or the 10th marked reference

position. The SVM classifiers have an equal certainty for both positions and the difference be-

tween the certainty of the Bayesian Inference classifiers for both positions is small. This behavior
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FIGURE 3.9: A example of the probability of the subject’s hand being at each marked reference
position for an incorrect classification in Scenario 1. The red vertical line represents the labeled

position. Reproduced from [18].

is generally true for cases where the classification for Exact Mean was incorrect but the Within 1

Mean classification was correct.

Because the subjects grasped at random orientations for the test data, it is likely that the majority

of the hand orientations being classified were not aligned with a marked reference position. There-

fore, it is possible that the discrepancy between the accuracies of the Exact Mean and the Within 1

Mean was caused by the incorrect classification of which marked reference position was closer to

the subject’s hand marker when the subject’s hand was between two marked reference positions.

A factor which may have contributed to this discrepancy between the accuracies of the Exact Mean

and the Within 1 Mean cases is the webbing on a person’s hand between their thumb and forefin-

ger. This webbing deforms slightly during a grasping action which will shift the marker slightly.

Although this deformation is much smaller than the distance between two adjacent marked posi-

tions on the handlebar, it could be enough for the subject to incorrectly label the orientation of

their hand for the test data. This is especially true if the marker is approximately in the middle

of two marked reference positions. As the classifiers are able to recognize that the subject’s hand

orientation is between two marked reference positions, it may be possible that introducing another

marked reference position between each of the existing marked reference positions could increase

the overall accuracy of the classifiers.
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3.2.3.2 Scenario 2 Experimental Results

Scenario 2 verifies whether the two classifiers could be used to identify the hand orientation of a

subject using the training data from other subjects. An example result from Scenario 2 can be seen

in Table 3.4 where the dataset LF-S10 was used to classify the dataset LR-S1.

TABLE 3.4: Scenario 2 Example - Classification result of Subject 1 when using Subject 10’s data
as the training data. Reproduced from [18].

Scenario 2 - Subject 1 Example 1
Training Data Test Data Classifier Exact Identification Identification Within 1 Average Time (ms)

LF-S10 LR-S1 SVM Without PCA 40.37% 64.53% 0.42
LF-S10 LR-S1 SVM With PCA 36.30% 66.17% 0.07
LF-S10 LR-S1 Bayesian Without PCA 16.35% 29.47% 1.45
LF-S10 LR-S1 Bayesian With PCA 10.00% 23.33% 0.31

From the table it can be seen that there is a drastic drop in the accuracy of the classification com-

pared to the results from Scenario 1. However, by increasing the number of subjects contributing

to the training data, the variability in the training data increases may increase the accuracy of the

classifiers.

TABLE 3.5: Scenario 2 Example - Classification result of Subject 1 when using the data of all
subjects excluding Subject 1 as the training data. Reproduced from [18].

Scenario 2 - Subject 1 Example 2
Training Data Test Data Classifier Exact Identification Identification Within 1 Average Time (ms)

LF-S2345678910 LR-S1 SVM Without PCA 64.92% 90.22% 1.65
LF-S2345678910 LR-S1 SVM With PCA 65.10% 90.67% 0.4
LF-S2345678910 LR-S1 Bayesian Without PCA 35.37% 61.57% 1.65
LF-S2345678910 LR-S1 Bayesian With PCA 10.37% 21.62% 0.27

Table 3.5 shows the results of the classifiers when the data of all subjects excluding Subject 1 was

used as the training data to identify the orientation of the Subject 1’s hand in the dataset LR-S1.

It can be seen that by increasing the number of subjects the accuracy of the classifications has

increased even though the subject whose hand orientation is being identified is not included in the

training data. For the SVM classifier, the accuracy increased from 40.37% and 64.53% to 58.51%

and 95.35% for the Exact and Within 1 cases respectively. Similarly, the accuracy of the Bayesian

Inference classifier also increased from 16.35% and 29.47% to 45.70% and 85.70% for the Exact

and Within 1 cases respectively. The mean accuracies for the classifiers can be seen in Table 3.6.
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TABLE 3.6: Scenario 2 - Combined Results. The mean and standard deviation of the results for
all 10 subjects for Scenario 2. Reproduced from [18].

Classifier Exact Mean Exact Std Within1 Mean Within1 Std Time (ms) Mean Time (ms) Std
SVM Without PCA 62.00% 14.09% 89.13% 8.93% 1.49 0.07

SVM With PCA 61.68% 12.23% 89.21% 8.46% 0.37 0.03
Bayesian Without PCA 33.52% 7.52% 63.79% 12.72% 1.44 0.11

Bayesian With PCA 7.59% 2.8% 20.16% 6.78% 0.26 0.02

Although the accuracy of the classifications improves with the inclusion of more subjects in the

training data, the overall accuracy of the classifiers in Scenario 2 is lower than the accuracy of the

classifiers in Scenario 1. The accuracy of the SVM classifier decreased slightly while the accuracy

of the Bayesian Inference classifier decreased by a considerable amount.

FIGURE 3.10: A example of the probability of the subject’s hand being at each marked reference
position for an incorrect classification in Scenario 2. The red vertical line represents the labeled

position. Reproduced from [18].

Figure 3.10 shows the probability of a subject’s hand being at each marked reference position for

an incorrect classification. Unlike the sample from Scenario 1 which showed that the orientation

of the hand was likely to be between the two marked reference positions, the probabilities in

Scenario 2 are generally lower and more spread out. This implies that in Scenario 2, the classifiers

can identify the general location of the subject’s hand, but the classification of the hand position is

less reliable than the classifications in Scenario 1.
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One possible explanation for this is the differences in the hand sizes between the subjects. Unlike

in Scenario 1, where the hand used for the training and test data is the same, in Scenario 2 the

training data is composed of data from other subjects. The difference between the length of the

largest and smallest hand sizes of the subjects was 35 mm. As the distance between the reference

positions was approximately 6 mm, even if each subject’s hand was aligned with the marked

reference position, the location a subject’s fingers could differ by a number of marked reference

positions. As the majority of the forces applied to a handlebar during a grasping action occur at the

fingers [149], the corresponding features appearing on the sensor readings would appear to have

shifted due to the size of their hands.

3.2.3.3 Discussion

The two classifiers, Bayesian Inference and SVM, were applied to two scenarios which were com-

mon in pHRC. Based on the results of the experiments, it was found that the SVM classifier

was more suited for the task of identifying the orientation of a person’s hand around a cylindrical

handlebar than the Bayesian Inference classifier. The effect of PCA on the accuracy of the clas-

sifications was negligible in the case of SVM, but did assist in reducing the computational time

required by the classifier. Although the Exact accuracy of the SVM classifier is not ideal, the

Within 1 classifier results showed that the SVM classifier is able to reliably identity the orienta-

tion of the human’s hand within 1 adjacent reference position. From the results was shown that

in the situations where the Exact classification was incorrect but the Within 1 classification was

correct, the marker on the subject’s hand was between the identified marked reference position of

the SVM classifier and the labeled marked reference position used in the test data. Therefore, it

is believed that the Exact accuracy of the SVM classifier can be improved by introducing more

marked reference position between each of the existing marked reference positions.

The results also indicate that although training data from other subjects can be used if there is

enough variability in the data, the best solution for practical applications is to gather a training

dataset from the operator whose hand orientation is being identified. This is because even though

the accuracy of the classification is high in Scenario 2, the reliability of the predictions may not

be good enough for practical applications. The results also suggest that increasing the number of

reference positions around the handlebar may also increase the accuracy of identifying the position
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of the operator’s hand. In future works, the presented method can be improved by incorporating

the dynamic aspects of grasping such as the effects of settling time, the movement of the human’s

hand, the application of directional forces as inputs in the classifier.

One possible application of this research is in the development of a model for human pose estima-

tion during pHRC. If the human is holding onto the end-effector of a robot, then the position of

their hands relative to the robot is known. Previous works have also demonstrated how the human’s

grasping force on a handlebar is related to the stiffness of their arm [176][177] and arm posture

[153][154]. By combining the information on the human’s hand position and orientation around

the handlebars and the human’s grasping strength information, a better estimate of the human’s

pose may be obtained. Using musculoskeletal models, this information could then be used to gain

insight into the operator’s strength and fatigue [155] or to adjust the robot’s end-effector position

during pHRC to a more ergonomic position.

3.3 Human Hand Grasping Strength

Previous research has shown that a human will instinctively tighten their grip when an object is

unexpectedly pulled from between their fingers [178][179]. Analyzing how the human responds

to physical stimuli and robot misbehavior in pHRC could give insight to a human’s instinctive

reactions during pHRC.

This section presents the preliminary findings of a study examining the reaction of human during

when the robot behaves unexpectedly during pHRC [19]. The focus of the study is on how the

grasping strength of the human operator changes during when the robot behaves unexpectedly

pHRC and how changes in the human’s grasping strength may be an indication of how the human

feels about its robot co-worker.

3.3.1 Experimental Design

As the natural reaction of the human when an object is unexpectedly pulled from their fingers is

to tighten their grip, the human’s reaction to the robot behaving unexpectedly during pHRC is ex-

plored by observing the changes in the human’s grasping force as the human works collaboratively
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with its robot co-worker. This is conducted through two experiments which reflect two scenarios

that may occur during pHRC. In the first scenario, the robot co-worker will misbehave at random

intervals during the pHRC. In the second scenario, the robot co-worker will not misbehave and

support the human during the pHRC. These two scenarios may show a difference in the human’s

grasping force when the robot’s behavior is meets the human operator’s expectations and when the

robot behaves unexpectedly. In these experiments, the Jexo [180] (Figure 3.11), which is a upper

limb exoskeleton designed for collaborative grit-blasting was used.

FIGURE 3.11: The Jexo exoskeleton equipped with a handlebar and a laser range finder to emu-
late an assisted grit-blasting operation.

The Jexo is used to provide physical assistance to the human operator as they complete a collabo-

rative grit-blasting task. Grit-blasting is a physically demanding task where human operators are

required to support the blasting nozzle’s reaction loads of up to 100N for prolonged periods of

time [28]. This task is made more challenging due to the limited visibility caused by the dusty

environment and the personal protective equipment that are required to be worn by the human

operator.

The human operator controls the Jexo through the handlebar mounted to the end of the exoskele-

ton. The robot detects the forces applied by the human through the load cell which connects the

handlebar to the rest of the exoskeleton as seen in Figure 3.2. The robot then uses the detected
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forces to infer the human’s intention to provide physical assistance during the collaborative grit-

blasting task.

The TMMAS that is wrapped around the cylindrical handlebar (Figure 3.2) is used to record

the grasping strength of the human operator during the pHRC. In this experiment, the grasp-

ing strength of the human operator is collected from the TMMAS through the Sensoray 2608 data

acquisition device [181]. The Sensoray 2608 collects TMMAS data at a rate of approximately

50Hz and the total pressure applied by the human operator is expressed in millivolts (mV ). Each

analog input of the Sensoray 2608 is capable of measuring up to 10V . Based on the grasping

information from Section 3.1, it can be inferred that the pressure applied by the human hand will

not cause the sensor to saturate. These experiments focus on observing the changes in the grasping

strength of the human operator during pHRC. Therefore, it is the relative values of the grasping

strength during the pHRC which are important and not the absolute values of the human’s grasping

strength.

In a collaborative grit-blasting operation, particulate matter would normally be ejected from a noz-

zle attached to the end-effector of the exoskeleton. However, as the experiments were performed

indoors, no particulate matter was released during the experiments. Instead, a laser range finder

was fixed onto the end-effector of the Jexo. The laser range finder emits a visible light to simulate

the stream of grit and provides the human with a visual representation of where the nozzle would

be pointing. The three parameters of interest in these experiments are:

• FH - The force applied by the human operator to the handlebar on the Jexo’s end-effector.

This parameter is measured by the load cell attached to the end-effector.

• FR - The guidance force generated by the Jexo which guides the blasting point along the

path or returns the blasting point to the path when the blasting point deviates from the path.

• FG - The sum of the pressure readings measured by the TMMAS

In the experiments, the goal of the human is to use the laser pointer on the end-effector of the

Jexo to follow a path shown on the wall. The control of the exoskeleton utilizes the measured

interaction force FH (the force measured by the load cell in the robot end-effector) to implement

an admittance control loop [86]. The robot assists the operator by applying a virtual guidance force
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FR to the admittance control loop which guides the blasting point (the position on the wall projected

by the laser range finder) to follow the path that the human operator is currently following. The

guidance force of the robot FR can be decomposed into three components FRx , FRy and FRz which

are given by:

FRx = KN ·Dx +KT ·Lx (3.2)

FRy = KN ·Dy +KT ·Ly (3.3)

FRz = KP ·Dz (3.4)

where Dx and Dy is the distance between the blasting point and the path that the human operator is

currently following shown in Figure 3.12, Dz is the distance recorded by the laser range finder to

the wall, Lx and Ly is the horizontal and vertical distance between the blasting point and the next

point of interest (the corners of the path) respectively and KN , KT and KP are constants.

The D component of the equations are introduced to keep the laser pointer on the path and the

direction of D is represented as a perpendicular vector between the laser’s current position and

the path. The further the laser deviates from the path, the larger this component. The second

component of the guidance force L is a constant force in the direction of the next point of interest

(the corners of the path). The direction of L is represented as a unit vector between the laser’s

current position on the wall and the next point of interest.

In the experiments, the value of KT is chosen such that the guidance force has a magnitude of

FR = 5N when the laser is on the path. The value of Dx and Dy should be small to prevent the laser

from overshooting when it attempts to return the laser to the path when the position of the laser on

the wall deviates. Without human intervention, the robot is able to complete the task on its own.

The role of the human in the experiments is to ensure that the laser is following the path.

Before the subjects performed the experiments, the subjects manually followed the paths shown

in Figure 3.12 and Figure 3.13 using the blasting point projected by the laser range finder to

familiarize themselves with the operation of the exoskeleton. The goal of this step is to ensure that

the subjects of the experiment are comfortable with the control of the exoskeleton regardless of

their prior experience.
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3.3.1.1 Experiment 1 - Unexpected Robot Behavior

In the first experiment, the human uses the laser emitted by the laser range finder to follow the path

shown in Figure 3.12 in a clockwise direction.

FIGURE 3.12: The blasting path that the subject follows in Scenario 1. The subject moves the
laser pointer clockwise around the path in the direction shown. Reproduced from [19].

The goal of the subject during this experiment is to follow the path as accurately as possible. The

subject is aware of the guidance force FR provided by the robot to help them along the path and to

reduce the blasting point’s deviation from the blasting path.

At random instances during this experiment, the robot create a disturbance and apply a strong

force in the direction perpendicular to the blasting path. This will cause the blasting point to shift

away from the blasting path which the human is attempting to follow. Prior to the experiments,

the subjects practiced the task by following the path on the wall until they are comfortable with

controlling the robot. The subjects were not informed that the robot would behave unexpectedly

in Experiment 1. This is to prevent their prior knowledge of the robot’s unexpected behavior from

affecting the subject’s initial response to the robot’s misbehavior. Following the first disturbance,

although the subject may suspect that more disturbances may occur during the rest of the inter-

action, the subject does not know when they may occur or how strong the disturbances will be.

Although the subjects may suspect another disturbance, they may not be expecting another distur-

bance to occur. It will be interesting to explore in future works how a subject’s response to robot

misbehavior changes with time and experience.
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3.3.1.2 Experiment 2 - Human Initiated Change

In the second experiment, the subject will be the one who initiates changes in the task. The

blasting path seen in Figure 3.12 was modified to have two distinct paths which are represented in

Figure 3.13 as red lines.

FIGURE 3.13: The blasting path that the subject follows in Scenario 2. The subject moves the
laser pointer clockwise in the direction shown around the two paths marked in red and is able to

travel between the two paths. Reproduced from [19].

In this experiment, the subject will be following one of the two blasting paths shown in Figure 3.13.

Similar to the previous experiment, the robot will apply a guidance force which will help the

subject follow the paths. At any point during the pHRC, the subject has the ability to switch from

one path to the other.

The subject switches paths by moving the blasting point from one blasting path to the other. Ini-

tially, as the subject attempts to change paths, the robot will resist the change in paths as it detects

that the subject as deviated from the current blasting path. This resistance force will increase until

the new path becomes closer to the blasting point than the previous path. At this point, the robot

will recognize that the subject has decided to change paths and the guidance force will change so

that the blasting point will follow the new path.
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FIGURE 3.14: (a) A sample result from Experiment 1. FH and FR are measured in N and the
grasping force is measured in mV (b) A magnified view of the forces during robot misbehavior at

t = 15.5 s from the sample result shown above. Reproduced from [19].

3.3.2 Experimental Results

3.3.2.1 Experiment 1 Experimental Results

A sample result from Experiment 1 can be seen in Figure 3.14a. The characteristics of all the

results of Experiment 1 are similar to the one shown. In this experiment, the goal was to observe

the reaction of the subject at the handlebar when the robot behaves unexpectedly. Figure 3.14b is a

magnified view of one of the disturbances generated by the robot throughout the experiment. The

figure shows a sharp increase in FR followed after a short delay by FG and FH . The delay between

FR and the other two forces, can be attributed to the subject’s reaction time. However, the time

delay between the TMMAS reading (FG) and the load cell reading (FH) was not expected prior to

the experiment but remained consistent over the course of many experiments.
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This phenomenon was originally thought to have been caused by the handlebar on the exoskeleton

pushing against the subject’s hand when the disturbance generated by FR occurs. However, if

this was the case then the force FH would have also increased at the same time as FG. When the

force FG increased, FH did not increase which indicates that the net force on the handlebar did

not change. Although the load cell and the TMMAS poll data at different frequencies, 50Hz and

120Hz respectively, it does not account for the 200ms delay seen Figure 3.14b. The delay shows

that prior to the subject pushing the handlebar of the Jexo to return the blasting point to the path,

the subject had already increased their grasping force on the handlebar. As the handlebar moved

in the subject’s hand as a result of the disturbance, the subject’s body would react by attempting

to prevent the displacement of the handlebar resulting in a stiffening of the subject’s hand. In

Johansson’s work [182], he elaborates on how this automatic grasping force response is a result of

the human body’s attempt to prevent slippage. If the subject’s hand tenses, then it explains why

the grasping force FG measured by the TMMAS would increase prior to the increase in FH as the

handlebar is encompassed by the subject’s hand. This implies that before the subject consciously

took action, their body had already reacted to the robot’s unexpected behavior.

3.3.2.2 Experiment 2 Experimental Results

In Experiment 2, the applied forces of the subject on the handlebar were observed in the situa-

tion where the subject was the one who initiated a change in the pHRC. A sample result from

Experiment 2 is shown in Figure 3.15a reveals that FH increases and decreases throughout the

experiment. It is interesting to note that this pattern is not present in the subject’s grasping force

FG. The sample shown in Figure 3.15a is representative of all the Experiment 2 results as they all

reveal similar characteristics. The differences between FG and FH indicate that although the force

applied to the end-effector is fluctuating, the overall change in the grasping force of the subject is

negligible. The small increases and decreases in the grasping force could have been caused by the

subject adjusting their grip on the handlebar.

A magnified view of one of the instances where the subject decided to change from the current

path to the other path is shown in Figure 3.15b. A closer look at the forces during the change in

path reveals a difference between the results from Experiment 1 and Experiment 2. As the subject

is the one initiating a change in the pHRC, the expected result for this experiment was for the
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FIGURE 3.15: (a) A sample result from Experiment 1. FH and FR are measured in N and the
grasping force is measured in mV (b) A magnified view of the forces when the human initiates a

change in task at t ≈ 31.5 s from the sample result shown above. Reproduced from [19].

forces FH and FG to increase before FR as the subject would have to apply forces to the handlebar

to initiate a change in the path and the robot would react by producing a guidance force FR. While

this appears to be the case, the reading from the load cell leads the reading from the TMMAS

by 300ms. The time delay implies that although the subject had already applied a large enough

force to the handlebar of the Jexo, there was no measurable change in the total grasping force of

the subject. This time delay between FH and FG when the subject is changing paths is consistent

throughout the collected data for this experiment.

This phenomenon can be explained by the redistribution of the grasping force around the handle-

bar. When the subject wants to change paths, they push the handlebar in the direction that they

want to move the blasting point. During the initial pushing action, the forces on one side of the

handlebar increases while the forces on the other side of the handlebar decreases. This explains
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why there is no change in the FG when FH increases. The delayed increase in FG occurs when the

handlebar of the Jexo is already in motion and the human has grasped onto the handlebar. The

results indicate that the grasping force of the subject FG measured by the TMMAS are not always

reflected in the force applied to the handlebar FH measured by a load cell and vice versa. The load

cell measures the net forces applied to the handlebar whereas the TMMAS measures the forces

applied from all directions to the handlebar.

3.3.3 Discussion

The two experiments presented in this section explored how the grasping strength of the human

operator changes during pHRC in response to changes in the task. The first experiment explores

how the grasping strength changes when an unexpected event occurs during the interaction while

the second experiment explores how the grasping strength of the human changes when they initiate

changes within the task. In the first experiment, while the human is performing a path following

task, the robot will behave unexpectedly and create a disturbance in the interaction. The distur-

bance moves the blasting point on the wall off the path and the human must apply a force to the

robot end-effector to move the laser back onto the path. In the second experiment, the human has

the option to switch between the paths shown in Figure 3.13 which initiates a change in the task.

To change paths, the human must apply a force to the robot end-effector which overcomes the

guidance force FR provided by the robot.

Previous works have shown that unexpected occurrences will result in an increase in the human’s

grip strength in humans [178]. Therefore, the expectation was that when the robot creates a dis-

turbance, the grasping force of the human on the robot end-effector would increase significantly.

Figure 3.16 shows an example of the grasping force of the human FG and the force that the human

applies to the end-effector FH during both Experiment 1 and Experiment 2.

The subject’s reaction to the disturbances and the applied forces when the human changes paths is

represented by the increases in the value of FH in Figure 3.16a and Figure 3.16b for Experiment

1 and Experiment 2 respectively. In Experiment 1, the grasping force of the human increases

significantly every time the robot creates a disturbance. On the other hand, the grasping force

of the human in Experiment 2 does not always increase significantly. In this experiment sample,

for the second, fourth and sixth path changes, the grasping force of the human on the handlebar
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FIGURE 3.16: (a) A graph depicting the grasping force FG and the applied operator load FH
during Experiment 1. (b) A graph depicting the grasping force FG and the applied operator load

FH during Experiment 2.

barely increases and in some cases is actually lower than the force applied by the subject when not

initiating a change in path. It would be interesting to explore in future works whether this would

change with repeated experiments with the same subjects.
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By comparing the average grasping force of the human prior to the disturbance or path change and

with the peak grasping force when there is a disturbance or path change, the results in Table 3.7

was obtained. Only the percentage increase in grasping force used to calculate the values in the

table as the grasping force before and during a disturbance or path change varies between subjects.

TABLE 3.7: Table shows the statistics concerning the increase a human’s grasping strength in
response to an unexpected event and a human initiated change in the task in Experiment 1 and

Experiment 2 respectively.

Experiment 1 Experiment 2
Mean Increase (%) 737.63 443.02

Standard Deviation (%) 399.56 335.77
Minimum Increase (%) 294.10 126.80
Maximum Increase (%) 1411.31 1119.24

From the data, it can be seen that there is a larger increase in the grasping force of the human as a

result of the robot’s disturbance in Experiment 1. Both the mean increase and minimum increase in

grasping force is higher in Experiment 1. Despite this, because there were instances in Experiment

2 where the subject changing paths also resulted in a large increase in grasping strength, a large

increase in grasping force does not necessarily indicate unexpected robot behavior. However, it

can be inferred from the results that a large increase in the grasping strength of the human signifies

that there has been a change in the interaction as the grasping force only increases significantly in

both experiments when there is a change in the task.

One aspect of the experiments which needs to be explored further is the inconsistency in the

increase in the human’s grasping forces in Experiment 2. There were no consistent patterns for

determining why the subject’s grasping strength in Experiment 2 sometimes increased by a large

amount. Possible explanations include the subject’s unfamiliarity with the robot, the subjects

grasping more firmly to prepare themselves to initiate a change in the task or the subjects grasping

harder because they know they need to overcome the guidance force of the robot. This will need

to be explored in further detail in the future.

One of the possible applications of this research is in industrial pHRC scenarios where the point

of contact between the human and robot is a cylindrical handlebar. Currently, for most industrial

applications, it is a requirement for devices to incorporate a 3-position switch to break the circuit

when the switch is not pressed and when it is fully depressed. If handlebars for pHRC are equipped
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with sensors such as the TMMAS, incorporating a 3-position switch into the handlebar may no

longer be feasible. Therefore, this research could be used as a replacement for the 3-position

switch which can also be used to determine when an unexpected event occurs during the pHRC.

3.4 Summary

In this chapter, the contribution the human’s hand orientation and grasping strength towards the

robot’s perception of its human co-worker during pHRC. The TMMAS sensor was used to record

the grasping patterns of human operators as they physically interact with a robot through a cylin-

drical handlebar mounted onto the end-effector of the robot.

The information derived from the TMMAS sensor showed that it is possible to determine the

orientation of the human’s hand around the cylindrical handlebar. The human’s hand orientation

could provide insight into the human’s pose. The human’s pose during a pHRC can influence a

number of factors such as the safety of the human, the energy expenditure of the human and the

human’s strength during the pHRC. This information provides the robot with more information

about the human’s current status which can be used by the robot to refine its understanding of the

human’s actions during pHRC.

The TMMAS was also used to observe the changes in the human’s grasping strength during when a

robot behaved unexpectedly. The experiments confirmed the hypothesis that a human will instinc-

tively increase their grasping strength when the robot behaves in an unexpected manner during a

pHRC. This result also infers that one of the human’s responses to unexpected occurrences during

pHRC is to tighten their grip. This information could possibly be used by the robot to gain insight

into the human’s state. As it was shown that the grasping force of the human increased when the

robot behaved unexpectedly, it may be possible to use the information for inferring the human’s

confidence or trust in its robot co-worker during pHRC.



Chapter 4

A Robot Confidence Framework for

physical Human-Robot Collaboration

Chapter 3 discussed how the robot’s understanding of the human’s intention in physical Human-

Robot Collaboration (pHRC) can be enriched by utilizing the information from the human’s grasp-

ing strength and hand orientation. From the robot’s perspective, the human’s actions and intention

can be seen to be either beneficial or detrimental.

Whether an action is beneficial or detrimental to the task goals is dependent on the robot’s under-

standing of the task. The difference between the human’s actions and the robot’s expectations of

the task can provide a measure of the robot’s perception of the human’s performance in doing a

task. In this chapter, a robot confidence framework which uses the robot’s perception of its human

co-worker’s performance is presented.

This chapter is organized as follows. Section 4.2.1 presents a model for calculating the robot’s

perception of its human co-worker’s performance in a task component. This model compares

the robot’s observations of the human’s actions with the robot’s understanding of how the task

should be performed to calculate the performance of the human. Section 4.2.2 presents a model

for calculating the confidence of the robot based on its perception of the human’s performance.

This model uses the human’s performance in the task components and the relative importance of

the task components to measure the robot’s current confidence in its human co-worker. Section 4.3

presents a robot confidence framework by applying it to three collaborative pHRC scenarios. In

65
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these case studies, the robot monitors the actions of the human during the pHRC and calculates

its confidence in its human co-worker in real-time. Section 4.5 discusses limitations of the robot

confidence framework.

4.1 Motivation for the Robot Confidence Framework

The goal of the robot confidence framework is to allow a robot to emulate how a human would

determine their confidence in their human co-worker. Assume a Human-Human Interaction (HHI)

where one of the humans is a supervisor and the other human is a worker. If the worker were to

perform poorly, the supervisor’s confidence in the worker would decrease. Similarly, if the worker

performs well, the supervisor’s confidence in the worker would increase. The only exception

to these statements is if the supervisor has full confidence or no confidence in the worker, in

which case the supervisor’s confidence cannot increase or decrease respectively. In the interaction

between the supervisor and the worker, it is reasonable to make the assumption that the supervisor

will intervene in the worker’s actions if the supervisor’s confidence in the worker is too low.

Earlier it was mentioned that the cause of the supervisor’s confidence in the worker dropping

is the worker’s decreased performance. A human’s confidence is based on their accumulated

experiences and prior knowledge. As they observe the state of a task or interaction, they are

able to subjectively measure the performance of their co-workers based on their experience and

knowledge and there are often many factors which can contribute to the supervisor’s perception

of the worker’s performance. Therefore, a method for modelling the robot’s perception of the

human’s performance is needed. The robot’s perception of the human’s performance during the

task can then be used to calculate the robot’s confidence in its human co-worker.

One other aspect to consider is whether the robot’s confidence in its human co-worker should

change if it cannot observe the human. In the HHI scenario, if the worker performs poorly but

the supervisor is unable to observe the worker’s poor performance or the results of the worker’s

poor performance, it is logical to assume that the supervisor’s confidence in the worker would not

decrease. This is because the supervisor’s confidence is based on their perception of the task and

as the supervisor could not perceive the poor performance, the supervisor’s confidence should not

change. By extension, if the worker were to be performing well in the task, but the supervisor was
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unable to observe the worker’s performance, then the supervisor’s confidence should also remain

unchanged.

The supervisor’s confidence in the worker is also influenced by worker’s overall performance in

the task. This means that the supervisor’s expectations and perception of performance in various

components of the task and the contribution of these components to the supervisor’s overall confi-

dence must also be taken into account in the robot confidence framework. The following section

will describe the robot confidence framework and how these aspects of confidence are modelled

within the framework.

4.2 Robot Confidence Framework

The robot confidence framework uses the robot’s observations of its human co-worker’s actions

during pHRC to quantify the robot’s confidence in its human co-worker. The presented frame-

work consists of a performance model and a confidence model. In the performance model, the

robot decomposes the task into task components. The robot then measures its human co-worker’s

performance in each of the task components based on its expectations of the human’s actions in

the task component. In the confidence model, the robot uses the human’s performance in each of

the task components and the relative importance of each task component to calculate the robot’s

confidence in its human co-worker. A graphical representation of the flow of information in the

robot confidence framework can be seen in Figure 4.1.

4.2.1 Performance Model

4.2.1.1 Decomposing the pHRC into task components

In this thesis, the robot’s confidence in its human co-worker is defined as the result of a cost/ben-

efit analysis of the robot’s perception of its human co-worker’s actions. This is achieved by first

modelling the robot’s perception of its human co-worker’s performance in the pHRC in terms of

rewards and penalties. For the robot to measure the performance of its human co-worker during

pHRC, the robot must have a method of observing its human co-worker’s actions. A robot’s per-

ception of the human’s actions and its surroundings is limited by the number of sensors and the
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FIGURE 4.1: A flowchart showing the flow of information for the robot confidence framework in

a pHRC. The robot confidence framework is composed of n(c+n) task components where n(c+n)
is the sum of the number critical and non-critical components in the task.
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types of sensors it possesses. Therefore, the robot’s perception of its human co-worker’s perfor-

mance during pHRC should be defined in terms of what the robot can observe using its sensors.

This can be done by decomposing the pHRC into task components based on the information that

the robot has available to it. These task components are used to measure the human’s performance

in various aspects of the task. Examples of possible task components in pHRC can include but are

not limited to observable phenomenon such as collision avoidance, acceleration, accuracy, applied

operator force and operator position. There is no limit to the number of task components; however,

the selected task components must be relevant to the task being performed and the robot needs to

have a method of observing the human’s actions in the task component. The observations of the

robot in a task component can be obtained directly or indirectly. A direct observation is what

the robot detects through its sensors, while an indirect observation is something which must be

inferred from the direct observations. Examples of indirect observations can include intangible

aspects of the task such as the completion or accuracy of a task.

Task components can be categorized as either critical components or non-critical components.

Critical components are generally task components which have a direct impact on the safety of the

robot and/or its human co-worker during the pHRC or are essential to the successful completion

of the task being performed collaboratively by the human and the robot. Non-critical components

on the other hand are used to assess the performance of the human co-worker in aspects of the

task which do not fall into the critical component category. The robot’s perception of the human’s

overall performance in the pHRC can be inferred from the human’s performance in the critical and

non-critical task components. It must be noted that the categorization of the task components is

subjective and can change based on a number of factors such as the purpose of the pHRC or level

of risk.

4.2.1.2 Modelling a performance in a task component

In the robot confidence framework, the robot’s perception of the human’s performance in a task

component is modeled as a Fluid Stochastic Petri Net (FSPN) which has been used previously to

model accumulated rewards and penalties in Human-Robot Interaction (HRI) [183][184]. FSPN

was chosen as it intuitively emulates the process of modelling how a supervisor’s perception of

performance can change as a result of their expectations and observations. The description of how
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Rewards and penalties are used to define what the robot considers to be a good performance or a

bad performance in the task component and control the flow of fluid in and out of the fluid place

φA. There is no limit to the number of rewards and penalties which can be defined for a pHRC.

For a human, it is their previous experiences and knowledge that shapes their understanding of

what they consider to be a good performance or a poor performance. To emulate this in the per-

formance model, the rewards and penalties in the task components reflect the robot’s expectations

of the human’s actions in the task component. The robot’s expectations of the human’s actions

in a task component can be derived from previous collaborative operations between the robot and

the human, by identifying acceptable ranges for the observations from the literature or by consult-

ing industry experts. The modelling of a robot’s expectations using this information can take any

form, from a simple mapping of the observations to a reward or penalty to the output of a machine

learning algorithm depending on the complexity of the relationship.

The robot compares its observation of its human co-worker’s actions with its expectation of the

human’s actions during the task. If the observation is within the expected range, then a reward

would increase the amount of fluid within the fluid place φA. However, if the observation is outside

the expected range, the amount of fluid entering the fluid place would decrease or cease entirely.

Similarly for penalties, if the observation is within the expected range, the fluid level of φA will not

decrease. On the other hand, if the observations are outside the expected range, then the amount of

fluid drawn from φA would increase based on the difference between the robot’s observation and

the expected range of values.

The magnitude of the penalties and rewards at each time step are not only dependent on the dif-

ference between the robot’s observations and the robot’s expectations of the human’s actions but

also the rate at which the robot updates its observations. If the robot updates its observations of

the human’s actions at a faster rate, then the maximum penalty and/or reward at each time step

should be smaller. This is especially important for penalties to prevent the robot’s perception of

the human co-worker’s performance in the task component (fluid in φA) from depleting before its

human co-worker has an opportunity to react or correct their errors.

As the rewards and penalties are dependent on the robot’s observations, if the robot cannot observe

the associated actions of the human for the task component or the observation is not applicable at

that point in time, then the robot should not penalize or reward the human co-worker. This behavior
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is represented in the FSPN model through enabling functions (G) which are portrayed in Figure 4.2

as lines which bisect the fluid arcs. An enabling function is defined as:

G =
nB

∏
i=1

Bi (4.1)

where nB is the number of enabling conditions (B) for a fluid arc. Each enabling condition is

modeled as a Boolean function which describes a condition where fluid would be allowed to flow

through the fluid arc. Fluid will only flow through the fluid arc when G = 1. If any of the enabling

conditions are not fulfilled (Bi = 0), then the fluid arc is considered to be disabled and the flow of

fluid through the fluid arc is prevented. Common examples of enabling conditions in pHRC can

include time restrictions or the presence of forces or motion in the pHRC.

Based on the FSPN model for the generic component A shown in Figure 4.2, the instantaneous

change in the robot’s perception of the human’s performance in the task component A at any time

t can be given by:

dφA

dt
=

nR

∑
j=1

Gr j ·R j−
nP

∑
k=1

Gpk ·Pk (4.2)

where nR and nP represent the number of rewards and penalties in the task component respectively.

This is intuitive as dφA
dt also represents the instantaneous change in volume of fluid in the fluid place

φA. Therefore the robot’s perception of its human co-worker’s performance in task component A

at any time t during pHRC can be given by:

φA =



φA,0 t = 0

φA +
dφA
dt t > 0

1 φA = 1, dφA
dt ≥ 0

0 φA = 0, dφA
dt ≤ 0

(4.3)

where φA,0 represents the robot’s initial perception of its human co-worker’s performance in task

component A where 0≤ φA,0 ≤ 1. If the robot and its human co-worker are in a ”trusting relation-

ship” [185], then the robot’s trust and/or confidence in its human co-worker’s performance should

be initially high. In these trusting relationships, a value of φA,0 = 1 represents that the robot begins
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the pHRC with a good impression of the human’s performance in task component A. However,

there are situations where a conservative approach would be more appropriate or the robot may

have a negative impression of its human co-worker’s capability in a task component. In these task

components, the value of φA,0 should be set to a lower value.

4.2.2 Confidence Model

Once the human’s performance in all the task components has been calculated, the confidence of

the robot in its human co-worker can be calculated. In the confidence model, the robot’s confidence

is obtained by combining the robot’s perception of its human co-worker’s performance in the task

components with the robot’s perception of how important each task component is to the pHRC.

As mentioned previously, each task component is categorized as either a critical component or

non-critical component based on their impact on the safety of the human and/or the robot or its

effect on the task outcomes. The performance of the human in a generic critical or non-critical

component is represented as φA,c or φA,n respectively.

All critical components, due to the their relationship with the safety of the human and the robot

or the successful completion of the task, are considered by the robot to be important and are

therefore the largest contributing factor towards the robot’s confidence in its human co-worker. The

importance of the non-critical components on the other hand is subjective and could change based

on the purpose of the pHRC. The relative importance of a non-critical component is represented

by γA where γA ≥ 0 and:

nn

∑
A=1

γA = 1 (4.4)

where nn represents the number of non-critical task components in the pHRC. Given this informa-

tion, the proposed equation which describes the relationship between the robot’s perception of the

human co-worker’s performance in the task components, the importance of the task components

and the robot’s confidence in its human co-worker is given by:



74 Chapter 4. A Robot Confidence Framework for physical Human-Robot Collaboration

C =


∏

nc
j=1 φ j,c No φA,n

Cmin +(1−Cmin) ·∑nn
k=1 γkφk,n No φA,c(

Cmin +(1−Cmin) ·∑nn
k=1 γkφk,n

)
·∏nc

j=1 φ j,c else

(4.5)

where Cmin is a constant, nc and nn represent the number of critical and non-critical task compo-

nents in the pHRC respectively. The three forms of the equation presented in (4.5) are used in

pHRC with no non-critical task components, pHRC with no critical task components and pHRC

with both critical and non-critical task components respectively.

In (4.5), Cmin defines the overall contribution of the non-critical components to the robot’s confi-

dence in its human co-worker and represents a threshold in the robot’s confidence. When Cmin = 0,

the weighted sum of the human co-worker’s performance in the non-critical components emulates

a critical component. Conversely, if Cmin = 1 then the human’s performance in the non-critical

components does not affect the robot’s confidence in its human co-worker.

For the confidence to fall below Cmin, the human’s performance in at least one of the critical task

components must have decreased from its maximum value. Therefore, Cmin can be considered as

a confidence threshold where the human’s performance is poor but is not negatively affecting the

outcomes of the task or the safety of the human or the robot. As performance and confidence are

both subjective measures, the presented robot confidence framework provides a lot of flexibility in

its implementation. The robot confidence framework for a pHRC can be as simple or as complex

as necessary based on the requirements and purpose of the pHRC.

4.3 Case Studies

The robot confidence framework is verified using three distinct pHRC case studies. In each case

study, the human works collaboratively with the robot to complete a task where the human is in

control and the robot observes the actions of its human co-worker. Each of the interactions in the

case studies are decomposed into task components and the rewards and penalties for each task

component are defined. As task of the human and the robot in each of the interactions is different,

the task components selected for each of the interactions will also be different. Even if a task
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component is common between the case studies, the rewards and penalties used in each case study

will be unique as they are adapted to specific interactions and tasks.

Because the task components for each of the case studies are task specific, the selected task com-

ponents for each interaction must be related to the information which the robot can observe. In

these case studies, the Thrumode Matrix Array Sensor (TMMAS) sensor was not implemented in

the robots. Therefore, it is not possible to integrate the human co-worker’s grasping strength or

hand orientation as task components. However, when the use of the TMMAS in pHRC is explored

in future works, the human’s grasping information will also be taken into account in the robot’s

perception of the human’s performance during the interactions.

The robot confidence framework is then used to calculate the robot’s confidence in its human co-

worker during the pHRC. In these case studies, the robot’s confidence in its human co-worker was

hidden from the human to prevent the information from influencing the human’s performance.

For the purpose of succinctness, a limited number of task components were chosen to demon-

strate how the robot confidence framework can be applied to various pHRC and how rewards and

penalties for task components could be modeled. Although the presented case studies show how

the confidence of the robot changes as a result of the selected task components, in actual imple-

mentations of the robot confidence framework, it is recommended that a larger number of task

components, rewards and penalties be used to model the robot’s expectations of its human co-

worker’s actions during the pHRC. In the following case studies, it is assumed that the robot and

human are in a trusting relationship (φA,0 = 1) and that the robot updates its observations of the

human’s actions at a rate of 100ms.

In this thesis, the functions modelling the relationship between the robot’s observations and the

associated rewards and penalties are represented using either a constant or one of the following

functions:

q1(o) = τ

(
1

1+ eb(o−a)

)
(4.6)

q2(o) = τ

(
e

(o−d)g
h

)
(4.7)





Chapter 4. A Robot Confidence Framework for physical Human-Robot Collaboration 77

In this thesis, the chosen value of τ for most rewards and penalties is generally much smaller than

the maximum capacity of the fluid place for each task component. This is so that the human would

have time to react to the changes in the task before the fluid place fills or empties.

As the process of modelling a task component always follows the same procedure, a more in-depth

explanation of how the performance model of a task component is obtained is provided for the first

task component in the first case study. It is assumed that unless otherwise stated, the process of

deriving the performance models for all the other task components in this section follows the same

process.

4.3.1 Case Study 1: Assistance-as-Needed-roBOT (ANBOT) - Collaborative Grit-

Blasting

In a grit-blasting operation, abrasive material such as granite or steel is ejected from a blasting

nozzle at high velocities using compressed air. A human grit-blaster would support the reaction

forces generated by the nozzle for extended periods of time. As the abrasive material makes

contact with the task surface, the abrasive material ricochets and obscures the vision of the human

grit-blaster until the particulate matter in the air settles.

In this case study, a human works collaboratively with a robot to complete a grit-blasting operation.

The robot used in this case study is the ANBOT developed by the Centre for Autonomous Systems

at the University of Technology, Sydney (UTS) [186]. The purpose of the ANBOT is to create

a safe platform for collaborative grit-blasting by providing physical assistance to its human co-

worker. The ANBOT measures the load generated by the ejected abrasive material so that it can

provide the optimal amount of assistance to the human [187]. The majority of the load is supported

by the ANBOT, while a small portion of the load is used to provide the human co-worker with

tactile feedback of the collaborative grit-blasting operation. The ANBOT shown in Figure 4.4,

uses a UR-10 robot arm from Universal Robots and is equipped with a nozzle and hose.

When using the ANBOT for collaborative grit-blasting, the human co-worker stands behind the

ANBOT and controls the ANBOT through the two handlebars on the end-effector shown in Fig-

ure 4.4. Each handlebar on the ANBOT’s end-effector has a three position switch. The switch on
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FIGURE 4.4: ANBOT equipped with nozzle and hose mounted for collaborative grit-blasting.
Reproduced from [20].

the vertical handlebar (Bm) enables the movement of the ANBOT while the switch on the horizon-

tal handlebar (Bb) enables the flow of abrasive material through the nozzle. The forces applied by

the human on the handlebars are detected by a load cell built into the end-effector and are used by

the ANBOT to infer the human’s intentions. The ANBOT also monitors the human’s actions and

the environment using an array of RGB-D cameras.

In this case study, the human co-worker used the ANBOT to blast a marked 1.2x1.8m wall sec-

tion. The ANBOT was positioned approximately 1m away from the wall. As this case study was

performed inside a lab, no abrasive material was passed through the nozzle of the ANBOT when

the switch Bb was pressed. In Figure 4.5, a flowchart depicting the flow of information in the robot

confidence framework configured for the collaborative grit-blasting scenario is shown.

The collaborative grit-blasting task was decomposed into the following task components:

• Critical Components

– Manipulability of the robot (w)

• Non-Critical Components
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which may put the safety of the human co-worker at risk. This is especially true when abrasive

material is passed through the nozzle of the ANBOT. The non-critical components were selected

to measure the human’s overall performance in the grit-blasting task as the human operator was

expected to maintain a blasting angle and minimize the operator force and variation in blasting

path.

The robot observed the human’s actions in each of the task components and calculated its percep-

tion of its human co-worker’s performance in each task component using one reward Ro and two

penalties Po(o) and P∆o(∆o) where o and ∆o represent the current observation in a task component

and the average change in the observations for the task component in the previous two seconds

respectively. For this case study, a maximum penalty of τ = 0.1 was chosen. This means that the

minimum time required for a robot’s perception of the human’s performance in a task component

to go from its maximum value to its minimum value is one second. It was believed that this would

provide the human co-worker ample opportunity to react before the fluid place representing the

human’s performance in a task component emptied. All the rewards in this case study were mod-

eled as a constant inflow of fluid into the fluid place. The chosen reward function for this case

study is:

Rw = RF = Rθ = Rp = 0.01 (4.8)

By having a constant reward which is much smaller in magnitude than the maximum penalty, the

fluid level in the fluid place will only increase when there is little to no fluid being drawn by the

penalties, thus creating a slow positive/ fast negative dynamic to the performance modelling [185].

This dynamic emulates the wariness of the robot following a poor performance from its human

co-worker as the human must perform well for an extended period of time to make up for any

losses in performance.

In this case study, the switches on the handlebars of the ANBOT are used to define the enabling

functions for the task components. A binary representation of the switches is used where 1 repre-

sents a pressed state (enabled) and 0 represents a released state (disabled). Bm was selected as the

enabling function for the manipulability and operator force components so that the performance

measurement would begin when the human co-worker moves the ANBOT.
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GRw = GPw = GP∆w = GRF = GPF = GP∆F = Bm (4.9)

Where GRw , GPw , GP∆w are the enabling functions for the reward and two penalties for the manip-

ulability task component and GRF , GPF , GP∆F are the enabling functions for the reward and two

penalties for the operator force task component. For the blasting angle and blasting path compo-

nents, a combination of the switches BmBb was used for the enabling functions.

GRθ
= GPθ

= GP∆θ
= GRp = GPp = GP∆p = BmBb (4.10)

Where GRθ
, GPθ

, GP∆θ
are the enabling functions for the reward and two penalties for the blasting

angle task component and GRp , GPp , GP∆p are the enabling functions for the reward and two penal-

ties for the blasting path task component. This is so that the robot’s perception of the human’s

performance in the task components is only considered when both switches are pressed.

4.3.1.1 Performance modelling

Human Performance in the Manipulability Task Component (w)

The manipulability (w) of a robot arm provides a quantitative measure of the robot arm’s ability

to reposition and reorient its end-effector in its current arm posture [188]. Two experiments were

conducted to determine the expected range of values for the manipulability of the ANBOT during

a grit-blasting operation. In the first experiment, the human performed the grit-blasting operation

normally and in the second experiment the human attempted to put the ANBOT into singularity.

At each time step, the Jacobian J of the ANBOT was used to calculate the manipulability using:

w =
√

det(J(θ) · J(θ)T )) (4.11)

An example of how the manipulability of the ANBOT and the change in manipulability during

a collaborative grit-blasting operation is shown in Figure 4.6a and Figure 4.6b. The blue plot

represents normal blasting behavior and the orange plot represents a pHRC where the human
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attempts to put the ANBOT into singularity. The values of w and ∆w used to formulate the penalty

functions are obtained by observing the values of w during the two experiments. The value of

w is robot specific and will not change between subjects and although there is some variation

∆w between subjects, the difference is minimal. Therefore, the data shown in Figure 4.6a and

Figure 4.6b is representative of the collected data sets for demonstration purposes in this chapter.
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FIGURE 4.6: An example of (a) w and (b) ∆w from a previous pHRC using the ANBOT where
the human was grit-blasting normally (blue) and attempting to put the ANBOT into singularity

(red)

From Figure 4.6a, it can be seen that during normal blasting, the manipulability of the ANBOT

was generally in the range 0.15≤w≤ 0.25 and that the manipulability approaches w = 0.05 when

the ANBOT is close to singularity. This information describes the robot’s expectations for the

manipulability task component during a normal grit-blasting operation. Therefore, the conditions

describing the penalty Pw(w) are:
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w > 0.15 No Penalty

w = 0.05 Maximum Penalty
(4.12)

Because there is no detriment to the task outcomes or the safety of the human and robot when

w > 0.25, the robot will only penalize the human co-worker’s performance when w < 0.15 as

this represents the observation being outside the expected values for w during normal grit-blasting

operations. By combining (4.6) with the previous information, an equation describing Pw(w) can

be obtained:

Pw(w) = 0.1
(

1− 1
1+ e58.89(w−0.1)

)
(4.13)

The second penalty P∆w(∆w) for the manipulability task component is based on the average change

in manipulability of the ANBOT during the grit-blasting operation. An example of the change in

manipulability during collaborative grit-blasting can be seen in Figure 4.6b. The average change

in manipulability of the ANBOT is defined as:

∆w =
1
n

n

∑
j=2

(w j−w j−1) (4.14)

where n is the number of observations in a previous time horizon of two seconds. A small or

positive value of ∆w indicates that the human co-worker’s manipulation of the ANBOT is stable

or improving. A negative ∆w indicates that the human’s manipulation of the ANBOT has been

declining over the previous time horizon, increasing the risk of the ANBOT entering singularity.

Figure 4.6b shows that for the majority of observations during normal grit-blasting, ∆w≥−0.005.

The figure also shows that the minimum value of the average change in manipulability in both

experiments was approximately ∆w = −0.015. Based on this information, the conditions used to

generate the penalty for ∆w were:

∆w >−0.015 No Penalty

∆w =−0.005 Maximum Penalty
(4.15)
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using these conditions and (4.6), the following function for P∆w(∆w) was derived:

P∆w(∆w) = 0.1
(

1
1+ e588.89(∆w+0.01)

)
(4.16)

Both penalty functions for the manipulability task component can be seen in Figure 4.7.
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FIGURE 4.7: Penalty functions for the manipulability task component.

The robot updates its perception of its human co-worker’s performance in the manipulability task

component (φw,c) when it obtains a new manipulability observation using equation (4.3). The

change in the robot’s perception of the human’s performance in the manipulability task component

at each time step can be obtained by substituting the functions for the rewards, penalties and

enabling functions into Equation (4.2):

dφA

dt
=

nR

∑
j=1

Gr j ·R j−
nP

∑
k=1

Gpk ·Pk

dφw,c

dt
= GRw ·Rw−GPw ·Pw(w)−GP∆w ·P∆w(∆w) (4.17)

dφw,c

dt
= 0.1 ·GRw−GPw ·

(
1− 0.1

1+ e58.89(w−0.1)

)
−GP∆w ·

(
0.1

1+ e588.89(∆w+0.01)

)
(4.18)
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Human Performance in the Operator Force Task Component (F)

The purpose of the ANBOT is to reduce the physical strain on the human co-worker during a grit-

blasting operation. Therefore, it is expected that the human should not be applying large forces

during the pHRC. An example of the force applied by the human on the handlebars mounted on

the ANBOT’s end-effector during a grit-blasting operation can be seen in Figure 4.8.
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FIGURE 4.8: An example of F and ∆F from a previous experiment where the human was grit-
blasting normally.

The figure shows that the operator force applied by this particular subject is generally below 50N

during a normal grit-blasting operation. Although the applied force varies between subjects, the

maximum applied load during the experiments under normal grit-blasting conditions was around

50N. Because a UR-10 is used, the ANBOT has a maximum allowable payload of 100N. There-

fore, if the human applies a load of 100N, the maximum penalty should be applied to signify that

operator has applied a force which can possibly damage the robot. Thus the following conditions

for the penalty function PF(F) were chosen:

F < 50N No Penalty

F = 100N Maximum Penalty
(4.19)

Combining these conditions with (4.6) results in the following function:

PF(F) = 0.1
(

1
1+ e−0.1178(F−75)

)
(4.20)
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The second penalty for this task component P∆F(∆F) considers the difference between the current

operator force and the average operator force during the previous time horizon of two seconds.

This is to allow the robot to differentiate between gradual increases in operator force and spikes in

the applied operator force. The observation ∆F is given by:

∆F =

∣∣∣∣∣Fn−
1

n−1

n−1

∑
j=1

Fj

∣∣∣∣∣ (4.21)

where Fn is the current operator force and n is the number of observations in the previous time

horizon. From Figure 4.8, it can be seen that the value of ∆F is generally below 20N during

normal grit-blasting operations and that all values of ∆F were under 40N. For this penalty, the

following conditions were chosen:

∆F < 20N No Penalty

∆F = 40N Maximum Penalty
(4.22)

∆F = 40N was selected as the maximum penalty because it was a value that would not normally

be reached during normal blasting conditions and because a sudden increase or decrease of 40%

of the maximum payload would be undesirable. Combining these condition with (4.6) results in:

P∆F(∆F) = 0.1
(

1
1+ e−0.2944(∆F−30)

)
(4.23)

The functions for the penalties in the operator force task component can be seen in Figure 4.9. The

human’s performance in this component (φF,n) is updated at each time step using (4.3) where:

dφF,n

dt
= GRF ·RF −GPF ·PF(F)−GP∆F ·P∆F(∆F) (4.24)

Human Performance in the Blasting Angle Task Component (θ )

The blasting angle of the nozzle to the surface in a grit-blasting operation has an effect on the

efficiency of the task and the quality of the end result. If the blasting angle is too shallow, the
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FIGURE 4.9: Penalty functions for the operator force task component.

abrasive material will glance off the blasting surface and if the blasting angle is too close to per-

pendicular there is an increased risk of injury from the ricocheting abrasive material. For the

blasting angle task component, grit-blasting professionals recommended that the appropriate an-

gle for grit-blasting was approximately θ = 60◦, where θ = 0◦ is parallel to the blasting surface

and θ = 90◦ is perpendicular to the blasting surface. The range 40◦ ≤ θ ≤ 80◦ was recommended

as the allowable blasting angle. Based on this information the following conditions are proposed:

40≤ θ ≤ 80 No Penalty

θ = 0 Maximum Penalty
(4.25)

For this penalty, (4.7) was combined with the previous conditions where the curve is centered

around θ = 60◦. The value g = 6 was selected to increase the rate that the penalties increased

when the blasting angle was outside of the recommended range. This results in the following

equation:

Pθ (θ) = 0.1
(

1− e
−(θ−60)6
1247730000

)
(4.26)

The penalty P∆θ (∆θ) considers the average change in blasting angle during the previous two sec-

onds of the pHRC. Ideally, the human co-worker would maintain a constant blasting angle of 60◦

throughout the grit-blasting operation. However, this would be unintuitive as the human would not

be able to pan or tilt the end-effector of the ANBOT during the task. ∆θ is given by:
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∆θ =
1

n−1

n

∑
j=2

∣∣(θ j−θ j−1)
∣∣ (4.27)

where n is the number of observations in the previous time horizon. Figure 4.10 shows an example

of θ and ∆θ during a normal blasting operation.
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FIGURE 4.10: An example of θ and ∆θ from a previous experiment where the human was grit-
blasting normally.

From the figure, it can be seen that most values of ∆θ fall below 3◦ with none of the values

exceeding ∆θ = 4◦. For this penalty, the chosen conditions were:

∆θ < 3◦ No Penalty

∆θ = 4◦ Maximum Penalty
(4.28)

By combining these conditions with (4.6), the following equation for the penalty P∆θ (∆θ) can be

obtained:

P∆θ (∆θ) = 0.1
(

1
1+ e−5.8889(∆θ−3.5)

)
(4.29)

The functions representing the penalties for the blasting angle task component can be seen in

Figure 4.11.

The robot updates its perception of its human co-worker’s performance in the blasting angle task

component (φθ ,n) using (4.3) where:
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FIGURE 4.11: Penalty functions for the blasting angle task component.

dφθ ,n

dt
= GRθ

·Rθ −GPθ
·Pθ (θ)−GP∆θ

·P∆θ (∆θ) (4.30)

Human Performance in the Variation in Blasting Path Task Component (p)

This task component considers the blasting trajectories and the changes in the direction of the

blasting point on the blasting surface during the pHRC. The blasting point refers to the point on

the blasting surface obtained by projecting the center of the nozzle onto the blasting surface. The

observation p is given by:

p = acos(
∣∣∣∣ ~vt ·~vt−1

|~vt ||~vt−1|

∣∣∣∣) (4.31)

where~vt is a vector representing the current trajectory of the blasting point on the blasting surface

and~vt−1 represents the previous trajectory. Figure 4.12 shows an example of how p and ∆p change

during a grit-blasting operation.

From the figure, it can be seen that most values of p fall below 45◦. Because p = 90◦ is the

maximum value for p, it was designated as the maximum penalty. This results in the following

conditions for the penalty Pp(p):

p < 45◦ No Penalty

p = 90◦ Maximum Penalty
(4.32)
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FIGURE 4.12: An example of p and ∆p from a previous experiment where the human was grit-
blasting normally.

Combining these conditions with (4.6) results in the following formula for the penalty:

Pp(p) = 0.1
(

1
1+ e−0.1309(p−67.5)

)
(4.33)

The second penalty in this task component P∆p(∆p), adds context to the variations in the blasting

path by considering the difference between the current change in blasting path and the average

variation in the blasting path. The observation ∆p is given by:

∆p =

∣∣∣∣∣pn−
1

n−1

n−1

∑
j=1

p j

∣∣∣∣∣ (4.34)

where pn is the current variation in the blasting path on the blasting surface and n is the number of

observations in the previous time horizon. If p is similar to the average change in p in the previous

time horizon of two seconds, then the human’s blasting can be said to be following a path or a

pattern during the previous time horizon. Sporadic blasting path on the other hand would result

in a much higher value of ∆p which could have adverse effects on the quality of the grit-blasting

operation. From Figure 4.12, it can be seen that with the exception of the beginning and the end

of the pHRC, most values for ∆p fall below 30◦ during normal blasting conditions. Similar to the

previous penalty, ∆p = 90◦ is the maximum value of the observation. Therefore the conditions

used for the penalty P∆p(∆p) are:
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∆p < 30◦ No Penalty

∆p = 90◦ Maximum Penalty
(4.35)

Using these conditions in conjunction with (4.6) results in the following equation for the penalty:

P∆p(∆p) = 0.1
(

1
1+ e−0.09148(∆p−60)

)
(4.36)

The functions for both Pp(p) and P∆p(∆p) can be seen in Figure 4.13.
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FIGURE 4.13: Penalty functions for the variation in blasting path task component.

The robot’s perception of its human co-worker’s performance in this task component (φp,n) is

updated at each time step using (4.3) where:

dφp,n

dt
= GRp ·Rp−GPp ·Pp(p)−GP∆p ·P∆p(∆p) (4.37)

4.3.1.2 Confidence modelling

In this case study, there is a combination of critical and non-critical components. The following

equation was used to calculate the confidence of the robot in its human co-worker in the grit-

blasting operation:

C1 = φw (0.3+(1−0.3)(0.4φθ +0.4φp +0.2φF)) (4.38)
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The value C1,min = 0.3 was chosen to show that emphasis was placed on the non-critical compo-

nents, but not to the extent of a critical component when combined. φθ and φp were given a higher

weighting than φF because the operator force does not directly affect the quality of the grit-blasting

operation while the other two components do. Therefore, the weightings of the non-critical task

components were set to γθ = 0.4,γp = 0.4,γF = 0.2.

4.3.1.3 Experimental Results
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FIGURE 4.14: The robot’s observations (top) and the robot’s perception of its human co-worker’s
performance (bottom) in the (a) manipulability (b) operator force (c) blasting angle (d) variation

in blasting path task components.
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An example of the robot’s observations and the performance of an experienced grit-blaster during a

grit-blasting operation in each task component is shown in Figure 4.14. The data recording started

when Bm was pressed and ended when Bm was released. The green region represents the period

when Bb was pressed. Prior to the switch Bm being pressed, the human is not considered to be in a

pHRC with the ANBOT. When the human co-worker releases the switch, the pHRC is considered

to have ended and the data recording ceases.

From the figures, it can be seen that there is no decline in the robot’s perception of its human

co-worker’s performance in both the manipulability task component and the operator force task

component. This is because the robot’s observations of the human’s actions in these task compo-

nents were always within the expected range of values proposed in the previous section. On the

other hand, the human’s performance was penalized in the variation in blasting path task compo-

nent and blasting angle task component. In Figure 4.14c, it can be seen that the decrease in the

robot’s perception of the human’s performance in the blasting angle usually occurred when the

blasting angle was almost perpendicular to the blasting surface. There are a number of situations

during a grit-blasting operation which can cause this. One of the main causes would be when

the human co-worker was panning horizontally as during the panning action, the nozzle became

perpendicular to the wall for a short period of time.

From the low values of ∆θ throughout the grit-blasting operation and the regular decreases in φp,

it can be inferred that the human was blasting slowly but had a tendency to change their blasting

trajectory. The importance of the enabling functions is highlighted when considering the robot’s

observations in Figure 4.14d during the time period where Bm was pressed but Bb was not pressed.

During this period, the human co-worker was positioning the ANBOT’s nozzle in preparation to

begin and end the grit-blasting task. Because, Bb was not pressed, the blasting path of the human

should not affect their performance in the task component.

Based on the robot’s performance in the task components shown in Figure 4.14 and the equation

for the ANBOT’s confidence in its human co-worker (4.38), the robot’s confidence in its human

co-worker during the collaborative grit-blasting operation is shown in Figure 4.15. From the graph

it can be seen that the robot’s confidence in the human remained fairly high throughout the task as

the human’s performance was only penalized in non-critical components. If the human co-worker

were to be less experienced with the robot or the grit-blasting operation, it is very likely for the
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FIGURE 4.15: Confidence of the robot in its human co-worker during the grit-blasting operation.

robot’s observations to be outside of the expected ranges more often during the pHRC, resulting

in more penalties in the human’s performance and a lower robot confidence.

4.3.2 Case Study 2: Smart Hoist - Maneuvering in an Indoor Environment through

pHRC

The robot used in this case study is the robotic patient lifter called the Smart Hoist [79][38] shown

in Figure 4.16. The Smart Hoist was developed by the Centre for Autonomous Systems at the

University of Technology, Sydney with the aim of reducing workplace injuries sustained by nurses

and other healthcare workers when transferring non-ambulatory residents (e.g. bed to chair, chair

to toilet and bath) in hospitals and nursing homes. Similar to a standard hoist, the Smart Hoist is

operated by applying forces on the handlebars which can be seen in the figure. The robot infers

the human’s intentions through the use of strain gauges to determine the magnitude and direction

of the force applied to the handlebars by its human co-worker during the pHRC. The Smart Hoist

uses also uses its encoders to measure its velocity and acceleration and has impact sensors that it

uses to detect collisions with the environment. A RGB-D camera is used by the Smart Hoist to

observe the environment from ground level to detect oncoming obstacles.

In this case study, a patient is seated in the sling of the Smart Hoist. The goal of this task is to

transport a patient using the Smart Hoist through pHRC, between two rooms following the path

shown in Figure 4.17, while avoiding collisions with the environment. The path that the human

must follow during the pHRC is represented in the figure as a red arrow.
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FIGURE 4.16: Smart Hoist: A robotic patient lifter designed to assist carers in transporting
patients through pHRC.

The task components for this case study were chosen after taking into consideration the sensors the

Smart Hoist can use to observe the actions of its human co-worker. The selected task components

can be seen below:

• Critical Components

– Impact Detection (i)

– Acceleration (ẍ)

• Non-Critical Components

– Distance to walls/obstacles (δ )

– Velocity (ẋ)

– Operator Force (F)
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component will penalize the performance of the human when obstacles come within this range.

As there are two legs on the Smart Hoist, two penalties are used in this task component. The two

penalty functions PδL(δL) and PδR(δR) for this task component assume a maximum penalty when

the distance is zero and no penalty when the distance is greater than 0.5m:

PδL(δL) = 0.05(
1

1+ e(11.78(δL−0.25))) ) (4.39)

PδL(δR) = 0.05(
1

1+ e(11.78(δR−0.25))) ) (4.40)

where δL and δR are the distances between the environment and the left and right leg of the Smart

Hoist respectively. For this task component, a constant reward of Rδ = 0.01 was chosen. This is

so the robot’s perception of the human’s performance in this task component (φδ ,n) will increase

slowly over time when there are no nearby obstacles. Graphs for the reward and penalty in this

task component can be seen in Figure 4.19.
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FIGURE 4.19: Graphs representing the functions for the reward (left) and penalty (right) in the
distance to walls/obstacles task component.

In this task component, it is intuitive for the rewards and penalties to be enabled when the human

co-worker is controlling the Smart Hoist, therefore the enabling function for this task component

is given by:

Gδ =

1 Force detected

0 Force not detected
(4.41)
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The robot updates its perception of the human’s performance in this task component (φδ ,n) using

(4.3) where:

dφδ ,n

dt
= Gδ Rδ −Gδ PδL(δL)−Gδ PδR(δR) (4.42)

Human Performance in the Impact Detection Task Component (i)

For the safety of the patient, the impact detection component was designated as a critical compo-

nent. This task component utilizes the impact sensors at the front of each leg of the Smart Hoist

to detect whether a collision has occurred between the Smart Hoist and the environment. In this

component, the robot penalizes the performance of the human whenever the Smart Hoist collides

with an obstacle. The penalty for this task component has been modeled as:

Pi(i) = 1 (4.43)

The penalty is modeled as a constant which will empty the fluid in φi,c in a single time step. To

control the flow of fluid through the fluid arc for this penalty, the following enabling function was

defined:

Gi =

1 Impact Sensors Triggered

0 Impact Sensors Not Triggered
(4.44)

Therefore, unless a collision is detected, the robot will not penalize the human’s performance in

this task component. With the way this penalty function has been designed, it causes the robot’s

perception of the human’s performance in this task component to either be at its maximum or

minimum value as the initial value of the fluid place is φi,c = 1 to represent the human and the

robot being in a trusting relationship. Because it is a critical component, it will also cause the

confidence of the robot in its human co-worker to be at its minimum value when an impact occurs.

For this task component, there is no need for a reward as φi,c initially begins at its maximum value

and it is assumed that the pHRC ends when the robot’s confidence equals zero. Therefore, the
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robot updates its perception of the human’s performance in this task component (φi,c) using (4.3)

where φi,c
dt is given by:

φi,c

dt
=−GiPi(i) (4.45)

Human Performance in the Velocity Task Component (ẋ)

The maximum allowable speed of a motorized wheelchair is approximately 2.77m/s [190]. As

the Smart Hoist is also a motorized device for indoor use, this velocity was used as a reference

for the maximum penalty in the velocity task component. Taking into account that the maximum

comfortable walking speed for an adult is approximately 1.46m/s [191], the Smart Hoist will

penalize the performance of the human when the velocity of the Smart Hoist exceeds ẋ = 1.46m/s

. Therefore, the function describing the penalty Pẋ(ẋ) is given by:

Pẋ(ẋ) = 0.1(
1

1+ e(−4.46(ẋ−2.12))) ) (4.46)

A constant reward of Rẋ = 0.01 was chosen for this task component so that the fluid in φẋ would

slowly regenerate when the velocity of the Smart Hoist is low. The functions describing the reward

and penalty for this task component are shown in Figure 4.20.
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FIGURE 4.20: Graphs representing the functions for the reward (left) and penalty (right) in ve-
locity task component.

The enabling function Gẋ = 1 was selected for this task component and is considered to be con-

stantly enabled. This is because there are no circumstances where a high velocity should not result
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in a penalty in the robot’s perception of the human’s performance in this task component. The

robot updates its perception of the human’s performance in this task component (φẋ,n) using (4.3)

at each time step where:

dφẋ,n

dt
= Rẋ−Pẋ(ẋ) (4.47)

Human Performance in the Acceleration Task Component (ẍ)

When a patient is seated in the sling of the the Smart Hoist, large accelerations may result in

possible injuries as they swing in place. The penalty for the acceleration task component was

formulated by examining the acceleration in previous pHRC using the Smart Hoist.
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FIGURE 4.21: An example of the acceleration of the Smart Hoist during a previous pHRC.

Figure 4.21 shows an example of the acceleration of the Smart Hoist during a previous pHRC.

From the figure, it can be seen that the acceleration of the Smart Hoist would generally be below

2m/s2 when a human physically interacts with the Smart Hoist, with high values of acceleration

at approximately 4m/s2. In this task component, the maximum penalty will occur when the accel-

eration of the Smart Hoist is above 4m/s2 as accelerations above this value are unintentional and

could affect the safety of the patient. The penalty function Pẍ(ẍ) was formed with this in mind:

Pẍ(ẍ) = 0.1(
1

1+ e(−2.94(|ẍ|−3))) ) (4.48)
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For this task component, the reward Rẍ = 0.01 was selected. The functions representing the penalty

and the reward for this task component can be seen in Figure 4.22.
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FIGURE 4.22: Graphs representing the functions for the reward (left) and penalty (right) in the
acceleration task component.

As with the velocity task component, there are no circumstances where a high acceleration would

be appropriate. Therefore, the enabling function Gẍ = 1 will always be enabled. The change in the

robot’s perception of the human’s performance in the critical component φẍ,c is updated at each

time step using (4.3) where:

dφẍ,c

dt
= Rẍ−Pẍ(ẍ) (4.49)

Human Performance in the Operator Force Task Component (F)

The purpose of the Smart Hoist is to relieve the physical strain on its human co-worker in order to

reduce the likelihood of back injuries during the lifting and transportation of patients. Therefore,

the Smart Hoist was designed to be operated with minimal applied forces. It was found that the

majority of forces applied by the human during a pHRC using the Smart Hoist was less than 10 N,

with a maximum applied load of 20N. An example of the operator force during a pHRC using the

Smart Hoist can be seen in Figure 4.23.

Using this information, the function representing the penalty PF(F) in this task component was

generated:
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FIGURE 4.23: An example of the operator force applied by the human during a pHRC.

PF(F) = 0.1(
1

1+ e(−0.588(F−15))) ) (4.50)

The reward RF = 0.01 regenerates the fluid in φF,n if the human co-worker applies minimal forces

or no forces to the handlebars. The functions for the reward and penalty in this task component

can be seen in Figure 4.24.
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FIGURE 4.24: Graphs representing the functions for the reward (left) and penalty (right) in the
operator force task component.

The enabling function GF = 1 for this task component is considered to be permanently enabled.

This is because the human should never be applying a large force to the handlebars and acciden-

tal contact with the handlebars of the Smart Hoist should not generate enough force to result in

a penalized performance. The robot updates its perception of the human’s performance in this

component φF,n at any point in time using (4.3) where:
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dφF,n

dt
= RF −PF(F) (4.51)

4.3.2.2 Confidence modelling

In the Smart Hoist case study, there is a combination of critical and non-critical components.

Although a decrease in the human’s performance in a non-critical component may not have adverse

effects on the safety of the patient, human co-worker or the robot, if human’s performance in all

of the task components decreases then this may no longer be the case. Therefore, C2,min = 0 was

chosen so that the human’s combined performances in the non-critical components would imitate

a critical component. The weightings of the non-critical components were set to γẋ = 0.2, γF = 0.2

and γδ = 0.6 for the velocity, force and distance task components respectively. This distribution

was chosen as the Smart Hoist has control strategies in place to deal with higher velocities and

forces such as software limitations and scaling but not for obstacle avoidance. This results in the

following equation for the robot’s confidence in its human co-worker:

C2 = (0.2φẋ,n +0.2φF,n +0.6φδ ,n)φi,cφẍ,c (4.52)

4.3.2.3 Experimental Results

Figure 4.25 depicts the robot’s observations of the human’s actions and the robot’s perception of

the human’s performance in the task components from a sample pHRC using the Smart Hoist. In

the figures, the robot’s observations are shown in the top graph while the robot’s perception of the

human’s performance in the corresponding task component is shown in the bottom graph. In the

shown pHRC, the impact sensors on the Smart Hoist were not triggered. Therefore, the robot’s

observations in the task component and the human’s performance in the collision detection task

component was excluded from Figure 4.26.

From Figure 4.25c, it can be seen that the force applied by the human to the handlebars was gen-

erally within the expected range of values. This is because the human’s performance in the task

component φF,n during the pHRC was always at its maximum value. In the acceleration task com-

ponent, it can be seen that there were a number of occasions during the task where the robot’s



Chapter 4. A Robot Confidence Framework for physical Human-Robot Collaboration 105

0 50 100 150 200 250
Time (s)

0

1

2

3
_x

Observations

0 50 100 150 200 250
Time (s)

0

0.5

1

?
_x
;n

Performance

(a) Velocity

0 50 100 150 200 250
Time (s)

0

2

4

Bx

Observations

0 50 100 150 200 250
Time (s)

0

0.5

1

?
Bx
;c

Performance

(b) Acceleration

0 50 100 150 200 250
Time (s)

0

5

10

15

F

Observations

0 50 100 150 200 250
Time (s)

0

0.5

1

?
F
;n

Performance

(c) Operator Force

0 50 100 150 200 250
Time (s)

0

0.2

0.4

0.6

/ L

0

0.2

0.4

0.6

/ R

Observations

0 50 100 150 200 250
Time (s)

0

0.5

1

?
/;
n

Performance

(d) Distance to walls/obstacles

FIGURE 4.25: The robot’s observations (top) and the robot’s perception of its human co-worker’s
performance (bottom) in the (a) velocity (b) acceleration (c) operator force (d) distance to

walls/obstacles task components.

perception of its human co-worker’s performance in the task component decreased as the acceler-

ation of the Smart Hoist exceeded the expected range. Comparing the observations of the robot’s

acceleration to the observations in the distance to walls/obstacles component (Figure 4.25d), it can

be seen that these accelerations usually occur when the robot is close to an obstacle. In the context

of the task, these obstacles are the door frames which the Smart Hoist must pass through. If a

higher acceleration occurs prior to approaching the door frame then it implies that the human was

experiencing difficulties in aligning the Smart Hoist.
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Because of the way the penalty function PδL and PδR was formulated, the human’s performance

in the distance to obstacle component will always decrease when the Smart Hoist approaches a

doorway. Although a decrease in confidence is generally the result of a decreased performance,

in this particular instance, the decrease in φδ can also be interpreted as an increased risk towards

the safety of the human or the robot or a decrease in the robot’s belief that the human co-worker

can safely maneuver through the doorways. The impact detection component and the distance

to obstacle task components were modeled separately as a critical and non-critical component to

distinguish between an actual collision and increased risk of collision.

Other than the distance to walls/obstacle task component, the human’s performance in the velocity

task component also decreased to its minimum value on numerous occasions during the task. From

Figure 4.25a, it can be seen that the velocity of the Smart Hoist during the pHRC would often be

above 1.46m/s which was defined as the threshold for expected velocity values. Also, it can

be seen that the velocity of the Smart Hoist exceeded the maximum indoor speed for motorized

vehicles.
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FIGURE 4.26: Confidence of the robot in its human co-worker during a pHRC using the Smart
Hoist.

The confidence of the Smart Hoist in its human co-worker can be seen in Figure 4.26. C2 was

calculated using the relationship (4.52) and the performance of the human co-worker in the task

components shown in Figure 4.25. In the figure, the confidence of the robot decreased significantly

on numerous occasions. Although the human’s performance in the distance to walls/obstacles task

component and the velocity task component decreased to their minimum values in the pHRC, the

confidence of the robot did not fall to zero. This is because those two task components were defined

as non-critical components and not critical components. Because the human’s performance in the
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critical components was high, because of the configuration of confidence defined in (4.52), the

results shown in Figure 4.26 can be interpreted as the human having an overall poor performance

in the task without affecting the safety of the patient or the task goals.

4.3.3 Case Study 3: Remote Operation of a Robotic Arm’s End-Effector in a Com-

plex Simulated Environment

In this case study, the human controls the end-effector of a robot arm in a virtual environment

using the Phantom Omni controller seen in Figure 4.27. The Phantom Omni is a portable haptic

teleoperation device with six degrees of freedom. The human controls the Phantom Omni by

holding onto the pen shaft where the end of the pen shaft corresponds to the end of the robot arm in

the virtual environment. When the robot arm in the virtual environment collides with an obstacle,

the Phantom Omni provides tactile feedback to the human through vibrations and restricting the

actions of the pen shaft in the direction of the obstacle.

FIGURE 4.27: The Phantom Omni teleoperation input device.

The goal of the human co-worker in this case study is to navigate the robot end-effector through

the complex environment seen in Figure 4.28 without colliding with the environment. The human

controls the end-effector to enter through the left side, move along the path and then exit through

the right side. The task components chosen for this case study were:

• Non-Critical components

– Progress (p)

– Tactile Feedback ( f )
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– Control (∆)

The progress task component measures the human’s progress through the complex environment.

The longer the human takes the lower the robot’s perception of the human’s performance. The

tactile feedback task component measures the human’s performance based on the simulated robot’s

collisions with the virtual environment and the control task component measures the human’s

control over the robot in the simulated environment.

FIGURE 4.28: The simulated environment which the human co-worker attempts to navigate. The
path shown in the right image is a recording of a human co-worker’s attempt to maneuver through

the environment.

Because the human controls the robot arm through tele-operation, both the human co-worker and

the robot are not at risk during this pHRC. Therefore, all of the components in this case study

were selected as non-critical task components. In this pHRC, the robot is able to monitor the robot

arm’s position in the virtual environment and infer the human’s intention through the Phantom

Omni. In this case study, the performance of an experienced operator was used as a benchmark.

The penalties and rewards for the task components were modeled using the performance of the

experienced operator. A flow chart depicting the flow of information in the robot confidence

framework configured for this remote operation case study can be seen in Figure 4.29.





110 Chapter 4. A Robot Confidence Framework for physical Human-Robot Collaboration

through the environment (green). As the human co-worker maneuvers the robot arm through the

virtual environment, the penalty function for this task component:

Pp(p) = 0.005 (4.53)

penalizes the human’s performance when the time taken to finish a section of the virtual envi-

ronment exceeds the time taken by the experienced operator. As previously mentioned, the robot

in this case study updates its observations of the pHRC every 100ms. This means that the robot’s

perception of the human’s performance in this task component would decreases from its maximum

value to its minimum value 20 seconds after the benchmark time has passed. From previous pHRC

the experienced operator requires approximately 8 seconds and 16.5 seconds to traverse the first

and second sections of the virtual environment respectively.

In this task component, when the human crosses the boundary between the two sections, the robot

will reward the human’s performance once to signify the robot’s acknowledgement of its human

co-worker’s progress through the environment. The reward for crossing the boundary was set to

Rp = 0.6.

The enabling function for the penalty in this task component will be different from the enabling

function for the reward. The penalty will only penalize the human’s performance in this task

component when the time taken by its human co-worker exceeds the benchmark. On the other

hand, the reward should only increase the fluid in the fluid place φp,n if the end-effector moved

from the first section to the second section while inside the complex environment. Therefore, the

enabling functions for this task component are defined as:

GpR = Bsec2Btrig (4.54)

GpP =

Bsec1Bt Section 1

Bsec2Bt Section 2
(4.55)

where Btrig = 1 represents that the reward has not been awarded before, Bt represents that the time

taken by the human co-worker in this section exceeded the time taken by the experienced operator



Chapter 4. A Robot Confidence Framework for physical Human-Robot Collaboration 111

and Bsec1 = 1 and Bsec2 = 1 represent that the robot arm is currently in the first and second sections

of the virtual environment respectively. The functions representing reward and penalty for this

task component can be seen in Figure 4.30.
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FIGURE 4.30: Graphs representing the functions for the reward (left) and penalty (right) in the
progress task component.

The robot updates its perception of the human’s performance in the task component φp,n at each

time step using (4.3) where:

dφp,n

dt
= GpRRp−GpPPp(p) (4.56)

Human Performance in the Tactile Feedback Task Component ( f )

The second task component in this case study considers the collisions between the simulated robot

end-effector and the complex environment. When the end-effector collides with the environment,

the human receives tactile feedback from the Phantom Omni. This tactile feedback takes the form

of a vibration in the pen shaft and a resistive force when the human attempts to move in the

direction of the walls or obstacles or the intention of the human co-worker would force the robot

arm into an unsafe configuration such as self collision or singularity. The observation for this task

component f , refers to the strength of the resistive force applied by the Phantom Omni as the

human maneuvers the robot arm through the simulated environment.

The tactile feedback received when an experienced operator completes the task is shown in Fig-

ure 4.31. From the graph it can be seen that the tactile feedback does not exceed f = 3. Therefore,
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FIGURE 4.31: An example of the tactile feedback received when an experienced operator com-
pletes the task.

the penalty for this task component penalizes the human when the tactile feedback exceeds f = 3.

It was decided that f = 6 would correspond with half the maximum penalty and that the maximum

penalty would occur when f = 9. This results in the following penalty function:

Pf ( f ) = 0.1(
1

1+ e(−0.98( f−6))) ) (4.57)

In this task component, the reward R f = 0.01 was chosen to slowly regenerate the fluid in φ f ,n over

time. The functions for the penalty and reward can be seen in Figure 4.32.
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FIGURE 4.32: Graphs representing the functions for the reward (left) and penalty (right) in the
tactile feedback task component.

The enabling function G f = Benv was chosen where Benv = 1 represents that the human is currently

inside the complex environment. The robot updates its perception of the human’s performance in
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this task component φ f ,n using (4.3) where the change in the robot’s perception of the human’s

performance at each time step is given by:

dφ f ,n

dt
= G f R f −G f Pf ( f ) (4.58)

Human Performance in the Control Task Component (∆)

The last task component considers the general control aspect of the pHRC. When the human

moves the Phantom Omni, a trajectory for the robot end-effector is calculated. The observation

∆ is the difference between the distance the virtual end-effector moved and the endpoint of the

calculated trajectory. In open spaces, points should be the same; however, inside the simulated

environment, this observation provides insight into the human’s ability to control the robot arm.

As the human co-worker becomes more familiar with the teleoperation of the robot arm in the

virtual environment, the expectation is that the value of ∆ would become smaller. Smaller values

of ∆ indicate that the human is familiar with the robot arm’s capabilities and is able to make full

use of its capabilities without any hindrances to the movement of the robot arm. Larger values of

∆ on the other hand, would indicate that the human is attempting to force their way through the

complex environment or are unfamiliar with the teleoperation of the robot arm and would require

more training to improve their performance.
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FIGURE 4.33: An example of ∆ received when an experienced operator completes the task.

Figure 4.33 shows the value of ∆ when an experienced operator completes the task. From the

graph, it can be seen that ∆ ≤ 0.1 when an experienced operator is teleoperating the robot arm

through the virtual environment. Therefore, the function which represents the penalty P∆(∆) will
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penalize the human’s performance when ∆ > 0.1. The penalty function was designed such that

∆ = 0.3 would correspond with the maximum penalty in this task component. The described

function is given by:

P∆(∆) = 0.1(
1

1+ e(−29.44(∆−0.2))) ) (4.59)

This task component will also be using the reward function R∆ = 0.01 to increase the fluid within

the fluid place φ∆. The functions for the reward and penalty in this task component can be seen in

Figure 4.34.
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FIGURE 4.34: Graphs representing the functions for the reward (left) and penalty (right) in the
control task component.

Similar to the previous task component, the enabling function for this task component will be

G∆ = Benv. The robot updates its perception of the human’s performance in this task component at

each time step using (4.3) where:

dφ∆,n

dt
= R∆−P∆(∆) (4.60)

4.3.3.2 Confidence modelling

As there are no critical components in this case study, the calculated confidence purely reflects the

robot’s overall perception of the human’s performance in the task. The confidence will also not fall

below C3,min. Therefore by setting C3,min = 0 the confidence of the robot in its human co-worker

will be within the range of 0 ≤C3 ≤ 1. The weightings of the task components have been set to
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γ∆ = 0.5, γ f = 0.3, γp = 0.2 for the control, force feedback and operator progress task components

respectively. This configuration was chosen as the robot considers the human’s ability to control

the robot arm more important than the other two task components. γp is the lowest of the three

weightings as the time required by the human co-worker to complete the task is not as important

as their ability to pass through the complex environment with minimal collisions. This results in

the following equation for robot’s confidence in its human co-worker in this case study:

C3 = 0.5φ∆,n +0.3φ f ,n +0.2φp,n (4.61)

4.3.3.3 Experimental Results

An example of a human co-worker’s performance in this case study as they maneuvered the robot

arm through the virtual environment with the Phantom Omni is shown in Figure 4.35. The figure

depicts the robot’s observations of the human’s actions in the task components (top) and the robot’s

perception of the human’s performance in the task components (bottom).

From Figure 4.36, it can be seen from the performance graphs that the human co-worker per-

forming the task was not as skilled as the experienced operator. The robot’s perception of the

human’s performance in all the task components decreased with the robot’s perception of the hu-

man’s performance in the tactile feedback task component and the control component reaching

their minimum values during the pHRC.

Figure 4.35a shows that although the time required by the human co-worker to complete each

section exceeded the benchmark, the human co-worker required a much longer period of time to

maneuver the robot arm through the second section than the first section of the task. This was to be

expected as the second section of the task is more complex than the first section. It can also be seen

from Figure 4.35b that human regularly collided with the environment as they completed the task.

Combining this information with the robot’s perception of the human’s performance in the control

task component (φ∆,n), it can be inferred that when the human collided with the environment, they

had a habit of attempting to force their way through the obstacle. This is largely supported by the

observations in the tactile feedback task component which shows that the robot arm was almost in

a constant state of collision with the environment as f ≥ 3 for a large portion of the pHRC.



116 Chapter 4. A Robot Confidence Framework for physical Human-Robot Collaboration

0 10 20 30
Time (s)

0

0.5

1

p

Observations

0 10 20 30
Time (s)

0

0.5

1

?
p
;n

Performance

(a) Progress

0 10 20 30
Time (s)

0

5

10

f

Observations

0 10 20 30
Time (s)

0

0.5

1

?
f
;n

Performance

(b) Tactile Feedback

0 10 20 30
Time (s)

0

0.2

0.4

"

Observations

0 10 20 30
Time (s)

0

0.5

1

?
"

;n

Performance

(c) Control

FIGURE 4.35: The robot’s observations (top) and the robot’s perception of its human co-worker’s
performance (bottom) in the (a) progress (b) tactile feedback (c) control task components.

The results of this case study showcase how the robot confidence framework can not only be

used to quantify the robot’s confidence in its human co-worker but also pinpoint areas in the

pHRC where the human can improve their performance. The use of the simulated environment is

used as a low risk gateway to transition human co-workers towards pHRC using physical robots.

If the robot confidence framework from this case study were to be implemented in a physical

environment rather than a simulated one, modifications to the implemented framework would be

necessary to include task components and rewards and penalties which relate to the physical and

safety aspects of the new pHRC.



Chapter 4. A Robot Confidence Framework for physical Human-Robot Collaboration 117

0 10 20 30
Time (s)

0

0.5

1

C
3

Robot Con-dence

FIGURE 4.36: Confidence of the robot in its human co-worker during a pHRC using the Phantom
Omni.

4.4 Further Generalization of the Robot Confidence Framework

The robot confidence framework has the potential to provide many benefits to research on pHRC.

The framework could be used by the robot to determine when it should intervene in the interac-

tion. However, this is not the only way the robot confidence framework could be used. Because the

robot’s confidence in its human co-worker is dependant on the robot’s perception of the human’s

performance in various task aspects, the robot has a record of the human’s performance through-

out the task. Therefore, it is possible to identify areas where the human’s performance could be

improved or trends in human performance across multiple human operators which could be used

to optimize the interaction. Another possible use for the robot confidence framework is to reduce

the speed of the interaction based on the robots confidence in its human co-worker. This could

result in improved human performance as the human would have more control over the interaction

due to the reduced speed. Once the human’s performance increases, the speed of the interaction

could return to its initial settings. An example of where this could be useful is in manipulation

tasks where the human must guide the robot through complex environments using either physical

contact or through tele-operation.

One of the strengths of the robot confidence framework is how it can be easily adapted to any

pHRC. In the previous section, three case studies were presented where the robot confidence

framework was developed to suit each pHRC scenario. Although the resultant frameworks in each

case study differs, the methodology used to develop the framework in each of the case studies was
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the same. In this section, an overview of the process for adapting the robot confidence framework

for a generic pHRC is provided.

The process of developing a robot confidence framework for a pHRC can be broken into the

following steps:

1. Identifying task components for the pHRC.

2. Identify how the robot would observe the human’s performance in the task components.

3. Determine the expected values for the robot’s observations in each task component.

4. Generate rewards, penalties and enabling functions for each task component.

5. Categorize components into critical and non-critical components.

4.4.1 Identifying task components for the interaction

The first step in formulating the robot confidence framework is to decompose the task into com-

ponents. Questions to ask include but are not limited to:

• What are the objectives of the task?

• What are the the restrictions or limitations of the task?

• Are there any safety precautions that need to be taken?

Each of these questions should generate a list of task components which could be used for the robot

confidence framework. For example, if the task requires the robot or human to reach a position

or pose, maintain a speed or state, complete a number of repetitions, navigate an area or find an

object, then a portion of the task components should reflect these task requirements. Examples

of task oriented task components in the previous case studies include the human maintaining an

acceptable blasting angle and the tracking of the human’s progress in the task.

In the previous case studies, the majority of the task components were based on safety aspects or

limitations of the task. These task components included minimizing applied forces, accelerations

and velocities. Theoretically, are no limits to the number of task components which can be defined

for a pHRC, at this stage of the framework development, it is best to include as many as possible.
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4.4.2 Identifying how the robot would observe the human’s performance in the task

components

Because the robot’s confidence is dependant on the robot’s perception of the human’s performance

and the robot’s perception of the human’s performance is dependant on its observations of the

human’s actions, how the robot observes the human’s actions is extremely important. If the robot

is unable to quantify or observe the human’s actions relating to a task component, then it cannot

be used as a task component within the robot confidence framework.

For example, assume an interaction where the force applied to the robot end-effector by the human

operator was required to be below 10kg due to a physical limitation of the robot. If the robot had

a load cell built into the robot end-effector, the robot would be able to observe the load applied by

the human operator. However, if the robot did not have a load cell and could not observe the force

applied by the human, the robot would not be able to measure the human’s performance in the task

component. Therefore, even though there is no theoretical limit to the number of task components

in the robot confidence framework, the number of task components is limited by what the robot

can observe through its sensors or other sources of information.

For other task components such as task progression, the robot’s ability to observe the human’s

performance in the task component is dependant on how well defined the task is. As an example,

in the grit-blasting case study, the human’s progress in blasting the wall section could have been

an additional task component. To measure the human’s progress in the task component, the robot

would need to measure the percentage of the wall that had been blasted. This could be done

visually using cameras or by measuring the flow rate of the abrasive material and the trajectory

of the nozzle. Observations of task progression in other tasks such as navigation or point-to-point

movement could be obtained by implementing a checkpoint system which updates the system

state.

4.4.3 Determining expected values for the robot’s observations

This step involves defining the robot’s expectations for the human’s actions in each task compo-

nent. The robot’s perception of the human’s performance is dependant on their expectations of
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the human’s actions. If the robot’s expectations for performance are set low, then the robot’s per-

ception of the human’s performance would be less likely to decrease. Conversely, if the robot’s

expectations are set high, the robot’s perception of the human’s performance would be more likely

to decrease.

A robot’s expectations for a human’s actions can be categorized as either expectations resulting

from limitations imposed upon the task component or expectations based on prior experience or

learning. In Section 4.4.2, the force applied to the robot end-effector was required to be below

10kg due to a physical limitation of the robot. Therefore, it is reasonable to assume that the robot’s

expectations for the force applied by the human operator during the task would be below 10kg.

For the same robot, the robot’s expectations of the human’s force could refined by modelling the

task or analying trends in previous datasets.

For the case studies presented in Section 4.3, the robot’s expectations for the task components

were obtained by repeating the task with a number of different participants and recording the

robot’s observations throughout the interactions. Using the observations, the range of values that

the robot would expect to observe during an interaction with a generic user was inferred.

4.4.4 Generate rewards, penalties and enabling functions for the task components

Once the robot’s expectations for its observations in a task component are identified, the next step

is to determine the relationship between the robot’s expectations, the robot’s observations and the

robot’s perception of the human’s performance in the task components. There are two general

rules when defining the rewards and penalties. If the robot’s observations of the human are within

its expectations, the robot’s perception of the human’s performance in the task component should

increase. However, if the robot’s observations of the human are outside of its expectations, then

the robot’s perception of the human’s performance in the task component should decrease.

Intuitively, the further outside the robot’s expectations the robot’s observations are, the larger the

penalty should be. Consider the interaction with the robot end-effector which had a physical lim-

itation of 10kg. Assume that the robot expects the force applied by the human operator to be less

than 5kg and consider the three following scenarios; the applied force is less than 5kg, the applied

force is more than 10kg and the applied force is more than 5kg but less than 10kg. In the scenario
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where the force is below 5kg, the robot’s perception of the human’s performance should increase.

In the scenario where the force is over 10kg the robots perception of the human’s performance

should decrease. However, in the third scenario where the force applied by the human is between

5kg and 10kg, it can be argued whether the robot’s perception of the human’s performance should

increase, decrease or maintain its current value. The applied force is below the maximum limit

of 10kg and is therefore safe. However, it is not within the expected range of values for an in-

teraction. Therefore, if the robot’s perception of the human’s performance were to increase, the

increase should be less than the increase in the first scenario where the applied load is less than

5kg. Similarly, if robot’s perception of the human’s performance were to decrease, the decrease

should be less than the scenario where the applied load is greater than 10kg. Finally, because the

applied load is outside of the expected range but below the maximum load, it may be desirable to

maintain the robot’s current perception of human performance as the current observation cannot

be said to reflect good or bad performance.

The goal of the rewards and penalties is to map the robot’s observations to the desired increase or

decrease in the robot’s perception of the human’s performance. This can be done using a variety

methods including the use of simple functions, classifications or machine learning algorithms.

Using the previous example, two methods for modeling the rewards and penalties for the task

component will be presented.

In the first approach one reward and two penalties used. When the applied force is below 5kg,

the reward would increase the robot’s perception of the human’s performance at a constant rate

(fluid within the fluid place would increase at a constant rate). However, if the applied forces

were greater than 5kg but below 10kg, one of the penalties would reduce the robot’s perception

of the human’s performance at a constant rate. Finally, if the applied forces were greater than

10kg, the other penalty would reduce the robot’s perception of the human’s performance at a faster

constant rate. It is also be possible for the rewards and penalties for each range of applied forces

to be represented by functions instead of a constant value. From the definition of the reward and

penalties, only one of rewards or penalties should be enabled at any given time. In the performance

model, the flow of fluid in and out of the fluid place is controlled by the enabling functions. In this

case the enabling functions for the rewards and penalties would be enabled when the force applied

by the human is within the specified range and would be disabled when the force applied by the

human is not within the specified range.
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Another approach for modelling the rewards and penalties for the same interaction is to use a

single reward and penalty. In this approach, the reward would be set to a constant value and the

penalty would be defined by a function. The result in the previous approach can be obtained

if the penalty function was represented by three piece-wise functions each representing one of

the applied force ranges. However, the values would have to be adjusted to offset the constant

reward. Because the robot updates its perception of the human’s performance when it receives a

new observation, the penalty and reward in this approach would decrease and increase the fluid

within the fluid place at the same time. Therefore, unlike the previous approach where each penalty

and reward had a distinct enabling function, both the reward and penalty in this approach would

have a common enabling function with a condition such as ’the presence of an applied force’. This

would ensure that the robot’s perception of the human’s performance in the task component would

only change when the robot detects an applied load. Once again, the reward and penalties do not

need to be represented by constant values. In the previous section’s case studies, the rewards were

generally represented by a constant function while the penalties were generally represented by

sigmoid functions.

This step is also used to determine how harsh or lenient the robot is in its judgment of the human’s

performance. Larger penalties will result in the robot’s perception of the human’s performance

to decrease faster, which will result in a faster decrease in the robot’s confidence in the human.

Another factor which needs to be taken into account when determining the magnitude of the re-

wards and penalties, is the rate at which the robot updates its observations. The faster the robot

updates its observations, the faster its perception of the human’s performance will change. This

could result in a small penalty having a large effect on the robot’s perception of the human’s per-

formance. Therefore, the robot’s observations may need to be downsampled or the rewards and

penalties scaled appropriately to obtain the desired behavior from the performance model. This

step is subjective and the specific values would need to be tuned based on purpose of the task and

the framework.

4.4.5 Categorize components into critical and non-critical components

Once the penalties, rewards and their respective enabling functions have been defined for each

task component, the final step is to determine the importance of each task component in regards
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to the overall task and its importance relative to the other task components. The first part of this

step involves categorizing the task components as either critical or non-critical components. If a

task component meets any of the following conditions, it should generally be chosen as a critical

component:

• Large impact on the safety of the human or robot.

• Large impact on the quality of the task’s outputs.

• Large impact on the continuation of the task.

• Requires the robot to quickly intervene in case of poor performance.

From the above list, it can be seen that for a pHRC in an industrial environment, the majority of task

components would be designated as critical components. This was not the case in the presented

case studies as the tasks were performed within a safe and controlled environment where the safety

of the human and the robot were never at risk. An example which highlights the difference between

a critical and non-critical component is the categorization of the impact detection and distance to

obstacle task components in the Smart Hoist case study which were designated as critical and

non-critical task components respectively. The impact detection task component had immediate

physical consequences which the robot had to react to immediately whereas being close to walls

and obstacles did not necessarily indicate poor performance. In the case study, to pass through

doorways, the distance between the Smart Hoist and the environment would be very small due

to the width of the Smart Hoist and the doorways. Therefore, poor performance in the distance

to obstacle task component does not necessarily indicate that the human is performing poorly in

the overall task. Thus the distance to obstacle task component was designated as a non-critical

component, so that its influence on the robot’s confidence would be significantly smaller when

compared to the impact detection task component.

Given that all of the important task components for the interaction have been designated as critical

components, all that is left are the non-critical components. An additional weighting needs to be

assigned to each of the non-critical components. Similar to how critical components are more

important than non-critical components, some non-critical components may be more important

than other non-critical components for the interaction. This difference in importance is expressed
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through the weightings assigned to each non-critical component. Although this process is subjec-

tive, to simplify the process, each non-critical component could be assigned an equal weighting.

However, this could result in a problem where the effect of any individual non-critical component

on the robot’s confidence would be minimal if there are too many non-critical components.

The final variable in the robot confidence framework which needs to be assigned is the Cmin value.

This value specifies the importance of the non-critical components in the task where Cmin = 1

represents the non-critical components having no influence on the robot’s confidence and Cmin = 0

represents that the weighted performance of the robot in the non-critical components have the same

influence on the robot’s confidence as a critical component. It should be noted that in an interaction

where there are no non-critical components, Cmin = 1 should not be used as the robot’s confidence

in the human would not change. For most interactions, that value Cmin = 0 would be used as

there are not many situations where decreased performance in non-critical components needs to

be dampened. Now that the components of the robot confidence framework are defined, the entire

framework can be put together. From the robot’s observation of the human’s actions, to using the

observations to increase and decrease the robot’s perception of the human’s performance to finally

combining the human’s performance in the task components to calculate the robot’s confidence in

its human co-worker.

4.5 Summary

In this chapter, a robot confidence framework was proposed for quantifying the robot’s confidence

in its human co-worker during pHRC based on its perception of the human’s performance. The

confidence calculation is application-dependent. Because of this, the framework provides a way

of modelling the robot’s confidence in its human co-worker based on task specific measures of

performance. The rewards and penalties that model the robot’s expectations of its human co-

worker in the task components are generally created based on what is considered to be best practice

for a specific application.

In the case studies presented in this chapter, the calculated confidence of the robot in its human

co-worker reflects how confidence should change based on the performance of the human co-

worker. The implementation of the framework can be further improved by including more nuanced
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rewards and penalties or increasing the number of task components to improve the model of robot’s

expectations of the human’s actions.

The use of the robot confidence framework not only provides the robot with information about its

human co-worker’s overall performance in the pHRC, it also provides information on aspects of

the task where its human co-worker requires improvement. The results of the robot confidence

framework can be used as a guide for teaching the human co-worker how to improve their perfor-

mance in future collaborative operations. In Case Study 3 for example, if a physical robot was used

rather than a simulated one, the lessons learned from applying the robot confidence framework can

also be applied to the physical robot. However, the robot confidence framework developed in the

case study would require modifications to the task components and/or the rewards and penalties to

account for the changes in the pHRC.





Chapter 5

Robot Confidence-Based Role Change

In Chapter 4, a robot confidence framework was presented that quantifies the robot’s confidence

in its human co-worker during physical Human-Robot Collaboration (pHRC). The robot confi-

dence framework was demonstrated by applying it to a number of pHRC case studies. Using the

robot’s observations of the human’s actions and the robot’s understanding of the task, the robot’s

confidence in its human co-worker during pHRC was calculated. A human’s confidence in its

robot co-worker is one of the factors that determine whether the human would intervene in the

robot’s actions during an interaction [34][35]. Therefore, using the robot’s confidence to deter-

mine whether the robot should intervene in the human’s actions during pHRC would facilitate a

reciprocal interaction dynamic between the human and the robot.

Chapter 5 presents a method that uses the confidence of the robot to determine whether the robot

should initiate a role change during pHRC and take control of the interaction away from its human

co-worker. In this thesis, a role change is defined as a change in the robot’s Level of Autonomy

(LoA) which is represented by the robot taking control of an interaction away from its human co-

worker. Based on the robot’s understanding of the task and its observations of the human’s actions,

the robot calculates its confidence in its human co-worker using the robot confidence framework

presented in Chapter 4. The robot’s confidence is then used to determine whether and when the

robot take the control away from its human co-worker during pHRC. This method is verified in a

case study that uses a collaborative grit-blasting robot.

127
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This chapter is organized as follows. Section 5.1 presents a method for using the robot’s confidence

in its human co-worker to determine whether the robot should intervene (i.e. take control) in the

human’s actions during pHRC. The confidence-based role change method takes into account the

robot’s confidence and the first and second derivatives of the robot’s confidence to decide whether

it should initiate a role change. Section 5.2 introduces the experiment to verify the role change

method. Section 5.3 presents the experimental results where the robot monitors the human’s ac-

tions during a collaborative grit-blasting task and decides whether it should initiate a role change.

Section 5.5 summarizes the experimental results and discusses the limitations of the confidence-

based role change method.

5.1 Confidence-Based Role Change Method

The approaches for role change in the literature can be divided into two categories; sliding auton-

omy and instantaneous role change. In the first category, the change in roles occurs as a gradual

relinquishing of control from one of the participants of the interaction [124]. The second category

on the other hand, involves an instantaneous change of role in the interaction once a threshold had

been exceeded [105]. The confidence-based role change method presented in this chapter is in the

second category.

In this chapter, the research is focused on when and whether a robot initiates a role change and

assumes that only one of the agents (the human or the robot) has control over the pHRC at any

given time. When the robot decides that it should take the control of the pHRC away from its

human co-worker, i.e. robot is in control of the pHRC, then the robot will no longer act upon its

human co-worker’s intentions.

The confidence-based role change method presented in this chapter uses a control value Ω to

determine whether it should intervene in the pHRC to take the control away from its human co-

worker. The control value Ω determines whether a role change occurs based on the following

conditions:

Ω≥ 0 Human co-worker is in control

Ω < 0 Robot is in control
(5.1)
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The presented confidence-based role change method uses the robot’s confidence (C) to calculate

the control value Ω. This method also considers the first derivative of the robot’s confidence (Ċ)

and the second derivative of the robot’s confidence (C̈) when calculating the control value, as each

of these values adds contextual value to the robot’s decision. It should be noted that the second

order term may not be necessary for interactions where the confidence of the robot changes very

slowly. The following equation for the control value Ω is proposed:

ω1(
¯̈C)+ω2(

¯̇C)+ω3(C̄) = Ω (5.2)

where ω1 is a function of ¯̈C, ω2 is a function of ¯̇C and ω3 is a function of C̄. The variables ¯̈C, ¯̇C and

C̄ represent the average values of C̈, Ċ and C in a time horizon tH . In the following subsections,

the relationship between C, Ċ, C̈ and the control value Ω will be defined.

5.1.1 Effect of Confidence on Control Value

It is logical that a robot’s confidence should contribute to whether the robot should intervene in

its human co-worker’s actions. The component of the control value, ω3(C) is a function of the

average confidence of the robot (C̄) in its human co-worker in a time horizon (tH) where C̄ is given

by:

C̄ =
1

nC

nC

∑
i=1

Ci (5.3)

where nC is the number of confidence samples in a time horizon tH .

When the human co-worker is in control during pHRC, if the robot has confidence in its human

co-worker, the robot continues allowing the human to be in control in the pHRC. However, if

the confidence of the robot in its human co-worker were to decrease, it is intuitive that the lower

the confidence of the robot in its human co-worker, the more the robot wants to take the control

of the pHRC away from its human co-worker. In the confidence-based role change method, Ω is

increased when the robot’s confidence in its human co-worker is high and Ω is decreased when the

robot’s confidence in its human co-worker is getting low. The proposed equation for the component
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ω3 which describes the effect of the robot’s confidence in its human co-worker on the control value

is given by:

ω3(C) = kA(ekBC̄−1)−ω3,max (5.4)

where kA and kB are constants and the component ω3 is modeled within the range−ω3,max ≤ω3 ≤

ω3,max. To solve for kA and kB, the following conditions should be considered:

ω3(C) =

 0 C̄ = C̄thresh

ω1,max C̄ = 1
(5.5)

where C̄ = C̄thresh represents a threshold in the robot’s confidence in its human co-worker where

the robot’s confidence in its human co-worker does not increase or decrease the control value

and ω1,max is the maximum contribution for this component towards the control value. When

C̄ < C̄thresh, the value of ω3 will be negative which will decrease the control value Ω. This results

in the robot becoming more inclined to take the control away from its human co-worker when C̄ is

lower.

When kA and kB can are calculated using (5.4) and (5.5), there are no solutions for kA and kB when

C̄thresh = 0, C̄thresh = 0.5 and C̄thresh = 1. This divides the possible values for C̄thresh into two ranges,

0 < C̄thresh < 0.5 and 0.5 < C̄thresh < 1. For higher values of C̄thresh the robot is more likely to take

the control away from its human co-worker during the pHRC, because ω3 will become negative

at a higher value of C̄. Therefore, higher values of C̄thresh would be more appropriate for pHRC

where the robot’s tolerance for poor performance is lower. This is because at a higher value of

C̄thresh, a smaller decrease in C̄ will result in a larger decrease in ω3 and by extension Ω, making it

more likely that the robot will initiate a role change.

Examples of pHRC applications and suggested values of C̄thresh are shown in Table 5.1. To deter-

mine the value of C̄thresh that is appropriate for a particular pHRC, factors such as the experience

of the human co-worker, the purpose of the interaction and the safety of the human and the robot

during the pHRC should be taken into account.
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TABLE 5.1: Guidelines for selecting values for C̄thresh based on the type of pHRC.

C̄thresh Description
0.1 - 0.4 When the human co-worker is learning to use the robot in a controlled and

safe environment. For these values of C̄thresh, the robot is very lenient towards
the human and only takes control away from its human co-worker when its
confidence in the human is very low. Even when control of the pHRC is taken
away, it can be quickly regained if the robot’s confidence in its human co-
worker increases once more. C̄thresh = 0.1 is appropriate when the human co-
worker is beginning to interact with the robot for the first time and C̄thresh = 0.4
would be used towards the end of the training stage.

0.6 For low risk pHRC such as teleoperation, where the robot and the human are
not at risk. Generally used to gauge the performance of the human as the robot
would only want to intervene in the pHRC when the human’s performance in
the task severely decreased.

0.7 Where the robot and human are interacting via direct physical contact should
have a threshold of C̄thresh ≥ 0.7. Working in close proximity with a robot
always poses some level of risk to the human which cannot be mitigated. This
would be appropriate for pHRC where the robot is only providing physical
assistance to its human co-worker in a low risk pHRC.

0.8 At this level there is some risk to the safety of the human or robot, but it is not
an immediate danger. This level would be appropriate for pHRC where both
agents understand the risks involved and there are safety precautions such as
automatic protective stops in place. An example of a pHRC which would use
this value of C̄thresh would be controlling a motorized device or vehicle in a
cluttered environment.

0.9 Extremely high risk applications, where decreases in the human’s performance
and the robot’s confidence in its human co-worker could have adverse effects
on the safety of the human or the robot. For this value of C̄thresh, the value
of ω3 would become negative at higher values of C̄0. An example of a pHRC
where this threshold would be appropriate is when the human and the robot are
working in close proximity of heavy machinery or sources of danger.

Taking into consideration the two value ranges for C̄thresh, it is reasonable for the higher range of

values to be used in interactions where there robot would need to intervene quickly and for the

lower range of values for interactions where the robot’s intervention is not time sensitive. The

higher the value of C̄thresh, the more likely it is that the robot will intervene. Interactions which

require the robot to quickly intervene include but are not limited to:

• Interactions where the human is in contact with or in close proximity with the robot.

• Interactions where there are large safety risks such as heavy machinery, chemicals, heights

or sharp objects.
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• Interactions where small mistakes can have a large impact on the task outcomes.

Such interactions should be designated higher C̄thresh values. On the other end of the spectrum, the

lower range of C̄thresh values are generally used for training or interactions where there is no risk

to the human or the robot. This is because the lower the value of C̄thresh, the less likely the robot is

to intervene in the interaction. The examples of pHRC in Table 5.1 generally follow this ideology.

The C̄thresh values and their respective applications shown in Table 5.1 are presented as a general

guideline. The appropriate value for C̄thresh may differ from those shown in the table based on the

specifics of the pHRC. In Chapter 4.3, three pHRC case studies were presented; collaborative grit-

blasting, maneuvering an indoor environment and remote operation of a robotic arm’s end effector

in a complex simulated environment. Using the guidelines presented in Table 5.1, the value of

C̄thresh for the three case studies would be C̄thresh = 0.7, C̄thresh = 0.8, and C̄thresh = 0.4 for the

grit-blasting, indoor maneuvering and remote operation respectively. Although robot used for the

collaborative grit-blasting case study is relatively safe, the human co-worker is in close proximity

with the robot which poses a risk to the human if the robot behaves unexpectedly. If this case study

were to be performed in an industrial environment where abrasive material is passed through the

nozzle on the robot end-effector, the value of C̄thresh should be higher to reflect the increased risk

to the human’s safety. A value of C̄thresh = 0.8 would be suggested as the human would be wearing

protective gear during the collaborative grit-blasting task and the robot has in-built fail-safes such

as a 3 position switch.

Figure 5.1 shows examples of ω3 where ω3,max = 100. From the figure, it can be seen that when

C̄thresh is small, C̄ must be lower for ω3 to be negative and the rate at which ω3 decreases with

respect to C̄ is also decreased. The value of C̄thresh can also be interpreted as the bias or the

leniency of the robot where the robot is more forgiving towards the human for lower values of

C̄thresh and stricter for higher values of C̄thresh.

5.1.2 Effect of the First Derivative of Robot Confidence on Control Value

The second component of the control value ω2(Ċ), considers the effect of the average rate of

change of the robot’s confidence in its human co-worker on Ω in a time horizon tH . The value of
¯̇C is given by:
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This represents the maximum value of Ċ. Once the robot’s confidence reaches its maximum value

the confidence of the robot cannot increase further. If the robot’s confidence decreases in a sub-

sequent time step during tH then the value of ¯̇C will decrease. Therefore, the maximum value of
¯̇C for a time horizon will occur when the robot’s confidence increases from the minimum value to

the maximum value, without any decreases in the robot’s confidence during tH . This is given by:

¯̇Cmax =
1

tstep(nC−1)
(5.8)

where nC is the number of confidence samples in tH and the robot’s confidence in its human co-

worker remains at its maximum value for the rest of the time horizon tH . A similar result can be

derived for the minimum value of ¯̇C.

¯̇Cmin =
−1

tstep(nC−1)
(5.9)

This results in the following range for ¯̇C :

−1
tstep(nC−1)

≤ ¯̇C ≤ 1
tstep(nC−1)

(5.10)

where ¯̇C represents the trend of the robot’s confidence during tH . If ¯̇C > 0 then the robot’s con-

fidence in its human co-worker has increased during tH . ¯̇C < 0 on the other hand, represents that

the robot’s confidence has decreased during tH . If the robot’s confidence has been decreasing, the

robot is more inclined to take the control away from its human co-worker. On the other hand, if the

robot’s confidence increased during tH , then the robot may not feel the need to take control. In the

confidence-based role change method, this would be represented as ω2 < 0 for a decreasing con-

fidence which would decrease the control value Ω, signifying the robot’s desire to take the control

of the interaction away from its human co-worker, and ω2 > 0 for an increasing confidence which

would increase Ω, representing the robot’s willingness to allow its human co-worker to remain in

control. The component ω2(Ċ) considers the effect of ¯̇C on Ω and is modeled using the following

sigmoid function:
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a smaller change in ¯̇C results in larger changes in ω2. The yellow (β = −3.0) and purple plots

(β = −100.0) show relationships between of ω2(Ċ) and ¯̇C where ω2 will not reach its maximum

value during the interaction (because−0.53≤ ¯̇C≤ 0.53) and where ω2 will approach ω2,max when
¯̇C is small respectively.

5.1.3 Effect of the Second Derivative of Robot Confidence on Control Value

ω1(C̈) considers the average ”acceleration” of the robot’s confidence ( ¯̈C) in a time horizon tH . The

value of ¯̈C is defined as:

¯̈C =
1

nĊ−1

k=nĊ

∑
k=2

Ċk−Ċk−1

tk− tk−1
(5.12)

where nĊ represents the number of Ċ samples in a time horizon tH and tk represents the time

at which the sample Ċk was collected. Similar to ¯̇C, the range of ¯̈C is dependent on the rate at

which the robot updates its confidence in its human co-worker. Assuming that the robot updates

its confidence at a constant time interval tstep the maximum and minimum range of ¯̈C for a time

horizon tH can be derived from (5.12).

Consider the confidence of the robot during a time horizon tH . From (5.7), it is known that the

maximum value for Ċ is given by Ċmax =
1

tstep
. The maximum value of C̈ occurs when Ċ increases

from its minimum value to its maximum value in one time step. This is represented as:

¯̈Cmax =
Ċmax−Ċmin

tstep
=

2
t2
step

(5.13)

where Ċmin = −Ċmax. For a positive value of C̈, there must be a positive net gain over two suc-

cessive time steps. Therefore, the maximum average value for the second derivative of robot

confidence in a time horizon tH is given by:

¯̈Cmax =
2

t2
step(nĊ−1)

(5.14)
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where nĊ is the number of Ċ samples in tH . A similar approach can be used to derive the minimum

value of ¯̈C by considering the situation where Ċ decreases from its maximum value to its minimum

value in one time step:

¯̈Cmin =
−2

t2
step(nĊ−1)

(5.15)

which results in the following range for ¯̈C:

−2
t2
step(nĊ−1)

≤ ¯̈C ≤ 2
t2
step(nĊ−1)

(5.16)

The magnitude of ¯̈C is a representation of the concavity of C. Positive values of ¯̈C represent an

increasing trend in Ċ which suggests that the robot’s confidence may be more likely to continue

to increase. A negative value of ¯̈C on the other hand represents a decreasing trend in Ċ, which

suggests that the confidence of the robot in its human co-worker may decrease. Therefore, if ¯̈C is

positive, the value of Ω should increase and if ¯̈C is negative, the value of Ω should decrease. ω1

represents the effect of ¯̈C on Ω, and can be given by:

ω1(C̈) =
2ω1,max

1+ eα
¯̈C
−ω1,max (5.17)

where α is a constant and ω1 is modeled within the range −ω1,max < ω1 < ω1,max. The value of

ω1,max determines the maximum and minimum contribution of ω1 towards the control value Ω. α

represents the sensitivity of ω1 to the changes in ¯̈C where α < 0. Examples of ω1 are shown in

Figure 5.3.

For the example curves shown in the figure, the robot updates its confidence in its human co-

worker at a rate of tstep = 100ms in a time horizon of tH = 2 seconds with the maximum value

of ω1,max = 100. With these parameters, the equation (5.16) can be used to determine the range

of ¯̈C (−11.11 ≤ ¯̈C ≤ 11.11). In the figure, the blue plot (α = −0.366) represents the relationship

between ω1 and ¯̈C where ω1 = 0.95ω1,max when ¯̈C = 0.95 ¯̈Cmax and the red plot (α = −0.696)

represents the relationship between ω1 and ¯̈C where ω1 = 0.95ω1,max when ¯̈C = 0.5 ¯̈Cmax. From

the figure, it can be seen that when the value of α is small, smaller changes in ¯̈C result in larger







140 Chapter 5. Robot Confidence-Based Role Change

a role change during this experiment. However, if the blasting point moves outside of the error

boundaries, the robot should take the control away from its human co-worker.

In Experiment 2, the human uses the blasting point to follow the dashed black path shown in

Figure 5.4b. Like in Experiment 1, the robot expects the human to be following the blue path and

remain within the error boundary during Experiment 2. As following the black path will move

the blasting point outside of the error boundaries, the robot should initiate a role change and take

control away from its human co-worker during Experiment 2.

In the experiments, the robot confidence framework presented in Chapter 4 is used to quantify

the robot’s confidence in its human co-worker. Although the task components presented in Sec-

tion 4.3.1 for the ANBOT can also be incorporated into the robot confidence framework used

in the experiments, to reduce the experimental variables, only the blasting path accuracy in the

grit-blasting task will be used as a task component.

The blasting path accuracy task component is represented as a critical component where φa,c rep-

resents the robot’s perception of its human co-worker’s performance in the blasting path accuracy

task component. The robot’s perception of the human’s performance in the blasting path accuracy

task component is calculated using one penalty and one reward. The penalty Pa(a) is given by:

Pa(a) =
0.2

1+ e−117.778(a−0.075) (5.18)

where a is the distance (in meters) between the blasting point and the blue path. Because the robot

expects its human co-worker to be following the blue path in both Experiment 1 and Experiment 2,

the penalty Pa(a) decreases the robot’s perception of the human’s performance in the blasting path

accuracy task component when the blasting point deviates from the blue path. The penalty function

was designed such that half the maximum penalty is incurred when the blasting point is 0.075m

away from the blue path and the maximum penalty is incurred when the blasting point is 0.1m

from the blue path. As the maximum penalty is 0.2, it would take approximately 0.5 seconds for

the fluid place φa,c to empty if it was originally full as the robot updates its observations in its

human co-worker’s actions every 100ms. The reward Ra is given by:

Ra = 0.02 (5.19)
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By having a constant reward that is much smaller than the maximum penalty, a Slow Positive/Fast

Negative dynamic [185] is created. This requires the human co-worker to perform well for a longer

period of time to make up for any losses in the robot’s perception of the human’s performance

which emulates the wariness of the robot. In the experiments, good performance is defined as

having the blasting point within the error boundary. When the blasting point is within the error

boundary, the robot’s perception of its human co-worker’s performance will increase as Ra > Pa(a)

when a < 0.05. The plots for the reward and penalty in the blasting path accuracy task component

are shown in Figure 5.5.
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FIGURE 5.5: Graphs representing the functions for the reward Ra and the penalty Pa(a) for the
blasting path accuracy task component.

The change in the robot’s perception of its human co-worker’s performance in the blasting path

accuracy task component at each time step is given by:

dφa,c

dt
= BmBb ·0.02−BmBb ·

0.2
1+ e−117.778(a−0.075) (5.20)

where Bb and Bm represent the state of the switches on the front and back handlebars of the ANBOT

seen in Figure 5.4a respectively. A binary representation is used where 1 represents a pressed state

(enabled) and 0 represents a released state (disabled). As no abrasive material is passed through the

nozzle during the grit-blasting task, Bb represents the human’s intention to blast. Bm on the other

hand allows the human co-worker to control the ANBOT when pressed. The robot’s perception

of the human’s performance in the blasting path accuracy task component will only change when

both Bb and Bm are pressed. The robot’s perception of the human’s performance in the blasting

path accuracy task component is updated at each time step based on the following rules:
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φa,c =

 φa,0 t = 0

φa,c +
dφa,c

dt t > 0
(5.21)

where φa,0 = 1 to represent the robot initially having confidence in its human co-worker’s ability

to perform well in this task component. Because the human’s performance in the task component

is modeled within the bounds 0 ≤ φa,c ≤ 1, when the robot updates its perception of the human’s

performance in the task component, if φa,c > 1 then φa,c = 1 and if φa,c < 0 then φa,c = 0.

The confidence of the robot in its human co-worker can be derived from (4.5). Because there is

only one critical task component and no non-critical components being considered in this experi-

ment, the equation for the robot’s confidence is given by:

C4 = φa,c (5.22)

Once the robot’s confidence in the human is calculated, the values of C̄, ¯̇C and ¯̈C can be obtained

using (5.3), (5.6) and (5.12) respectively. In both experiments, the ANBOT updates its confidence

in the human at a rate of 100ms and considers a time horizon of tH = 2 seconds. The chosen values

for ω1,max, ω2,max and ω3,max are:

ω1,max = ω2,max = ω3,max = 100 (5.23)

These values were chosen so that the weighting of each of the components would be equal when

calculating Ω. The values C̄thresh = 0.7, β = −7.33 and α = −0.366 were chosen for the experi-

ments which results in the following equation for the control value:

200

1+ e−0.366 ¯̈C
+

200

1+ e−7.33 ¯̇C
+39.56(e1.801C̄−1)−300 = Ω (5.24)

If the value of Ω becomes negative during the experiments, it signifies that the robot wants to take

control of the interaction.
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5.3 Experimental Results

In this section, results from experiments where a human performed a collaborative grit-blasting

task using the ANBOT are presented. Although no abrasive material was released when Bb was

pressed, the human co-worker was given visual feedback of their performance during the experi-

ments through a laser pointer mounted onto the nozzle of the ANBOT which showed the current

blasting point on the wall. The colored regions markedA, B, C and D in Figure 5.7, Figure 5.8,

Figure 5.10, Figure 5.11 and Figure 5.13 represent the presence of the blasting point in the four

regions of the blasting path: Section 1 (green), Section 2 (red), Section 3 (blue) and Section 4 (pur-

ple) respectively as depicted in Figure 5.6 and Figure 5.9.

5.3.1 Experiment 1 Results

FIGURE 5.6: One example result from Experiment 1 where the human followed the blue path
using the ANBOT. The actual blasting path of the human on the wall during the experiment is
shown in green, red, blue, purple for Section 1, Section 2, Section 3 and Section 4 respectively.

The human’s actual blasting path during Experiment 1 is depicted in Figure 5.6 where the actual

blasting path is green, red, blue, purple for Section 1, Section 2, Section 3 and Section 4 respec-

tively. The distance between the blasting point and the blue path during Experiment 1 can be seen

in the top graph of Figure 5.7.

The robot’s observations of the human’s actions during the experiment can be seen in the top graph

of Figure 5.7. The graph shows the distance between the blasting point and the blue path during the
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FIGURE 5.7: The distance between the blasting point and the blue path (top) and the robot’s
perception of the human’s performance in the blasting path accuracy task component (bottom)
during Experiment 1. The colored regions shown in the graphs represent the time when Bb is
pressed and the blasting point was in Section 1 (green), Section 2 (red), Section 3 (blue) and

Section 4 (purple) of the blasting path.

experiment as the human completed the collaborative grit-blasting task. The blasting path started

from the top right corner and was broken into four sections; top (green), right (red), bottom (blue)

and left (purple). From the figure, it can be seen that although the blasting point deviates from

the blue path during the experiment, the blasting point is generally within 0.03m of the blue path

which is within the error boundary of 0.05m. The robot’s perception of the human’s performance

in the blasting path accuracy task component during the experiment, shown in the bottom graph

of Figure 5.7, is calculated using (5.21). Because the blasting point remained within the error

boundary during Experiment 1, the robot’s perception of its human co-worker’s performance did

not decrease during the experiment.

As the robot’s perception of the human’s performance maintained its maximum value, the robot’s

confidence in its human co-worker also remained at its maximum value. The graphs for Ω, C̄, ¯̇C

and ¯̈C in Experiment 1 can be seen in Figure 5.8. Because the robot’s confidence in the subject
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FIGURE 5.8: An example result for Experiment 1 derived from the human’s actual blasting path
in Figure 5.6 and the robot’s perception of the human’s performance in Figure 5.7. From top
to bottom: The control value Ω, ¯̈C and ω1, ¯̇C and ω2, C̄ and ω3. The regions shown in the
graphs represent the time when Bb is pressed and the blasting point was in Section 1 (green),

Section 2 (red), Section 3 (blue) and Section 4 (purple) of the blasting path.
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did not change throughout the pHRC, the values of ¯̇C and ¯̈C are zero during the experiment. The

control value Ω in this experiment also remains constant and is always positive. This indicates that

the robot did not feel the need to initiate a role change during the experiment.

5.3.2 Experiment 2

In Experiment 2, the human co-worker followed the path represented by the dashed black line in

Figure 5.4b. The black path was designed to verify the confidence-based role change method by

artificially inducing what the robot would perceive as poor performance. This is because when the

human follows the black path, the blasting point moves outside of the error boundary.

FIGURE 5.9: One example result from Experiment 2 where the human co-worker followed the
dashed black path using the ANBOT. The actual blasting path of the human on the wall during
Experiment 2 is shown in green, red, blue, purple for Section 1, Section 2, Section 3 and Section 4

respectively.

In Experiment 2, the path that the human is following is longer than the path in Experiment 1 as

the black path deviates significantly from the blue path. The length of the black path used in Ex-

periment 2 is approximately 3.88m. The actual blasting path of the human co-worker from Exper-

iment 2 is shown in Figure 5.9 is approximately 4.14m where the green, red, blue, purple portions

of the blasting path represent position of the blasting point in Section 1, Section 2, Section 3 and

Section 4 respectively. The distance between the blasting point and the blue path during Experi-

ment 2 is shown in the top graph of Figure 5.10. The red horizontal line in the graph represents
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the 0.05m error boundary. When the distance between the blasting point and the blue path ex-

ceeds the error boundary, the robot’s perception of its human co-worker’s performance decreases.

The robot’s perception of its human co-worker’s performance in the blasting path accuracy task

component during Experiment 2 is shown in the bottom graph of Figure 5.10.

FIGURE 5.10: The distance between the blasting point and the blue path (top) and the robot’s
perception of the human’s performance in the blasting path accuracy task component (bottom)
during Experiment 2. The red horizontal line in the top graph represents the error boundary.
The colored regions represent when Bb is pressed and the blasting point is in Section 1 (green),

Section 2 (red), Section 3 (blue) and Section 4 (purple) of the blasting path.

From the graph it can be seen that the robot’s perception in its human co-worker’s performance

decreases to its minimum value in Section 1 (green), Section 2 (red) and Section 4 (purple). In

these sections, the robot’s perception of the human’s performance decreases as the blasting point

deviates from the blue path and increases when the human moves the blasting point closer to the

blue path. In Section 3, although the blasting point deviated from the blue path, because the blast-

ing point remained within the error boundary, the robot’s perception of the human’s performance

did not decrease. There were two instances in Section 3 where the blasting point moved outside

the error boundary; however, the robot’s perception of the human’s performance did not decrease
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significantly as the blasting point quickly returned inside the error boundary and the loss in the

robot’s perception in the human’s performance was replenished by the reward function Ra.

Using robot’s perception of the human’s performance in Experiment 2, the values for C̄, ¯̇C and ¯̈C

were calculated. The results of the confidence-based role change method are shown in Figure 5.11.

Although the robot did not take control away from its human co-worker during the collaborative

grit-blasting operation in Experiment 2, the robot’s response to its human co-worker’s performance

during the pHRC can be derived by examining the value of Ω during the interaction. From the

figure, it can be seen that the robot would have initiated a role change in Section 1, taking the

control away from its human co-worker when Ω became negative. Then as distance between the

actual blasting path and the blue path in Section 1 decreased, the robot’s confidence in its human

co-worker increased. Although the value of Ω approached zero, the robot did not return control

to its human co-worker during Section 1 as value of Ω remained negative. If the value of Ra was

higher, or C̄thresh was lower, then the control may have been returned, but that would have also

affected when the robot initiated the first role change to take the control away from its human

co-worker. The robot would have remained in control until Section 3, where it would return the

control to the human when Ω became positive. In Section 4, the decrease the robots confidence

would have resulted in the robot initiating another role change and take control of the interaction

once again only returning control just before the collaborative grit-blasting task ended.

In Figure 5.12, a graphical representation of when the robot would have initiated role changes

during the pHRC is shown. The red circles correspond to the points in the interaction where the

robot would take the control away from its human co-worker and the blue circles represent points

in the interaction where the robot would have given the human the control. Figure 5.13 shows

the distance between the blasting point and the blue path and Ω during the experiment. The role

changes which are represented by the vertical red and blue lines for taking away control and giving

control respectively. From the figures, it can be seen that even though there is a large deviation

between the blasting point and the blue path, the robot would give control back to the human in

Section 3. This is because when modeling the human’s performance in the blasting path accuracy

task component, an error margin of 0.05m was defined. Therefore, even though there is a deviation

in the human’s blasting path, it is still within the robot’s expectations for the task. If the error

boundary were to be changed to a smaller value, the points in the interaction where the robot would

initiate a role change during the interaction would also change. The robot’s confidence would
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FIGURE 5.11: Example result from Experiment 2 based on the human’s blasting path in Fig-
ure 5.9 and the human’s performance in Figure 5.10. From top to bottom: The control value Ω,
¯̈C and ω1, ¯̇C and ω2, C̄ and ω3. The regions shown in the graphs represent the time when Bb

is pressed and the blasting point was in Section 1 (green), Section 2 (red), Section 3 (blue) and
Section 4 (purple) of the blasting path.
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FIGURE 5.12: The points during Experiment 2 where the robot would have initiated a role change
based on the control value Ω. The actual blasting path of the human during the experiment is
shown in green, red, blue, purple for Section 1, Section 2, Section 3 and Section 4 respectively,
and the points where a role change would have occurred are represented as red (robot takes the

control away from the human) and blue (robot gives the control to the human) circles.

decrease at smaller values of a and robot’s perception of the human’s performance in Section 3

would decrease rather than increase.

It can also be seen from the figures that the robot’s decision of whether it should initiate a role

change is not an instantaneous process and does not occur immediately after the blasting point

leaves the error boundary. This is the result of factors such as the selected values for C̄thresh and

the maximum penalty at each time step. A higher value of C̄thresh would have resulted in ω3(C)

becoming negative at a higher value of C̄ while a higher maximum penalty would have resulted in

ω1, ω2 and ω3 decreasing the value of Ω much more quickly when the blasting path of the human

crosses the error boundary.

With the same confidence measurements, it is possible for the role change to occur sooner or later

by changing the parameters of the three components of Ω. The values of ω1,max, ω2,max, ω3,max, α ,

β and C̄thresh heavily influence the conditions under which the robot would initiate a role change.

How an event should be interpreted and the appropriate action to take will vary from pHRC to

pHRC. Therefore, the confidence-based role change method presented in this chapter offers a lot

of flexibility in its implementation.
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when determining the robot’s confidence.

To simplify the robot confidence framework for the experiment, only the accuracy of the human

was considered as a task component. Normally, the operator force would be selected as a task com-

ponent due to the physical contact between the human and robot. However, the purpose of the task

was for the human to follow the paths as accurately as possible. Therefore, the human’s blasting

accuracy was selected as the task component as it best represents the human’s overall performance

in this case study. It is proposed that it may be more beneficial to select a number of focused task

components that are representative of the robot’s perception of the human’s performance in the

task rather than defining too many task components.

If there are too many task components contributing to the confidence measurement, it can result in

undesired behavior if the robot confidence framework is ill-defined. If there are too many critical

components, it is possible for the robot’s confidence to be extremely sensitive to changes in the

task as the robot’s confidence would fluctuate if human’s performance in a large number of critical

components were to increase or decrease by small amounts. On the other hand, if there were

too many non-critical components, the effect of each component on the robot’s overall confidence

in its human co-worker would be negligible as its individual weighting would be too low. Both

scenarios do not reflect how the confidence of a human or robot should change over the course of

an interaction.

In regards to the robot initiating a role change during the interaction, the robot’s own ability to com-

plete the task is not taken into consideration in the robot confidence framework or the confidence-

based role change method. The robot’s decision to intervene is based on its confidence which is

dependant on its observations of the human’s actions and its knowledge of the task, not its ability

to perform the task. The intervention of the robot does not necessarily have to involve the robot

taking over the task from the human. For example, the robot could also stop the interaction to

advise its human co-worker on how their performance can be improved or call for a supervisor to

troubleshoot any problems the robot cannot handle. The robot’s ability to perform the task should

be taken into account after the robot has intervened to take the control of the interaction away from

the human. The robot’s ability to perform the task should determine how the robot would react

after gaining control of the system. This aspect of the interaction is outside the scope of this thesis.
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5.5 Summary

In this chapter, a confidence-based role change method for pHRC was presented. This method

uses the robot’s confidence in its human co-worker to determine whether the robot should initiate

a role change during pHRC and take the control away from its human co-worker. The method

considers the effects of the robot’s confidence and the first and second derivatives of the robot’s

confidence in its human co-worker to determine whether a role change should be initiated.

This method was verified using two experiments involving a collaborative grit-blasting robot. The

robot observed the actions of its human co-worker during the experiments to determine whether it

should initiate a role change and take the control away from the the human. Using its confidence

in its human co-worker, the robot was able to identify the human co-worker’s poor performance

and identify logical points where it should initiate a role change during the pHRC.





Chapter 6

Conclusion

This thesis aimed at addressing three research challenges in physical Human-Robot Collaboration

(pHRC) including: robot perception of the human co-worker’s intention during pHRC, modeling

of the robot’s confidence in its human co-worker and how a robot would decide whether and

when it should intervene (by taking control) in its human co-worker’s actions during pHRC. This

Chapter summarizes the research outcomes and discusses the limitations and future works.

6.1 Summary of Contributions

6.1.1 A Method for Identifying the Human Hand Orientation when grasping a han-

dlebar

A method for identifying the orientation of a human operator’s hand around a cylindrical handle-

bar during pHRC was developed. The grasping pattern of the human hand was obtained using the

Thrumode Matrix Array Sensor (TMMAS) that was wrapped around a cylindrical handlebar. Us-

ing the grasping patterns, the human’s hand orientation around the handlebar was identified using

Support Vector Machine (SVM) and Bayesian Inference. Principal Component Analysis (PCA)

was also implemented to reduce the number of inputs for the classifiers. Two experiments were

conducted to verify the effectiveness of the method. In the first experiment, the data obtained was

from the same subjects but different experiments. In the second experiment, the subject’s hand

155
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orientation was classified using data from other subjects. The results of the experiments showed

that the grasping pattern of the human operator can be used to identify the orientation of their hand

around a cylindrical handlebar. The SVM classifier had a higher accuracy when identifying the

hand orientation and this difference in accuracy became more pronounced when PCA was applied

to the grasping patterns.

6.1.2 A Method for Detecting the Human’s Reaction to Unexpected Events During

pHRC

A method for detecting human co-worker’s reaction to unexpected events during pHRC was de-

veloped. The grasping strength of the human hand during pHRC was recorded using the TMMAS

that was wrapped around a cylindrical handlebar. The handlebar was attached to an upper limb

exoskeleton. The exoskeleton measures the forces applied by the human hand to the handlebar

through a load cell. Two experiments were conducted to observe differences in the human’s grasp-

ing strength when the human initiates changes in the task and when the robot behaves unexpect-

edly. In the experiments, the subjects followed a predefined path using a laser pointer mounted to

the exoskeleton. In the first experiment, the robot applied a large force in the direction perpendic-

ular to the path at random intervals to disrupt the task. In the second experiment, there were two

separate paths that the subjects could follow and the subjects may move between the two paths

during the pHRC. The results of the experiments showed that the subjects instinctively increased

their grasping strength when the robot behaved unexpectedly. The grasping force measured by the

TMMAS would increase before the force detected by the load cell. Furthermore, when the subject

initiated the change in the task, the grasping force of the subject increased after the forces were

detected by the load cell.

6.1.3 A Framework for Modeling a Robot’s Confidence in its Human Co-worker

during pHRC

A robot confidence framework was developed for quantifying the robot’s confidence in its human

co-worker during pHRC. In the performance model, a pHRC task is decomposed into task com-

ponents which represent different aspects of the task from which the robot can observe the actions
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of its human co-worker. A Fluid Stochastic Petri Net (FSPN) model is used to model the robot’s

perception of its human co-worker’s performance. A series of reward and penalty functions are

used to calculate the robot’s perception of the human co-worker’s performance in the task com-

ponent. A confidence model is developed to calculate the robot’s confidence in the human by

utilizing the robot’s perception of the human’s performance in the task components. The robot

confidence framework was verified using three pHRC case studies where the human and robot

worked collaboratively to complete a task. In each case study, the pHRC was decomposed into

task components and the robot calculated its perception of the human’s performance based on its

observations of the human’s actions. The robot then used the human’s performance to calculate

the robot confidence in its human co-worker in real-time. The results of the case studies showed

that the robot’s confidence in its human co-worker changed intuitively, increasing and decreasing

as the human performed well or poorly respectively.

6.1.4 A Robot Confidence-Based Role Change Method

A method for using the robot’s confidence in its human co-worker to determine whether the robot

should initiate a role change was presented. The confidence-based role change method considers

the robot’s confidence, the first derivative and the second derivative of the robot’s confidence over

a time horizon to determine whether the robot should intervene in its human co-worker’s actions.

This role change model was verified using two experiments where the human and robot worked

collaboratively to follow a path. In the first experiment, the human co-worker tried to follow a

path marked on the wall. In the second experiment, the human followed a different path which

deviated from the expected path. Using the robot confidence framework, the robot’s confidence in

its human co-worker was calculated during the experiments. The robot then used the confidence-

based role change method to successfully identify points where it would be appropriate for the

robot to initiate a role change.

6.2 Discussion and Limitations

The work presented in this thesis was designed to improve the robot’s understanding of its human

co-workers during pHRC and to determine whether the robot should initiate a role change during
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pHRC. The crux of the research lies in the robot’s ability to observe and interpret the human’s

actions and intentions in the context of the interaction. There are a number of limitations which

must be considered when implementing the work presented in this thesis. This section discusses

the limitations in the use of the human’s grasping information during pHRC, robot confidence

framework and the confidence-based role change method.

6.2.1 Grasp Sensor Integration

In this thesis, the TMMAS was wrapped around a cylindrical handlebar to obtain the human hand’s

grasping information. This approach poses some practical limitations when applied outside of a lab

environment. One of the limitations is that in pHRC, the handlebar may not always be cylindrical.

Non-cylindrical handlebars tend to be common in applications where the human and the robot are

expected to interact for extended periods of time. These interactions often use a more ergonomic

handlebar [192, 193]. Although the polyurethane layer covering the TMMAS could be molded into

a more ergonomic shape, most ergonomic handlebars do not allow the human co-worker to grasp

comfortably in a large range of orientations due to the shape of the handlebar [194, 195]. This

undermines the practical applicability of the hand orientation classification method for a subset of

pHRC.

6.2.2 Observability of the Human’s Actions and Performance

The performance model used in the robot confidence framework relies on the robot being able to

observe the actions of its human co-worker during the pHRC. A limitation of the performance

model is that it cannot measure the performance of the human in task components which it cannot

observe. If the robot cannot observe the actions of the human in a task component, its perception

of its human co-worker’s performance in the task component will not change. Although this

dynamic is intuitive and is in line with the definition of confidence used in this thesis, it prevents

the robot confidence framework from incorporating factors which the robot does not have sensors

for. Therefore, the assumption is that the robot has the capability to observe its human co-worker’s

performance. This needs to be considered when decomposing a pHRC task into task components

as well.
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6.2.3 Subjectivity of the models for Performance and Confidence measurement

The confidence-based role change method is task/application dependent or subjective; from the

model of the human co-worker’s performance to the robot’s confidence model and to the decision

on whether the robot should intervene in the pHRC. In any Human-Human Interaction (HHI), the

perception and decision of whether to intervene during an interaction are also task and human de-

pendent. A human’s decision of whether to intervene in their co-worker’s actions is the result of the

cumulation of their experience and knowledge. The confidence-based role change was designed

to replicate the role change dynamic seen in HHI from a robot’s perspective. The parameters used

in the confidence-based role change method inevitably have bias when implemented.

The bias in the performance model can be offset by taking into account safety standards and

protocols when designing the rewards and penalties in task components [196]. This has the effect

of making the robot’s measure of confidence in its human co-worker more objective. However,

the rate of increase and decrease of the robot’s perception of the human’s performance is left to

the discretion of the integrator. This is also true for whether a task component is categorized

as a critical or non-critical component and the relative weighting of the non-critical components.

These decisions are left to the integrator as each pHRC differs and the task components, rewards,

penalties and definition of the task components are task specific.

The presented method can be adapted to suit the needs of individual pHRC. The sensitivity of the

performance model, confidence model and control value presented in this thesis are fully adjustable

so that the robot’s intervention during pHRC can be more nuanced.

6.3 Future Work

6.3.1 Incorporating Hand Grasping Information to improve the Robot’s Model of

the Human during pHRC

Using the TMMAS or possibly an array of individual sensors such as the takktile [197] to record

the grasping pattern of the handlebar could prove to be a viable replacement for a load cell in

pHRC. A load cell can only measure the net forces and torques applied to the handlebar by the
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human co-worker. By detracting the grasping force on the handlebar from the human’s grasping

pattern, it is possible to determine both the magnitude and the direction of the forces applied by

the human on the handlebar by implementing the method proposed by Wu [162]. Other works

have also shown that it is possible to measure the sheer forces using an array of sensors such as

the takktile sensors, which could be used to estimate the torque applied by the handlebar [198].

Furthermore, because the grasping pattern of the human hand can be obtained, the force applied

by different parts of the hand can be obtained. It would be possible to develop a model which can

determine not only the orientation of the human hand, but also the contact points of each part of the

hand using the distribution of forces during grasping, pulling and pushing actions on the handlebar

[149, 199]. If the entire hand can be mapped, then the human’s hand size can be inferred using

biomechanical models of the human hand [150, 200, 201]. From these models, the size of the

human hand can also be used to estimate the height of the human [202, 203] which could be used

in conjunction with musculoskeletal models of the human body for pose and strength predictions

during pHRC.

Finally, the incorporation of the human’s grasping information such as their hand orientation and

their grasping strength also needs to be investigated. In this thesis, the robots presented in the case

studies were not equipped with the TMMAS sensor which was used in Chapter 3 to obtain the

human’s grasping information. Therefore, it was not able to be incorporated into the robot confi-

dence frameworks in Chapters 4 and 5 as task components to measure the human’s performance

during the interactions.

6.3.2 Discussion on the Robot Confidence Framework

In this work, a robot confidence framework for quantifying the robot’s confidence in its human co-

worker was proposed as well as a method for using the robot’s confidence to initiate a role change

during an interaction. Case studies and experiments were presented which verified the useful-

ness of the robot confidence framework and the confidence-based role change method, however, a

more rigorous statistical analysis is required. Exploration into the degree to which the implemen-

tation of the robot confidence method and the confidence-based role change method improve the

performance of the human, the efficiency of the task and the safety of the interaction need to be

considered across a range of different pHRC scenarios. It would be interesting to generate a robot
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confidence framework using a subset of subjects and use the generated framework to measure the

robots confidence in another subset of subjects to observe how the robots confidence changes from

subject to subject.

6.3.3 Confidence-Based Role Change in non-physical Human-Robot Interaction

(HRI)

The confidence-based role change method presented in this work focused specifically on the robot

intervening in the human co-worker’s actions during pHRC based on its perception of the human’s

performance.

Expanding the scope of this research to include non-physical interaction information can improve

the performance model used in the robot confidence framework. As more task components or

aspects of the interaction are taken into account, a more complete model can be obtained.

For example, including cognitive, social or cultural factors which may influence the human’s ac-

tions or the robot’s perception of the human’s performance in a task would add additional context

to the robot’s decision of whether it should intervene in the human’s actions. Some of these factors

may not be observable during an interaction or be difficult to model. Many of these factors cannot

currently be measured or quantified through sensor-based observation. Even if it is possible to

measure in a lab, it may not be possible in industrial applications.

6.3.4 Confidence-Based Role Change Method for Sliding Autonomy

In the confidence-based role change method presented in this thesis, a control value was used to

initiate an instant role change. One future work is to explore whether the role change method can

also be applied in sliding autonomy where the control of the pHRC is gradually transfered between

the human and robot.

In the confidence-based role change method presented in this thesis, positive and negative values

of the control value represent a human controlled interaction and a robot controlled interaction

respectively. The work in this thesis focuses on role change from the robot’s perspective. When

the robot initiates a role change, the human co-worker becomes aware of the robot’s decision only
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after the intervention has occurred. If the robot’s confidence in its human co-worker decreases, it

would be helpful if the human could get feedback such as encountering resistance in their control

of the robot.

6.3.5 Human Confidence-Based Role Change in pHRC

Although the confidence-based role change method was designed for the robot to determine whether

the robot should initiate a role change, whether this method can be used to model the human co-

worker’s decision during pHRC would also be interesting to explore. If a method for modeling the

human’s confidence in its robot co-worker is developed, then the human’s confidence in its robot

co-worker can be used as an input for the confidence-based role change method. If the robot’s con-

fidence is used by the method to determine whether the robot should take control of the interaction,

then the human’s confidence would be used to determine whether the robot should relinquish its

control (i.e. human takes control).

6.3.6 Negotiation of Control and Role Change in pHRC

The confidence-based role change method presented in this thesis is for the robot to decide whether

and when to initiate a role change during pHRC. Like HHI, any role change should ideally be ne-

gotiated between the human and the robot. Many factors need to be considered in this negotiation

including the robot’s desire for role change, the human’s desire for role change, the resistance of

the robot and the human to role change and the confidence of the robot and the human. Game

theory may prove a useful method for the negotiation [204–207]. Part of the future work is to

investigate how game theory can be applied for role change negotiation in pHRC.



Appendix A

Hand Orientation Identification

Complete Results

In this appendix, the full results from the experiments performed in Section 3.2 are shown. In the

experiments, the
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A.1 Scenario 1

TABLE A.1: Complete results for Scenario 1 using the SVM classifier without PCA from Sec-
tion 3.2.

Scenario 1 - SVM without PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S1 LR-S1 76.25% 100.00% 0.31
LF-S2 LR-S2 82.58% 100.00% 0.37
LF-S3 LR-S3 79.28% 99.58% 0.27
LF-S4 LR-S4 91.95% 98.55% 0.29
LF-S5 LR-S5 84.52% 96.07% 0.33
LF-S6 LR-S6 59.27% 90.43% 0.37
LF-S7 LR-S7 69.00% 85.00% 0.30
LF-S8 LR-S8 60.88% 97.83% 0.30
LF-S9 LR-S9 35.03% 88.75% 0.39
LF-S10 LR-S10 59.52% 81.72% 0.31

Average Values 69.83% 93.79% 0.32
Standard Deviation 16.69% 6.79% 0.04

TABLE A.2: Complete results for Scenario 1 using the SVM classifier with PCA from Section 3.2.

Scenario 1 - SVM with PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S1 LR-S1 76.92% 100.00% 0.05
LF-S2 LR-S2 83.03% 100.00% 0.05
LF-S3 LR-S3 79.07% 99.55% 0.04
LF-S4 LR-S4 91.23% 98.68% 0.05
LF-S5 LR-S5 85.27% 96.18% 0.05
LF-S6 LR-S6 58.87% 90.35% 0.05
LF-S7 LR-S7 70.57% 84.95% 0.05
LF-S8 LR-S8 59.33% 95.78% 0.05
LF-S9 LR-S9 35.63% 88.83% 0.06
LF-S10 LR-S10 60.72% 82.40% 0.05

Average Values 70.06% 93.67% 0.05
Standard Deviation 16.63% 6.57% 0.005
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TABLE A.3: Complete results for Scenario 1 using the Bayesian Inference classifier without PCA
from Section 3.2.

Scenario 1 - Bayesian Inference without PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S1 LR-S1 68.47% 95.17% 0.89
LF-S2 LR-S2 68.55% 91.20% 0.83
LF-S3 LR-S3 78.25% 95.53% 0.72
LF-S4 LR-S4 71.38% 95.02% 0.71
LF-S5 LR-S5 32.28% 56.30% 0.76
LF-S6 LR-S6 44.42% 77.03% 0.77
LF-S7 LR-S7 33.98% 58.00% 0.74
LF-S8 LR-S8 45.55% 84.90% 0.78
LF-S9 LR-S9 30.30% 73.65% 0.86
LF-S10 LR-S10 22.42% 46.67% 0.78

Average Values 49.56% 77.35% 0.78
Standard Deviation 20.30% 18.20% 0.06

TABLE A.4: Complete results for Scenario 1 using the Bayesian Inference classifier with PCA
from Section 3.2.

Scenario 1 - Bayesian Inference with PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S2345678910 LR-S1 63.53% 85.03% 0.14
LF-S1345678910 LR-S2 46.60% 60.73% 0.12
LF-S1245678910 LR-S3 55.70% 74.00% 0.15
LF-S1235678910 LR-S4 74.82% 95.50% 0.17
LF-S1234678910 LR-S5 41.65% 69.00% 0.12
LF-S1234578910 LR-S6 36.87% 61.13% 0.17
LF-S1234568910 LR-S7 38.50% 44.95% 0.17
LF-S1234567910 LR-S8 47.93% 65.82% 0.14
LF-S1234567810 LR-S9 29.23% 61.40% 0.18
LF-S123456789 LR-S10 45.57% 60.47% 0.15

Average Values 48.04% 67.80% 0.15
Standard Deviation 13.48% 14.22% 0.02
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A.2 Scenario 2

TABLE A.5: Complete results for Scenario 2 using the SVM classifier without PCA from Sec-
tion 3.2.

Scenario 2 - SVM without PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S2345678910 LR-S1 64.92% 90.22% 1.65
LF-S1345678910 LR-S2 68.82% 96.83% 1.56
LF-S1245678910 LR-S3 82.62% 96.15% 1.53
LF-S1235678910 LR-S4 66.57% 83.68% 1.43
LF-S1234678910 LR-S5 79.08% 92.58% 1.47
LF-S1234578910 LR-S6 55.15% 94.10% 1.45
LF-S1234568910 LR-S7 50.43% 67.93% 1.45
LF-S1234567910 LR-S8 54.97% 92.83% 1.49
LF-S1234567810 LR-S9 34.38% 82.27% 1.42
LF-S123456789 LR-S10 63.02% 94.67% 1.47

Average Values 62.00% 89.13% 1.49
Standard Deviation 14.01% 8.93% 0.07

TABLE A.6: Complete results for Scenario 2 using the SVM classifier with PCA from Section 3.2.

Scenario 2 - SVM with PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S2345678910 LR-S1 65.10% 90.67% 0.40
LF-S1345678910 LR-S2 67.90% 96.90% 0.38
LF-S1245678910 LR-S3 79.18% 95.47% 0.42
LF-S1235678910 LR-S4 67.07% 82.02% 0.40
LF-S1234678910 LR-S5 76.33% 89.93% 0.35
LF-S1234578910 LR-S6 55.58% 94.32% 0.34
LF-S1234568910 LR-S7 53.20% 70.08% 0.35
LF-S1234567910 LR-S8 51.90% 92.32% 0.36
LF-S1234567810 LR-S9 38.42% 83.55% 0.35
LF-S123456789 LR-S10 62.08% 96.85% 0.35

Average Values 61.68% 89.21% 0.37
Standard Deviation 12.23% 8.46% 0.03
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TABLE A.7: Complete results for Scenario 2 using the Bayesian Inference classifier without PCA
from Section 3.2.

Scenario 2 - Bayesian Inference without PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S2345678910 LR-S1 35.37% 61.57% 1.65
LF-S1345678910 LR-S2 49.18% 75.97% 1.62
LF-S1245678910 LR-S3 42.37% 78.77% 1.49
LF-S1235678910 LR-S4 31.42% 58.18% 1.41
LF-S1234678910 LR-S5 36.65% 58.70% 1.41
LF-S1234578910 LR-S6 29.17% 81.37% 1.34
LF-S1234568910 LR-S7 28.50% 41.28% 1.37
LF-S1234567910 LR-S8 29.30% 69.20% 1.36
LF-S1234567810 LR-S9 24.28% 50.62% 1.40
LF-S123456789 LR-S10 29.00% 62.20% 1.39

Average Values 33.52% 63.79% 1.44
Standard Deviation 7.52% 12.72% 0.11

TABLE A.8: Complete results for Scenario 2 using the Bayesian Inference classifier with PCA
from Section 3.2.

Scenario 2 - Bayesian Inference without PCA
Training Data Test Data Exact Accuracy Within 1 Accuracy Time (ms)

LF-S2345678910 LR-S1 10.37% 21.62% 0.27
LF-S1345678910 LR-S2 8.50% 34.05% 0.29
LF-S1245678910 LR-S3 9.80% 20.97% 0.27
LF-S1235678910 LR-S4 2.83% 12.15% 0.27
LF-S1234678910 LR-S5 9.42% 24.83% 0.24
LF-S1234578910 LR-S6 3.42% 15.87% 0.24
LF-S1234568910 LR-S7 8.02% 15.97% 0.25
LF-S1234567910 LR-S8 8.22% 25.72% 0.26
LF-S1234567810 LR-S9 5.10% 12.37% 0.25
LF-S123456789 LR-S10 10.25% 18.08% 0.28

Average Values 7.59% 20.16% 0.26
Standard Deviation 2.80% 6.78% 0.02





Bibliography

[1] A. Ajoudani. Human-Robot Interfaces and physical Interaction, 2016. URL https://

goo.gl/dWD8EA.

[2] T. Lee. Robotic Exoskeleton Lets Workers Lift Heavy Objects Effortlessly, 2014. URL

https://goo.gl/5PPbmT.

[3] F. Bimmer. Rise of the robots, 2014. URL https://goo.gl/VNcWLm.

[4] HumaRobotics. Cobot Sawyer - Interaction homme robot, 2016. URL https://goo.

gl/v6zZfk.

[5] Australian Government. Intergenerational Report 2007 (the second intergenerational re-

port). Technical report, Treasury, 2007. URL https://goo.gl/XZphft.

[6] F. Maggi, D. Quarta, M. Pogliani, M. Polino, A. M. Zanchettin, S. Zanero, and P. Di Milano.

Rogue Robots: Testing the Limits of an Industrial Robot’s Security. Technical report, Trend

Micro, Politecnico di Milano, 2017. URL https://documents.trendmicro.com/

assets/wp/wp-industrial-robot-security.pdf.

[7] G. Nichols. Robots are coming to work. Are they safe?, 2017. URL https://goo.gl/

sNaNho.

[8] UTS:NEWSROOM. Robotics lab promises a new world for people with disabilities, 2011.

URL https://goo.gl/nehcHV.

[9] Burke Neurological Institute. ARMEO®SPRING by Hocoma, 2018. URL https://

goo.gl/hJt4Wo.

169

https://goo.gl/dWD8EA
https://goo.gl/dWD8EA
https://goo.gl/5PPbmT
https://goo.gl/VNcWLm
https://goo.gl/v6zZfk
https://goo.gl/v6zZfk
https://goo.gl/XZphft
https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf
https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf
https://goo.gl/sNaNho
https://goo.gl/sNaNho
https://goo.gl/nehcHV
https://goo.gl/hJt4Wo
https://goo.gl/hJt4Wo


170 Bibliography

[10] P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. C. Chen, E. J. de Visser, and R. Para-

suraman. A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Human

Factors, 53(5):517–527, 10 2011. ISSN 0018-7208. doi: 10.1177/0018720811417254.

[11] K. E. Schaefer. Measuring Trust in Human Robot Interactions: Development of the Trust

Perception Scale-HRI. In Robust Intelligence and Trust in Autonomous Systems, pages

191–218. Springer US, Boston, MA, 2016. ISBN 9781489976680. doi: 10.1007/978-1-

4899-7668-0 10.

[12] J. Lee and N. Moray. Trust, Control Strategies and Allocation of Function in Human-

Machine Systems. Ergonomics, 35(March):1243–1270, 1992. ISSN 0014-0139. doi:

10.1080/00140139208967392.

[13] J. M. Beer, S. Carolina, A. D. Fisk, and W. A. Rogers. Toward a Framework for Levels of

Robot Autonomy in Human - Robot Interaction. Journal of Human-Robot Interaction, 3

(2):74–99, 2014. doi: 10.5898/JHRI.3.2.Beer.

[14] F. Flemisch, M. Heesen, T. Hesse, J. Kelsch, A. Schieben, and J. Beller. Towards a dynamic

balance between humans and automation: authority, ability, responsibility and control in

shared and cooperative control situations. Cognition, Technology & Work, 14(1):3–18, 11

2011. ISSN 1435-5558. doi: 10.1007/s10111-011-0191-6.

[15] S. O. Oguz, A. Kucukyilmaz, T. M. Sezgin, and C. Basdogan. Haptic negotiation and

role exchange for collaboration in virtual environments. In 2010 IEEE Haptics Sympo-

sium, pages 371–378. IEEE, 3 2010. ISBN 978-1-4244-6821-8. doi: 10.1109/HAP-

TIC.2010.5444628.

[16] F. O. Flemisch, K. Bengler, H. Bubb, H. Winner, and R. Bruder. Towards cooperative

guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire. Er-

gonomics, 57(3):343–60, 3 2014. ISSN 1366-5847. doi: 10.1080/00140139.2013.869355.

[17] S. M. Rahman, Y. Wang, I. D. Walker, L. Mears, R. Pak, and S. Remy. Trust-based

compliant robot-human handovers of payloads in collaborative assembly in flexible man-

ufacturing. In IEEE International Conference on Automation Science and Engineer-

ing, volume 2016-Novem, pages 355–360. IEEE, 8 2016. ISBN 9781509024094. doi:

10.1109/COASE.2016.7743428.

http://dx.doi.org/10.1177/0018720811417254
http://dx.doi.org/10.1007/978-1-4899-7668-0{_}10
http://dx.doi.org/10.1007/978-1-4899-7668-0{_}10
http://dx.doi.org/10.1080/00140139208967392
http://dx.doi.org/10.1080/00140139208967392
http://dx.doi.org/10.5898/JHRI.3.2.Beer
http://dx.doi.org/10.1007/s10111-011-0191-6
http://dx.doi.org/10.1109/HAPTIC.2010.5444628
http://dx.doi.org/10.1109/HAPTIC.2010.5444628
http://dx.doi.org/10.1080/00140139.2013.869355
http://dx.doi.org/10.1109/COASE.2016.7743428
http://dx.doi.org/10.1109/COASE.2016.7743428


Bibliography 171

[18] A. Tran, D. Liu, R. Ranasinghe, and M. Carmichael. Identifying Human Hand Orientation

around a Cylindrical Handlebar for physical Human-Robot Interaction. In IEEE Interna-

tional Symposium on Robotics, pages 427–434, 2018.

[19] A. Tran, D. Liu, R. Ranasinghe, M. Carmichael, and C. Liu. Analysis of Human Grip

Strength in Physical Human Robot Interaction. In International Conference on Applied

Human Factors and Ergonomics, volume 3, pages 1442–1449. Elsevier B.V., 2015. doi:

10.1016/j.promfg.2015.07.320.

[20] A. Tran, D. Liu, R. Ranasinghe, and M. Carmichael. A Method for Quantifying a Robots

Confidence in its Human Co-worker in Human-Robot Cooperative Grit-Blasting. In IEEE

International Symposium on Robotics, pages 474–481, 2018. ISBN 9783800746996.

[21] B. Vanderborght, R. Van Ham, D. Lefeber, T. G. Sugar, and K. W. Hollander. Comparison of

Mechanical Design and Energy Consumption of Adaptable, Passive-compliant Actuators.

The International Journal of Robotics Research, 28(1):90–103, 1 2009. ISSN 0278-3649.

doi: 10.1177/0278364908095333.

[22] N. Elkmann, M. Fritzsche, and E. Schulenburg. Tactile Sensing for Safe Physical Human-

Robot Interaction. In International Conference on Advances in Computer-Human Interac-

tions, pages 212–217, 2011. ISBN 9781612081175.

[23] J. Drury, J. Scholtz, and H. Yanco. Awareness in human-robot interactions. In IEEE In-

ternational Conference on Systems, Man and Cybernetics, pages 912–918, 2003. ISBN

0-7803-7952-7. doi: 10.1109/ICSMC.2003.1243931.

[24] B. Lacevic, P. Rocco, and A. M. Zanchettin. Safety assessment and control of robotic

manipulators using danger field. IEEE Transactions on Robotics, 29(5):1257–1270, 2013.

ISSN 15523098. doi: 10.1109/TRO.2013.2271097.

[25] A. De Luca and F. Flacco. Integrated control for pHRI: Collision avoidance, detection,

reaction and collaboration. In IEEE International Conference on Biomedical Robotics

and Biomechatronics, pages 288–295. IEEE, 6 2012. ISBN 978-1-4577-1200-5. doi:

10.1109/BioRob.2012.6290917.

http://dx.doi.org/10.1016/j.promfg.2015.07.320
http://dx.doi.org/10.1016/j.promfg.2015.07.320
http://dx.doi.org/10.1177/0278364908095333
http://dx.doi.org/10.1109/ICSMC.2003.1243931
http://dx.doi.org/10.1109/TRO.2013.2271097
http://dx.doi.org/10.1109/BioRob.2012.6290917
http://dx.doi.org/10.1109/BioRob.2012.6290917


172 Bibliography

[26] P. A. Lasota, T. Fong, and J. A. Shah. A Survey of Methods for Safe Human-Robot Inter-

action. Foundations and Trends in Robotics, 5(3):261–349, 2017. ISSN 1935-8253. doi:

10.1561/2300000052.

[27] Investing Answers. Industrial Goods Sector, 2018. URL https://goo.gl/Lk4Adp.

[28] D. K. Liu, G. Dissayanake, P. B. Manamperi, P. a. Brooks, G. Fang, G. Paul, S. Webb,

N. Kirchner, P. Chotiprayanakul, N. M. Kwok, and T. R. Ren. A Robotic System for Steel

Bridge Maintenance: Research Challenges and System Design. In Australasian Conference

on Robotics and Automation, pages 1–7, 2008. ISBN 9780646506432.

[29] G. Paul, S. Webb, D. Liu, and G. Dissanayake. Autonomous robot manipulator-based ex-

ploration and mapping system for bridge maintenance. Robotics and Autonomous Systems,

59(7-8):543–554, 2011. ISSN 09218890. doi: 10.1016/j.robot.2011.04.001.

[30] B. Sadrfaridpour, H. Saeidi, and Y. Wang. An integrated framework for human-robot col-

laborative assembly in hybrid manufacturing cells. In 2016 IEEE International Conference

on Automation Science and Engineering (CASE), pages 462–467. IEEE, 8 2016. ISBN

978-1-5090-2409-4. doi: 10.1109/COASE.2016.7743441.

[31] Investing Answers. Healthcare Sector, 2018. URL https://goo.gl/3mwzko.

[32] Australian Bureau of Statistics. Population by Age and Sex, Regions of Australia, 2016.

URL https://goo.gl/Rcce2N.

[33] Australian Government. Australia to 2050: future challenges. Technical report, Treasury,

2010. URL https://goo.gl/CT3qgp.

[34] A. Freedy, E. DeVisser, G. Weltman, and N. Coeyman. Measurement of trust in

human-robot collaboration. In IEEE International Symposium on Collaborative Tech-

nologies and Systems, pages 106–114. IEEE, 5 2007. ISBN 0978569911. doi:

10.1109/CTS.2007.4621745.

[35] B. M. Muir and N. Moray. Trust in automation. Part II. Experimental studies of trust and

human intervention in a process control simulation. Ergonomics, 39(3):429–460, 3 1996.

ISSN 0014-0139. doi: 10.1080/00140139608964474.

http://dx.doi.org/10.1561/2300000052
http://dx.doi.org/10.1561/2300000052
https://goo.gl/Lk4Adp
http://dx.doi.org/10.1016/j.robot.2011.04.001
http://dx.doi.org/10.1109/COASE.2016.7743441
https://goo.gl/3mwzko
https://goo.gl/Rcce2N
https://goo.gl/CT3qgp
http://dx.doi.org/10.1109/CTS.2007.4621745
http://dx.doi.org/10.1109/CTS.2007.4621745
http://dx.doi.org/10.1080/00140139608964474


Bibliography 173

[36] B. D. Adams. Trust vs. Confidence. Technical report, Humansystems Incorporated, Toronto,

2005. URL https://goo.gl/vzcxdV.

[37] H. Ding, M. Schipper, and B. Matthias. Collaborative behavior design of industrial robots

for multiple human-robot collaboration. In IEEE International Symposium on Robotics,

pages 1–6. IEEE, 10 2013. ISBN 978-1-4799-1173-8. doi: 10.1109/ISR.2013.6695707.

[38] L. Dantanarayana, R. Ranasinghe, A. Tran, A. Liu, and G. Dissanayake. A Novel Collabo-

ratively Designed Robot to Assist Carers. In International Conference on Social Robotics,

pages 105–114, 2014. ISBN 9783319119724. doi: 10.1007/978-3-319-11973-1 11.

[39] S. Sakai, M. Iida, and M. Umeda. Heavy material handling manipulator for agricultural

robot. In IEEE International Conference on Robotics and Automation, pages 1062–1068.

IEEE, 2002. ISBN 0-7803-7272-7. doi: 10.1109/ROBOT.2002.1013496.

[40] H. M. Do, C. Park, and J. H. Kyung. Dual arm robot for packaging and assembling of IT

products. IEEE International Conference on Automation Science and Engineering, pages

1067–1070, 2012. ISSN 21618070. doi: 10.1109/CoASE.2012.6386417.

[41] A. Bicchi, M. Bavaro, G. Boccadamo, D. De Carli, R. Filippini, G. Grioli, M. Picci-

gallo, A. Rosi, R. Schiavi, Soumen Sen, and G. Tonietti. Physical human-robot interac-

tion: Dependability, safety, and performance. In IEEE International Workshop on Ad-

vanced Motion Control, pages 9–14. IEEE, 3 2008. ISBN 978-1-4244-1702-5. doi:

10.1109/AMC.2008.4516033.

[42] L. O’Sullivan, R. Nugent, and J. van der Vorm. Standards for the Safety of Exoskeletons

Used by Industrial Workers Performing Manual Handling Activities: A Contribution from

the Robo-Mate Project to their Future Development. Procedia Manufacturing, 3:1418–

1425, 2015. ISSN 23519789. doi: 10.1016/j.promfg.2015.07.306.
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[178] R. S. Johansson, C. Häger, and R. Riso. Somatosensory control of precision grip during un-

predictable pulling loads: I Changes in load force amplitude. Experimental Brain Research,

89(1):181–191, 4 1992. ISSN 0014-4819. doi: 10.1007/BF00229016.
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