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VI   Vegetation index 

Vic.   Victoria 

VPD   Vapour-pressure deficit 

VSI   Vegetation sensitivity index 

VT   Vegetation type 
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ABSTRACT 

Degradation of dryland ecosystems has been of interest to ecologists for many 

decades, and has been reported on every populated continent. Rain-use efficiency 

(RUE), which describes the relationship between annual above-ground net primary 

productivity (ANPP) and annual precipitation (P), is a commonly used measure of 

ecosystem function across water-limited arid and semi-arid ecosystems. The goal of 

this thesis was to improve our understanding of spatial and temporal RUE 

relationships across Australian water-limited ecosystem in order to monitor land 

degradation and ecosystem resilience. A remote sensing approach was taken, as it is 

the only practical method that allows for spatially and temporally comprehensive 

assessment of RUE relationships at a continental scale. 

 

The first step was to assess spatial RUE variability in relation to spatial variability in 

precipitation (P) and potential evapotranspiration (PET), as water availability is 

primarily determined by hydro-meteorological conditions that encompass both water 

supply (P) and atmospheric evaporative demand, or PET. The results showed that 

water-limited ecosystems did not adhere to a well-defined spatial ANPP-rainfall 

relationship due to strong impacts of PET on RUE. Therefore, a new index that 

normalised RUE by PET was developed and tested - “effective RUE” (eRUE). The 

eRUE relationship (i.e. the regression between ANPP and the quotient of 

precipitation and PET) resulted in a spatially well-defined ANPP-water model 

compared to RUE (which does not consider the effect of PET). Also, during extreme 

dry years ecosystems showed stronger convergence to a common maximum ANPP-

water relationship when the effects of both P and PET were included. This driest-

years spatial eRUE relationship (i.e. cross-site eRUEdry) defines theoretical water-

limitation boundary conditions. Thus, while critically low rainfall can lead to 

vegetation water stress and contribute to ANPP losses, increasing PET caused by 

future climate change is likely to exacerbate drought-induced impacts on ecosystem 

structure and function, including the frequency of drought-induced mortality events. 

 

Vegetation type was also considered as a contributing factor to spatial RUE and 

eRUE variability. The results showed that vegetation types exhibited significant 
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differences in eRUE (and RUE). Furthermore, these differences were also expressed 

during the driest years, suggesting that each vegetation type exhibits a unique spatial 

eRUE relationship during periods of severe water limitation. As such, if cross-site 

eRUEdry is to be used as a theoretical drought resilience threshold, it should be 

defined by vegetation type-specific cross-site eRUEdry relationships. 

 

Ecosystem function trends were assessed as indicators of land degradation. First, 

ANPP interannual variability was assessed in relation to interannual P variability, 

which revealed differences in sensitivity among vegetation types. Tussock 

grasslands, chenopod shrublands and agricultural lands were identified as the most 

sensitive to interannual P variability, suggesting that these vegetation types may be 

most sensitive to future climate change. The residuals trend (RESTREND) method 

was used to assess ecosystem function trends that were independent from climate 

trends. Sites with negative ecosystem function trends were observed across the study 

area, and represent potential sites of land degradation. Open woodlands, mulga 

shrublands, chenopod shrublands, hummock grasslands, and agricultural lands were 

identified as widely affected. 

 

This thesis has contributed to our understanding of spatial and temporal RUE 

relationships within the context of P, PET and vegetation type variability. At the 

continental scale ANPP spatial variability was strongly affected by P and PET. This 

led to the development of the eRUE metric, which was also applied during the driest 

years. The cross-site eRUEdry represents theoretical water limitation boundary 

conditions that encompass water supply and atmospheric evaporative demand. 

Vegetation type was found to play a significant role in spatial eRUE relationships, 

suggesting that each vegetation type is likely to have a unique drought resilience 

threshold. The analysis did not reveal strong effects of PET trends on ANPP trends, 

perhaps indicating that negative effects of PET may be limited to drought periods. 

Finally, the possible presence of land degradation processes was identified across 

several vegetation types. 
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