UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Video Representation Learning with Deep Neural Networks

by

Linchao Zhu

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2019

 $[\]label{eq:copyright} \ensuremath{\textcircled{C}}\xspace{0.5mm} Data to Decision CRC$

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis.

This research is supported by the Australian Government Research Training Program.

Linchao Zhu

Production Note: Signature removed prior to publication.

ABSTRACT

Video Representation Learning with

Deep Neural Networks

by

Linchao Zhu

Despite the recent success of neural networks in image feature learning, a major problem in the video domain is the lack of sufficient labeled data for learning to model temporal information. One method to learn a video representation from untrimmed videos is to perform unsupervised temporal modeling. Given a clip sampled from a video, its past and future neighboring clips are used as temporal context, and reconstruct the two temporal transitions, i.e., present \rightarrow past transition and present \rightarrow future transition, which reflect the temporal information in different views. In this thesis, the two transitions are exploited simultaneously by incorporating a bi-direction reconstruction which consists of a backward reconstruction and a forward reconstruction. To adapt an existing model to recognize a new category which was unseen during training, it may be necessary to manually collect hundreds of new training samples. Such a procedure is rather tedious and labor intensive, especially when there are many new categories. In this thesis, a classification model is proposed to learn from a few examples in a life-long manner. To evaluate the effectiveness of the learned representation, extensive experiments are conducted on multimedia event detection, image classification, video captioning, and video question answering.

Dissertation directed by Professor Yi Yang Centre for Artificial Intelligence, School of Software

Acknowledgements

First and foremost, I would like to thank my supervisor Professor Yi Yang. I am extremely grateful for his patience and support. He guided me on any research directions I was exited about. He also provided tremendous help on building up my research career, and offered great kindness to my personal life. He also teached me how to work with colleagues, which is valuable to my future career. Thanks to Prof Alexander G. Hauptmann, my advisor when I visited Carnegie Mellon University, from whom I learned how to do research for real-world applications. Thanks to Heng, Du, and Laura, my supervisors when I interned at Facebook Research, from whom I learned critical thinking and how to perform research in a systematic way.

I would also like to thank my colleagues at University of Technology Sydney. I would like to thank Xiaojun Chang, Xuanyi Dong, Hehe Fan, Qianyu Feng, Qingji Guan, Yang He, Wenhe Liu, Yanbin Liu, Ping Liu, Yutian Lin, Peike Li, Fan Ma, Jiaxu Miao, Pingbo Pan, Yu Wu, Xiaohan Wang, Zhongwen Xu, Yan Yan, Zongxin Yang, Fengda Zhu, Hu Zhang, Zhong Zhun, Zhedong Zheng, Liang Zheng, Xiaolin Zhang, and many others. I was really fortunate to work with them and participate in intellectuall conversations with them.

I would also like to thank Data to Decision CRC for supporting my research.

Lastly I would like to thanks my mother Supin Chen and Qiming Zhu for their support and love throughout the years.

Linchao Zhu Sydney, Australia, 2019.

List of Publications

Journal Papers

- J-1. Zhu, L., Xu, Z., Yang, Y. and Hauptmann, A.G., 2017. Uncovering the temporal context for video question answering. *International Journal of Computer Vision*, 124(3), pp.409-421.
- J-2. Gan, C., Yang, Y., Zhu, L., Zhao, D. and Zhuang, Y., 2016. Recognizing an action using its name: A knowledge-based approach. *International Journal of Computer Vision*, 120(1), pp.61-77.

Conference Papers

- C-1. Zhu, L., Xu, Z. and Yang, Y., 2017, July. Bidirectional Multirate Reconstruction for Temporal Modeling in Videos. In *Computer Vision and Pattern Recognition* (CVPR), 2017 IEEE Conference on (pp. 1339-1348). IEEE. Spotlight.
- C-2. Zhu, L. and Yang, Y., 2018, September. Compound Memory Networks for Few-Shot Video Classification. In *European Conference on Computer Vision* (pp. 782-797). Springer, Cham.
- C-3. Zhu, L.*, Xu, Z.*, and Yang, Y., 2017, July. Few-Shot Object Recognition from Machine-Labeled Web Images. In *Computer Vision and Pattern Recognition* (CVPR), 2017 IEEE Conference on (pp. 5358-5366). IEEE. Spotlight. (* indicates equal contribution)
- C-4. Fan, H., Zhu, L. and Yang, Y., 2019. Cubic LSTMs for Video Prediction. In The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI).
- C-5. Fan, H., Xu, Z., **Zhu, L.**, Yan, C., Ge, J. and Yang, Y., 2018. Watching a Small Portion could be as Good as Watching All: Towards Efficient Video

Classification. In International Joint Conference on Artificial Intelligence (IJ-CAI) (Vol. 2, No. 5, p. 6).

- C-6. Wu, Y., Zhu, L., Jiang, L. and Yang, Y., 2018. Decoupled Novel Object Captioner. In 2018 ACM Multimedia Conference on Multimedia Conference (pp. 1029-1037). ACM.
- C-7. Dong, X., Zhu, L., Zhang, D., Yang, Y. and Wu, F., 2018, October. Fast Parameter Adaptation for Few-shot Image Captioning and Visual Question Answering. In 2018 ACM Multimedia Conference on Multimedia Conference (pp. 54-62). ACM.

Contents

	Cer	tificate		iii
	Abs	stract		iv
	Ack	knowledg	gments	V
	List	t of Pub	lications	vi
	List	t of Figu	ires	xii
1	Int	troduo	ction	1
	1.1	Video I	Feature Learning	1
	1.2	Video a	and Language	2
	1.3	Contril	butions	3
2	Lit	teratu	re Review	5
	2.1	Video	Classification	5
		2.1.1	Convolutional Networks for Video Classification	6
		2.1.2	Recurrent Networks for Video Classification	7
	2.2	Bridgir	ng Vision and Language	8
		2.2.1	Video Captioning	8
		2.2.2	Video Question Answering	8
	2.3	Few-sh	ot Video Classification	10
		2.3.1	Memory-Augmented Neural Networks	11

3 Bidirectional Multirate Reconstruction for Temporal Mod-

eling in Videos

	3.1	Introdu	$action \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13
	3.2	Multira	ate Visual Recurrent Models	15
		3.2.1	Multirate Gated Recurrent Unit	15
		3.2.2	Unsupervised Video Sequence Reconstruction	18
		3.2.3	Complex Event Detection	21
		3.2.4	Video Captioning	23
	3.3	Results	3	23
		3.3.1	Complex Event Detection	23
		3.3.2	Video Captioning	28
	3.4	Conclu	sion	32
4	Un	ncover	ing the Temporal Context for Video Question	
	An	nsweri	ng	34
	4.1	Introdu	action	34
	4.2	Datase	t Collection and Task Definitions	37
		4.2.1	Dataset and QA Pair Generation	38
		4.2.2	Task Definitions and Analysis	40
	4.3	The Pr	oposed Approach	42
		4.3.1	Learning to Represent Video Sequences	44
		4.3.2	Dual-Channel Learning to Rank	48
	4.4			
		Results	· · · · · · · · · · · · · · · · · · ·	51
		Results 4.4.1	Evaluation of Describing the Present	51 51

13

	4.5	Conclu	sion	58
5	Fe	w-Sho	t Object Recognition from Machine-Labeled We	b
	Im	ages		60
	5.1	Introdu	action	60
	5.2	Propos	ed Approach	64
		5.2.1	Preliminaries	64
		5.2.2	Model Overview	65
		5.2.3	Model Components	68
		5.2.4	Training	72
		5.2.5	Inference	72
	5.3	Experi	ments	72
		5.3.1	Preprocessing	73
		5.3.2	Model Specifications	73
		5.3.3	Datasets	74
		5.3.4	Few-shot Learning with Human-labeled annotations	74
		5.3.5	Few-shot Learning with Machine-labeled Annotations	77
		5.3.6	Hyperparamter Study	79
	5.4	Conclu	sion	80
6	Co	ompou	and Memory Networks for Few-shot Video Clas-	
		icatior	·	81
			action	81
	6.2		ot Video Classification Setup	84
	6.3		bund Memory Network	85
		6.3.1	Multi-saliency Embedding Function	

х

6.3.2	Compound Memory Structure		87
6.3.3	Training		91
6.4 Experi	ments		92
6.4.1	Datasets		92
6.4.2	Implementation Details		92
6.4.3	Evaluation		94
6.4.4	Ablation Study		98
6.5 Conclu	sion \ldots		99
7 Future V	Works	1	00
Bibliogr	aphy	1	01

List of Figures

3.1	Frame sampling rate should vary in accordance with different	
	motion speed. In this example, only the last three frames have fast	
	motion. The dashed arrow corresponds to a fixed sampling rate,	
	while the solid arrow corresponds to multiple rates. \ldots \ldots \ldots	14
3.2	We illustrate the two modes in the mGRU. In the slow to fast mode,	
	the state matrices \mathbf{V}_* are block upper-triangular matrices and in the	
	fast to slow mode, they are block lower-triangular matrices	17
3.3	Unrolled mGRU. In the example, the state is divided into three	
	groups and the slow to fast mode is shown. At each step t , groups	
	satisfying $(t \text{ MOD } T_i) = 0$ are activated (cells with black border). For	
	example, at step 2, group 1 and group 2 are activated. The	
	activated groups take the frame input and previous states to	
	calculate the next states. For those that are inactivated, we simply	
	pass the previous states to the next step. Group 1 is the fastest and	
	group 3 is the slowest with larger T_i . The slow to fast mode is the	
	mode by which the slower groups pass the states to the faster groups.	20
3.4	The model architecture of unsupervised video representation	
	learning. In this model, two decoders are used to predict	
	surrounding contexts by reconstructing previous frames and next	

4.1	Questions and answers about the past, the present and the future.	
	Our system includes three subtasks, which infer the <i>past</i> , describe	
	the present, and predict the future, while only the current frames are	
	observable. Best viewed in color	35
4.2	t-SNE visualization of word embeddings for each category learned	
	from word2vec model	37
4.3	Examples of QA pairs for different categories and levels of difficulty.	
	The words colored in green are correct answers, and the difficult	
	candidates are marked in red	41
4.4	Distribution of question types for each dataset	44
4.5	Distribution of question lengths for each dataset	45
4.6	Distribution of answer lengths for each dataset	46
4.7	The encoder-decoder model (top): encoder state of last time step is	
	passed to three decoders for reconstruction. Learn to answer	
	questions (bottom): encoder state of last time step is passed to the	
	ranking module which selects an answer based on the visual	
	information	47
4.8	Illustration of dual-channel learning to rank	49
4.9	The effectiveness of dual-channel learning to rank. We conduct	
	experiments on the Present-Easy task to showcase. $\lambda=0$	
	corresponds to using the sentence channel only and $\lambda=1$	
	corresponds to using the word channel only	55
4.10	Example results obtained from our model. Each candidate has a	
	score corresponding to a clip. Correct answers are marked in green	
	while failed cases are in red	56

5.1	Given a large vocabulary of labels and their corresponding images,
	we conduct few-shot learning on a novel category which is not in the
	vocabulary and only has a handful of positive examples. The image
	examples in the vocabulary are stored in the external memory of our
	model, and the image example from the novel category queries the
	external memory. Our model returns helpful information according
	to visual similarity and LSTM controllers. The retrieved
	information, i.e., visual features and their corresponding labels, are
	combined to classify this query image example
5.2	An illustration of our proposed model. Best viewed in color 6
5.3	Sample images from the OpenImages dataset. Annotations on the
	images are shown in the bottom. The annotations listed are "label
	id", "label name", "confidence" tuples
5.4	We show the query results returns from the external memory. The
	scores are the softmax probabilities. Only top-3 results are shown 7
61	The setting of the few-shot video classification. There are two

6.1	The setting of the few-shot video classification. There are two	
	non-overlapping datasets in this figure, i.e., meta-training and	
	meta-testing. The meta-training set is for meta-learning and the	
	meta-testing set is for evaluating the generalization performance on	
	novel categories. The network is trained in an episodic way and each	
	episode has a support set and a query example. \ldots \ldots \ldots \ldots	82
6.2	Illustration of the input embedding model. The embedding function	
	generates the multi-saliency descriptor \mathbf{Q} , which is flattened and	
	normalized to a query vector.	87

6.3	Our CMN structure. A video is first mapped to a matrix	
	representation via the multi-saliency embedding function. This	
	hidden representation is then vectorized and normalized as a query	
	vector, which performs a nearest neighbour search over the abstract	
	memory. The most similar memory slot is retrieved and the label	
	stored in the value memory will be used as the prediction. The	
	constituent key memory contains the matrix representations of the	
	inputs, while the abstract memory is constructed on top of the	
	stacked constituent keys.	88
6.4	Illustration of the update rule for CMN	90
6.5	Per class accuracy on the 5-way 1-shot setting. We show the	
	accuracies of 24 classes on the meta-testing set	95
6.6	We illustrate the inference procedure. There are 5 classes and the	
	memory has 16 slots. Two different update rules will be used	
	depending on the query results	97