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ABSTRACT

Video Representation Learning with

Deep Neural Networks

by

Linchao Zhu

Despite the recent success of neural networks in image feature learning, a ma-

jor problem in the video domain is the lack of sufficient labeled data for learning

to model temporal information. One method to learn a video representation from

untrimmed videos is to perform unsupervised temporal modeling. Given a clip

sampled from a video, its past and future neighboring clips are used as temporal

context, and reconstruct the two temporal transitions, i.e., present→past transition

and present→future transition, which reflect the temporal information in different

views. In this thesis, the two transitions are exploited simultaneously by incorpo-

rating a bi-direction reconstruction which consists of a backward reconstruction and

a forward reconstruction. To adapt an existing model to recognize a new category

which was unseen during training, it may be necessary to manually collect hundreds

of new training samples. Such a procedure is rather tedious and labor intensive,

especially when there are many new categories. In this thesis, a classification model

is proposed to learn from a few examples in a life-long manner. To evaluate the

effectiveness of the learned representation, extensive experiments are conducted on

multimedia event detection, image classification, video captioning, and video ques-

tion answering.

Dissertation directed by Professor Yi Yang

Centre for Artificial Intelligence, School of Software



Acknowledgements

First and foremost, I would like to thank my supervisor Professor Yi Yang. I am

extremely grateful for his patience and support. He guided me on any research

directions I was exited about. He also provided tremendous help on building up my

research career, and offered great kindness to my personal life. He also teached me

how to work with colleagues, which is valuable to my future career. Thanks to Prof

Alexander G. Hauptmann, my advisor when I visited Carnegie Mellon University,

from whom I learned how to do research for real-world applications. Thanks to

Heng, Du, and Laura, my supervisors when I interned at Facebook Research, from

whom I learned critical thinking and how to perform research in a systematic way.

I would also like to thank my colleagues at University of Technology Sydney. I

would like to thank Xiaojun Chang, Xuanyi Dong, Hehe Fan, Qianyu Feng, Qingji

Guan, Yang He, Wenhe Liu, Yanbin Liu, Ping Liu, Yutian Lin, Peike Li, Fan Ma,

Jiaxu Miao, Pingbo Pan, Yu Wu, Xiaohan Wang, Zhongwen Xu, Yan Yan, Zongxin

Yang, Fengda Zhu, Hu Zhang, Zhong Zhun, Zhedong Zheng, Liang Zheng, Xiaolin

Zhang, and many others. I was really fortunate to work with them and participate

in intellectuall conversations with them.

I would also like to thank Data to Decision CRC for supporting my research.

Lastly I would like to thanks my mother Supin Chen and Qiming Zhu for their

support and love throughout the years.

Linchao Zhu

Sydney, Australia, 2019.



List of Publications

Journal Papers

J-1. Zhu, L., Xu, Z., Yang, Y. and Hauptmann, A.G., 2017. Uncovering the tem-

poral context for video question answering. International Journal of Computer

Vision, 124(3), pp.409-421.

J-2. Gan, C., Yang, Y., Zhu, L., Zhao, D. and Zhuang, Y., 2016. Recognizing an

action using its name: A knowledge-based approach. International Journal of

Computer Vision, 120(1), pp.61-77.

Conference Papers

C-1. Zhu, L., Xu, Z. and Yang, Y., 2017, July. Bidirectional Multirate Recon-

struction for Temporal Modeling in Videos. In Computer Vision and Pat-

tern Recognition (CVPR), 2017 IEEE Conference on (pp. 1339-1348). IEEE.

Spotlight.

C-2. Zhu, L. and Yang, Y., 2018, September. Compound Memory Networks for

Few-Shot Video Classification. In European Conference on Computer Vision

(pp. 782-797). Springer, Cham.

C-3. Zhu, L.*, Xu, Z.*, and Yang, Y., 2017, July. Few-Shot Object Recognition

from Machine-Labeled Web Images. In Computer Vision and Pattern Recog-

nition (CVPR), 2017 IEEE Conference on (pp. 5358-5366). IEEE. Spotlight.

(* indicates equal contribution)

C-4. Fan, H., Zhu, L. and Yang, Y., 2019. Cubic LSTMs for Video Prediction. In

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI).

C-5. Fan, H., Xu, Z., Zhu, L., Yan, C., Ge, J. and Yang, Y., 2018. Watching

a Small Portion could be as Good as Watching All: Towards Efficient Video



vii

Classification. In International Joint Conference on Artificial Intelligence (IJ-

CAI) (Vol. 2, No. 5, p. 6).

C-6. Wu, Y., Zhu, L., Jiang, L. and Yang, Y., 2018. Decoupled Novel Object

Captioner. In 2018 ACM Multimedia Conference on Multimedia Conference

(pp. 1029-1037). ACM.

C-7. Dong, X., Zhu, L., Zhang, D., Yang, Y. and Wu, F., 2018, October. Fast

Parameter Adaptation for Few-shot Image Captioning and Visual Question

Answering. In 2018 ACM Multimedia Conference on Multimedia Conference

(pp. 54-62). ACM.



Contents

Certificate iii

Abstract iv

Acknowledgments v

List of Publications vi

List of Figures xii

1 Introduction 1

1.1 Video Feature Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Video and Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5

2.1 Video Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Convolutional Networks for Video Classification . . . . . . . . 6

2.1.2 Recurrent Networks for Video Classification . . . . . . . . . . 7

2.2 Bridging Vision and Language . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Video Captioning . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Video Question Answering . . . . . . . . . . . . . . . . . . . . 8

2.3 Few-shot Video Classification . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Memory-Augmented Neural Networks . . . . . . . . . . . . . . 11

3 Bidirectional Multirate Reconstruction for Temporal Mod-



ix

eling in Videos 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Multirate Visual Recurrent Models . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Multirate Gated Recurrent Unit . . . . . . . . . . . . . . . . . 15

3.2.2 Unsupervised Video Sequence Reconstruction . . . . . . . . . 18

3.2.3 Complex Event Detection . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Video Captioning . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Complex Event Detection . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Video Captioning . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Uncovering the Temporal Context for Video Question

Answering 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Dataset Collection and Task Definitions . . . . . . . . . . . . . . . . . 37

4.2.1 Dataset and QA Pair Generation . . . . . . . . . . . . . . . . 38

4.2.2 Task Definitions and Analysis . . . . . . . . . . . . . . . . . . 40

4.3 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Learning to Represent Video Sequences . . . . . . . . . . . . . 44

4.3.2 Dual-Channel Learning to Rank . . . . . . . . . . . . . . . . . 48

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Evaluation of Describing the Present . . . . . . . . . . . . . . 51

4.4.2 Evaluation of Inferring the Past and Predicting the Future . . 56

4.4.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . 57



x

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Few-Shot Object Recognition from Machine-Labeled Web

Images 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Model Components . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Model Specifications . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.4 Few-shot Learning with Human-labeled annotations . . . . . . 74

5.3.5 Few-shot Learning with Machine-labeled Annotations . . . . . 77

5.3.6 Hyperparamter Study . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Compound Memory Networks for Few-shot Video Clas-

sification 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Few-shot Video Classification Setup . . . . . . . . . . . . . . . . . . . 84

6.3 Compound Memory Network . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 Multi-saliency Embedding Function . . . . . . . . . . . . . . . 86



xi

6.3.2 Compound Memory Structure . . . . . . . . . . . . . . . . . . 87

6.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 92

6.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Future Works 100

Bibliography 101



List of Figures

3.1 Frame sampling rate should vary in accordance with different

motion speed. In this example, only the last three frames have fast

motion. The dashed arrow corresponds to a fixed sampling rate,

while the solid arrow corresponds to multiple rates. . . . . . . . . . . 14

3.2 We illustrate the two modes in the mGRU. In the slow to fast mode,

the state matrices V∗ are block upper-triangular matrices and in the

fast to slow mode, they are block lower-triangular matrices. . . . . . . 17

3.3 Unrolled mGRU. In the example, the state is divided into three

groups and the slow to fast mode is shown. At each step t, groups

satisfying (t MOD Ti) = 0 are activated (cells with black border). For

example, at step 2, group 1 and group 2 are activated. The

activated groups take the frame input and previous states to

calculate the next states. For those that are inactivated, we simply

pass the previous states to the next step. Group 1 is the fastest and

group 3 is the slowest with larger Ti. The slow to fast mode is the

mode by which the slower groups pass the states to the faster groups. 20

3.4 The model architecture of unsupervised video representation

learning. In this model, two decoders are used to predict

surrounding contexts by reconstructing previous frames and next

frame sequences. The “<GO>” input, which is a zero vector, is used

at step 0 in the decoder. During training, one of the two decoders is

used with a probability of 0.5 for reconstruction. . . . . . . . . . . . . 22



xiii

4.1 Questions and answers about the past, the present and the future.

Our system includes three subtasks, which infer the past, describe

the present, and predict the future, while only the current frames are

observable. Best viewed in color . . . . . . . . . . . . . . . . . . . . . 35

4.2 t-SNE visualization of word embeddings for each category learned

from word2vec model. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Examples of QA pairs for different categories and levels of difficulty.

The words colored in green are correct answers, and the difficult

candidates are marked in red. . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Distribution of question types for each dataset . . . . . . . . . . . . . 44

4.5 Distribution of question lengths for each dataset . . . . . . . . . . . . 45

4.6 Distribution of answer lengths for each dataset . . . . . . . . . . . . . 46

4.7 The encoder-decoder model (top): encoder state of last time step is

passed to three decoders for reconstruction. Learn to answer

questions (bottom): encoder state of last time step is passed to the

ranking module which selects an answer based on the visual

information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Illustration of dual-channel learning to rank . . . . . . . . . . . . . . 49

4.9 The effectiveness of dual-channel learning to rank. We conduct

experiments on the Present-Easy task to showcase. λ = 0

corresponds to using the sentence channel only and λ = 1

corresponds to using the word channel only . . . . . . . . . . . . . . . 55

4.10 Example results obtained from our model. Each candidate has a

score corresponding to a clip. Correct answers are marked in green

while failed cases are in red . . . . . . . . . . . . . . . . . . . . . . . 56



xiv

5.1 Given a large vocabulary of labels and their corresponding images,

we conduct few-shot learning on a novel category which is not in the

vocabulary and only has a handful of positive examples. The image

examples in the vocabulary are stored in the external memory of our

model, and the image example from the novel category queries the

external memory. Our model returns helpful information according

to visual similarity and LSTM controllers. The retrieved

information, i.e., visual features and their corresponding labels, are

combined to classify this query image example. . . . . . . . . . . . . . 62

5.2 An illustration of our proposed model. Best viewed in color. . . . . . 65

5.3 Sample images from the OpenImages dataset. Annotations on the

images are shown in the bottom. The annotations listed are “label

id”, “label name”, “confidence” tuples. . . . . . . . . . . . . . . . . . 75

5.4 We show the query results returns from the external memory. The

scores are the softmax probabilities. Only top-3 results are shown. . . 78

6.1 The setting of the few-shot video classification. There are two

non-overlapping datasets in this figure, i.e., meta-training and

meta-testing. The meta-training set is for meta-learning and the

meta-testing set is for evaluating the generalization performance on

novel categories. The network is trained in an episodic way and each

episode has a support set and a query example. . . . . . . . . . . . . 82

6.2 Illustration of the input embedding model. The embedding function

generates the multi-saliency descriptor Q, which is flattened and

normalized to a query vector. . . . . . . . . . . . . . . . . . . . . . . 87



xv

6.3 Our CMN structure. A video is first mapped to a matrix

representation via the multi-saliency embedding function. This

hidden representation is then vectorized and normalized as a query

vector, which performs a nearest neighbour search over the abstract

memory. The most similar memory slot is retrieved and the label

stored in the value memory will be used as the prediction. The

constituent key memory contains the matrix representations of the

inputs, while the abstract memory is constructed on top of the

stacked constituent keys. . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Illustration of the update rule for CMN. . . . . . . . . . . . . . . . . 90

6.5 Per class accuracy on the 5-way 1-shot setting. We show the

accuracies of 24 classes on the meta-testing set. . . . . . . . . . . . . 95

6.6 We illustrate the inference procedure. There are 5 classes and the

memory has 16 slots. Two different update rules will be used

depending on the query results. . . . . . . . . . . . . . . . . . . . . . 97


	Title Page
	Certificate of Authorship/Originality
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures



