
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Video Representation Learning with

Deep Neural Networks

by

Linchao Zhu

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2019

Copyright c©Data to Decision CRC

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree

nor has it been submitted as a part of the requirements for other degree except as

fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in

my research and in the preparation of the thesis itself has been fully acknowledged.

In addition, I certify that all information sources and literature used are quoted in

the thesis.

This research is supported by the Australian Government Research Training Pro-

gram.

Linchao Zhu

Production Note:

Signature removed
prior to publication.

ABSTRACT

Video Representation Learning with

Deep Neural Networks

by

Linchao Zhu

Despite the recent success of neural networks in image feature learning, a ma-

jor problem in the video domain is the lack of sufficient labeled data for learning

to model temporal information. One method to learn a video representation from

untrimmed videos is to perform unsupervised temporal modeling. Given a clip

sampled from a video, its past and future neighboring clips are used as temporal

context, and reconstruct the two temporal transitions, i.e., present→past transition

and present→future transition, which reflect the temporal information in different

views. In this thesis, the two transitions are exploited simultaneously by incorpo-

rating a bi-direction reconstruction which consists of a backward reconstruction and

a forward reconstruction. To adapt an existing model to recognize a new category

which was unseen during training, it may be necessary to manually collect hundreds

of new training samples. Such a procedure is rather tedious and labor intensive,

especially when there are many new categories. In this thesis, a classification model

is proposed to learn from a few examples in a life-long manner. To evaluate the

effectiveness of the learned representation, extensive experiments are conducted on

multimedia event detection, image classification, video captioning, and video ques-

tion answering.

Dissertation directed by Professor Yi Yang

Centre for Artificial Intelligence, School of Software

Acknowledgements

First and foremost, I would like to thank my supervisor Professor Yi Yang. I am

extremely grateful for his patience and support. He guided me on any research

directions I was exited about. He also provided tremendous help on building up my

research career, and offered great kindness to my personal life. He also teached me

how to work with colleagues, which is valuable to my future career. Thanks to Prof

Alexander G. Hauptmann, my advisor when I visited Carnegie Mellon University,

from whom I learned how to do research for real-world applications. Thanks to

Heng, Du, and Laura, my supervisors when I interned at Facebook Research, from

whom I learned critical thinking and how to perform research in a systematic way.

I would also like to thank my colleagues at University of Technology Sydney. I

would like to thank Xiaojun Chang, Xuanyi Dong, Hehe Fan, Qianyu Feng, Qingji

Guan, Yang He, Wenhe Liu, Yanbin Liu, Ping Liu, Yutian Lin, Peike Li, Fan Ma,

Jiaxu Miao, Pingbo Pan, Yu Wu, Xiaohan Wang, Zhongwen Xu, Yan Yan, Zongxin

Yang, Fengda Zhu, Hu Zhang, Zhong Zhun, Zhedong Zheng, Liang Zheng, Xiaolin

Zhang, and many others. I was really fortunate to work with them and participate

in intellectuall conversations with them.

I would also like to thank Data to Decision CRC for supporting my research.

Lastly I would like to thanks my mother Supin Chen and Qiming Zhu for their

support and love throughout the years.

Linchao Zhu

Sydney, Australia, 2019.

List of Publications

Journal Papers

J-1. Zhu, L., Xu, Z., Yang, Y. and Hauptmann, A.G., 2017. Uncovering the tem-

poral context for video question answering. International Journal of Computer

Vision, 124(3), pp.409-421.

J-2. Gan, C., Yang, Y., Zhu, L., Zhao, D. and Zhuang, Y., 2016. Recognizing an

action using its name: A knowledge-based approach. International Journal of

Computer Vision, 120(1), pp.61-77.

Conference Papers

C-1. Zhu, L., Xu, Z. and Yang, Y., 2017, July. Bidirectional Multirate Recon-

struction for Temporal Modeling in Videos. In Computer Vision and Pat-

tern Recognition (CVPR), 2017 IEEE Conference on (pp. 1339-1348). IEEE.

Spotlight.

C-2. Zhu, L. and Yang, Y., 2018, September. Compound Memory Networks for

Few-Shot Video Classification. In European Conference on Computer Vision

(pp. 782-797). Springer, Cham.

C-3. Zhu, L.*, Xu, Z.*, and Yang, Y., 2017, July. Few-Shot Object Recognition

from Machine-Labeled Web Images. In Computer Vision and Pattern Recog-

nition (CVPR), 2017 IEEE Conference on (pp. 5358-5366). IEEE. Spotlight.

(* indicates equal contribution)

C-4. Fan, H., Zhu, L. and Yang, Y., 2019. Cubic LSTMs for Video Prediction. In

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI).

C-5. Fan, H., Xu, Z., Zhu, L., Yan, C., Ge, J. and Yang, Y., 2018. Watching

a Small Portion could be as Good as Watching All: Towards Efficient Video

vii

Classification. In International Joint Conference on Artificial Intelligence (IJ-

CAI) (Vol. 2, No. 5, p. 6).

C-6. Wu, Y., Zhu, L., Jiang, L. and Yang, Y., 2018. Decoupled Novel Object

Captioner. In 2018 ACM Multimedia Conference on Multimedia Conference

(pp. 1029-1037). ACM.

C-7. Dong, X., Zhu, L., Zhang, D., Yang, Y. and Wu, F., 2018, October. Fast

Parameter Adaptation for Few-shot Image Captioning and Visual Question

Answering. In 2018 ACM Multimedia Conference on Multimedia Conference

(pp. 54-62). ACM.

Contents

Certificate iii

Abstract iv

Acknowledgments v

List of Publications vi

List of Figures xii

1 Introduction 1

1.1 Video Feature Learning . 1

1.2 Video and Language . 2

1.3 Contributions . 3

2 Literature Review 5

2.1 Video Classification . 5

2.1.1 Convolutional Networks for Video Classification 6

2.1.2 Recurrent Networks for Video Classification 7

2.2 Bridging Vision and Language . 8

2.2.1 Video Captioning . 8

2.2.2 Video Question Answering . 8

2.3 Few-shot Video Classification . 10

2.3.1 Memory-Augmented Neural Networks 11

3 Bidirectional Multirate Reconstruction for Temporal Mod-

ix

eling in Videos 13

3.1 Introduction . 13

3.2 Multirate Visual Recurrent Models . 15

3.2.1 Multirate Gated Recurrent Unit 15

3.2.2 Unsupervised Video Sequence Reconstruction 18

3.2.3 Complex Event Detection . 21

3.2.4 Video Captioning . 23

3.3 Results . 23

3.3.1 Complex Event Detection . 23

3.3.2 Video Captioning . 28

3.4 Conclusion . 32

4 Uncovering the Temporal Context for Video Question

Answering 34

4.1 Introduction . 34

4.2 Dataset Collection and Task Definitions 37

4.2.1 Dataset and QA Pair Generation 38

4.2.2 Task Definitions and Analysis 40

4.3 The Proposed Approach . 42

4.3.1 Learning to Represent Video Sequences 44

4.3.2 Dual-Channel Learning to Rank 48

4.4 Results . 51

4.4.1 Evaluation of Describing the Present 51

4.4.2 Evaluation of Inferring the Past and Predicting the Future . . 56

4.4.3 Limitations and Future Work 57

x

4.5 Conclusion . 58

5 Few-Shot Object Recognition from Machine-Labeled Web

Images 60

5.1 Introduction . 60

5.2 Proposed Approach . 64

5.2.1 Preliminaries . 64

5.2.2 Model Overview . 65

5.2.3 Model Components . 68

5.2.4 Training . 72

5.2.5 Inference . 72

5.3 Experiments . 72

5.3.1 Preprocessing . 73

5.3.2 Model Specifications . 73

5.3.3 Datasets . 74

5.3.4 Few-shot Learning with Human-labeled annotations 74

5.3.5 Few-shot Learning with Machine-labeled Annotations 77

5.3.6 Hyperparamter Study . 79

5.4 Conclusion . 80

6 Compound Memory Networks for Few-shot Video Clas-

sification 81

6.1 Introduction . 81

6.2 Few-shot Video Classification Setup 84

6.3 Compound Memory Network . 85

6.3.1 Multi-saliency Embedding Function 86

xi

6.3.2 Compound Memory Structure 87

6.3.3 Training . 91

6.4 Experiments . 92

6.4.1 Datasets . 92

6.4.2 Implementation Details . 92

6.4.3 Evaluation . 94

6.4.4 Ablation Study . 98

6.5 Conclusion . 99

7 Future Works 100

Bibliography 101

List of Figures

3.1 Frame sampling rate should vary in accordance with different

motion speed. In this example, only the last three frames have fast

motion. The dashed arrow corresponds to a fixed sampling rate,

while the solid arrow corresponds to multiple rates. 14

3.2 We illustrate the two modes in the mGRU. In the slow to fast mode,

the state matrices V∗ are block upper-triangular matrices and in the

fast to slow mode, they are block lower-triangular matrices. 17

3.3 Unrolled mGRU. In the example, the state is divided into three

groups and the slow to fast mode is shown. At each step t, groups

satisfying (t MOD Ti) = 0 are activated (cells with black border). For

example, at step 2, group 1 and group 2 are activated. The

activated groups take the frame input and previous states to

calculate the next states. For those that are inactivated, we simply

pass the previous states to the next step. Group 1 is the fastest and

group 3 is the slowest with larger Ti. The slow to fast mode is the

mode by which the slower groups pass the states to the faster groups. 20

3.4 The model architecture of unsupervised video representation

learning. In this model, two decoders are used to predict

surrounding contexts by reconstructing previous frames and next

frame sequences. The “<GO>” input, which is a zero vector, is used

at step 0 in the decoder. During training, one of the two decoders is

used with a probability of 0.5 for reconstruction. 22

xiii

4.1 Questions and answers about the past, the present and the future.

Our system includes three subtasks, which infer the past, describe

the present, and predict the future, while only the current frames are

observable. Best viewed in color . 35

4.2 t-SNE visualization of word embeddings for each category learned

from word2vec model. 37

4.3 Examples of QA pairs for different categories and levels of difficulty.

The words colored in green are correct answers, and the difficult

candidates are marked in red. 41

4.4 Distribution of question types for each dataset 44

4.5 Distribution of question lengths for each dataset 45

4.6 Distribution of answer lengths for each dataset 46

4.7 The encoder-decoder model (top): encoder state of last time step is

passed to three decoders for reconstruction. Learn to answer

questions (bottom): encoder state of last time step is passed to the

ranking module which selects an answer based on the visual

information . 47

4.8 Illustration of dual-channel learning to rank 49

4.9 The effectiveness of dual-channel learning to rank. We conduct

experiments on the Present-Easy task to showcase. λ = 0

corresponds to using the sentence channel only and λ = 1

corresponds to using the word channel only 55

4.10 Example results obtained from our model. Each candidate has a

score corresponding to a clip. Correct answers are marked in green

while failed cases are in red . 56

xiv

5.1 Given a large vocabulary of labels and their corresponding images,

we conduct few-shot learning on a novel category which is not in the

vocabulary and only has a handful of positive examples. The image

examples in the vocabulary are stored in the external memory of our

model, and the image example from the novel category queries the

external memory. Our model returns helpful information according

to visual similarity and LSTM controllers. The retrieved

information, i.e., visual features and their corresponding labels, are

combined to classify this query image example. 62

5.2 An illustration of our proposed model. Best viewed in color. 65

5.3 Sample images from the OpenImages dataset. Annotations on the

images are shown in the bottom. The annotations listed are “label

id”, “label name”, “confidence” tuples. 75

5.4 We show the query results returns from the external memory. The

scores are the softmax probabilities. Only top-3 results are shown. . . 78

6.1 The setting of the few-shot video classification. There are two

non-overlapping datasets in this figure, i.e., meta-training and

meta-testing. The meta-training set is for meta-learning and the

meta-testing set is for evaluating the generalization performance on

novel categories. The network is trained in an episodic way and each

episode has a support set and a query example. 82

6.2 Illustration of the input embedding model. The embedding function

generates the multi-saliency descriptor Q, which is flattened and

normalized to a query vector. 87

xv

6.3 Our CMN structure. A video is first mapped to a matrix

representation via the multi-saliency embedding function. This

hidden representation is then vectorized and normalized as a query

vector, which performs a nearest neighbour search over the abstract

memory. The most similar memory slot is retrieved and the label

stored in the value memory will be used as the prediction. The

constituent key memory contains the matrix representations of the

inputs, while the abstract memory is constructed on top of the

stacked constituent keys. 88

6.4 Illustration of the update rule for CMN. 90

6.5 Per class accuracy on the 5-way 1-shot setting. We show the

accuracies of 24 classes on the meta-testing set. 95

6.6 We illustrate the inference procedure. There are 5 classes and the

memory has 16 slots. Two different update rules will be used

depending on the query results. 97

1

Chapter 1

Introduction

1.1 Video Feature Learning

Temporal information plays a key role in video representation modeling. In

earlier years, hand-crafted features, e.g., Dense Trajectories (DT) and improved

Dense Trajectories (iDT) [118, 119], use local descriptors along trajectories to model

video motion structures. Despite achieving promising performance, DT and iDT

are very expensive to extract, due to the heavy computational cost of optical flows

and it takes about a week to extract iDT features for 8,000 hours of web videos

using 1,000 CPU cores [128]. Deep visual features have achieved significantly better

performance in image classification and detection tasks than hand-crafted features

at an efficient processing speed [54, 35, 29]. However, learning a video representation

on top of deep Convolutional Neural Networks (ConveNets) remains a challenging

problem. Two-stream ConvNet [91] is groundbreaking in learning video motion

structures over short video clips. Although it achieves comparable performance

to iDT for temporally trimmed videos, two-stream ConvNet still needs to extract

optical flows. The heavy cost severely limits the utility of methods based on optical

flows, especially in the case of large scale video data.

Extending 2D ConvNet to 3D, C3D ConvNet has been demonstrated to be effec-

tive for spatio-temporal modeling and it avoids extracting optical flows. However, it

can only model temporal information in short videos, usually of 16 frames [104]. Re-

current Neural Networks (RNNs), particularly Long Short-TermMemory (LSTM) [37,

72] and a modified Hierarchical Recurrent Neural Encoder (HRNE) [74], have been

2

used to model temporal information in videos.

Notwithstanding the appealing ability of end-to-end approaches for learning a

discriminative feature, such approaches require a large amount of labeled data to

achieve good performance with plausible generalization capabilities. Compared to

images, a large number of videos are very expensive to label by humans. For ex-

ample, the largest public human-labeled video dataset (ActivityNet) [23] only has

20,000 labeled videos while the ImageNet dataset has over one million labeled in-

stances [88]. Temporal ConvNet trained on the UCF-101 dataset [94] with about

10,000 temporally trimmed videos did not generalize well on temporally a untrimmed

dataset [130]. Targeting short video clips, Srivastava et al. [96] proposed training a

composite autoencoder in an unsupervised manner to learn video temporal struc-

tures, essentially by predicting future frames and reconstructing present frames.

1.2 Video and Language

Apart from learning video representation using neural networks, there is increas-

ing interest in achieving deeper understanding of visual content by jointly modeling

images and natural language. We propose a video question answering by uncover-

ing video temporal context. As Convolutional Neural Networks (ConvNets) have

raised the bar in image classification and detection tasks [30, 39, 99], RNNs, par-

ticularly LSTM [37], also play a key role in visual description tasks, such as image

captioning [20, 116, 127]. Image Question Answering (Image QA), which is one step

beyond image captioning and requires an extra layer of interaction between humans

and computers, has started to attract research attention [4, 28, 65]. In the area of

video analysis, a small number of systems have been proposed for video caption-

ing [86, 111, 131, 74]. These methods have demonstrated promising performance in

describing a video by a single short sentence. Similar to image captioning, video

captioning may not be as intelligent as desired, especially when only a particular

3

section or object in the video [4] is concerned with. In addition, it lacks interaction

between the computer and the user [28]. A MovieQA dataset [102] was released

focusing on story comprehension based on both movie clips and texts. The dataset

contains some questions regarding “Why” and “How” about something. It is a chal-

lenging task and can only be resolved by exploiting visual and textual information.

However, the task of MovieQA is basically to answer questions about a movie clip

without any video context information.

ConvNets and RNNs have become built-in modules in various fields. However,

large amounts of labeled training data are required to train a deep neural network.

To adapt an existing model to recognize a new category which was unseen during

training, it may be necessary to manually collect hundreds of new training samples.

Such a procedure is rather tedious and labor intensive, especially when there are

many new categories. There is an increasing need to learn a classification model from

a few examples in a life-long manner, which is also known as the few-shot learning

task [89, 115]. In a few-shot recognition setting, the network needs to effectively

learn classifiers for novel concepts from only a few examples. Unlike traditional

models trained on many data samples, the model in a few-shot setting is trained to

generalize across different episodes. In contrast to training new classifiers by fine-

tuning, a learning to learn approach under the meta learning paradigm [89] can be

used.

1.3 Contributions

This thesis is organised as follows. In Chapter 2, I present the related works on

video representation learning. I cover recent study on video classification, video cap-

tioning, video question answering, few-shot classification. I also discuss the recent

advances on memory-augmented neural networks and recurrent neural networks. In

Chapter 3, a multi-rate encoder is proposed to leverage different temporal speeds.

4

The model is evaluated on video event detection and video captioning. In Chapter

4, I propose a video question answering task to answer questions about past and

future. An unsupervised encoder-decoder is introduced to model temporal context

and explore relationships between neighboring clips. In Chapter 5, when train with

only limited number of images, I explore to use noisy labeled data for mining re-

lated knowledge from web data. In Chapter 6, I study the few-shot setting for video

classification. A novel video representation based on key-value memory is proposed

for few-shot classification. In Chapter 7, I briefly summarize the thesis and show

the future directions for improvements.

In this thesis, I make the following contributions. First, I show bi-directional

unsupervised pre-training is beneficial to video classification, video captioning, and

video question answering. It indicates the importance of temporal context learning

for videos. Second, to better model video temporal structure, I propose a multi-rate

GRU for multi temporal scale video modeling. I show the effectiveness of mod-

eling different speeds in both accuracy and efficiency. Third, effectively abstract

knowledge from web data or episode input sequence is the key to the success of gen-

eralization from few examples. I propose an abstract memory for few-example image

classification. Similarly, a video abstract memory compresses the multi-dimensional

video data to a single vector for fast addressing. More exploration for better archi-

tectures of sequence data modeling will be made in the future.

5

Chapter 2

Literature Review

2.1 Video Classification

Video classification methods have evolved from using hand-crafted features, e.g., im-

proved dense trajectories [119], to deep models, e.g., two-stream Convolutional

Neural Networks (ConvNets) [91, 121], 3D ConvNets [105], two-stream 3D Con-

vNets [11]. Recurrent Neural Networks have also been utilized to model video se-

quences [136, 140]. Many efforts have been made to train a video classification model

using large amounts of video data, however, it would be expensive to collect large

datasets and retrain the classifier for all novel categories. The few-shot video clas-

sification task is realistic in a real-world scenario, where the model will encounter

novel categories that are never seen during training. The networks should be trained

to adapt to new tasks.

Research efforts to improve visual representations for videos have been ongoing.

Local features such as HOF [58] and MBH [18] extracted along spatio-temporal

tracklets have been used as motion descriptors in the Dense Trajectories feature [118]

and its variants [119]. However, it is notoriously inefficient to extract hand-crafted

features like improved Dense Trajectories (iDT) [119, 128], mostly due to the dense

sampling nature of local descriptors and the time-consuming extraction of optical

flows. On the other hand, the classification performance of state-of-the-art hand-

crafted features has been surpassed by many methods based on neural networks in

web video classification and action recognition tasks [128, 120].

6

2.1.1 Convolutional Networks for Video Classification

Many video feature learning methods based on ConvNets have been proposed.

In deep video representation learning, many research works focus on designing clip-

level or frame-level representations for videos. One line of research builds upon

two-stream ConvNets [91], which takes stacked optical flow images as inputs to a

ConvNet. The optical flow ConvNet and RGB ConvNet prediction scores are then

averaged to obtain the final prediction. The two-stream network achieved better

performance than iDT on several action recognition datasets, which is later heavily

used in the literature [121, 136, 11, 25, 126]. The idea has also successfully been

used in other tasks, e.g., video captioning [111]. However, optical flow extraction is

required in the two-stream network, which is an expensive process. Another line of

research lies in leveraging 3D ConvNets for video representation learning. 3D Con-

vNets for human action recognition has been studied in [42, 104, 46]. A common

practice is to stack continuous video frames and feed them to a ConvNet, where the

2D convolution is replaced by 3D convolution. However, compared to 2D ConvNets,

the number of parameters of 3D ConvNets is relatively large when extending spatial

filters to spatio-temporal ones, which could lead to over-fitting on small datasets.

With the raise of large action recognition datasets like Kinetics [11], different varia-

tions of 3D ConvNets focus on reducing the computational cost and memory usage

while improving the action recognition accuracy. For example, I3D [11] adapts the

Inception-V1 architecture [100], inflating the 2D filter to 3D filters. Qiu et al. [80] re-

placed spatio-temporal 3D convolution with spatial and temporal convolutions using

a residual connection style. [104] proposed 3D ConvNets which capture temporal

dynamics in video clips without the very time-consuming optical flow extraction

procedure. Tran et al. [106] decomposed spatial and temporal convolution with a

(2+1)D block, which doubles the number of non-linearities. Xie et al. [126] used a

similar approach which replaces some 3D convolutions with 2D convolutions. They

7

also used separable 3D convolution with fewer parameters, which is more computa-

tional efficient and achieved better accuracy. Zhou et al. [139] introduced a Mixed

Convolutional Tube that adds the 3D convolution features map with 2D convolution

features.

One way to use ConvNets for video classification is to perform temporal pool-

ing over convolutional activations. Ng et al. [72] proposed learning a global video

representation by using max pooling over the last convolutional layer across video

frames. Wang et al. [120] aggregated ConvNet features along the tracklets obtained

from iDT. Xu et al. [128] applied VLAD encoding [41] over ConvNet activations and

found that the encoding methods are superior to mean pooling. The other common

solution is to feed multiple frames as input to ConvNets. Karpathy et al. [46] pro-

posed a convolutional temporal fusion network, but it is only marginally better than

the single frame baseline.

2.1.2 Recurrent Networks for Video Classification

Ng et al. [72] and Donahue et al. [21] investigated the modeling of temporal struc-

tures in videos with Long Short-Term Memory (LSTM) [37]. However, even with

five-layer LSTMs, trained on millions of videos, they do not show promising perfor-

mance compared to ConvNets [72]. Patraucean et al. [77] used a spatio-temporal

autoencoder to model video sequences through optical flow prediction and recon-

struction of the next frame. Ballas et al. [8] used a Convolutional Gated Recurrent

Unit (ConvGRU) which leverage information from different spatial levels of the acti-

vations. A general sequence to sequence framework encoder-decoder was introduced

by [98] which utilizes a multilayered RNN to encode a sequence of inputs into one

hidden state, following which another RNN takes the encoded state as inputs and

decodes it into a sequence of outputs. [96] extended this general model to learn

features from consecutive frames and proposed a composite model for unsupervised

8

LSTM autoencoder. I utilize the RNNs on video representation learning, improving

the representation by being aware of the multirate nature of video content. More-

over, the temporal consistency between frames in the neighborhood is incorporated

into the networks in an unsupervised way, providing richer training information and

creating opportunities to learn from abundant untrimmed videos.

2.2 Bridging Vision and Language

2.2.1 Video Captioning

There is increased interest in the field of multimodal learning for bridging com-

puter vision and natural language understanding [20, 45, 133, 111, 116, 131, 73].

Captioning is a particular popular task, and LSTM is heavily used as a recurrent

neural network language model to automatically generate a sequence of words con-

ditioned on the visual features, inspired by the general recurrent encoder-decoder

framework [98]. Conditioned on the visual context, RNNs produce one word per

step to generate captions for videos. Venugopalan et al. [111] used a stacked se-

quence to sequence (seq2seq) [98] model, in which an LSTM is used as a video

sequence encoder and the other LSTM serves as a caption decoder. Yao et al. [131]

incorporated the temporal attention mechanism in the description decoding stage.

Pan et al. [74] proposed using a hierarchical LSTM to model videos sequences, while

Yu et al. [134] used a hierarchical GRU network to model the structure of captions.

[67] proposed a Speaker-Listener method to generate unambiguous descriptions. I

demonstrate that the strong video representation learned in our model improves the

video captioning task, confirming the generalization ability of our features.

2.2.2 Video Question Answering

The captioning task only generates a generic description for the entire image

or video clip, and it is difficult to evaluate the quality of the sentences generated;

9

that is, it is difficult to judge whether one description is better than another. In

addition, designing a proper metric for visual captioning which can reflect human

judgment [22, 110] is still an open research problem.

I instead focus on a more fine-grained description of video content, and our

method is simple to evaluate in multiple-choice form, i.e., by selection of the correct

answer. A number of QA datasets and systems have been developed on images

[4, 28, 64]. [28] used a complex dataset with free-style multilingual question-answer

pairs; however it is difficult to evaluate the answers, and human judgement is usually

required. [62] introduced an interesting multiple-choice fill-in-the-blank question an-

swering task on abstract scenes, and [135] applied the task to natural images using

various question templates. [124] incorporated an external knowledge base, i.e., DB-

pedia [5], to facilitate the image QA task by querying the relevant information from

the knowledge base. In contrast, I leverage the external knowledge base by directly

using the pre-trained models based on large datasets, e.g., BookCorpus [143], rather

than training the language model from scratch. Unlike still images, video analy-

sis can utilize the temporal information across frames, along with object and scene

information. The richer structural information in videos potentially enables better

understanding of the visual content while at the same time imposing challenges.

One of the video-based question answering works is [107], which built a query

answering system based on a joint parsing graph from both text and videos. How-

ever, Tu et al. restricted their model to surveillance videos of predefined structure,

which cannot deal with open-ended questions. MovieQA [102] uses movies as a single

source, which are produced by professionals in controlled environment. Differently,

I aim to deal with videos which could be produced by anyone in the wild. There-

fore, I collect videos from various sources, e.g., cooking scenarios, unconstrained web

videos from YouTube, based on which a model is trained to capture the dynamic

temporal structure of unconstrained videos. Action forecasting, from the aspect of

10

temporal structure learning, was initially studied by [117]. To predict the potential

actions, Vondrick et al. proposed to use a regression loss built upon a ConvNet and

forecast limited categories of actions and objects in a very short period, e.g., one

second. In contrast, I utilize a more flexible encoder-decoder framework, modeling a

wider range of temporal information, and I mainly focus on multiple-choice question

answering tasks in the temporal domain, which goes well beyond standard visual

recognition.

2.3 Few-shot Video Classification

. Early works from Miller et al. [71], Fei-Fei et al. [24] and Lake et al. [56] utilized

generative models for one-shot learning. Koch [51] attempted to train a Siamese

network in a supervised way. Santoro et al. [89] was the first work to successfully

bridge memory-augmented neural works and one-shot learning. They took training

examples in an episode as sequential inputs and trained the network to predict the

label given previous examples. Vinyals et al. [115] used metric learning for few-

shot recognition and utilized the attention kernel to measure the distance. Given a

query, the network is trained to “point” to the nearest instance in the support set

and the corresponding label is retrieved as the prediction. Ravi and Larochelle [81]

trained a meta-learner based on Long Short-Term Memory (LSTM) [37] to generate

updates for the classifier rather than using gradients. The meta-learner also learns

a task-common weight initialization which captures shared knowledge across tasks.

Finn et al. [26] used stochastic gradient descent as a meta-learner to update the

parameters of the learner, which only learns the weight initialization. Snell et al. [93]

applied a similar model to Vinyals [115], but they used Euclidean distance with

their embedding function. Hariharan and Girshick [34] proposed the generation of

images at testing time to improve few-shot recognition performance. Xu et al. [129]

presented a key-value memory network to facilitate few-shot learning by extracting

11

knowledge from external knowledge bases, e.g., noisy web images. However, their

setting is not the meta-learning paradigm. These works focus on image few-shot

recognition, whereas I aim to learn a few-shot video model, which requires modeling

complex video data.

2.3.1 Memory-Augmented Neural Networks

Memory-Augmented neural networks have gained increasing interest with the

success of attention mechanism [7], Neural Turing Machine [33], and Memory Net-

works [123]. In RNNs, the states transferred between the steps can be interpreted as

internal memory representations for the inputs. The state vector of the last step is

usually used as the final representation for the whole input sequence. The fixed-size

vector representation cannot encode long sequences in an effective way. Instead, the

attention mechanism retains a sequence vectors as contexts for content-based ad-

dressing. The states in RNNs can change quickly over a few steps, while an external

memory can retain information over the long term. Neural Turning Machine [33] is a

computer-like network augmented with an external memory that can be addressed

via content and location. The reading and writing operations are fully differen-

tiable and weight updates through backpropagation are applied to every memory

slot. Memory networks [123] and the improved end-to-end memory networks [97]

have a large memory component for fact search and retrieval through content-based

addressing. Key-value memory networks [70] decompose the memory into key and

value parts, introducing a structural memory component to store question-answer

pairs in a flexible way. Soft addressing is used in all these works, which is compu-

tationally expensive with growth of the memory size. Kaiser et al. [44] proposed

a key-value memory module which performs hard updating to the memory, and a

ranking loss is used to train the model to make accurate predictions. However, the

memory stores only a fixed-size vector for an input, which is not suitable when the

12

input is a long sequence, e.g., video data. I thus propose our compound memory

network, in which each slot stores a series of vectors that are stacked as a matrix

representation.

13

Chapter 3

Bidirectional Multirate Reconstruction for

Temporal Modeling in Videos

3.1 Introduction

In this chapter, I deal with learning a discriminative video representation from

videos. I discuss the Multirate Visual Recurrent Model (MVRM) for modeling

motion speed variances. Such a multirate learning process makes the learned model

more capable of dealing with motion speed variances. I apply the proposed method

to two challenging video tasks, i.e., complex event detection and video captioning,

where it achieves the state-of-the-art performance. Notably, the method generates

the best single feature for event detection with a relative improvement of 10.4%

on the MEDTest-13 dataset and achieves the best performance in video captioning

across all evaluation metrics on the YouTube2Text dataset.

A major limitation of [72] and [74] is that the input frames are encoded with

a fixed sampling rate when training the RNNs. On the other hand, the motion

speed of videos varies even in the same video. As shown in the Figure 3.1, there

is almost no apparent motion in the first four frames, but fast motion is observed

in the last three frames. The encoding rate should be correspondingly low for the

first four frames, but high for the last three, as indicated by the solid arrow. The

fixed rate strategy, however, is redundant for the first four frames, while important

information for the last three frames is lost. The gap between the fixed encoding rate

This chapter is based on joint work with Zhongwen Xu, and Yi Yang (Zhu et al. 2017 [140]),

presented primarily as it appears in the CVPR 2017 proceedings.

14

Fixed rate

Multiple rates

Figure 3.1 : Frame sampling rate should vary in accordance with different motion

speed. In this example, only the last three frames have fast motion. The dashed

arrow corresponds to a fixed sampling rate, while the solid arrow corresponds to

multiple rates.

and motion speed variance in real world videos may degrade performance, especially

when the variance is extensive.

Inspired by a recent study on neuroscience which shows that a common brain net-

work underlies the capacity both to remember the past and imagine the future [90],

we consider reconstructing two temporal transitions, i.e., present→past transition

and present→future transition. Importantly, video motion speed changes constantly

in untrimmed videos and Srivastava et al.directly used an LSTM with a single fixed

sampling rate, making it vulnerable to motion speed variance.

We propose an unsupervised method to learn from untrimmed videos for tem-

poral information modeling without the heavy cost of computing optical flows. It

makes the following two major contributions. First, our Multirate Visual Recurrent

Model adopts multiple encoding rates, and together with the reading gate and the

updating gate in the Gated Recurrent Unit, it enables communication between dif-

ferent encoding rates and collaboratively learns a multirate representation which is

15

robust to motion speed variance in videos. Second, we leverage the mutual benefit

of two learning processes by reconstructing the temporal context in two directions.

The two learning directions regularize each other, thereby reducing the overfitting

problem. The two contributions yield a new video representation, which achieves

the best performance in two different tasks. Note that the method proposed in [128]

has been demonstrated to be the best single feature for event detection, and our

method outperforms this method with a relative improvement of 10.4% and 4.5%

on two challenging datasets, i.e., MEDTest-13 and MEDTest-14 respectively. In the

video captioning task, our single feature outperforms other state-of-the-art methods

across all evaluation metrics, most of which use multiple features. It is worthwhile

mentioning that in very rare cases, one method can outperform all others for video

captioning over all evaluation metrics. These results demonstrate the effectiveness

of the proposed method.

3.2 Multirate Visual Recurrent Models

In this section, we introduce our approach for video sequence modeling. We first

review the structure of Gated Recurrent Unit (GRU) and extend the GRU to a

multirate version. The model architecture for unsupervised representation learning

is then introduced, which is followed by task specific models for event detection

and video captioning. In the model description, we omit all bias terms in order to

increase readability.

3.2.1 Multirate Gated Recurrent Unit

Gated Recurrent Unit. At each step t, a GRU cell takes a frame representation

xt and previous state ht−1 as inputs and generates a hidden state ht and an output

16

ot which are calculated by,

rt = σ(Urxt +Vrht−1),

zt = σ(Uzxt +Vzht−1),

h̄t = tanh(Uh̄xt +Vh̄(rt � ht−1)),

ht = (1− zt)� ht−1 + zt � h̄t,

ot = Woht,

(3.1)

where xt is the input, rt is the reset gate, zt is the update gate, ht is the proposed

state, h̄t is the internal state, σ is the sigmoid activation function, U∗ and V∗ are

weight matrices, and � is element-wise multiplication. The output ot is calculated

by a linear transformation from the state ht. We denote the whole process as:

ht,ot = GRU(xt,ht−1), (3.2)

and when it has iterated S steps, we can obtain the state of the last step hS.

Multirate Gated Recurrent Unit (mGRU). Inspired by clockwork RNN [52],

we extend the GRU cell to a multirate version. The clockwork RNN uses delayed

connections for inputs and inter-connections between steps to capture longer depen-

dencies. Unlike traditional RNNs where all units in the states follow the protocol in

Eq. 3.1, states and weights in the clockwork RNN are divided into groups to model

information at different rates. We divide state ht into k groups, and each group gi

has a clock period Ti, where i ∈ {1, . . . , k}. Ti can be arbitrary numbers, and we

empirically use k = 3 and set T1, T2, T3 = 1, 3, 6. Faster groups (with smaller Ti)

take inputs more frequently than slower groups, and the slower module skips more

inputs. Formally, at each step t, matrices of the group satisfying (t MOD Ti) = 0 are

17

+

+

U xV ht-1

Slow Fast

Fast Slow

Figure 3.2 : We illustrate the two modes in the mGRU. In the slow to fast mode,

the state matrices V∗ are block upper-triangular matrices and in the fast to slow

mode, they are block lower-triangular matrices.

activated and are used to calculate the next state, which is

rit = σ(Ui
rxt +

∑k
j=1 V

i,j
r hj

t−1),

zit = σ(Ui
zxt +

∑k
j=1 V

i,j
z hj

t−1),

h̄i
t = tanh(Ui

h̄
xt +

∑k
j=1 V

i,j

h̄
(rit � hj

t−1)),

hi
t = (1− zit)� hi

t−1 + zit � h̄i
t,

(3.3)

where the state weight matrices V∗ are divided into k block-rows and each block-row

is partitioned into k block-columns. Vi,j
∗ denotes the sub-matrix in block-row i and

block-column j. The input weight matrices U∗ are divided k block-rows and Ui
∗

denotes the weights in block-row i and

∑k
j=1 V

i,j
∗ hj

t−1 =

⎧⎪⎪⎨
⎪⎪⎩

∑i
j=1 V

i,j
∗ hj

t−1, Fast → slow mode

∑k
j=i V

i,j
∗ hj

t−1, Slow → fast mode

(3.4)

Two modes can be used for state transition. In the slow to fast mode, states

of faster groups consider previous slower states, thus the faster states incorporate

information not only at the current speed but also information that is slower and

18

more coarse. The intuition for the fast to slow mode is that when the slow mode

is activated, it can take advantage of the information already encoded in the faster

states. The two modes are illustrated in Figure 3.2. Empirically, we use the fast to

slow mode in our model as it performed better in the preliminary experiments.

If (t MOD Ti) �= 0, the previous state is directly passed over to the next state,

hi
t = hi

t−1. (3.5)

Figure 3.3 illustrates the state iteration process. Note that not all previous mod-

ules are considered to calculate the next state at each step, thus fewer parameters

will be used and the training will be more efficient.

3.2.2 Unsupervised Video Sequence Reconstruction

Video sequences are highly correlated to their neighboring context clips. We

use the idea of context reconstruction for video sequence modeling. The similar

methods have been successfully applied for language modeling and other language

tasks [68, 49]. In the unsupervised training process, we follow the classic sequence-

to-sequence (seq2seq) model [98] where an encoder encodes a sequence of inputs and

passes the last state to the decoder for target sequence generation. In our scenario,

the mGRU encoder takes frame-level features extracted from the pre-trained convo-

lutional models as inputs and generates the state at each step which will be attended

by the decoders. The state of the last step of the encoder is passed to the decoder,

i.e., hdec
0 = henc

S . Two decoders are used to predict the context sequences of the

inputs, i.e., reconstructing the frame-level representations of the previous sequence

and next sequence.

Decoder. We use the seq2seq model with attention mechanism to model video

temporal structures via context reconstruction. We denote thatY = (y1,y2, . . . ,yn)

is the previous sequence of input sequence X, and Z = (z1, . . . , zn) is the next

19

sequence. The decoder is a GRU conditioned on the encoder outputs oenc
1,...,S and the

last step state henc
S of the encoder. We use the attention mechanism at each step

to help the decoder to decide which frames in the input sequence might be related

to the next frame reconstruction. At step t, the decoder φ generates the prediction

odec
t by calculating,

yattn
t = Linear(yt, at−1),

hdec
t ,oattn

t = GRU(yattn
t ,hdec

t−1),

eit = vTtanh(Wheh
dec
t +Woeo

enc
i),

ait = exp(eit) /
∑S

j=1 exp(e
j
t),

at =
∑S

i=1 a
i
to

enc
i ,

odec
t = Linear(oattn

t , at),

(3.6)

where Linear(a,b) = Waa+Wbb, a
i
t is the normalized attention weight for encoder

output oenc
i and at is the weighted average of the encoder outputs. We use two

decoders that do not share parameters: one for the past sequence reconstruction

and the other for the future sequence reconstruction (Figure 3.4). The decoders are

trained to minimize the reconstruction loss of two sequences, which is

∑
t

�(φ(y<t,o
enc
1,...,S,h

enc
S ; θ),yt)+

∑
t′

�(φ(z<t′ ,o
enc
1,...,S,h

enc
S ; θ′), zt′).

(3.7)

We choose the Huber loss for regression due to its robustness following Gir-

shick [29],

�(y, ȳ) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(y − ȳ)2 for |y − ȳ| ≤ δ,

δ |y − ȳ| − 1

2
δ2 otherwise.

(3.8)

We set δ = 0.5 in all experiments.

For the past reconstruction, we reverse the input order as well as the target order

to minimize information lag [98]. The two decoders are trained with the encoder via

20

Input 0 Input 1 Input 2 Input 3

Group 1
(T1=1)

Group 2
(T2=2)

Group 3
(T3=4)

Input 4

Figure 3.3 : Unrolled mGRU. In the example, the state is divided into three groups

and the slow to fast mode is shown. At each step t, groups satisfying (t MOD Ti) = 0

are activated (cells with black border). For example, at step 2, group 1 and group

2 are activated. The activated groups take the frame input and previous states to

calculate the next states. For those that are inactivated, we simply pass the previous

states to the next step. Group 1 is the fastest and group 3 is the slowest with larger

Ti. The slow to fast mode is the mode by which the slower groups pass the states

to the faster groups.

backpropagation, and we regularize the network by randomly dropping one decoder

for each batch. As we have two decoders in our model, each decoder will have the

probability of being chosen for training of 0.5 (Figure. 3.4).

During unsupervised training, we uniformly sample video frames and extract

frame-level features from convolutional models. We set the sequence length to K,

i.e., the encoder takesK frames as inputs, while the decoders reconstruct previousK

frames and next K frames. We randomly sample a temporal window of consecutive

3K frames (3 segments) during training. If the video length is less than 3K, we pad

zeros for each segment.

21

3.2.3 Complex Event Detection

We validate the unsupervised learned features on the task of complex event de-

tection. We choose the TRECVID Multimedia Event Detection (MED) task as it is

more dynamic and complex compared to the action recognition task, in which the

target action duration is short and usually lasts only seconds. As the features from

the unsupervised training are not discriminative, i.e., label information has not been

applied during training, we further train the encoder for video classification. We use

the mGRU encoder to encode the video frames and take the last hidden state in

the encoder for classification. We do not apply losses at each step, e.g., the LSTM

model in [72], as the video data in our task is untrimmed, which is more noisy and re-

dundant. We use the network structure of FC(1024)-ReLU-Dropout(0.5)-FC(1024)-

ReLU-Dropout(0.5)-FC(class num+1)-Softmax. Since there are background videos

which do not belong to any target events, we add another class for these videos.

During supervised training, we first initialize the weights of the encoder with

the weights pre-trained via unsupervised context reconstruction. For each batch,

instead of uniformly sampling videos within the training set, we keep the ratio of

the number of positive and background videos to 1 : 2. We bias the mini-batch

sampling because of the imbalance between the positive and negative examples.

During inference, the encoder generates multirate states at each step, and there

are several ways to pool the states to obtain a global video representation. One sim-

ple approach is to average the outputs, and the obtained global video representation

is then classified with a Linear SVM. The other way is to encode the outputs with

an encoding method. Xu et al. [128] found that Vector of Locally Aggregated De-

scriptors (VLAD) [41] encoding outperforms average pooling and Fisher Vectors [78]

over ConvNets activations by a large margin on the MED task. We thus apply the

VLAD encoding method to encode the RNN representations.

22

5678

4 3 2

1

8765

9

9 10 11

4 3 2

10 11 12

<GO>

<GO>

Present Past

Present Future

Figure 3.4 : The model architecture of unsupervised video representation learning.

In this model, two decoders are used to predict surrounding contexts by reconstruct-

ing previous frames and next frame sequences. The “<GO>” input, which is a zero

vector, is used at step 0 in the decoder. During training, one of the two decoders is

used with a probability of 0.5 for reconstruction.

Given inputs X = {x1,x2, . . . ,xN} and centers C = {c1, . . . , cK} which are

calculated by the k-means algorithm on sampled inputs, for each k ∈ {1, . . . , K},

we have,

uk =
∑

i:Nearest(xi)=ck

xi − ck, (3.9)

where xi is assigned to the center ck if it is the nearest center. Concatenating uk

over all K centers, we obtain the feature vector of size DK where D is the dimen-

sion of xi. Normalization methods are used to improve the encoding performance.

Power normalization, often signed square rooting (SSR), is usually used to convert

each element xi into sign(xi)
√
|xi|. The intra-normalization method normalizes rep-

resentations for each center, followed by the �2 normalization for the whole feature

vector [78]. The final normalized representation is classified with a Linear SVM.

Note that the states in mGRU are divided into groups, we thus encode the state

23

of the three different scales independently. We combine the three scores by average

fusion.

3.2.4 Video Captioning

We also demonstrate the generalization ability of our proposed video represen-

tation on the video captioning task. In video captioning, an encoder is used to

encode video representations and a decoder is used to generate video descriptions.

We follow the basic captioning decoding process. Given a video sequence X and a

description sequence Y = {y1, . . . , yN}, where each word is represented by a one-hot

vector and a one-of-K (K is the vocabulary size) embedding is used in the decoder

input to represent a discrete word with a continuous vector, the overall objective is

to maximize the log-likelihood of the generated sequence,

max
θ

N∑
t=1

log Pr(yt|y<t,X;θ). (3.10)

Softmax activation is used on the decoder output to obtain the probability of word

yt. The attention mechanism (Eq. 3.6) is used in both the input and output of the

decoder.

3.3 Results

We show the results of our experiments on complex event detection and video

captioning tasks. We implement our model using the TensorFlow framework [3].

3.3.1 Complex Event Detection

Dataset

We collect approximately 220,000 videos without label information from TRECVID

MED data, which excludes videos in MEDTest-13 and MEDTest-14, for unsuper-

vised training. The average length of the collected videos is 130 seconds with a total

duration of more than 8,000 hours.

24

We use the challenging MED datasets with labels, namely, TRECVID MEDTest-

13 100Ex [1] and TRECVID MEDTest-14 100Ex [2] for video classification∗. There

are 20 events in each dataset, 10 of which overlap. It consists of approximately 100

positive exemplars for each event in the training set, and 5,000 negative exemplars.

In the testing set, there are about 23,000 videos and the total duration in each

collection is approximately 1,240 hours. The average video length is 120 seconds.

These videos are temporally untrimmed YouTube videos of various resolutions and

quality. We use the mean Average Precision (mAP) as the performance metric

following the NIST standard [1, 2].

Model Specification

For both unsupervised training and classification, we uniformly sample video

frames at the rate of 1 FPS and extract features for each frame from GoogLeNet

with the Batch Normalization [39] pre-trained on ImageNet. Following standard

image preprocessing procedures, the shorter edges of frames are rescaled to 256 and

we crop the image to 224× 224. We use activations after the last pooling layer and

obtain representations with length 1,024. There are 20 classes in the MEDTest-13

and MEDTest-14 datasets, thus with the background class, we have 21 classes in

total. In the training stage, we set sequence length K to 30 and pad zeros if the

video has fewer than 30 frames. During inference, we take the whole video as input

and use 150 steps.

Training details. We use the following settings in all experiments unless otherwise

stated. The model is optimized with ADAM [48], and we fix the learning rate at

1× 10−4 and clip the global gradients at norm 10. We use a single RNN layer for

both the encoder and decoder, and the cell size is set to 1,024. We set the attention

size to 50 and regularize the network by using Dropout [95] in the input and output

∗Development data is not updated for TRECVID MED 15 and TRECVID MED 16 competition.

25

Methods MEDTest-13 MEDTest-14

GoogLeNet 32.0 25.1

mGRU 39.6 32.2

Table 3.1 : Comparison between GoogLeNet features and our mGRU model. Av-

erage pooling is used for both models. The result shows our feature representation

significantly outperforms the GoogLeNet feature.

layer [79]. We also add Dropout when the decoder copy state from the encoder and

all dropout probability is set to 0.5. Weights are initialized with Glorot uniform

initialization [31] and weight decay of 1× 10−4 is applied for regularization. In

the supervised training, we initialize the weights of the encoder using the learned

weights during unsupervised learning, and the same sequence length is used as in

the unsupervised training stage.

Results

Average pooling. For the GoogLeNet baseline, we average frame-level features

and use a Linear SVM for classification. For our model, we first train an unsu-

pervised encoder-decoder model with mGRU and fine-tune the encoder with label

information. To make a fair comparison with the GoogLeNet baseline, we extract

outputs of the mGRU encoder at each step and average them to obtain a global

representation for classification. Note that both feature representations have same

dimensions and we empirically set C = 1 for both of the linear classifiers. The result

is shown in Table 3.1 and shows that our model with temporal structure learning is

able to encode valuable temporal information for classification.

VLAD Encoding. We now show that VLAD encoding is useful for aggregating

RNN representations. We compare our method with GoogLeNet features using

26

Methods MEDTest-13 MEDTest-14

GoogLeNet 42.0 33.6

mGRU 44.5 37.3

Table 3.2 : Comparison between GoogLeNet and mGRU models when VLAD en-

coding is used to aggregate frame-level features.

Methods MEDTest-13 MEDTest-14

mGRU w/o attention 32.7 27.5

mGRU w/o context 37.1 30.1

mGRU w/o multirate 36.5 29.3

mGRU (full) 37.4 30.6

Table 3.3 : Comparison between mGRU and other variants in the unsupervised

training stage. Detailed discussion can be found in text.

VLAD encoding. Following [128], we set the number of k-means centers to 256 and

the dimension of PCA is 256. Three scales are learned at each step for our mGRU

model. We divide the state into three segments and each sub-state is individually

aggregated by VLAD. Note that each encoded representation has the same feature

vector length as the GoogLeNet model, and we use late fusion to combine the scores

of the three scales. The results in Table 3.2 show that our mGRU model outperforms

GoogLeNet features when encoded by VLAD. It also shows that VLAD encoding

outperforms average pooling for RNN representations. Our model also achieves

state-of-the-art performance on the MEDTest-13 and MEDTest-14 100Ex datasets.

27

Ablation Study

We compare several variants in the unsupervised training, and show the per-

formance of different components. The results are shown in Table 3.3. We obtain

features from the unsupervised model by extracting states from the encoder at each

step, which are then averaged to obtain a global video representation. The results

show that the representation learning from unsupervised training without discrimi-

native information also achieves good results.

Attention. We compare our model with a model without the attention mecha-

nism, where temporal attention is not used and the decoder is forced to perform

reconstruction based only on the last encoder state, i.e., “mGRU w/o attention” in

Table 3.3. The results show that the attention mechanism is important for learning

good video representations and also helps the learning process of the encoder.

Context. In a model without context reconstruction, i.e., only one decoder is

used (autoencoder), neither past nor future context information is considered, i.e.,

“mGRU w/o context” in Table 3.3. The results show that with context predic-

tion, the encoder has to consider temporal information around the video clip, which

models the temporal structures in a better way.

Multirate. We also show the benefit of using mGRU by comparing it with the

basic GRU, i.e., “mGRU w/o multirate” in Table 3.3. Note that the mGRU model

has fewer parameters but better performance. It shows that an mGRU that encodes

multirate video information is capable of learning better representations from long,

noisy sequences.

Pre-training. We now show the advantages of the unsupervised pre-training pro-

cess by comparing an encoder with random initialization with the same encoder

whose weights are initialized by the unsupervised model. The result is shown in

Table 3.4 and demonstrates that the unsupervised training process is beneficial to

28

Methods MEDTest-13 MEDTest-14

mGRU (random) 38.3 29.5

mGRU (pre-trained) 39.6 32.2

Table 3.4 : Comparison between models which have the same structure but differ-

ent initialization. This shows that good initialization enables better features to be

learned.

video classification. It incorporates context information in the encoder, which is an

important cue for the video classification task.

Comparison with the State-of-the-art

We compare our model with other models and the results are shown in Table 3.5.

Our single model achieves the state-of-the-art performance on both the MEDTest-

13 and MEDTest-14 100Ex settings compared with the performances of other single

models. We report the C3D result by using the pre-trained model [104] and we set

the length of the input short clip to 16. Features are averaged across clips which are

classified with a Linear SVM. Our model with VLAD encoding outperforms previous

state-of-the-art results with 4.2% on MEDTest-13 100Ex and 1.6% on MEDTest-14

100Ex.

3.3.2 Video Captioning

We now validate our model on the video captioning task. Our single model

outperforms previous state-of-the-art single models across all metrics.

29

Models MEDTest-13 MEDTest-14

IDT + FV [128] 34.0 27.6

IDT + skip + FV [57] 36.3 29.0

VGG + RBF [138] - 35.0

C3D [104] * 36.9 31.4

VGG16 + VLAD [128] - 33.2

NI-SVM2 [12] 39.2 34.4

VGG16+LCD+VLAD [128] 40.3 35.7

LSTM autoencoder [96] * 38.2 31.0

GoogLeNet + VLAD * 42.0 33.6

Our method 44.5 37.3

Table 3.5 : Comparison with other methods. We achieve state-of-the-art perfor-

mance on both MEDTest-13 and MEDTest-14 100Ex datasets. * denotes that the

model is implemented by ourselves.

Dataset

We use the YouTube2Text video corpus [13] to evaluate our model on the video

captioning task. The dataset has 1,970 video clips with an average duration of 9

seconds. The original dataset contains multi-lingual descriptions covering various

domains, e.g., sports, music, animals. Following [113], we use English descriptions

only and split the dataset into training, validation and testing sets containing 1,200,

100, 670 video clips respectively. In this setting, there are 80,839 descriptions in

total with about 41 sentences per video clip. The vocabulary size we use is 12,596

including <GO>, <PAD>, <EOS>, <UNK>.

We evaluate the performance of our method on the test set using the evaluation

30

Methods B@1 B@2 B@3 B@4 M C

GRU 79.46 67.52 57.98 47.14 32.31 72.46

mGRU 79.42 67.79 58.32 48.12 32.79 73.21

mGRU+

pre-train
80.76 69.49 60.03 49.45 33.39 75.45

Table 3.6 : Comparison between different models on YouTube2Text dataset.

GoogLeNet features are used as frame-level representations. B, M, C are short

for BLEU, METEOR, CIDEr.

script provided by [14] and the results are returned by the evaluation server. We

report BLEU [76], METEOR [19] and CIDEr [110] scores for comparison with other

models. We stick with a single rule during model selection, namely we choose the

model with the highest METEOR score on the validation set.

Model Specification

The video length in the YouTube2Text dataset is short, thus we uniformly sample

frames at a higher frame rate of 15 FPS. The sequence length is set to 50 and

we use the default hyper-parameters in the last experiment. We use two different

convolutional features for the video captioning task, i.e., GoogLeNet features and

ResNet-200 features [36]. We use beam search during decoding by default and set

the beam size to 5 following [134] in all experiments. Attention size is set to 100

empirically.

Results

We first use GoogLeNet features and the result is shown in Table 3.6. We

compare our mGRU with GRU which shows that mGRU outperforms GRU on all

metrics except BLEU@1. However, the difference is only 0.04%. We initialize the

31

Methods B@1 B@2 B@3 B@4 M C

GRU 80.88 70.15 61.08 51.06 33.48 79.16

mGRU 82.03 71.41 62.38 52.49 33.91 78.41

mGRU+

pre-train
82.49 72.16 63.30 53.82 34.45 81.20

Table 3.7 : Comparison between different models on YouTube2Text dataset.

ResNet-200 features are used as frame-level representations. B, M, C are short

for BLEU, METEOR, CIDEr.

mGRU encoder via unsupervised context learning and the result shows that with

good initialization, performance is improved by more than 1.0% on the BLEU and

CIDEr scores and 0.6% on the METEOR score compared with random initialization.

We also utilize the recent ResNet-200 network as a convolutional model. We use the

pre-trained model and follow the same image preprocessing method. The result of

using ResNet-200 is shown in Table 3.7 and demonstrates that our MVRM method

not only works better than GRU on different tasks, but also works better on different

convolutional models. Additionally, we can improve all the metrics with ResNet-200

network.

Comparison with the State-of-the-art

We compare our methods with other models on the YouTube2Text dataset. Re-

sults are shown in Table 3.8. “S2VT” [111] is the first model to use a general

encoder-decoder model for video captioning. “Temporal Attention” [131] uses the

temporal attention mechanism on the video frames to obtain better results. “Bi-

GRU-RCN” [131] uses a ConvGRU to encode activations from different convolu-

tional layers. “LSTM-E” [75] uses embedding layers to jointly project visual and

32

Methods BLEU@4 METEOR CIDEr

S2VT [111] - 29.20 -

Temporal attention [131] 41.92 29.60 51.67

GoogLeNet+

Bi-GRU-RCN1 [8]
48.42 31.70 65.38

GoogLeNet+

Bi-GRU-RCN2 [8]
43.26 31.60 68.01

VGG+LSTM-E [75] 40.20 29.50 -

C3D+LSTM-E [75] 41.70 29.90 -

GoogLeNet+HRNE+

Attention [74]
43.80 33.10 -

VGG+p-RNN [134]∗ 44.30 31.10 62.10

C3D+p-RNN [134]∗ 47.40 30.30 53.60

GoogLeNet+MVRM 49.45 33.39 75.45

Table 3.8 : Comparison with other models without fusion. ∗ denotes that the model

is trained with different settings ([134] used the train+val data for training).

text features. Our MVRM method has similar performance to [74], but with the

pre-training stage, we outperform [74] in all metrics. Some methods fuse additional

motion features like C3D [104] features, e.g., Pan et al. [74] obtained 33.9% on ME-

TEOR after combing multiple features. With ResNet-200, we can obtain 34.45%

on METEOR.

3.4 Conclusion

We propose a Multirate Visual Recurrent Model to learn multirate representa-

tions for videos. We model the video temporal structure via context reconstruction,

33

and show that unsupervised training is important for learning good representations

for both video classification and video captioning. The proposed method achieves

state-of-the-art performance on two tasks. In the future, we will investigate the gen-

erality of the video representation in other challenging tasks, e.g., video temporal

localization [23] and video question answering [141, 102]

34

Chapter 4

Uncovering the Temporal Context for Video

Question Answering

4.1 Introduction

In this chapter, I introduce Video Question Answering in the temporal domain

to infer the past, describe the present and predict the future. I present an encoder-

decoder approach using Recurrent Neural Networks to learn the temporal structures

of videos and introduce a dual-channel ranking loss to answer multiple-choice ques-

tions. I explore approaches for finer understanding of video content using the ques-

tion form of “fill-in-the-blank”, and collect the Video Context QA dataset (VCQA)

consisting of 109,895 video clips with a total duration of more than 1,000 hours

from existing TACoS, MPII-MD and MEDTest 14 datasets. In addition, 390,744

corresponding questions are generated from annotations. Extensive experiments

demonstrate that the approach significantly outperforms the compared baselines.

We focus on Video Question Answering (Video QA) in the temporal domain.

Different from MovieQA [102], our Video QA task focuses on video temporal context

understanding and thus consists of three subtasks, which are describing the present,

inferring the past and the future.

As shown in Fig. 4.1, if we see a man slicing cucumber on a cutting board, we can

infer that he previously took a knife from the drawer, and predict that he will put

the cucumber slices on a plate afterwards. As with Image QA, Video QA requires a

This chapter is based on joint work with and Zhongwen Xu, Yi Yang, and Alex G. Hauptmann

(Zhu et al. 2017 [141]), presented primarily as it appears in the IJCV 2017.

35

Figure 4.1 : Questions and answers about the past, the present and the future.

Our system includes three subtasks, which infer the past, describe the present, and

predict the future, while only the current frames are observable. Best viewed in color

finer understanding of videos and sentences than video captioning where questions

about local objects and actions are required to be answered. Despite the success of

video captioning in [111, 131, 74], a number of research challenges remain unsolved,

which means these methods are not readily applicable to Video QA.

Firstly, a Video QA system should explore more knowledge beyond the visual in-

formation and coarse sentence annotations because it requires a finer understanding

of video content and questions. For the sake of video captioning, existing systems

train LSTM models based on the video content and associated coarse sentence an-

notations alone. Because the size of the description embedding matrix is very large

and many words usually appear fewer than 10 times in all descriptions, the model

overfits easily. A study [62] found that visual information and textual information

are mutually beneficial. We developed a new way to approach Video QA, by appro-

priately integrating information, including sentences, words, and visual cues, within

a joint learning framework to maximize the mutual benefit. Using this method, ex-

ternal knowledge bases (e.g. BookCorpus [143] and Google News [69]) can be readily

36

incorporated. Because the external knowledge bases reflect the underlying correla-

tions between related entities, our approach is able to to better parse questions and

answers.

Secondly, a Video QA system should be capable of reasoning across video frames,

including inferring the past, describing the present, and predicting the future, all of

which are strongly correlated. Gated Recurrent Unit (GRU) [15] has demonstrated

promising performance on sequence modeling tasks, partially because it has a sim-

pler neural structure than LSTM. On top of GRU, we propose an encoder-decoder

approach with a dual-channel ranking loss to learn three video representations, one

for each Video QA subtask, i.e., past inference, present description, and future pre-

diction. One appealing feature of our approach is that the encoder-decoder approach

is able to model a wider range of temporal information, and the reduced number of

weight parameters in GRU makes it more robust to overfitting in temporal model-

ing. Further, the approach eliminates the need to create a large number of labels to

train the sequence model by embedding visual features in a semantic space.

Thirdly, a well-defined quantitative evaluation metric and datasets from differ-

ent domains to track progress of this important research [65, 64, 4] are required.

Manually providing groundtruth for a large number of videos is extremely human

labor intensive. BLEU [76] has been widely used as an evaluation metric for im-

age captioning, but a few research papers and competition reports have indicated

that BLEU is not a reliable metric and cannot reflect human judgment [55, 110].

Following [62, 135], we evaluated our question answering approach in the form of

“fill-in-the-blank” (FITB) multiple choice responses. We utilized over 100,000 real-

world videos clips from existing TACoS, MPII-MD and MEDTest 14 datasets, and

generated 400,000 designed questions with more than 1,000,000 candidate answers.

This dataset will be released to the public and can be used as the benchmark for

this research. The main advantage is that it is more convenient for quantitative

37

artifact
food
action
animal

plant

Figure 4.2 : t-SNE visualization of word embeddings for each category learned from

word2vec model.

evaluation than free-style question answering.

We propose a new framework for Video QA by carefully addressing the three

aforementioned challenges. The rest of sections are organized as follows. After

introducing related works, we detail the large scale dataset we have collected for

Video QA tasks. We then present our video temporal structure modeling approach

and dual-channel learning-to-rank method for question answering. Extensive exper-

iments are conducted to validate our approach.

4.2 Dataset Collection and Task Definitions

The goal of our work is to present a Video QA system in the temporal domain

that can infer the past, describe the present and predict the future. We first describe

our Video Context QA dataset (VCQA) collection and the method of automatically

generating template questions in Section 4.2.1. Task definitions and dataset analysis

will be discussed in Section 4.2.2.

38

4.2.1 Dataset and QA Pair Generation

We utilized more than 100,000 videos and 400,000 questions in total, while QA

pairs were generated from existing datasets in different domains: a cooking scenario,

DVD movies, and web videos:

1. TACoS [82]. The TACoS dataset consists of 127 long videos with a total

of 18,227 annotations in the cooking scenario. It provides multiple sentence

descriptions at a fine-grained level, i.e., for each short clip in each long video.

2. MPII-MD [85]. MPII-MD is collected from DVD movies where descriptions

are generated from movie scripts semi-automatically. The dataset contains

68,375 clips and one annotation on average is provided for each clip.

3. TRECVID MEDTest 14 [2]. TRECVID MEDTest 14 is a complex event

wild video dataset collected from web hosting services such as YouTube. Videos

in the dataset total some 1,300 hours in duration. The videos are untrimmed

and an annotation is provided for each long video which can be regarded

as a coarse high-level summarization compared to the TACoS and MPII-MD

datasets.

Question template generation. [83] transform image descriptions to questions

with only four question types, i.e., objects, number, color and location. It is dif-

ficult to automatically transform descriptions into free-from QA, which is still an

open-ended topic [83]. In contrast, we use the FITB form where the questions are

transformed in an easier way and the question types are more diverse. We use the

Stanford NLP Parser [50] to obtain the syntactic structures of original video de-

scriptions. We divide the questions into three categories, nouns (objects like food,

animals, plants), verbs (actions) and phrases (short phrases, e.g., “play computer

game”). Question templates are subsequently generated from noun phrases (NP)

39

and verb phrases (VP). Multiple words can be dropped to form the questions. During

template generation, we eliminate prepositional phrases as they are mostly subjec-

tive. We use WordNet∗ and NLTK† toolkits to identify word categories and choose

a set of categories listed in Table 4.1. We visualize the distribution of words in each

category using t-SNE [108] in Fig. 4.2. It shows that categories can be separated,

where actions and objects have a clear margin.

Candidate answer generation. After question template generation, we obtained

a question template and a correct answer, where distractors are still required to form

the multiple-choice FITB dataset. We designed two different levels of difficulty for

answering questions by altering the similarities between the correct answer and the

distractors.

For each question in the easy task, we randomly chose three distractors in the

same category from the same dataset.We thus have four candidates for the easy

tasks. Words like “person” or “man” were filtered in advance, and words with a

frequency of less than 10 were filtered following common practice.

Video clips in the same dataset can have totally different scenes, e.g., the web

videos are very diverse in MEDTest 14 dataset. To generate more difficult questions,

we selected hard negative distractors from phrases that are similar to the correct

answer. We collected distractors not only from the video datasets, but also used

annotations from Flickr8K [38], Flickr30K [132] and MS COCO [61] as description

sources for the similarity comparison. We first parsed the annotations using the

method described above and gathered about 8,000 phrases in total, resulting in an

average length of 6.6 words per phrase. After the preprocessing, we encoded both the

correct answers and the distractors with word2vec [69] and measured the similarity

with cosine distance. For candidate phrases with length more than one, we average

∗https://wordnet.princeton.edu
†http://www.nltk.org/

40

the word2vec representation of each word [59, 62]. To avoid the ambiguity between

the distractors and the correct answer (distractors should not be too close to the

correct answer), we manually set an upper bound for the similarity between them.

We chose the best threshold by sampling a few thousand candidates and checking the

ambiguity by human labor. We discarded phrases that are too similar to the correct

answer, and selected nine most similar distractors from the remaining phrases. We

thus have ten candidates for the difficult task. We show examples of QA pairs of

different categories and level of difficulty in Fig. 4.3.

Datasets TACoS MPII-MD MEDTest 14 Combined

Verbs 268 869 671 2,925

Phrases 964 220 418 5,927

Animals - 63 98 352

Food/Plant 62 129 174 598

Other objects 134 896 726 2,093

Table 4.1 : List of categories and number of collected words in three datasets. The

right column shows the total number of words and phrases collected, including those

from image domains such as MS COCO [61]

4.2.2 Task Definitions and Analysis

In addition to describing the current clip, we introduce another two tasks which

respectively infer the past and anticipate the future. In the task of describing the

present, we use all three datasets for evaluation. For the other two tasks of past

inference and future prediction, we perform experiments on the TACoS and MPII-

MD datasets only because they are annotated in fine-grained clips. In these tasks,

questions about the previous or next clip need to be answered for the given video

41

Figure 4.3 : Examples of QA pairs for different categories and levels of difficulty.

The words colored in green are correct answers, and the difficult candidates are

marked in red.

clip. Note that for tasks of describing the past or the future, only the current clip is

given and the model has to reason temporal structures based on the given clip. We

restrict the past and future so that they are not too far away from the current clip

and typically we choose the clip immediately before or after the given clip, where

the time interval is less than 10 seconds.

We introduce two levels of questions for each task. For simplicity, we denote

our tasks as Past-Easy, Present-Easy, Future-Easy, Past-Hard, Present-Hard and

42

Future-Hard. We randomly partitioned the dataset into three non-overlapping sub-

sets, one for training the models, one for validation (hyper-parameter tuning), and

one for testing the performance. As the performance may vary in accordance with

different subset partitions, we randomly partitioned the dataset three times indepen-

dently. We thus have three splits for each task. The models are trained individually

on the training set of each split. The parameters are not shared between splits.

We now show the statistics of our dataset.

Question types. We visualize the distribution of question types in Fig. 4.4. It

shows that there are more questions about objects than actions. The distribution of

each question type also varies across different datasets, e.g., there are more questions

about food and plant in the TACoS dataset.

Popular questions and answer. We show the top-5 popular questions and an-

swers in Table 4.2. Each dataset has different popular questions and answers, from

which we observe that the TACoS dataset asks more about cooking and it is less

diverse than the other two. Questions such as “someone .”, “people .” can

have richer answers than “the person rinse the .”.

Question and answer lengths. The lengths of questions and answers are shown

in Fig. 4.5 and Fig. 4.6, respectively. We can see that the length of most questions

are in the range from 5 to 12, while most answers only have one word and in TACoS

and MPII-MD, about 10% answers have two words.

4.3 The Proposed Approach

To answer questions about present, past and future, we first introduce an encoder-

decoder framework to represent context. We then map the visual representation to

a semantic embedding space and learn to rank the candidate answers.

43

Rank TACoS (%)

1 the person get out a . (1.11)

2 the person a knife. (0.52)

Questions 3 the person rinse the . (0.46)

4 he cut board. (0.32)

1 take (0.05)

2 cut (0.04)

Answers 3 wash (0.03)

4 rinse (0.02)

Rank MPII-MD (%)

1 someone . (1.08)

2 he . (0.26)

Questions 3 someone someone. (0.17)

4 someone up. (0.10)

1 look (0.02)

2 eye (0.01)

Answers 3 hand (0.01)

4 head (0.01)

Rank MEDTest 14 (%)

1 child football. (0.14)

2 guy ping pong. (0.07)

Questions 3 a man shave his . (0.06)

4 one lady dancing indoors. (0.04)

1 play (0.04)

2 dog (0.03)

Answers 3 dance (0.03)

4 kid (0.02)

Table 4.2 : Top-4 most popular questions and answers in each dataset. The numbers

in the parentheses are the percentages of questions and answers

44

Figure 4.4 : Distribution of question types for each dataset

4.3.1 Learning to Represent Video Sequences

In this section, we describe our model for learning temporal context. We present

an encoder-decoder framework using Gated Recurrent Unit (GRU) [15]. Compared

with LSTM [37], GRU is conceptually simpler with only two gates (update gate and

reset gate) and no memory cells, while the performance on the sequence modeling

task is as good as LSTM [16]. Note that we trained our model with LSTM as well,

but it performs worse than the model trained with GRU. With GRU, we can achieve

mAP of 24.9% on the MEDTest 14 100Ex classification task, whereas we can only

achieve 20.4% with LSTM.

Gated Recurrent Unit. Denote f 1
i , f

2
i , . . . , f

N
i as the frames in a video vi, where

N is the number of frames sampled from the video. At each step t, the encoder

generates a hidden state ht
i, which can be regarded as the representation of sequence

f 1
i , f

2
i , . . . , f

t
i . Thus the state of h

N
i encodes the whole sequence of frames. States in

GRU [15] are calculated as follows (the video subscript i is dropped for simplicity):

45

Figure 4.5 : Distribution of question lengths for each dataset

rt = σ(Wxrx
t +Whrh

t−1), (4.1)

zt = σ(Wxzx
t +Whzh

t−1), (4.2)

h̄t = tanh(Wxh̄x
t +Whh̄(r

t � ht−1)), (4.3)

ht = (1− zt)� ht−1 + zt � h̄t, (4.4)

where xt is the input, rt is the reset gate, zt is the update gate, ht is the proposed

state and � is element-wise multiplication. We use the same architecture for the

decoder as for the encoder, but its hidden state of h0 is initialized with the hidden

state of the last time step N in the encoder. We construct our GRU encoder-decoder

model (Fig. 4.7) in a similar fashion to [96]. Besides reconstructing the input frames,

we also train another two models which are asked to reconstruct the future frames

(Fig. 4.7 left) and past frames (Fig. 4.7 right), respectively. Our proposed models

46

Figure 4.6 : Distribution of answer lengths for each dataset

are capable of learning good features as the network is optimized by minimizing the

reconstruction error. To achieve good reconstruction, representation passed to the

decoder should retain high level abstraction of the target sequence. Note that our

three models are learned separately, and the encoder and decoder weights are not

shared across models of past, present and future.

Training. We first train the encoder-decoder models in an unsupervised way using

videos collected from a subset of the MED dataset [2] (excluding the MEDTest 13

and MEDTest 14 videos) which consists of 35,805 videos having a duration of 1,300

hours. The reason for choosing MED dataset as a source for temporal context

learning is that videos in the MED dataset are longer in duration and contain

complex and profound events, actions and objects for learning. We collect additional

data to our target task datasets for the purpose of learning a more powerful model,

and practically, it is difficult to train a model from scratch using such a small

47

Figure 4.7 : The encoder-decoder model (top): encoder state of last time step is

passed to three decoders for reconstruction. Learn to answer questions (bottom):

encoder state of last time step is passed to the ranking module which selects an

answer based on the visual information

dataset as TACoS, which has only 127 cooking videos. As the video frames have

high correlations in short range, we sample frames at the frame rate of 1 fps. We use

a time span of 30 seconds and set the unroll length T to 30 for the present model

(Model 1), and 15 for both the past model (Model 2) and the future model (Model

3).

For the input to the GRU model, we use ConvNet features extracted from

GoogLeNet [99] with Batch Normalization [39], which was trained from scratch

with the ImageNet 2012 dataset [87] and we keep the ConvNets part frozen during

RNN training.

We now explain our network structures and training process in detail. As three

models are trained with the same hyper-parameters, we take Model 1 as an example.

In our case, reconstruction error is measured by �2 distance between the predicted

representation and the target sequence. We reverse the target sequences in the

48

present reconstruction scenario which, as indicated in [98], reduces the path of the

gradient flow. We set the size of the GRU units to 1,024 and two GRU layers are

stacked. Our decoders are conditioned on the inputs, and we apply Dropout with the

rate of 0.5 at connections between the first GRU layer and the second GRU layer as

suggested by [137] to improve the generalization of the neural network. We initialize

h0 for the encoder with zeros, while the weights in the input transformation layer

are initialized with a uniform distribution in [-0.01, 0.01] and recurrent weights

have uniform distribution in [-0.05, 0.05]. We set the mini-batch size to 64 and

clip gradient element-wise at the norm of 1e−4. Frame sequences from different

videos are sampled in each mini-batch. The network is optimized by RMSprop

[103], which scales the gradient by a running average of gradient norm. The model

is trained by the Torch library [17] on a single NVIDIA Tesla K20 GPU, and it takes

approximately one day for the models to converge and complete the training.

Inference. At inference time, we feed the ConvNet features extracted from GoogLeNet

to the encoder, and obtain the video features from the hidden states. For each video

clip, we initialize h0 to zeros, and pass the current hidden state to the next step

until the last input. We then average the hidden states at each time step as the

final representation.

4.3.2 Dual-Channel Learning to Rank

Visual information and textual information are mutually beneficial. We present

the proposed dual-channel learning to rank algorithm by appropriately integrating

information, including sentences, words, and visual cues, within a joint learning

framework to maximize the mutual benefit. We jointly model two channels, i.e.,

word channel and sentence channel, for learning.

[49] recently proposed skip-thought vectors to encode a sentence into a compact

vector. The model uses an RNN encoder to encode a sentence and another two RNN

49

Figure 4.8 : Illustration of dual-channel learning to rank

decoders are asked to reconstruct the previous sentence and the next sentence. It was

trained using BookCorpus dataset [143] which consists of 11,038 books, 74,004,228

sentences and 984,846,357 words. The skip-thought vectors model performs well on

many different natural language processing (NLP) tasks. We utilize the combine-

skip model to encode sentences. For more details, please refer to [49].

We first formulate the problem of multiple-choice question answering. Given N

questions with blanks together with corresponding videos, and K candidate answers

for each question, we denote each question as qi, i ∈ 1, . . . , N , candidate answers for

question qi as pij, j ∈ 1, . . . , K and the ground truth for question qi as p′i with

index j′i. For each question qi, let sij be the sentence formed by filling the blank of

question qi with candidate pij. For example, filling in the template of “A/An

swims in a pool” shown in Fig. 4.3 with candidate “dog”, we can form the sentence

“A dog swims in a pool”, and the false description “A horseback swims in a pool”

is generated by “horseback”.

Given qi, we introduce a dual-channel ranking loss (also illustrated in Fig. 4.8)

50

that is trained to produce higher similarity for the visual context and representation

vector of the correct answer p′i than other distractors pij, j �= j′i. We define our loss

as:

min
θ

∑
v

∑
j∈K,j �=j′

λ�word + (1− λ)�sent, λ ∈ [0, 1], (4.5)

with

�word = max(0, α− vp
Tpj′ + vp

Tpj),

�sent = max(0, β − vs
T sj′ + vs

T sj),

(4.6)

where vp = Wvpv,vs = Wvsv and pj = Wpvyj, sj = Wsvzj (for simplicity we drop

the subscript i). v is the vector learning from our GRU encoder-decoder model

for video clip vi, yj is the average of word2vec vectors for each word in candidate

pij, zj is the skip-thought vector for description sij. We constrain these feature

representations to be in unit norm. θ denotes all the transformation parameters

that need to be learned in the model, Wvs and Wvp are transformations that map

the visual representation to the semantic joint space, while Wsv and Wpv transform

the semantic representation. Note that Wxx can be a linear transformation or multi-

layer neural network with hidden units.

Training. During the training procedure, we sample false terms from negative

candidates and practically stop summing after finding the first margin-violating

term [27]. Empirically, we select a sentence embedding dimension of 500 and word

embedding of 300. The model is trained by stochastic gradient descent (SGD) by

simply setting the learning rate η as 0.01 and the momentum as 0.9. In practice, we

set the margins α and β to 0.2, and λ is cross-validated on the held-out validation

set.

Inference. We learn the weight of the transformations at the training stage and at

51

inference time, we calculate the following score for each candidate,

score = λvp
Tpj + (1− λ)vs

T sj (4.7)

The candidate with the highest score is our answer.

4.4 Results

4.4.1 Evaluation of Describing the Present

In this section, we evaluate our model in the task of describing the present. We

first present text-only baselines to show that visual information is an important

cue in this task. We also demonstrate the effectiveness of our ranking method by

comparing it with Canonical Correlation Analysis (CCA), normalized CCA (nCCA)

and then conduct evaluations of dual-channel learning. We then show the biases in

the answers.

Text-only baselines. We show that visual information is an important cue by pre-

senting text-only baselines where only question templates and answers are provided.

In the first baseline, we choose the candidate which is most similar to the question

as our answer. We average word2vec representation for each word to get the phrase

representation for both questions and candidates. We measure the similarity by

using the dot product. The candidate with the highest score will be the answer. We

call it the Simple word2vec baseline. We also encode the question and candidates

with skip-thought vectors which is our Simple skip-thought baseline.

In the second baseline, we use a LSTM decoder to generate the probability

of each word in the vocabulary while the encoder encodes words in the question

[49, 83, 65, 28]. We choose the answer with the highest probability among the

candidates. We call it the LSTM Generator baseline. A GRU Generator can also

be introduced by replacing the LSTM cell with GRU cell. We use RNN cell size of

512 and set the number of RNN layer to 1 in the experiment. We early stop the

52

training process when the performance on the validation set does not improve.

We compare the baselines with our model in the Present-Easy task and the

results are shown in Table 4.3. It shows our visual model outperforms the text-

only baselines with a large margin. The Simple baseline performs much worse than

other methods as our dataset is constructed by choosing similar candidates. The

results show that visual information is important in the task. We also observe that

Simple word2vec performs better than Simple skip-thought which indicates that skip-

thought might not encode short phrases effectively. LSTM Generator and GRU

Generator have comparable results when modeling language.

Comparison with models with visual cue. We first compare our dual-channel

ranking approach with CCA which computes the direction of maximal correlation

between a pair of multi-dimensional variables. [32] normalized the correlation by

dimension reduction before linear CCA and [135] found it also beneficial to image

QA. To learn CCA, we separately train two embedding layers. The first CCA

maps the sentence description to the visual semantic joint-embedding space and the

second CCA maps the correct answer to the joint space. To answer multiple-choice

questions, we embed each candidate and select the answer that is most similar to the

video clip using Equation 4.7. We conduct cross-validation for choosing the weight

to combine two embeddings. For nCCA, we also cross validated the dimension of

the projected space on the validation set.

We restrict the input features to be the same for both methods. For visual

representation, we average the frame-level features extracted from the last fully

connected layer of GoogLeNet. For semantic representation, we use the same method

as described in Section 4.3.2, where sentences are encoded by skip-thought vectors,

and word2vec is used for word representation.

Note that in CCA, the two embedding matrices are learned separately at training

53

Methods TACoS (%) MPII-MD (%) MEDTest 14 (%)

Simple skip-thought 35.4 25.8 26.4

Simple word2vec 36.9 34.3 35.1

LSTM Generator 54.6 60.3 69.3

GRU Generator 54.4 61.0 68.9

Question type Prior 63.3 47.7 63.0

CCA 65.1 41.6 63.2

nCCA 69.2 42.8 64.2

Post-hoc 67.0 35.1 55.7

Visual + Answer-only 63.1 53.8 73.0

Our dual-channel loss 76.3 71.9 81.0

Table 4.3 : Comparison between our model and other baselines in the Present-Easy

task. Except the text-only baselines, “Mean-GoogLeNet” is used as visual features

for all approaches

time while the weights of two embeddings are introduced at the validation stage.

The method of late fusing sentence and word descriptions is different from our dual-

channel ranking approach, which integrates sentence and word representations dur-

ing training time and learns to adjust the embeddings accordingly. We demonstrate

the effectiveness of our dual-channel ranking method in Table 4.3.

As can be seen, nCCA consistently better than CCA and our method outper-

forms nCCA by a large margin. We believe it is because our objective function

learns to integrate two representations, while nCCA uses a fixed embedding ma-

trix during semantic weight learning. In addition, nCCA eliminates negative terms

during training, and as multiple-choice question answering is required to select an

54

Past Present Future

Conv Ours Improv Conv Ours Improv Conv Ours Improv

Easy 74.8 78.3 3.5 76.3 79.7 3.4 76.4 78.7 2.3

TACoS Hard 62.7 64.7 2.0 65.5 67.1 1.6 64.5 67.3 2.8

Easy 66.8 72.1 5.3 72.0 74.2 2.2 68.7 73.6 4.9

MPII-MD Hard 45.6 47.0 1.4 47.3 48.2 0.9 46.9 48.0 1.1

Table 4.4 : Comparisons between ConvNets (Conv) and our model for past, present

and future modeling. Relative improvements for each task are also listed

answer from candidates at testing time, ranking loss is more suitable for modeling

the problem.

Following [135], we also use the video captioning model to generate the descrip-

tion of the video. We then compute the cosine similarity between the skip-thought

representation of the description generated and the description filled by all the can-

didates. The most similar candidate is the our answer. We call it the Post-hoc

baseline. We use GRU cell of cell size 512 in the captioning model and the results

are shown in Table 4.3. We observe that the Post-hoc baseline is comparable to

CCA on TACoS dataset but worse on MPII-MD and MEDTest 14 datasets.

Effectiveness of dual-channel loss. We now show the effectiveness of using two

channels for learning. The result of how the integration of two representations influ-

ences performance is shown in Fig. 4.9. As can be seen, it is beneficial to integrate

word representations during training, and sentences are weighted more than words.

This is because our visual features represent more global abstraction, which corre-

sponds to sentence representation, whereas specific object features corresponding to

word representation have not been considered in this work. We will explore this

direction in detail in future works.

Biases in answers. [40] found that there is a strong bias in Visual7W dataset [142].

55

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 0.2 0.4 0.6 0.8 1

A
cc

u
ra

cy
o
n

v
al

id
at

io
n

se
t

λ

Comparison between different λ

TACoS
MPII-MD

MEDTEST 14

Figure 4.9 : The effectiveness of dual-channel learning to rank. We conduct ex-

periments on the Present-Easy task to showcase. λ = 0 corresponds to using the

sentence channel only and λ = 1 corresponds to using the word channel only

λ = 1 in Fig. 4.9 indicates that there are biases in the answers. We report the results

of λ = 1 in the Present-Easy task in Table 4.3 (Visual + Answer-only). We also

conduct another experiment by introducing the question type prior where question

type is known before answering the question. We answer the questions by selecting

the most common candidate (measured by the answer frequency in the training set)

of the question type. If the candidate does not belong to the question type, we will

not choose it as the answer. We call it the Question type Prior baseline. The results

show that Question type Prior baseline has high performance, however, the question

type is a strong bias as it could be a lot easier after knowing what the question is

asking about.

56

Figure 4.10 : Example results obtained from our model. Each candidate has a score

corresponding to a clip. Correct answers are marked in green while failed cases are

in red

4.4.2 Evaluation of Inferring the Past and Predicting the Future

We first show the results of our GRU model in all tasks in Table 4.5. We illustrate

some of the experiment results using our GRU model in Fig. 4.10 and show a number

of wrong answers as well.

To show the effectiveness of our encoder-decoder approach in modeling video

sequences, we compare our present model with a strong baseline - averaging frame-

level features from GoogLeNet (Mean-GoogLeNet). We compare two representations

by placing the visual input to our dual-channel ranking objective with the Mean-

GoogLeNet or our GRU features. Note that the comparison is reasonable as both

features have the same dimension of 1,024 and we use the same transformation layer

and same hyper-parameters during training. The results are shown in Table 4.4.

From the results, we make the following observations:

(1) The GRU model outperforms Mean-GoogLeNet model in all cases, and per-

57

forms relatively better than Mean-GoogLeNet in the tasks of inferring the past and

predicting the future compared to describing the present. For the MPII-MD Easy

dataset, the GRU model performs better than the Mean-GoogLeNet model by 2.2%

in describing the present, and around 5.0% improvements are achieved for the past

and future inferring. It shows the effectiveness of our GRU encoder-decoder frame-

work in modeling temporal structures in videos. As our models are trained to recon-

struct past and future sequences, they can represent the past and future in a more

reasonable way than the Mean-GoogLeNet models. Our results also demonstrate

the ability of our GRU model to capture a wider range of temporal information than

the Mean-GoogLeNet models. ConvNets trained from still frames can model tem-

poral structures if the objects in a scene do not change too much in short intervals

(one example would be in Fig. 4.1, where “cucumber” occurs in both the current

clip and the future clip). However, in modeling longer sequences, ConvNets fail to

make predictions due to lack of context.

(2) Our model can achieve better results for future prediction than for past

inference. For future prediction, we feed the input frames in the order of 4, 5, 6

and the decoder is asked to reconstruct the frames in the order 7, 8, 9. We feed the

same input for past inferring, but ask the decoder to reconstruct the target sequence

of 1, 2, 3. As the future prediction model has shorter term dependencies than the

past inferring model, it will be easier for the future prediction model to learn the

temporal dependencies, which is consistent with the observations and hypothesis in

[98].

4.4.3 Limitations and Future Work

Although our results on question answering for video temporal context are en-

couraging, our model has multiple limitations. First, our model is only aware of

context for at most 30 seconds (the longest unroll length). An alternative flexible

58

and promising approach would be to incorporate the attention mechanism [7] to

learn longer sequences of context in videos. Additionally, our model sometimes fails

to answer questions about detailed objects, due to lack of local visual features, i.e.,

region-level, bounding boxes based representation. We would like to integrate object

detection ingredients to localize objects for better visual understanding. Lastly, we

fixed the sentence and word representation learning in this work. Learning visual

and language representations simultaneously remains an open problem, as indicated

in [27].

4.5 Conclusion

Unlike video captioning tasks which generate a generic and single description

for a video clip, we introduced a temporal structure modeling approach for video

question answering. We utilized an encoder-decoder model trained in an unsuper-

vised way for visual context learning and propose a dual-channel learning-to-rank

method to answer questions. The proposed method is capable of modeling video

temporal structure in a longer time range. We evaluated our approach on three

datasets which have a large number of videos. The new approach outperforms the

compared baselines, and achieves encouraging question answering results.

59

TACoS

split 1 split 2 split 3 mean

Past-Easy 78.1 78.3 78.5 78.3

Past-Hard 65.8 64.4 63.9 64.7

Present-Easy 79.1 81.9 78.1 79.7

Present-Hard 66.9 66.2 68.2 67.1

Future-Easy 76.9 79.6 79.7 78.7

Future-Hard 66.1 65.8 69.9 67.3

MPII-MD

split 1 split 2 split 3 mean

Past-Easy 72.4 72.0 72.0 72.1

Past-Hard 47.0 47.0 46.9 47.0

Present-Easy 75.5 74.6 72.4 74.2

Present-Hard 47.4 49.0 48.3 48.2

Future-Easy 75.9 73.3 71.7 73.6

Future-Hard 47.1 48.8 48.1 48.0

MED

split 1 split 2 split 3 mean

Past-Easy - - - -

Past-Hard - - - -

Present-Easy 83.7 83.0 82.8 83.2

Present-Hard 63.0 63.9 62.3 63.1

Future-Easy - - - -

Future-Hard - - - -

Table 4.5 : Results of our GRU models on inferring past and predicting the future

for TACoS and MPII-MD datasets

60

Chapter 5

Few-Shot Object Recognition from

Machine-Labeled Web Images

5.1 Introduction

In this chapter, I present an “abstraction memory” based framework for few-

shot learning, building upon machine-labeled image annotations. The method takes

large-scale machine-annotated dataset (e.g., OpenImages) as an external memory

bank. In the external memory bank, the information is stored in the memory slots

in the form of key-value, in which image feature is regarded as the key and the label

embedding serves as the value. When queried by the few-shot examples, the model

selects visually similar data from the external memory bank and writes the useful

information obtained from related external data into another memory bank, i.e. ab-

straction memory. Long Short-Term Memory (LSTM) controllers and attention

mechanisms are utilized to guarantee the data written to the abstraction memory

correlates with the query example. The abstraction memory concentrates informa-

tion from the external memory bank to make the few-shot recognition effective. In

the experiments, we first confirm that the model can learn to conduct few-shot ob-

ject recognition on clean human-labeled data from the ImageNet dataset. Then,

we demonstrate that with the model, machine-labeled image annotations are very

effective and abundant resources for performing object recognition on novel cate-

This chapter is based on the joint work with Zhongwen Xu and Yi Yang (Xu et al. 2017 [129]),

presented primarily as it appears in the CVPR 2017 proceedings. Zhongwen Xu and Linchao Zhu

are equally contributed to this work as indicated in the original paper.

61

gories. Experimental results show that the proposed model with machine-labeled

annotations achieves great results, with only a 1% difference in accuracy between

the machine-labeled annotations and the human-labeled annotations.

Innovations in the architecture of Convolutional Neural Networks (ConvNets) [60,

99, 92, 35] have resulted in tremendous improvements in image classification in the

past few years. With the increase in the capacity of neural networks, the demand

for more labeled data in richer categories is rising. However, it is impractical and

very expensive to manually label a dataset 10 times larger than ImageNet. This

prompts us to design a new paradigm that can utilize the machine-labeled image

annotations to enable rapid learning from novel object categories. Figure 5.1 illus-

trates the proposed task. Our major question in this work is as follows: Can we

use machine-labeled web image annotations to rapidly conduct object recognition

for novel categories with only a handful of examples?

We propose a new memory component in neural networks, namely abstraction

memory, to concentrate information from the external memory bank, e.g., large-

scale object recognition datasets like ImageNet [87] and OpenImages [53], based on

few-shot image queries. Previous methods which attempt to learn from different

categories or datasets usually use a larger dataset for pre-training and then conduct

fine-tuning on a relatively small dataset. The information of the large datasets is en-

coded in the learnable weights of the neural networks. In contrast to previous works,

our model utilizes a content-based addressing mechanism with a Long Short-Term

Memory (LSTM) controller to automatically decide where to read from and where

to write into the memory. The neural network applies a soft attention mechanism [7]

to the query image to find the appropriate information to read from the external

memory and write into another memory. The abstraction memory records helpful

information for the specific few-shot object recognition, so that the classification

network can utilize readouts from the abstraction memory to recognize the objects

62

blacktip shark

bull shark

requiem shark

tiger shark

1-shot query

Large vocabulary

return

Figure 5.1 : Given a large vocabulary of labels and their corresponding images, we

conduct few-shot learning on a novel category which is not in the vocabulary and

only has a handful of positive examples. The image examples in the vocabulary

are stored in the external memory of our model, and the image example from the

novel category queries the external memory. Our model returns helpful information

according to visual similarity and LSTM controllers. The retrieved information, i.e.,

visual features and their corresponding labels, are combined to classify this query

image example.

from novel categories.

Previous methods only discover the relationship of the word embeddings [43, 69]

between the category labels, whereas we fully utilize the visual similarity between

the examples of few-shot categories and the external memory bank to make the

proposed framework more robust to noisy labels. If the external memory data is

inconsistent with its label, this sample will be rejected during the visual matching

63

process. This property makes the use of a large-scale machine annotated dataset,

e.g., OpenImages [53] feasible. The machine-labeled annotations for images could

be predicted by off-the-shelf ConvNet models (e.g., ResNets [35]), but although

these annotations are reasonably good, they are not perfect. In this scenario, the

external dataset can also consist of images obtained by querying keywords in search

engines (e.g., Google Images), and images crawled from social image sharing sites

(e.g., Flickr). In the experiment section, we show that the results of our proposed

method using machine-annotated data differ from human-labeled data by a minor

gap ≈ 1%.

When novel categories arrive, the network accesses and queries the external mem-

ory, retrieves the related information, and writes into abstraction memory. We or-

ganize the memory in the data structure key:value, which was first proposed in

Key-Value Memory Networks (KV-MemNNs) [70]. We note that we have the imple-

mentation of our model, including LSTM controllers, abstraction memory, and read-

ing mechanisms, differs significantly from KV-MemNNs. Moreover, KV-MemNNs

were developed in natural language understanding area, and their memory access

is limited to the most recent few sentences. We extend the key-value storage con-

cept into computer vision applications by novel modifications to enable scalability.

We formulate the image embedding as the key and the word embedding of the

annotated label as the value. The additional memory for abstraction extracts in-

formation from the external memory and learns task-specific representation for the

few-shot learning while maintaining efficiency.

Our contributions are as follows.

1. We propose a novel task for learning few-shot object recognition on machine-

labeled image annotations. We demonstrate that with sufficiently reliable

machine-labeled annotations, it is possible to achieve excellent performance

64

with a only a minor deviation in accuracy (about 1%) compared to learning

from human-labeled annotations;

2. We propose the incorporation of a novel memory component, namely abstrac-

tion memory, into the Memory Networks [123] structure. The abstraction

memory alleviates the time-consuming content-based addressing of the exter-

nal memory, enabling the model to be scalable and efficient;

3. We utilize both visual embeddings and label embeddings in a form of key-value

to make the system robust to imperfect labeling. This enables the model to

learn from the machine-labeled web images to obtain rich signals for visual

representation, which is very suitable for real-world vision application. We

conduct few-shot learning of unseen visual categories, making rapid and accu-

rate predictions without extensive iterations of positive examples.

We demonstrate the advantages of our method over state-of-the-art models such

as Matching Networks [115], KV-MemNNs [70], Exemplar-SVMs [66], and Nearest

Neighbors [10] on few-shot object recognition tasks.

5.2 Proposed Approach

5.2.1 Preliminaries

We briefly introduce some technical preliminaries on Memory Network variants

before discussing our proposed model.

Memory Networks (MemNNs) [123] are a new family of learning models which

augment neural networks with external memory. The major innovation of Memory

Networks is the long-term memory component M, which enables the neural net-

works to reason and access the information from long-term storage. End-to-End

Memory Networks (MemN2N) [97] implement Memory Networks in a continuous

65

(,) panda

(,)guitar
(,)dog

(,)fox

LSTM
Controller

LSTM
Controller

Abstraction Prediction

Mext Mabs

q

zkey

zval

READ

WRITE

READ

ukey
uval

CLS

Mext valkey

Mabs abstraction memory slot

external memory slot

valkey

ŷ

Figure 5.2 : An illustration of our proposed model. Best viewed in color.

form, so that end-to-end training becomes feasible. The recently proposed Key-Value

Memory Networks (KV-MemNNs) [70] extend MemNNs [123] and MemN2N [97]

with structural information storage in the memory slots. Instead of having only sin-

gle vector representation in the memory component, as in MemN2N, KV-MemNNs

make use of pairs of vectors in the memory slots, i.e., key: value. The incorporation

of the structural storage of the Key-Value form into the memory slots brings much

more flexibility, which enriches the expressive power of the neural networks. The

Key-Value property makes information retrieval from the external memory natural.

The Memory Network variants (MemNNs, MemN2N, and KV-MemNNs) have

been proposed for natural language understanding, and researchers often only vali-

date these models on question answering tasks such as bAbI tasks [122].

5.2.2 Model Overview

In this work, we propose a novel Memory Networks architecture to tackle the

few-shot visual object recognition problem. It retains the key-value structure, but

66

in contrast to KV-MemNNs, we utilize Long Short-Term Memory (LSTM) as a

“controller” when accessing and writing to memory. Moreover, we introduce a novel

memory component, namely abstraction memory, to enable task-specific feature

learning and obtain scalability. The distinct nature of our proposed abstraction

memory makes the neural network “remember” the ever present external memories,

analogous to the memory cell c in LSTMs but much more expressive. The incorpo-

ration of abstraction memory enables stochastic external memory training, i.e., we

can sample batches from the a huge external memory pool. In contrast to our work,

existing Memory Networks limit their access to external memory to a very small

number, e.g., MemN2N limit their access to external memory to the most recent 50

sentences [97].

The overview of our model is shown in Figure 5.2. The whole procedure of our

proposed model is illustrated as follows. Note that we re-formulate key: value as

(key, value) in the rest of this work.

q,Mext = EMBED(I, {Iweb,Lweb}) (5.1)

(zkey, zval) = READ(q,Mext), (5.2)

Mabs ← WRITE(q, (zkey, zval),Mabs), (5.3)

(ukey,uval) = READ(q,Mabs), (5.4)

ŷ = CLS([ukey,uval]). (5.5)

We elaborate on each of the operation in the procedure, and all of the following

operations are parameterized by neural networks:

1. Embed is a transformation from the raw inputs to their feature representation.

We denote the network to extract image feature as Φimg and the one to extract

vector representation for label as Φlabel. Given an image I from a novel cate-

gory, and a group of web images with labels, denoted as Iweb and Lweb, where

67

I is the image set and L is the label set, the input image I is sampled from

unseen categories, and the embedded feature for the query image is referred

to as query q following the notation in Memory Networks. The web images

are embedded in the external memory Mext through the same embedding

networks Φimg and Φlabel;

2. READ takes the query q as input and conducts content-based addressing on the

external memory Mext, to find related information according to a similarity

metric with q. The external memory is also called the support set in Memory

Networks. The output of READ is a pair of vectors in key-value form, i.e.,

(zkey, zval), as shown in Eqn. (5.2);

3. WRITE takes a query q and key-value pair (zkey, zval) as inputs to conduct a

write operation. The content-based addressing is based on matching input

with Mabs , and then updating the content of the corresponding abstraction

memory slots as in Eqn. (5.3);

4. READ from abstraction memory (Eqn. (5.4)) is for the classification stage. Take

the input query q to match the abstraction memory Mabs. The obtained pairs

of vectors (i.e., (ukey,uval)) are concatenated to be fed into the classification

network;

5. CLS operation takes the readout key-value (zkey, zval) and concatenates them

into one vector zcls = [zkey, zval]. Then zcls goes through a Fully-Connected

(FC) layer where: FC(x) = w�x+ b, and a Softmax layer.

Section 5.2.3 shows an LSTM variant of the CLS operation.

68

5.2.3 Model Components

Long Short-Term Memory

In our model, Long Short-Term Memory (LSTM) [37] plays an important role

in the READ, WRITE and CLS procedures and serves as the controller of the memory

addressing. LSTM is a special form of Recurrent Neural Networks (RNNs). LSTM

addresses the vanishing gradient problem [9] of RNNs by introducing an internal

memory cell to encode information from the previous steps. LSTM has resurged

due to the success of sequence to sequence modeling [98] on machine translation [7],

image captioning [116, 45, 127], video classification [136], video captioning [112, 74].

Following the notations of Zaremba et al. [137] and Xu et al. [127] and assuming

xt ∈ R
D, TD+d,4d : R

D+d → R
4d denotes an affine transformation from R

D+d to R
4d,

LSTM is implemented as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

it

ft

ot

gt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ

σ

σ

tanh

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

TD+d,4d

⎛
⎜⎝

xt

ht−1

⎞
⎟⎠ (5.6)

ct = f � ct−1 + it � gt (5.7)

ht = o� tanh(ct), (5.8)

where it,ft, ct,ot are the input, forget, memory, output gates respectively, σ and

tanh are element-wise activation functions, xt is the input to the LSTM in the t-th

step and ht is the hidden state of the LSTM in the t-th step.

For simplicity of notation, we denote one computational step of the LSTM re-

currence as a function LSTM, defined as:

ht = LSTM(xt,ht−1). (5.9)

69

Reading from the Memory

In this section, we describe the mechanism for reading information from the

memory. Given an external memory with buffer size N1, M = {(m1
key,m

1
val),

(m2
key,m

2
val), . . . , (m

N1
key,m

N1
val)}, where each memory slot mi is encoded as a key-

value structure, i.e., (mi
key,m

i
val), or equivalently mi

key : mi
val. mi

key ∈ R
d1 ,mi

val ∈

R
d2 , where d1 is the dimension of the image embedding (i.e., the key part) in the

memory slot, and d2 denotes the dimension of the label embedding (i.e., the val

part) in the memory slot. We use the tuple notation (mi
key,m

i
val) in the rest. We

apply the reading mechanisms from the set-to-set framework [114] on the memory

bank. For each time step t, we have:

qt = LSTM(0, q∗
t−1) (5.10)

ei,t = q�
t m

i
key (5.11)

ai,t = Softmax(ei,t) (5.12)

zt
key =

∑
i

ai,tm
i
key (5.13)

zt
val =

∑
i

ai,tm
i
val (5.14)

q∗
t = [qt, z

t
key]. (5.15)

(mi
key,m

i
val), i = 1, 2, . . . , N1, are all the memory slots stored inM. When the query

qt comes, it conducts dot product with all of the key parts of the memory slot mi
key

(Eqn. (5.11)), to obtain the similarity metric ei,t between query image qt and the

image in the memory slot mi
key. The Softmax operation of Eqn. (5.12) generates an

attention weight ai,t over the whole memory M. Then, Eqn. (5.13) and Eqn. (5.14)

utilize the learned attention weight ai,t to read the key part and the value part, i.e.,

label embedding, from the external memory. The readout operation blends all of

the key/value vectors mi
key/m

i
val with the attention weight ai,t to obtain the readout

vectors zt
key and zt

val. Lastly, zt
key is concatenated with query qt, producing q∗

t to

70

be fed into the next step as the input of LSTM (Eqn. (5.10)). The above reading

procedure loops over the memory for T timesteps, obtaining T readout pairs of

vectors, i.e., {(z1
key, z

1
val), (z

2
key, z

2
val), . . . , (z

T
key, z

T
val)}. The LSTM controller takes no

input but computes the recurrent state to control the reading operation. For more

details, please refer to the vector version (the memory slot is in the form of a vector

instead of a key-value) of this reading mechanism [114].

After T -step READ operations over memory M (which could be either Mext or

Mabs), we can obtain:

Z = {(z1
key, z

1
val), (z

2
key, z

2
val), . . . , (z

T
key, z

T
val)}. (5.16)

Abstraction Memory

We propose to utilize a novel memory component, namely abstraction memory, in

our implementation of Memory Networks. The abstraction memory has the following

properties:

1. It learns task-specific representation for the few-shot object recognition task;

2. It attempts to tackle the problem of efficiency of content-based addressing over

a large external memory pool.

Abstraction memory is a writable memory bank Mabs, with buffer size N2. It

satisfiesN2 < N1, whereN1 is the buffer size of the external memory bankMext. We

denote Mabs = {(m̃1
key, m̃

1
val), (m̃

2
key, m̃

2
val), . . . , (m̃

N2
key, m̃

N2
val)}, where m̃i

key ∈ R
d̃1 ,

m̃i
val ∈ R

d̃2 , d̃1 is the dimension of the key vector stored in the memory slot, and d̃2

is the dimension of the value part stored in the memory slot.

Writing. Unlike the external memory bank, the abstraction memory bank is

“writable”, which means the neural networks can learn to update the memory slots

in the storage by remembering and abstracting what is important for specific tasks.

71

The memory update is according to an embedding (i.e., through an FC layer) of the

readout (zkey, zval) from the larger external memory bank Mext.

Following the writing operation proposed in Neural Turing Machines (NTMs) [33],

we conduct the differentiable WRITE operation on the abstraction memory bank

Mabs. The LSTM controller produces erase vectors ekey ∈ R
d̃1 , eval ∈ R

d̃2 , and add

vectors akey ∈ R
d̃1 , aval ∈ R

d̃2 . Note that each element of the erase vector satisfies

0 < ei
key < 1 and 0 < ei

val < 1, which can be implemented by passing through a

Sigmoid function σ(x).

For each memory slot m̃i, the WRITE operation conducts the following updates

in the abstraction memory bank Mabs. For each timestep t, we have

m̃i
key ← m̃i

key(1− wi,tekey) + wi,takey, (5.17)

m̃i
val ← m̃i

val (1− wi,teval) + wi,taval. (5.18)

The vector wt is used for addressing mechanisms in the WRITE operation [33].

However, in contrast to NTMs, we do not utilize location-based addressing but only

content-based addressing over the abstraction memory Mabs. The vector wt can be

calculated as in Eqn. (5.11) and Eqn. (5.12), by replacing mkey of Mext into m̃key

of Mabs.

Label Prediction

When it reaches the prediction stage, our model reads (ukey,uval) from the ab-

straction memory Mabs, as shown in Eqn. (5.4). The reading mechanism has been

illustrated in Section 5.2.3. Reading from the memory is a recurrent process, with T

timesteps, and we can fetch readouts U = {[u1
key,u

1
val], [u

2
key,u

2
val], . . . , [u

T
key,u

T
val]}

to obtain enough information for few-shot classification, where [ui
key,u

i
val] denotes

the concatenation of two vectors into one. We then run an LSTM on top of the

sequence U , obtain the final state output hT from the LSTM, and then feed hT into

72

an FC layer and a Softmax layer to output the prediction ŷ.

In this way, our model fully utilizes the readout vectors with both visual infor-

mation and label embedding information to conduct classification. These readout

vectors are from abstraction memory, which learns to adapt in specific tasks, e.g.,

few-shot object recognition.

5.2.4 Training

We apply a standard cross entropy loss between the prediction ŷ and the groundtruth

y, where y is the one-hot representation of the groundtruth label.

All of the operations and components in our model are fully differentiable, which

means we can train our model with stochastic gradient descent (SGD) in an end-to-

end way.

5.2.5 Inference

In the inference (testing) stage, we do not make the external memoryMext avail-

able, since the abstraction memory Mabs has stored all of the required information

in the form of key-value in the memory slots. Thus, on the inference stage, we only

run the prediction process (Section 5.2.3) on the fetched vectors from Mabs. The

predicted label is obtained by an argmax operation over the softmax probability

output ŷ.

5.3 Experiments

We evaluate our proposed model using two different external image sources, i.e.,

ImageNet [87] dataset and OpenImages [53] dataset. In this section, we describe

the specific model configurations used in the experiments, and show the results of

the few-shot recognition model trained from clean human-labeled annotations and

machine-labeled annotations. Our model is implemented using TensorFlow [3].

73

5.3.1 Preprocessing

We use features from top convolutional layers as image embeddings. In all our

experiments, we use the last layer activations before the final classification from the

ResNet-200 [36] model pretrained on ImageNet [87]. This single model achieved

top-5 error of 5.79% on the ILSVRC 2012 validation set. Following standard image

preprocessing practice, images are first resized to 256 on the short side and the

central 224 × 224 subregion is cropped; we thus obtain an image embedding with

the feature dimension of 2,048. We apply the word embedding from the state-of-

the-art language modeling model [43] in our label to word embedding mapping. We

follow the instructions provided by the authors to extract embeddings for each word

in the vocabulary, and embeddings are averaged if there are multiple words for one

category. The embedding length is 1,024, thus we have the embedding matrix of |V |

by 1,024, where |V | is the size of the vocabulary V . The ResNet for visual feature

extraction and the label embedding matrix will not be updated during training.

5.3.2 Model Specifications

For all the LSTM models, we use one-layer LSTM with hidden unit size of 1,024.

In particular, we utilize Layer Normalization [6] for the gates and states in the

cell, which we found was crucial to train our model. Layer Normalization helps

to stabilize the learning procedure in RNNs, without which we could not train the

network successfully. Dropout is used in the input and output of LSTM and we

set the Dropout probability to 0.5. The default model parameters are described

as follows. We use N1 = 1, 000 memory slots for the external memory bank and

N2 = 500 memory slots for the abstraction memory. Both key and value vectors

stored in the abstraction memory have the dimensionality of 512. The controller

iterates T = 5 times when abstracting information from the external memory banks.

We use the default model parameters in all the experiments unless otherwise stated.

74

Our model is trained with an ADAM optimizer [48] with learning rate of 1 × 10−4

and clip the norm of the global gradients at 10 to avoid the gradient exploding

problem [98]. Weights in the neural network are initialized with Glorot uniform

initialization [31] and weight decay of 1× 10−4 is applied for regularization.

5.3.3 Datasets

russakovsky2014imagenet: ImageNet is a widely used image classification bench-

mark. There are two sets in the ImageNet dataset. One part is used in the ILSVRC

classification competitions, namely ILSVRC 2012 CLS. This part contains exactly

1,000 classes with about 1,200 images per class, with well-verified human-labeled

annotations. The other set of ImageNet is the whole set, which consists of about

21,000 categories.

OpenImages. The recently released OpenImages dataset [53] consisting of web im-

ages with machine-labeled annotations. We utilize the validation set with 167,057

images to conduct our experiment, since both machine-labeled annotations and

human-labeled annotations are provided only in the validation set. There are 7,844

distinct labels in OpenImages, whose label vocabulary and diversity is much richer

than the ILSVRC 2012 CLS dataset. Since this dataset is relatively new, we pro-

vide example images in Figure 5.3. We can see that the OpenImages dataset has a

wider vocabulary than the ImageNet ILSVRC 2012 dataset, which is beneficial for

generalization to novel categories.

5.3.4 Few-shot Learning with Human-labeled annotations

We first validate our model on the task of few-shot classification using human-

labeled clean data.

For few-shot image classification, the training set has only a small number of

examples, and the basic task can be denoted asN -way k-shot classification (following

75

“/m/0dp7g”,“weaving”,0.8“/m/0f1tz”,“calligraphy”,0.5

“/m/07s6nbt”,"text", 0.9

“/m/07b9p1","plaque”,0.5

 “/m/0jjw”,"art",0.8

 “/m/0cl71”,"loom",0.7

“/m/01sdr”,"color",1.0

“/m/063w2”,"pencil",0.9

“/m/02cqfm","close-up",0.7

Figure 5.3 : Sample images from the OpenImages dataset. Annotations on the

images are shown in the bottom. The annotations listed are “label id”, “label

name”, “confidence” tuples.

the notation of Matching Networks [115]), in which N class images need to be

classified and each class is provided with k labeled examples (k is usually less than

10).

Dataset. We now construct our dataset for few-shot learning. We select 100 classes

for learning by randomly choosing 100 categories from the entire 21,000 categories

in the ImageNet dataset, excluding the 1,000 categories in the ILSVRC 2012 CLS

vocabulary. For testing, there are 200 images per category and the training set has

k examples per category. We use settings of k = 1, k = 5, k = 10, i.e., there are 1

example, 5 examples and 10 examples in the training set.

Comparison with other methods

In this experiment, we use image-label pairs from the ILSVRC 2012 CLS dataset

as external memory. We use all 1,000 categories for learning. We conduct experi-

ments on 1-shot, 5-shot, 10-shot tasks and compare our results with several algo-

rithms. The results are shown in Table 5.1.

76

k-NN and Exemplar-SVMs. k-Nearest Neighbors (k-NN) is a simple but effective

classifier when very few training examples are provided. We utilize ResNet-200

features and consider two distance metrics, i.e., l1 and l2, for pairwise distance

calculation. And we set k = 5. Exemplar-SVMs (E-SVM) [66] train an SVM for

each positive example and ensemble them to obtain the final score. The method was

widely used in object detection in the pre-ConvNet era. We use the same ResNet-200

features and set C = 0.1. The results show that our method outperforms k-NN for

both l1 and l2 distance with a large margin and it also outperforms E-SVMs. Note

that on 5-shot and 10-shot tasks, our model achieves better performance than the

E-SVMs with larger margin. The results show that our model takes advantage of the

large number of image-label pairs in the external memory by learning relationships

between the examples and the external data.

KV-MemNNs. By utilizing the interpretation of image embedding as key and

label embedding as value as in our model, KV-MemNNs can also be trained to

conduct few-shot learning. However, due to the design of KV-MemNNs, few-shot

prediction has to rely on the external memory, while the image classification datasets

used in our work are too large to be stored in. This property means that KV-

MemNNs conduct non-deterministic classification prediction, which is not desirable.

It is unrealistic to search over all image-pairs in the external memory during each

training iteration. In the testing, it is also time-consuming to traverse the whole

external memory. As a workaround, we randomly sample 1,000 pairs from the

external memory for matching during both training and testing. We report the

mean classification results and the standard deviation in 20 runs. The result shows

that our abstraction memory extracts valuable information from the large external

memory and is much more compact than the original memory banks.

Matching Networks. We also compare our method with the recently proposed

Matching Networks [115]. Matching Networks use two embedding functions that

77

Methods 1-shot 5-shot 10-shot

k-NN (l1) 38.8 57.0 62.9

k-NN (l2) 38.6 56.4 62.1

E-SVM 45.1 62.3 68.0

KV-MemNNs 43.2 (±0.4) 66.6 (±0.2) 72.8 (±0.2)

Ours 45.8 68.0 73.5

Table 5.1 : Comparison between our model and other methods. Results are reported

on our 100-way testing set.

consider set context. However, as LSTM is used for the embedding, the size of the

support set is limited. In [115], the number of categories is usually set to 5 for

ImageNet experiments (5-way). For fair comparison, we conduct our experiment on

the 5-way 1-shot task. We randomly choose 5 categories from the previously used

100-category set. The testing set has the same number of instances per category.

The result is shown in Table 5.2, which demonstrates that our method outperforms

the Matching Network. Our model builds an explicit connection between the few

training examples and the external memory, which benefits greatly from a large

vocabulary.

We visualize the query results between the external memory and the query in

Figure 5.4.

5.3.5 Few-shot Learning with Machine-labeled Annotations

In this experiment, we replace the external memory source with the OpenImages

dataset. The machine-labeled images are much easier to obtain but are noisier. We

train our model to learn from such noisy web images.

78

Methods 5-way 1-shot classification

Matching Networks 90.1

Ours 93.9

Table 5.2 : Comparison between our model and Matching Networks on the 5-way

1-shot task.

Query 1

Return 1 Return 2

Query 2 Query 3

Return 3

Figure 5.4 : We show the query results returns from the external memory. The

scores are the softmax probabilities. Only top-3 results are shown.

We construct the external memory using the OpenImages dataset. We use four

different settings, which are: 1,000 vocabulary with human-labeled images, 1,000

vocabulary with machine-labeled images, 6,000 vocabulary with human-labeled im-

ages, and 6,000 vocabulary with machine-labeled images. Note that although the

OpenImages dataset is machine-labeled, the validation set in the original dataset is

also validated by human raters. The results are shown in Table 5.3, which demon-

strates that machine-labeled external memory can serve as a good source for few-shot

learning, which is less accurate than human-labeled external memory by only about

79

Methods 1,000 6,000

Machine-labeled 66.6 67.4

Human-labeled 67.7 68.2

Table 5.3 : Results on the OpenImages dataset. The results are reported on the

100-way 5-shot task.

N1 : N2 Accuracy (%)

500 : 500 67.6

1000 : 250 67.9

1000 : 500 68.0

1000 : 1000 67.7

2000 : 500 68.1

Table 5.4 : Comparisons among the numbers of memory slots.

1%.

As the vocabulary size grows, we observe that performance improves. This shows

that given a large vocabulary, our model is able to reason among the external mem-

ory in a more effective way. Larger vocabulary will be explored in the future.

5.3.6 Hyperparamter Study

We conduct the hyperparameter study on the memory slots numbers, i.e., N1

for the external memory and N2 for the abstraction memory. Table 5.4 shows the

comparisons among different combinations of memory slots in 5-shot recognition on

ImageNet dataset, which demonstrates that our proposed model is robust to the

change of memory slots.

80

5.4 Conclusion

We propose a novel Memory Networks architecture specifically tailored to tackle

the few-shot learning problem on object recognition. By incorporating a novel mem-

ory component into the Key-Value Memory Networks, we enable rapid learning from

seeing only a handful of positive examples by abstracting and remembering the pre-

sented external memory. We utilize LSTM controllers for reading and writing oper-

ations into the memory. We demonstrate that our proposed model achieves better

performance than other state-of-the-art methods. Furthermore, we obtain similar

performance by utilizing machine-labeled annotations compared to human-labeled

annotations.

81

Chapter 6

Compound Memory Networks for Few-shot Video

Classification

6.1 Introduction

In this chapter, I propose a new memory network structure for few-shot video

classification by making the following contributions. First, I propose a compound

memory network (CMN) structure under the key-value memory network paradigm,

in which each key memory involves multiple constituent keys. These constituent

keys work collaboratively for training, which enables the CMN to obtain an optimal

video representation in a larger space. Second, I introduce a multi-saliency em-

bedding algorithm which encodes a variable-length video sequence into a fixed-size

matrix representation by discovering multiple saliencies of interest. For example,

given a video of car auction, some people are interested in the car, while others are

interested in the auction activities. Third, I design an abstract memory on top of

the constituent keys. The abstract memory and constituent keys form a layered

structure, which makes the CMN more efficient and capable of being scaled, while

also retaining the representation capability of the multiple keys. I compare CMN

with several state-of-the-art baselines on a new few-shot video classification dataset

and show the effectiveness of the approach.

Deep learning models have been successfully applied to many tasks, e.g., image

classification [54, 92, 101, 35], image detection [84], video classification [46, 91] and

This chapter is based on joint work with Yi Yang (Zhu and Yang, 2018 [129]), presented

primarily as it appears in the ECCV 2018 proceedings.

82

Figure 6.1 : The setting of the few-shot video classification. There are two non-

overlapping datasets in this figure, i.e., meta-training and meta-testing. The meta-

training set is for meta-learning and the meta-testing set is for evaluating the gen-

eralization performance on novel categories. The network is trained in an episodic

way and each episode has a support set and a query example.

machine translation [98, 125]. We aim to enable a system to learn how to classify

video data into a new category by exploiting a meta-training set. As shown in

Figure 6.1, the meta-training set consists of a number of episodes which mimic the

few-shot learning task. In this example, there is only one positive exemplar per

class in each episode, indicated by a red rectangle. There is no overlapping category

between the training phase and testing phase. During the training phase, the system

learns an optimal mechanism that best recognizes queries in all training episodes.

When testing, the system directly adopts the learned optimal mechanism to classify

each query in testing episodes.

We focus on few-shot video representation learning. Videos have more complex

structures than images, involving temporal information and more noise, e.g., camera

83

motion, object scales, viewpoints. It is a more challenging task than few-shot image

classification. Many videos usually contain hundreds of frames containing various

scene dynamics. It could be difficult to understand the concept in a video when

only few examples are provided.

We thus propose a compound memory network (CMN) structure for few-shot

video classification. Our CMN structure is designed on top of the key-value memory

networks [123] for the following two reasons. First, new information can be readily

written to memory, which provides our model with better ‘memorization’ capability.

In other words, MANNs are able to store and memorize an example long-term, even

though the example has been seen only once. Second, information stored in the

memory module can be memorized for a longer period and can be easily accessed.

During training, information in each training episode is gradually accumulated into

CMN, which is then used as the learned few-shot video classification mechanism for

testing. It is worthwhile highlighting the following aspects of our CMN model.

First, we propose a new notion of compound memory networks with a much

stronger representation capability by extending the key memory elements from a 1D

vector to a 2D matrix. Standard key-value memory networks use a single vector as

the key in each memory slot [70]. Videos are more complex in structure than images

and have richer semantic information. Accordingly, we propose to use multiple

vectors to enhance the video representation, with each vector being a constituent

key. The constituent key are stacked to a matrix to generate the video representation

in CMN. These stacked constituent keys work collaboratively in the training phase,

providing a larger search space from which to obtain an optimal video representation.

Second, we introduce a series of hidden saliency descriptors as constituent keys

in the memory slots of CMN. In many cases, user may be interested in different

salient parts of a video. For example, given a video of a birthday party, some

84

users may be more interested in the dancing scene, while others focus on the food

and drinks. We propose a multi-saliency embedding algorithm which automatically

detects multiple saliencies of interest in any given video. We extend the self-attention

mechanism [63, 109] by integrating a newly designed learnable variable to adaptively

detect hidden salient genres within a video. The multi-saliency embedding algorithm

learns a hidden saliency descriptor for each genre, which is then stacked as a video

representation in CMN.

Third, we design a layered memory structure, which vastly improves efficiency

while retaining the strong representation capability of CMN. The first layer stores

the stacked constituent keys. We design an abstract memory on top of the first layer,

which is equipped with reading and writing operations for retrieving and updating

the constituent keys. The abstract memory compresses the stacked constituent keys

into a vector and vastly improves training and testing efficiency. At the same time,

the communication between the two layers ensures that abstract memory is able to

retain the information from all constituent keys.

6.2 Few-shot Video Classification Setup

In the few-shot video classification setting, we aim to train a network that can

generalize to new episodes over novel classes. Each episode in a mini-batch mimics

a few-shot classification task, which consists of a support set and a query set. The

support set contains training videos and labels, while the query set is for evaluating

the generalization performance. In an n-way, k-shot problem, the goal of each

episode is to classify query videos into n classes with only a small number of support

examples per class (k). Videos and labels in an episode are sampled from a meta set.

The meta set has N classes (N > n), and each class has K examples (K > k). In our

setup, there are three meta sets, i.e., meta-training set, meta-validation set and meta-

testing set with Ntraining, Nvalidation and Ntesting classes, respectively. The meta-

85

training set is for meta-learning which minimizes the loss over training episodes.

The meta-validation set is for hyper-parameter tuning. We report the accuracy

on the meta-testing set. The three meta sets do not have overlapping categories.

Following [89, 115], we construct an episode by randomly choosing n classes from N

categories in the meta set. For each class, k videos are selected from K examples.

The label indices for n classes are randomly shuffled across different episodes, which

prevents the model from memorizing the association between the input and the

label.

In a standard video classification problem, there is a single training dataset

Dsingle with fixed categories. Given an input/output pair (x, y) sampled fromDsingle,

the goal is to minimize the estimated loss over all training examples, i.e.,

min
θ

E(x,y)∼Dsingle
[L(x, y)], (6.1)

where θ represents the trainable parameters in a model.

In the few-shot video classification problem, training is conducted over a num-

ber of different episodes. An episode Ti sampled from meta-set T involves an

episode length l, inputs xt, outputs yt and a loss function L(xt, yt), where t =

{1, 2, . . . , l}. During meta-training, the network is trained to predict the label

of xt at each step given previous input pairs {(x1, y1), (x2, y2), . . . , (xt−1, yt−1)}.

The objective is to minimize the expected loss over mini-batches of episodes, i.e.,

minθ ET i∼T [
∑l

t=1 Li(xt, yt)].

6.3 Compound Memory Network

We first illustrate the multi-saliency embedding function that learns a fixed-

size matrix representation for a variable-length video sequence. We then show the

detailed structure of our Compound Memory Network, and introduce the novel

components, i.e., the constituent keys, abstract memory, together with the accessing

86

and updating operations.

6.3.1 Multi-saliency Embedding Function

Videos have variable lengths and should be encoded into a fixed-size matrix be-

fore being stored in memory. Given a query video P = {p1,p2, . . . ,pm′}, where m′

is the number of video frames and pi is a frame-level representation extracted by a

ConvNet, video P should be aggregated into a fixed-size matrix Q. The represen-

tation Q consists of m stacked hidden descriptors {q1,q2, . . . ,qm}, and the size of

each hidden descriptor is hiden-size. Note that the number of video frames m′

varies across different videos, but m is a fixed number.

We design the multi-saliency embedding function (MEF) by introducing a hidden

variable H with m components {h1,h2, . . . ,hm}. Each component hj is used to

detect one saliency in a video. For each input pi, a soft weight aij over hj will be

calculated which measures the relevance between the input and the component. The

hidden descriptor qj will be the weighted sum over the residual between P and hj.

Thus, the MEF function can be formulated by

ai = softmax(
piH

T

√
dhidden-size

), qj =
m∑
i=1

aij(pi − hj), (6.2)

where softmax is defined as, softmax(e) = exp(ei)∑
i exp(ei)

.

To calculate the relevance score between pi and hj, we simply use dot-product

but include a scaled factor 1√
dhidden-size

[109] followed by a softmax function. The orig-

inal sequence P is mapped to our multi-saliency descriptor Q, i.e., Q = MEF(P,H).

Q is then flattened and normalized to a vector, which will be discussed in Sec-

tion 6.4 (Figure 6.2). [63, 109] introduced multi-hops attention to calculate multiple

weighted sums over the inputs. In contrast, we introduce a hidden variable H to

explicitly model the relation between the input and each hidden vector, which learns

87

. . .

. . .

. . .p1 p2 pm′p3 h1 h2 hm

q1 q2 qm

. . .

�2

�2

pm′−1

Figure 6.2 : Illustration of the input embedding model. The embedding function

generates the multi-saliency descriptor Q, which is flattened and normalized to a

query vector.

multiple descriptors for different salient parts in a video.

6.3.2 Compound Memory Structure

Our Compound Memory Network is a variant of the Key-Value Memory Net-

works, which has the key memory (K) and the value memory (V). Visual information

is stored in the key part, while the label information is stored in the value part. Our

key memory is a layered structure in which the first layer stores the constituent keys

(C) and the second layer is the abstract memory (A). We also track the usage of

each slot with an age memory (U). Thus, the compound memory module (M) can

be represented by the following tuple,

M = ((Cns×nc×cs, Ans×as),Vns, Uns), (6.3)

88

Figure 6.3 : Our CMN structure. A video is first mapped to a matrix representa-

tion via the multi-saliency embedding function. This hidden representation is then

vectorized and normalized as a query vector, which performs a nearest neighbour

search over the abstract memory. The most similar memory slot is retrieved and

the label stored in the value memory will be used as the prediction. The constituent

key memory contains the matrix representations of the inputs, while the abstract

memory is constructed on top of the stacked constituent keys.

where ns is the memory size, nc is the number of constituent keys, cs is the key size

and as is the abstract memory size.

Two-layer Key Memory

In the constituent key memory, we use multiple stacked constituent keys, which

have stronger capability than a single vector, as the visual representation. In CMN,

each constituent key is represented by a multi-saliency descriptor.

Note that Q is a matrix with shape (m, hidden-size) and there are nc keys

in each slot of the constituent key memory. We let m be equal to nc, thus each

descriptor in Q can be directly saved in the constituent key memory.

To enable fast nearest neighbour query, we introduce an abstract memory on

top of the constituent key memory. The stacked keys are compressed to a vector

89

and it is cached in the abstract memory. The abstract memory can be seen as a

snapshot of the constituent key memory. The two sub-memory modules have the

same number of slots, but they represent information at different levels.

We denote the stacked matrix representation in C as C, and each constituent

key is ci, i ∈ {1, . . . , nc}. We first normalize each constituent key with �2 normal-

ization, i.e., ‖ci‖ = 1. We then flatten the normalized C′ to a vector followed by a

Fully-Connected (FC) layer, which is then �2-normalized to a compressed represen-

tation. We denote the procedure as the normalize function,

ci
′ =

ci
‖ci‖

, d′ = FC(flatten(C′)), d =
d′

‖d′‖ , (6.4)

where a FC layer is simply a linear transformation layer, i.e., FC(x) = wx + b. The

compressed representation d is stored in the abstract memory, which will only be

updated when the value in constituent key memory changes. The abstract memory

keeps a one-to-one mapping to the constituent key memory, which will accelerate

the query process.

Reading

Given a query vector z = normalize(Q), nearest neighbour search is conducted

over the abstract memory. We select the memory slot that is closest to the query z

by, NN(z, A) = argmaxi z · A[i]. k-nearest slots (ordered by decreasing similarity)

can be returned by,

(n1, . . . , nk) = NNk(z, A), (6.5)

where n1 is the memory slot that is most similar to the query. At the inference

phase, V [n1] will be our prediction for query z.

Writing

The new information should be recorded in the memory to reflect the relation of

new query z and the corresponding label y. The memory will not be updated via

90

n′

n1

y = V[n1]

n1

C[n1] ← Q+ C[n1]A[n1] ← normalize(C[n1]) V[n1]

y �= V[n1]

n′

n′

V[n1]

n1

V[n′] ← yA[n′] ← normalize(C[n′]) C[n′] ← Q

Q

z

A C Vy

Figure 6.4 : Illustration of the update rule for CMN.

backpropagation which may catastrophically modify the information, but it will be

refreshed with the following rule. Note that n1 is the index of the nearest memory

slot, and if the memory already returns the correct label, i.e., V [n1] = y, we only

update the n1 memory slot. A[n1], U [n1] and C[n1] will be updated, and leave V [n1]

unchanged.

C[n1][i] ← qi + C[n1][i], for i = 1, . . . nc,

A[n1] ← normalize(C[n1]), U [n1] ← 0.

(6.6)

The constituent key memory is updated by averaging the constituent keys C[n1]

and the multi-saliency descriptors Q. The abstract memory A[n1] is updated corre-

spondingly. We also set U [n1] to 0, which shows that slot n1 has just been updated.

91

When V [n1] �= y, the (Q, y) pair is stored in another memory slot to record the

information. We choose the oldest memory slot n′ that has not been updated for a

long time,

n′ = argmax
i

(U [i] + ri), (6.7)

where ri is a random number to introduce randomness during slot selection. The

memory will be updated by,

C[n′][i] ← qi, for i = 1, . . . , nc,

A[n′] ← normalize(C[n′]), V [n′] ← y, U [n′] ← 0.

(6.8)

In this case, V [n′] is also updated with the new label y. We illustrate the procedure

in Figure. 6.4.

6.3.3 Training

Given a query z and a corresponding ground-truth label y, we retrieve top-k key-

value pairs on memory indices (n1, . . . , nk) by Eq. 6.5. Let i-pos be the smallest

index that V [ni-pos] = y and i-neg be the smallest index that V [ni-neg] �= y. We

train the query vector z to be more similar to A[ni-pos] than A[ni-neg] with the

following ranking loss,

L(z, y,A) = max(α− z · A[ni-pos] + z · A[ni-neg], 0). (6.9)

The similarity between the query and the positive key should be larger than the

similarity between the query and the negative key by margin α. The loss will be 0

when the difference between the two similarities is beyond margin α.

The memory in each episode is cleared before operations are conducted. The

clear operation simply initializes all memory variables to 0. During mini-batch

training, information from multiple episodes are stored in the global memory. To

avoid confliction in the label space, label ids across episodes should be different. The

92

global label id can be calculated by,

global-label-id = label-id+ index× k, (6.10)

where k is the number of classes, label-id is the shuffled label id in an episode

and index is the index of the episode in the mini-batch. At the inference phase,

the weights of the network are fixed except for the memory module, which will be

updated with the support set examples.

6.4 Experiments

6.4.1 Datasets

There are no existing datasets for few-shot video classification, thus we collected

the first dataset for few-shot video classification evaluation, which we will release

for future research. We used videos from the recently released Kinetics dataset [47],

which consists of 400 categories and 306,245 videos, covering videos from a wide

range of actions and events, e.g., “dribbling basketball”, “robot dancing”, “shak-

ing hands”, “playing violin”. We randomly selected 100 classes from the Kinetics

dataset, each of which contains 100 examples. The 100 classes were split into 64, 12

and 24 non-overlapping classes for use as the meta-training set, meta-validation set

and meta-testing set, respectively.

6.4.2 Implementation Details

In an n-way, k-shot problem, we randomly sampled n classes and each class has

k examples, while an additional unlabeled example belonging to one of the n classes

is used for testing. Thus each episode has nk+1 examples. We calculated the mean

accuracy by randomly sampling 20,000 episodes in all experiments.

To obtain the frame-level feature representation, we forwarded each frame to a

ResNet-50 [36] network that was pre-trained on ImageNet. We followed the basic

93

Model 1-shot 2-shot 3-shot 4-shot 5-shot

RGB w/o mem 28.7 36.8 42.6 46.2 48.6

Flow w/o mem 24.4 27.3 29.8 32.0 33.1

LSTM(RGB) w/o mem 28.9 37.5 43.3 47.1 49.0

Nearest-finetune 48.2 55.5 59.1 61.0 62.6

Nearest-pretrain 51.1 60.4 64.8 67.1 68.9

MatchingNet [115] 53.3 64.3 69.2 71.8 74.6

MAML [26] 54.2 65.5 70.0 72.1 75.3

Plain CMN [44] 57.3 67.5 72.5 74.7 76.0

LSTM-emb 57.6 67.9 72.8 74.8 76.2

Ours 60.5 70.0 75.6 77.3 78.9

Table 6.1 : Results of 5-way few-shot video classification on the meta-testing set. The

numbers are reported in percentages. Our CMN achieves state-of-the-art results.

image preprocessing procedure, whereby the image was first rescaled by resizing the

short side to 256 and a 224×224 region was randomly cropped from the image. We

cropped the central region during the inference phase.

We optimized our model with Adam [48] and fixed the learning rate to 1.0×10−4.

The margin α was set to 0.5 in all experiments. We tuned the hyper-parameters

on the meta-validation set, and stopped the training process when the accuracy on

the meta-validation set began to decrease. The model was implemented with the

TensorFlow framework [3].

94

6.4.3 Evaluation

We compare our model with several baselines. We report 1-shot, 2-shot, 3-shot,

4-shot and 5-shot results on the 5-way classification task. In the first baseline, we

utilize all the training data to pre-train the ResNet-50 network. At the testing

stage, we fine-tune the network for each episode. The network is initialized with the

pre-trained weights up to the last layer. The weights in the last layer is randomly

initialized. We test the performance with different inputs. For “RGB w/o mem”,

we take RGB frames as inputs to train the network. For “Flow w/o mem”, stack

flows images are stacked as inputs to the network. To encode video with more

sophisticated embedding function upon the frame-level features, we use an LSTM

to aggregate temporal dynamics in a video. The LSTM takes the RGB features as

inputs. It is fine-tuned for each episode. We denote this baseline as “LSTM (RGB)

w/o mem”. Another baseline is a nearest neighbour baseline (“Nearest-finetune”).

We first finetune the ResNet-50 network to classify all classes in the meta-training

set. We feed each frame as the input image and the video-level label is used as the

label for each frame. Frames are first preprocessed with the procedure described

above. We initialize the weights of the ResNet-50 network with the ImageNet pre-

trained model. We train the network via stochastic gradient descent (SGD) with

momentum 0.9. We set the initial learning rate to 0.01. We decrease the learning rate

by 0.1 every 10 epochs. The batch size is 128. During inference, we feed the video

frames to the finetuned ResNet-50 network and extract the activations from the last

layer before final classification. We average the frame-level features and obtain a

video-level representation of 2,048 dimension. We also apply �2 normalization before

nearest neighbour search.

In the next baseline (“Nearest-pretrain”), we do not finetune the ResNet-50

network on the meta-training dataset, but directly utilize the pre-trained weights

without modification. We embed the video with the same procedure in “Nearest-

95

Figure 6.5 : Per class accuracy on the 5-way 1-shot setting. We show the accuracies

of 24 classes on the meta-testing set.

finetune”, and then apply nearest neighbour search.

We also show the result of the Matching Network [115] (“MatchingNet”) on this

dataset, which achieves state-of-the-art performance on the few-shot image classi-

fication task. We implement the Matching Network algorithms ourselves. We first

feed the frames to a ResNet-50 network without fine-tuning. We average frame-level

features to obtain a video-level feature. We then use the fully-conditional embed-

ding (FCE) function proposed in [115] to embed the training examples. The FCE

uses a bidirectional-LSTM and each training example is a function of all the other

examples. To train MAML [26], we average the frame-level features and follow the

default hyper-parameters in [26].

Another baseline is “Plain CMN” where we remove the constituent key memory

from the model and use a video-level vector as video representation. We replace our

embedding module with an LSTM function, while keeping the other settings the

same. We denote this baseline as “LSTM-emb”. We conduct this baseline to show

96

Model 1-shot 2-shot 3-shot 4-shot 5-shot

Mem-64 52.0 61.9 66.5 69.4 71.2

Mem-128 53.4 63.7 68.9 71.5 73.5

Mem-512 55.1 65.3 70.1 72.0 74.2

Mem-2048 55.0 65.0 69.7 72.4 74.1

Table 6.2 : Results of different memory sizes.

the effectiveness of our compound memory network structure.

The results are shown in Table 6.1. We can see from Table 6.1 that our CMN

improves the baselines in all shots. We observe that fine-tuning the ResNet-50 net-

work on the meta-training set does not improve the few-shot video classification

performance, but significantly harms performance. As there are no overlapping

classes between the meta-training set and the meta-testing set, it is very likely that

the model will overfit the meta-training set. Our CMN structure also outperforms

the Matching Networks by more than 4% across all shots. Furthermore, our CMN

structure outperforms the “Plain CMN”, which demonstrates the strong representa-

tion capability of the constituent key memory. About 10% improvement is obtained

between the 1-shot setting and the 2-shot setting, by only adding one example per

class. The relative improvement decreases when more examples are added, e.g., the

improvement from 3-shot to 4-shot is only 1.7%. This shows that one-shot classifi-

cation is still a difficult problem which can be further improved in the future.

The 1-shot accuracy for each class is shown in Figure 6.5. We report the mean

accuracy for class c over all episodes where the query label is c. The “hurling

(sport)” category have the highest accuracy, while “hula hooping” and “stretching

arms” achieve the worst performance with about 30% accuracy.

97

K

K

K

K

V

V

V

V

Figure 6.6 : We illustrate the inference procedure. There are 5 classes and the

memory has 16 slots. Two different update rules will be used depending on the

query results.

We illustrate the inference procedure in an episode in Figure 6.6. In this 5-

way 3-shot setting, the support set has 15 examples. Each example is sequentially

fed to the network. This episode is divided into three groups, each of which has

five examples with distinct labels. We arrange the episode in this way for better

illustration. In row 1, all inputs are inserted into the memory. In row 2, the 7th

example is inserted into a new slot in the memory, while other videos are blended

into existing slots of the same category. In row 3, the 13th example is inserted. For

the 11th example, the closest slot is the 15th slot and the two representations are

averaged.

98

Model 1-shot 2-shot 3-shot 4-shot 5-shot

Desc-1 53.7 63.5 68.3 70.9 73.3

Desc-5 55.1 65.3 70.1 72.0 74.2

Desc-10 53.2 62.9 68.2 70.0 72.3

Table 6.3 : Results of different numbers of multi-saliency descriptors.

6.4.4 Ablation Study

We perform ablation experiments to explain our selections for the final model.

The default setting is the 5-way few-shot classification. We show the performance

of different memory sizes in Table 6.2, and the results of different numbers of con-

stituent keys are shown in Table 6.3. We also report the results of other few-shot

video classification tasks with different numbers of categories. We report the results

on the meta-validation set, and choose only 10 frames during evaluation.

Memory size. The results of different memory sizes are shown in Table 6.2. When

the memory has a small number of slots, the performance is worse because some

information has to be wiped out when new data arrives. Memory size of 512 achieves

the best results. Increasing the memory size does not improve performance when

the memory is large enough to record all the information.

The number of multi-saliency descriptors. The result is shown in Table 6.3. It

shows that multi-saliency descriptors with stronger representation capability obtain

better performance than a single descriptor. The performance decreases when too

many descriptors are used, because more parameters are introduced in the network.

N-way classification. In all previous experiments, evaluations were conducted on

the 5-way classification setting. n-way classification with larger n is a similar task

to 5-way classification, but can be more difficult. As can be seen, the performance

99

Model 1-shot 2-shot 3-shot 4-shot 5-shot

5-way 55.0 65.0 69.7 72.4 74.1

6-way 51.7 61.8 66.4 69.3 71.2

7-way 49.5 59.6 64.3 67.1 68.9

8-way 46.0 56.1 61.0 64.0 65.8

Table 6.4 : Results of different way few-shot video classification.

decreases when n increases.

6.5 Conclusion

We have proposed a compound memory network for few-shot video classifica-

tion. This module stores matrix representations, which can be easily retrieved and

updated in an efficient way. Our future work is to leverage multiple memory banks

of different modality representations.

100

Chapter 7

Future Works

In this dissertation, I investigated methods for video representation learning under

different settings. I have shown the importance of leveraging sequence relationships

for video temporal modeling. Recurrent Neural Networks have been heavily used

in this dissertation, which mainly focus on learning global representation from local

features. More research studies can conduct on using 3D convolutional neural net-

works for spatio-temporal modeling on clip-level feature learning. Another future

direction for video-level aggregation is to leverage 1D convolution on top of the lo-

cal features. For better aggregation, attention mechanism can also be exploited for

global feature encoding. Apart from video classification, future studies can be tried

on action detection using our multi-rate GRU structure.

The better abstract knowledge from web data or episode sequences, the ab-

straction structure can be tailored to be a universal controller for retrieving knowl-

edge from relevant or irrelevant candidates. For few-shot video classification, more

gradient-based methods can be studied, where self-supervised signals and optical

flow correspondence are also important cues to the success of few-example temporal

modeling.

101

Bibliography

[1] “TRECVID MED 13.” http://nist.gov/itl/iad/mig/med13.cfm, 2013.

[2] “TRECVID MED 14.” http://nist.gov/itl/iad/mig/med14.cfm, 2014.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,

S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,

M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale

machine learning,” in OSDI, 2016.

[4] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and

D. Parikh, “VQA: Visual question answering,” in ICCV, 2015.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,

“Dbpedia: A nucleus for a web of open data,” in The semantic web.

Springer, 2007, pp. 722–735.

[6] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv

preprint arXiv:1607.06450, 2016.

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” in ICLR, 2015.

[8] N. Ballas, L. Yao, C. Pal, and A. Courville, “Delving deeper into

convolutional networks for learning video representations,” ICLR, 2016.

[9] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies

with gradient descent is difficult,” TNN, vol. 5, no. 2, pp. 157–166, 1994.

102

[10] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[11] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model

and the kinetics dataset,” in CVPR, 2017.

[12] X. Chang, Y. Yang, E. P. Xing, and Y.-L. Yu, “Complex event detection

using semantic saliency and nearly-isotonic svm,” in ICML, 2015.

[13] D. L. Chen and W. B. Dolan, “Collecting highly parallel data for paraphrase

evaluation,” in ACL, 2011.

[14] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L.

Zitnick, “Microsoft COCO captions: Data collection and evaluation server,”

arXiv preprint arXiv:1504.00325, 2015.

[15] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using RNN encoder-decoder for

statistical machine translation,” in EMNLP, 2015.

[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014.

[17] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like

environment for machine learning,” in Conference on Neural Information

Processing Systems Workshops (NIPS Workshops), 2011.

[18] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented

histograms of flow and appearance,” in ECCV, 2006.

[19] M. Denkowski and A. Lavie, “Meteor Universal: Language specific

translation evaluation for any target language,” in EACL, 2014.

103

[20] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,

K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for

visual recognition and description,” in Conference on Computer Vision and

Pattern Recognition (CVPR), 2015.

[21] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach,

S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent

convolutional networks for visual recognition and description,” in CVPR,

2015.

[22] D. Elliott and F. Keller, “Comparing automatic evaluation measures for

image description,” in Proceedings of the Annual Meeting of the Association

for Computational Linguistics (ACL), 2014.

[23] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles,

“ActivityNet: A large-scale video benchmark for human activity

understanding,” in CVPR, 2015.

[24] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object

categories,” TPAMI, vol. 28, no. 4, pp. 594–611, 2006.

[25] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream

network fusion for video action recognition,” in CVPR, 2016.

[26] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast

adaptation of deep networks,” in ICML, 2017.

[27] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. A. Ranzato, and

T. Mikolov, “DeViSE: A deep visual-semantic embedding model,” in

Conference on Neural Information Processing Systems (NIPS), 2013.

[28] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu, “Are you talking

to a machine? Dataset and methods for multilingual image question

104

answering,” in Conference on Neural Information Processing Systems

(NIPS), 2015.

[29] R. Girshick, “Fast R-CNN,” in ICCV, 2015.

[30] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Conference on

Computer Vision and Pattern Recognition (CVPR), 2014.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks.” in AISTATS, 2010.

[32] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view embedding space

for modeling internet images, tags, and their semantics,” International

Journal of Computer Vision (IJCV), vol. 106, no. 2, pp. 210–233, 2014.

[33] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv

preprint arXiv:1410.5401, 2014.

[34] B. Hariharan and R. Girshick, “Low-shot visual recognition by shrinking and

hallucinating features,” in ICCV, 2017.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in CVPR, 2016.

[36] ——, “Identity mappings in deep residual networks,” in ECCV, 2016.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] M. Hodosh, P. Young, and J. Hockenmaier, “Framing image description as a

ranking task: Data, models and evaluation metrics,” Journal of Artificial

Intelligence Research (JAIR), pp. 853–899, 2013.

105

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in ICML, 2015.

[40] A. Jabri, A. Joulin, and L. van der Maaten, “Revisiting visual question

answering baselines,” in European Conference on Computer Vision (ECCV).

Springer, 2016.

[41] H. Jegou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors

into a compact image representation,” in CVPR, 2010.

[42] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for

human action recognition,” TPAMI, 2013.

[43] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring

the limits of language modeling,” arXiv preprint arXiv:1602.02410, 2016.

[44] �L. Kaiser, O. Nachum, A. Roy, and S. Bengio, “Learning to remember rare

events,” in ICLR, 2017.

[45] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating

image descriptions,” in CVPR, 2015.

[46] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and

L. Fei-Fei, “Large-scale video classification with convolutional neural

networks,” in CVPR, 2014.

[47] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,

S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The

kinetics human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[48] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in

ICLR, 2015.

106

[49] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba,

and S. Fidler, “Skip-thought vectors,” in NIPS, 2015.

[50] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in

Proceedings of the Annual Meeting of the Association for Computational

Linguistics (ACL), 2003.

[51] G. Koch, “Siamese neural networks for one-shot image recognition,” Ph.D.

dissertation, University of Toronto, 2015.

[52] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork RNN,”

in ICML, 2014.

[53] I. Krasin, T. Duerig, N. Alldrin, A. Veit, S. Abu-El-Haija, S. Belongie,

D. Cai, Z. Feng, V. Ferrari, V. Gomes, A. Gupta, D. Narayanan, C. Sun,

G. Chechik, and K. Murphy, “OpenImages: A public dataset for large-scale

multi-label and multi-class image classification,” Dataset available from

https:// github.com/ openimages , 2016.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” in NIPS, 2012.

[55] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L.

Berg, “Baby talk: Understanding and generating image descriptions,” in

Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[56] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot learning

of simple visual concepts,” in CogSci, 2011.

[57] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj, “Beyond Gaussian

pyramid: Multi-skip feature stacking for action recognition,” in CVPR, 2015.

107

[58] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning realistic

human actions from movies,” in CVPR, 2008.

[59] R. Lebret, P. O. Pinheiro, and R. Collobert, “Phrase-based image

captioning,” in International Conference on Machine Learning (ICML), 2015.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[61] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in

context,” in European Conference on Computer Vision (ECCV), 2014.

[62] X. Lin and D. Parikh, “Don’t just listen, use your imagination: Leveraging

visual common sense for non-visual tasks,” in Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.

[63] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio,

“A structured self-attentive sentence embedding,” in ICLR, 2017.

[64] M. Malinowski and M. Fritz, “A multi-world approach to question answering

about real-world scenes based on uncertain input,” in Conference on Neural

Information Processing Systems (NIPS), 2014.

[65] M. Malinowski, M. Rohrbach, and M. Fritz, “Ask your neurons: A

neural-based approach to answering questions about images,” in

International Conference on Computer Vision (ICCV), 2015.

[66] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-SVMs for

object detection and beyond,” in ICCV, 2011.

108

[67] J. Mao, J. Huang, A. Toshev, O. Camburu, A. Yuille, and K. Murphy,

“Generation and comprehension of unambiguous object descriptions,”

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[68] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” in ICLR, 2013.

[69] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in

Conference on Neural Information Processing Systems (NIPS), 2013.

[70] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston,

“Key-value memory networks for directly reading documents,” in EMNLP,

2016.

[71] E. G. Miller, N. E. Matsakis, and P. A. Viola, “Learning from one example

through shared densities on transforms,” in CVPR, 2000.

[72] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,

and G. Toderici, “Beyond short snippets: Deep networks for video

classification,” in CVPR, 2015.

[73] V. Ordonez, X. Han, P. Kuznetsova, G. Kulkarni, M. Mitchell,

K. Yamaguchi, K. Stratos, A. Goyal, J. Dodge, A. Mensch et al., “Large

scale retrieval and generation of image descriptions,” International Journal

of Computer Vision (IJCV), pp. 1–14, 2015.

[74] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang, “Hierarchical recurrent

neural encoder for video representation with application to captioning,” in

CVPR, 2016.

[75] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui, “Jointly modeling embedding

and translation to bridge video and language,” in CVPR, 2016.

109

[76] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method for

automatic evaluation of machine translation,” in ACL, 2002.

[77] V. Pătrăucean, A. Handa, and R. Cipolla, “Spatio-temporal video

autoencoder with differentiable memory,” in ICLR Workshop, 2016.

[78] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the Fisher kernel for

large-scale image classification,” in ECCV, 2010.

[79] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout improves

recurrent neural networks for handwriting recognition,” in ICFHR, 2014.

[80] Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation with

pseudo-3d residual networks,” in ICCV, 2017.

[81] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,”

in ICLR, 2017.

[82] M. Regneri, M. Rohrbach, D. Wetzel, S. Thater, B. Schiele, and M. Pinkal,

“Grounding action descriptions in videos,” Transactions of the Association

for Computational Linguistics (TACL), vol. 1, pp. 25–36, 2013.

[83] M. Ren, R. Kiros, and R. S. Zemel, “Exploring models and data for image

question answering,” in Conference on Neural Information Processing

Systems (NIPS), 2015.

[84] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time

object detection with region proposal networks,” in NIPS, 2015.

[85] A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele, “A dataset for movie

description,” in Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.

110

[86] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and B. Schiele,

“Translating video content to natural language descriptions,” in

International Conference on Computer Vision (ICCV), 2013.

[87] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy et al., “ImageNet large scale visual recognition challenge,”

International Journal of Computer Vision (IJCV), pp. 1–42, 2014.

[88] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,

“ImageNet Large Scale Visual Recognition Challenge,” IJCV, vol. 115, no. 3,

pp. 211–252, 2015.

[89] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,

“Meta-learning with memory-augmented neural networks,” in ICML, 2016.

[90] D. L. Schacter, D. R. Addis, D. Hassabis, V. C. Martin, R. N. Spreng, and

K. K. Szpunar, “The future of memory: Remembering, imagining, and the

brain,” Neuron, vol. 76, no. 4, pp. 677–694, 2012.

[91] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for

action recognition in videos,” in NIPS, 2014.

[92] ——, “Very deep convolutional networks for large-scale image recognition,”

in ICLR, 2015.

[93] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-shot

learning,” in NIPS, 2017.

[94] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human

actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,

2012.

111

[95] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,”

JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

[96] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning of

video representations using LSTMs,” in ICML, 2015.

[97] S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory networks,”

in NIPS, 2015.

[98] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in NIPS, 2014.

[99] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[100] ——, “Going deeper with convolutions,” in CVPR, 2015.

[101] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” in CVPR, 2016.

[102] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler,

“MovieQA: Understanding stories in movies through question-answering,” in

CVPR, 2016.

[103] T. Tieleman and G. Hinton, “Lecture 6.5-RMSprop: Divide the gradient by

a running average of its recent magnitude.” 2012.

[104] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning

spatiotemporal features with 3D convolutional networks,” in ICCV, 2015.

[105] ——, “Learning spatiotemporal features with 3d convolutional networks,” in

ICCV, 2015.

112

[106] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A closer

look at spatiotemporal convolutions for action recognition,” in CVPR, 2018.

[107] K. Tu, M. Meng, M. W. Lee, T. E. Choe, and S.-C. Zhu, “Joint video and

text parsing for understanding events and answering queries,” MultiMedia,

IEEE, vol. 21, no. 2, pp. 42–70, 2014.

[108] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal

of Machine Learning Research (JMLR), vol. 9, no. 2579-2605, p. 85, 2008.

[109] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

[110] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “CIDEr:

Consensus-based image description evaluation,” in CVPR, 2015.

[111] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and

K. Saenko, “Sequence to sequence – video to text,” in ICCV, 2015.

[112] ——, “Sequence to sequence-video to text,” in ICCV, 2015.

[113] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and

K. Saenko, “Translating videos to natural language using deep recurrent

neural networks,” in NAACL HLT, 2015.

[114] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to

sequence for sets,” in ICLR, 2016.

[115] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks

for one shot learning,” in NIPS, 2016.

[116] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural

image caption generator,” in CVPR, 2015.

113

[117] C. Vondrick, H. Pirsiavash, and A. Torralba, “Anticipating the future by

watching unlabeled video,” Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

[118] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by dense

trajectories,” in CVPR, 2011.

[119] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in

ICCV, 2013.

[120] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled

deep-convolutional descriptors,” in CVPR, 2015.

[121] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,

“Temporal segment networks: Towards good practices for deep action

recognition,” in ECCV, 2016.

[122] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer,

A. Joulin, and T. Mikolov, “Towards AI-complete question answering: A set

of prerequisite toy tasks,” arXiv preprint arXiv:1502.05698, 2015.

[123] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in ICLR, 2015.

[124] Q. Wu, P. Wang, C. Shen, A. Dick, and A. van den Hengel, “Ask me

anything: Free-form visual question answering based on knowledge from

external sources,” in Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[125] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,

M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine

translation system: Bridging the gap between human and machine

translation,” arXiv preprint arXiv:1609.08144, 2016.

114

[126] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy, “Rethinking

spatiotemporal feature learning: Speed-accuracy trade-offs in video

classification,” in ECCV, 2018.

[127] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and

Y. Bengio, “Show, attend and tell: Neural image caption generation with

visual attention,” in ICML, 2015.

[128] Z. Xu, Y. Yang, and A. G. Hauptmann, “A discriminative CNN video

representation for event detection,” in CVPR, 2015.

[129] Z. Xu, L. Zhu, and Y. Yang, “Few-shot object recognition from

machine-labeled web images,” in CVPR, 2017.

[130] Z. Xu, L. Zhu, Y. Yang, and A. G. Hauptmann, “UTS-CMU at THUMOS

2015,” THUMOS Challenge, 2015.

[131] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville,

“Describing videos by exploiting temporal structure,” in ICCV, 2015.

[132] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions

to visual denotations: New similarity metrics for semantic inference over

event descriptions,” Transactions of the Association for Computational

Linguistics (TACL), vol. 2, pp. 67–78, 2014.

[133] H. Yu and J. M. Siskind, “Grounded language learning from video described

with sentences.” in Proceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL), 2013.

[134] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video paragraph

captioning using hierarchical recurrent neural networks,” in CVPR, 2016.

115

[135] L. Yu, E. Park, A. C. Berg, and T. L. Berg, “Visual Madlibs: Fill in the

blank image generation and question answering,” in International

Conference on Computer Vision (ICCV), 2015.

[136] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,

and G. Toderici, “Beyond short snippets: Deep networks for video

classification,” in CVPR, 2015.

[137] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network

regularization,” arXiv preprint arXiv:1409.2329, 2014.

[138] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov,

“Exploiting image-trained CNN architectures for unconstrained video

classification,” in BMVC, 2015.

[139] Y. Zhou, X. Sun, Z.-J. Zha, and W. Zeng, “Mict: Mixed 3d/2d convolutional

tube for human action recognition,” in CVPR, 2018.

[140] L. Zhu, Z. Xu, and Y. Yang, “Bidirectional multirate reconstruction for

temporal modeling in videos,” in CVPR, 2017.

[141] L. Zhu, Z. Xu, Y. Yang, and A. G. Hauptmann, “Uncovering temporal

context for video question and answering,” arXiv preprint arXiv:1511.04670,

2015.

[142] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei, “Visual7w: Grounded

question answering in images,” in Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[143] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and

S. Fidler, “Aligning books and movies: Towards story-like visual

explanations by watching movies and reading books,” in International

Conference on Computer Vision (ICCV), 2015.

	Title Page
	Certificate of Authorship/Originality
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	1 Introduction
	1.1 Video Feature Learning
	1.2 Video and Language
	1.3 Contributions

	2 Literature Review
	2.1 Video Classification
	2.1.1 Convolutional Networks for Video Classification
	2.1.2 Recurrent Networks for Video Classification

	2.2 Bridging Vision and Language
	2.2.1 Video Captioning
	2.2.2 Video Question Answering

	2.3 Few-shot Video Classification
	2.3.1 Memory-Augmented Neural Networks

	3 Bidirectional Multirate Reconstruction for Temporal Modeling in Videos
	3.1 Introduction
	3.2 Multirate Visual Recurrent Models
	3.2.1 Multirate Gated Recurrent Unit
	3.2.2 Unsupervised Video Sequence Reconstruction
	3.2.3 Complex Event Detection
	3.2.4 Video Captioning

	3.3 Results
	3.3.1 Complex Event Detection
	3.3.2 Video Captioning

	3.4 Conclusion

	4 Uncovering the Temporal Context for Video Question Answering
	4.1 Introduction
	4.2 Dataset Collection and Task Definitions
	4.2.1 Dataset and QA Pair Generation
	4.2.2 Task Definitions and Analysis

	4.3 The Proposed Approach
	4.3.1 Learning to Represent Video Sequences
	4.3.2 Dual-Channel Learning to Rank

	4.4 Results
	4.4.1 Evaluation of Describing the Present
	4.4.2 Evaluation of Inferring the Past and Predicting the Future
	4.4.3 Limitations and Future Work

	4.5 Conclusion

	5 Few-Shot Object Recognition from Machine-Labeled Web Images
	5.1 Introduction
	5.2 Proposed Approach
	5.2.1 Preliminaries
	5.2.2 Model Overview
	5.2.3 Model Components
	5.2.4 Training
	5.2.5 Inference

	5.3 Experiments
	5.3.1 Preprocessing
	5.3.2 Model Specifications
	5.3.3 Datasets
	5.3.4 Few-shot Learning with Human-labeled annotations
	5.3.5 Few-shot Learning with Machine-labeled Annotations
	5.3.6 Hyperparamter Study

	5.4 Conclusion

	6 Compound Memory Networks for Few-shot Video Classification
	6.1 Introduction
	6.2 Few-shot Video Classification Setup
	6.3 Compound Memory Network
	6.3.1 Multi-saliency Embedding Function
	6.3.2 Compound Memory Structure
	6.3.3 Training

	6.4 Experiments
	6.4.1 Datasets
	6.4.2 Implementation Details
	6.4.3 Evaluation
	6.4.4 Ablation Study

	6.5 Conclusion

	7 Future Works
	Bibliography

