Thiol-Mediated Synthesis of Transition Metal and Transition Metal Sulfide Nanowires

Author: John SCOTT
Supervisor: Prof. Milos TOOTH

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Materials and Technology for Energy Efficiency School of Mathematical and Physical Sciences
Declaration of Authorship

I, John SCOTT, declare that this thesis titled, “Thiol-Mediated Synthesis of Transition Metal and Transition Metal Sulfide Nanowires” and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- This research is supported by an Australian Government Research Training Program Scholarship.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Production Note:
Signed: Signature removed prior to publication.

Date: February 26, 2019
“Like sittin’ on pins and needles, things fall apart, it’s scientific”

David Byrne
In this work, I discuss my investigation into the bottom-up synthesis of metal and metal sulfide nanowires supported by a capping reagent. Capping reagents are chemical species that alter the crystal growth kinetics. Through their deployment, the scalable synthesis of low-symmetry nanocrystals (such as nanowires) can be achieved. Here, I show the synthesis of metal (Co, Ni) and binary metal sulfide (Co$_9$S$_8$, Ni$_3$S$_2$) nanowires by heat-up thermolysis of simple molecular precursors. Detailed analysis of the precursors and the reaction steps leading to nanowire growth is provided. The unusual reaction conditions enable new insights through in situ characterisation using thermogravimetry with evolved gas analysis and field-emission scanning electron microscopy. This provides new understanding of the precursor conversion rates and identification of active chemical species that support 1D growth. To confirm the role ligand fragments play in shaping the crystal growth kinetics, substitution of the precursors was performed. It is further shown that anisotropic growth can selectively be tuned by deployment of the capping ligand species. Based on these new understandings, the high-yield synthesis of technologically important Co$_9$S$_8$ nanowires by chemical vapour deposition is presented.
Acknowledgements

I would like to express my deepest thanks to Professor Milos Toth. I am sincerely grateful for the knowledge and support you have provided during this work. I would also like to thank Associate Professor Charlene Lobo and Professor Igor Aharonovich. Each day I am part of a wonderful environment to learn and explore.

My sincerest thanks to Mr. Geoff McCredie, Mrs. Katie McBean and Mr. Mark Berkahn for your support over the course of my project. To Associate Professor Andrew McDonagh and Alexander Angeloski who have provided exceptional guidance and help with analysis of the precursor compounds and editing of manuscripts. To my fellow students, I would like to thank all of you for your friendship. A special thank you to Toby Shanley, Chris Elbadawi, Alexander Angeloski, Toan Tran and Noah Mendelson for allowing me to collaborate with you on your research projects. James Bishop and Aiden Martin for assistance with time-dependent SEM characterisation during nanowire growth. To James Bishop, Aiden Martin, Chris Elbadawi and Mehran Kianinia for all the work you have done in setting up the lab.

A special thanks to my family and my love Vanessa for the support you have showed me in my life. Lastly and most of all I would like to thank my mum Ellie. Your support, encouragement and love made this work possible.

Publications

Contributing Publications

- Solventless synthesis of Co$_9$S$_8$, Ni$_3$S$_2$, Co and Ni nanowires, **J. A. Scott**, A. Angeloski, I. Aharonovich, C. J. Lobo, A. McDonagh and M. Toth, *Nanoscale*, 2018 (submitted)

Non-contributing Publications

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Publications xi

1 Introduction 1
 1.1 Motivation .. 1
 1.2 Nanomaterials .. 2
 1.2.1 One-Dimensional Materials 3
 1.2.2 Synthesis of Nanostructures 9
 1.2.3 Strategies for the Formation of 1D Materials ... 11
 1.2.4 VLS Growth 13
 1.3 Overview of Thesis 14

2 Application of Nanostructured Co, Ni, Co₉S₈ and Ni₃S₂ and 1D Synthesis Methods. 17
 2.1 Preamble ... 17
 2.2 Transition Metals and Transition Metal Sulfides 17
 2.3 Co and Ni Nanowires 20
 2.4 Co₉S₈ Nanowires 21

3 Relevant Background Understanding 23
 3.1 Preamble ... 23
 3.2 Crystallization ... 23
 3.3 Solution Phase Synthesis of Nanocrystals 24
 3.3.1 Background 24
 3.3.2 Nucleation and Growth 25
 3.3.3 Thermodynamics and Kinetics 30
 3.3.4 Equilibrium Nanocrystal Shape 31
 3.3.5 Capping Ligands 33
4 Synthesis of Co$_3$S$_8$, Ni$_3$S$_2$, Co and Ni Nanowires by Solventless Thermolysis of Cysteine-Based Precursors

4.1 Abstract .. 47
4.2 Introduction ... 48
4.3 Results and Discussion 49
 4.3.1 Phase Controlled Synthesis of Co$_3$S$_8$ and Co Nanowires 49
 4.3.2 Phase Determination by EDS 53
 4.3.3 Nanowire Characterization and Growth Direction 56
 4.3.4 Direct Observation of Nanowire Growth by FESEM 59
 4.3.5 Ni and Ni$_3$S$_2$ Nanowire Growth and Characterization 60
 4.3.6 Precursor Characterization 64
 4.3.7 Precursor Reactivity and Decomposition Products 66
 4.3.8 Thermolysis Study of cobalt(III) dithiocarbamate 72
4.4 Conclusion ... 78

5 Role of Functional Groups in Nanocrystal Morphology

5.1 Abstract .. 79
5.2 Introduction ... 79
5.3 Experimental ... 82
5.4 Results and Discussion 83
 5.4.1 Role of Amino Acids: Cysteine versus Serine 83
 5.4.2 Annealing Precursor Compounds in a Butanethiol Environment .. 85
 5.4.3 Co$_3$S$_8$ Nanowire Growth Using Vapor Phase Surfactants .. 90
5.5 Conclusion ... 95

6 Conclusions and Outlook 97

A Appendix A .. 101
 A.0.1 Experimental .. 101
 A.0.2 Heating Rate .. 103
 A.0.3 Diameter and Length Characterization 104
 A.0.4 Thermolysis Product of Cobalt(III) Bis-Cysteinate and Cobalt(II) Chloride. 104
A.0.5 Co$_9$S$_8$ and Co Nanowire Characterization at Upper and Lower Temperature Thresholds .. 105
A.0.6 Nanowire Evolution Using Time-Dependent FESEM Characterization ... 108
A.0.7 Ni$_3$S$_2$ and Ni Nanowire Diameter Histograms 108
A.0.8 Characterization of the Cobalt-Complex 109

B Appendix B

B.0.1 Nanoparticle Size Distribution Following Thermolysis of Different Precursor Mixtures 111
B.0.2 System Pressure During Annealing in Butanethiol Environment ... 111
B.0.3 Butanethiol Versus Ammonium Vapor 112
B.0.4 High Temperature CVD ... 113
B.0.5 Nanobelts ... 113

Bibliography ... 115
List of Figures

1.1 Illustration highlighting the size of nanomaterials on a size scale from a water molecule to a tennis ball.[174] 2
1.2 Illustration demonstrating increased surface area of nanostructured materials versus bulk.[94] 3
1.3 a) Schematic illustrating 2D, 1D and 0D materials.[92] Density of states for energy levels in metals and semiconductors for b) different size scales and c) dimensionality.[9] 4
1.4 Common nanocrystal morphology of 0D, 1D and 2D materials.[98] .. 5
1.5 Nanowire-based devices including a) racetrack memory,[164] b) coupled nanowire-nanoparticle DNA sensor,[100] and c) nanowire dye-sensitized solar cell.[117] 6
1.6 Wrap-gate nanowire field-effect transistor.[203] 7
1.7 Examples of 1D heterostructure including: a) axial, b) radial, c) branched, d) aligned and e) integrated 0D and 1D structures[12] 7
1.8 Schematic contrasting top-down and bottom-up paradigms.[179] 9
1.9 Acorn analogy of a) top-down and (b - c) bottom-up formation approaches.[218] 10
1.10 Schematic illustrating strategies for the formation of 1D materials. One-dimensional growth can occur a) as an intrinsic property of a crystal system, b) through the VLS mechanism, c) hard templating, d) capping reagent supported growth, e) oriented attachment of nanoparticles and f) by top-down techniques.[132] 12
1.11 a) Ordered arrays of GaP nanowires with different spacings.[12] b) Schematic illustrating different stages of Ge nanowire growth from a Au metal seed and the associated phase diagrams.[243] 14
2.1 Abundance of chemical elements, shown as an atomic fraction of 10^6 Si atoms, with atomic number.[79] 18
3.1 Schematic of the physical (a) and energy (b) landscape during crystallization from a starting molecule.[43] 24
3.2 a) Schematic showing the processes involved with nanocrystal nucleation and growth.[51] 25

3.3 Diagram illustration free energy of nanocrystal nucleation (adapted from [209]). ... 27

3.4 Nanocrystal size distribution under differing nucleation conditions including: a) burst nucleation, b) slow nucleation and c) seed mediated conditions.[236] 28

3.5 a) Monomer concentration and b) schematic illustration during monomer aggregation and nanocrystal. c) Free energy diagram for two-step nucleation.[223] 29

3.6 Energy landscape for the formation of products under thermo-dynamic and kinetic control.[236] 30

3.7 Illustration of net forces acting on surface atoms and atoms in the bulk in a water droplet.[236] 32

3.8 Equilibrium shape of nanocrystals due to surface free energy contributions.[236] 32

3.9 Electron microscopy images of monodomain Ag nanocrystals prepared under different reaction conditions with different capping reagents.[246] 34

3.10 TEM and HRTEM images of PbSe nanocrystals with different crystal habits including (a and b) spherical, (c and d) cubic and (e and f) cuboctahedral.[125] g) Change in equilibrium shape based on surface coverage of \{100\} and \{111\} facets and the corresponding ligand affinity.[13] 35

3.11 Schematic illustration the resulting morphology based on symmetry conserving and symmetry breaking growth from the equilibrium crystal habit of a monodomain FCC crystal nucleus.[225] 36

3.12 Seed evolution of a monodomain nanocrystal. R is the ratio of the growth rates along the \langle100\rangle and \langle111\rangle directions.[246] 37

3.13 a) Electrochemical measurements showing the different efficiencies of Cu oxide reduction between the (111) and (100) planes. b) Schematic representation of the diffusion-limited process.[107] 38

3.14 a) Resulting nanowire morphology with precursor partial pressure and temperature.[107] b) TEM and schematic images illustrating nanowire morphology in the (top) absence of sulfur and (bottom) presence of sulfur.[257] 39
3.15 Anisotropic growth from crystal nuclei with common defects: five-fold twin boundary and stacking faults. \(^{246}\) 40
3.16 Schematic illustrating high vacuum annealing chamber 41
3.17 Schematic illustrating stage configuration for in situ SEM characterization during nanowire growth 42
3.18 Schematic illustrating cold-wall CVD and precursor delivery systems ... 43
3.19 Schematic illustrating hot-wall CVD and precursor delivery systems ... 44

4.1 Schematic illustrating the precursors used in nanowire synthesis: \(\text{Co}^{II}\) acetate and \(\text{Co}^{III}\) bis-cysteinate, and the substrate preparation procedure. Following dropcasting and drying of the cobalt-complex solution; nanowire growth of the \(\text{Co}^0\) and/or \(\text{Co}_9\text{S}_8\) phase is achieve by annealing in high vacuum. Nanowire phase is determined by the \(\text{Co}^{II}:\text{Cys}\) mole ratio 49

4.2 SEM images of \(\text{Co}_9\text{S}_8\) and Co nanostructures grown from 0.9 (a and b), 4.9 (c and d) and 9.7 (e and f) (\(\text{Co}^{III}:\text{Cys}\)) mole ratio solutions. g) X-ray diffraction patterns of growth products from the three solutions ... 51

4.3 Nanowire phase table for Co and \(\text{Co}_9\text{S}_8\) based on the \(\text{Co}^{III}:\text{Cys}\) mole fraction and annealing temperature. The highlighted blue region indicates the Co nanowire growth zone, the red region indicates \(\text{Co}_9\text{S}_8\) nanowires and orange indicates nanowires of both phases ... 52

4.4 a) SEM image of a \(\text{Co}_9\text{S}_8\) nanowire on the growth substrate with a red box indicating the EDS scan region. b) EDS spectrum taken from the nanowire in a) normalized to the Co L\(\alpha\) maximum. c) SEM image of a \(\text{Co}_9\text{S}_8\) nanowire on a Cu TEM grid with holy carbon membrane. d) Normalized EDS spectrum of \(\text{Co}_9\text{S}_8\) nanowire in c) ... 54

4.5 a) SEM image of a Co nanowire on the growth substrate with a red box indicating the EDS scan region. b) EDS spectrum taken from the nanowire in a) normalized to the Co L\(\alpha\) maximum. c) SEM image of a Co nanowire on a Cu TEM grid with holy carbon membrane. d) Normalized EDS spectrum of Co nanowire in c) ... 55
4.6 a) SEM image of a Co$_9$S$_8$ nanowire on a Cu TEM grid with a holey carbon membrane with cobalt and sulfur elemental maps using EDS. b) Lattice fringe resolved TEM image of a 60 nm Co$_9$S$_8$ nanowire with FFT (inset). c) SAED pattern from nanowire in b) resolved along the [001] zone axis. d) SEM image with cobalt and sulfur elemental maps of a Co nanowire. e) TEM image of a 80 nm diameter nanowire with f) SAED resolved along the [001] zone axis. 56

4.7 a) Shadow image of a Co$_9$S$_8$ nanowire captured in diffraction mode. b) SAED pattern from nanowire in a) captured with the same camera length. c) Shadow image of a second Co$_9$S$_8$ nanowire captured in diffraction mode with the corresponding d) SAED pattern. 57

4.8 Time-dependent nanowire evolution during growth using FE-SEM characterization. a) - c) Growth sequence of an isolated nanowire (indicated by the white arrow). Images were captured over a 95 second period. d) - f) Growth sequence of a second Co$_9$S$_8$ nanowire with a disfigured tip (indicated by a red arrow). Images were captured over a 10 minute period. 59

4.9 Schematic illustrating the precursors used in nanowire synthesis: NiII acetate and NiII bis-cysteinate, and the substrate preparation procure. H$_2$O$_2$ was added to the NiII acetate and NiII bis-cysteinate precursor solution to achieve Ni$_3$S$_2$ nanowire growth. Following dropcasting and drying of the nickel-complex solution; nanowire growth of the Ni0 and/or Ni$_3$S$_2$ phase is achieve by annealing in high vacuum. 60

4.10 SEM images of Ni$_3$S$_2$ and Ni nanostructures grown from starting 1.0 (a and b), 3.9 (c and d) and 4.9 (e and f) (NiII:Cys) mole ratio solutions. g) Powder X-ray diffraction patterns of the nanostructures. 62
4.11 a) SEM image of a Ni₃S₂ nanowire on a supportive holey carbon membrane with nickel and sulfur elemental maps using EDS. b) Lattice fringe resolved TEM image of a 80 nm Ni₃S₂ nanowire with FFT (inset). c) SAED pattern of nanowire in b) resolved along the [100] zone axis. d) SEM image of an isolated Ni nanowire (100 nm in diameter) with Ni and S elemental maps shown in green and yellow (respectively). e) TEM image of a 110 nm diameter nanowire with f) SAED resolved along the [001] zone axis. 63

4.12 a) UV-vis absorbance spectra for 0.9 and 4.9 (Co^{II}:Cys) mole ratio solutions. Reference Co^{II} acetate (4.3 mM) and cysteine (8.8 mM) aqueous solutions are also included. b) UV-vis absorbance spectra for 1.0, 3.9 and 4.9 (Ni^{II}:Cys) mole ratio solutions including aqueous Ni^{II} acetate (40.2 mM). 64

4.13 Optical images of the color change of a 4.9 Co^{II}:Cys solution under constant degassing by bubbling of N₂. a) Image taken immediately after the Co^{II} acetate solution was mixed into the cysteine solution, b) 12 minutes after continuous bubbling with N₂ and c) 26 minutes after continuous bubbling. 65

4.14 FTIR spectrum of isolated Co^{III} bis-cysteinate (top) and Ni^{II} bis-cysteinate (bottom). 66

4.15 TG analysis of [Co^{III}Cys₂(H₂O)₂] and [Co^{III}Cys₂(H₂O)₂] + [Co^{II}OAc₂(H₂O)₄] precursor compounds. Normalized TG curve of both compounds at 220 °C (Inset). 67

4.16 Total ion chromatographs taken every 30 °C between 30 – 900 °C, the heating rate was 3 °C/min for [Co^{III}Cys₂(H₂O)₂]. (inset) Thermogravimetric data for the isolated [Co^{III}Cys₂(H₂O)₂]. 67

4.17 Powder X-ray diffraction pattern of Co^{III} bis-cysteinate TGA-GC-MS residue after heating to 900 °C. 68

4.18 Total ion chromatographs taken every 30 °C between 30 – 900 °C, the heating rate was 3 °C/min for [Ni^{II}Cys₂(H₂O)₂]. (inset) Thermogravimetric data for the isolated [Ni^{II}Cys₂(H₂O)₂]. 69

4.19 Powder X-ray diffraction pattern of Ni^{II} bis-cysteinate TGA-GC-MS residue after heating to 900 °C. 70

4.20 Gas chromatograms of the thermolysis products at 270 °C for Co^{III} bis-cysteinate (top) and Ni^{II} bis-cysteinate (bottom). 70
4.21 Extracted ion chromatographs for cobalt(III) bis-cysteinate and nickel(II) bis-cysteinate for m/z = 18 (a and b), m/z = 44 (c and d) and m/z = 64 (e and f). ... 71
4.22 a) TEM image of the thermolysis product from a [Co\text{III}\text{DIP}]/[Co\text{II}(OAc)\text{2}(H\text{2}O)\text{4}] precursor solution. b) High-resolution TEM image with FFT (inset). c) XRD analysis of growth substrate. 73
4.23 TGA/DTG curves of [Co\text{III}\text{Cys}_2(H\text{2}O)_2] and [Co\text{III}\text{DIP}]. The TGA/DTG was measured in a temperature range from 30 to 900 °C in a N\text{2} atmosphere, the heating rate was 3 °C/min. ... 74
4.24 (Inset) TG analysis of [Co\text{III}\text{DIP}] + [Co\text{II}(OAc)\text{2}(H\text{2}O)\text{4}] precursor compounds. Ion chromatograms sampled every 30 °C of precursor compounds. .. 75
4.25 (Inset) TG analysis of [Co\text{III}\text{Cys}_2(H\text{2}O)_2] + [Co\text{II}(OAc)\text{2}(H\text{2}O)_4] precursor compounds. Ion chromatograms sampled every 30°C of precursor compounds. ... 76
4.26 (Extracted ion chromatographs for [Co\text{III}\text{DIP}]/[Co\text{II}(OAc)\text{2}(H\text{2}O)\text{4}] and [Co\text{III}\text{Cys}_2(H\text{2}O)_2]/[Co\text{II}(OAc)\text{2}(H\text{2}O)_4] for m/z = 18 (a and b), 44 (c and d), 64 (e and f) and 101 (g and h). 77

5.1 Schematic illustrating serine and cysteine molecules. 81
5.2 Thermolysis product of precursor solutions containing cobalt(II) acetate (a and b), cobalt(II) acetate and serine (c and d), and cobalt(II) acetate and cysteine (e and f). g) XRD characterization of each product. .. 84
5.3 Schematic illustrate substrate preparation and annealing procedure for precursor solutions in a butanethiol (CH\text{3}(CH\text{2})\text{3}SH) environment. .. 85
5.4 Thermolysis product of precursor solutions containing cobalt(II) acetate (a and b), cobalt(II) acetate and serine (c and d), and cobalt(II) acetate and cysteine (e and f) annealed in a butanethiol (SH(CH\text{2})\text{2}CH\text{3}) atmosphere. g) XRD diffractogram of each product. .. 86
5.5 Histogram comparing nanowire diameter distributions from precursor solutions containing (top) serine/cobalt(II) acetate and (middle) cysteine/cobalt(II) acetate annealed in a butanethiol environment and cysteine/cobalt(II) acetate annealed in high vacuum. 88
5.6 (a) High magnification and (b) and low magnification SEM images of Co$_9$S$_8$ nanowires transferred onto a Si substrate. (c) High and (d) low magnification SEM images of the substrate following purging with toluene and sonication. Red circles in high magnification SEM images indicate the presence of a nanoparticle. .. 89

5.7 a) Schematic illustrating 2-step annealing process for nanowire synthesis. b) SEM image of thermolysis product following annealing in an NH$_3$ environment. c) Thermolysis product following annealing an a butanethiol (CH$_3$(CH)$_2$SH) environment. 89

5.8 a) High magnification and b) low magnification SEM image of Co$_9$S$_8$ nanowire growth on carbon paper by high temperature CVD. c) Histogram showing nanowire diameter distribution. d) Plot showing pressure recorded using capacitance manometers during growth. .. 91

5.9 a) High magnification and b) low magnification SEM image of Co$_9$S$_8$ nanowire growth on carbon paper by high temperature CVD. c) Histogram showing nanowire diameter distribution. d) Plot showing pressure recorded during growth. The partial pressures of the precursor species (CH$_3$(CH)$_2$SH and Co(CO)$_3$NO) are denoted by the red and blue shaded regions (respectively). .. 92

5.10 a) Low magnification TEM image of Co$_9$S$_8$ nanowires dispersed on a holy carbon TEM grid. b) TEM image of an isolated Co$_9$S$_8$ nanowire. c) HRTEM image of a Co$_9$S$_8$ nanowire. d) FFT of nanowire in c. .. 93

5.11 a) SEM image of Co$_9$S$_8$ nanowire growth on a Si substrate. b) XRD characterization of the substrate shown in a. 94

A.1 The heating rate and annealing profile for nanowire growths. 103
A.2 Histograms showing Co$_9$S$_8$ and Co nanowire a) diameter distribution and b) length distribution from a starting 0.9 and 4.9 (Coll:Cys) mole ratio solution, respectively. 104
A.3 a) SEM image of thermolysis product from a 4.9 (Coll:Cys) mole ratio solution annealed at 490 °C using the cobalt(II) salt [CollCl$_2$(H$_2$O)$_6$] 104
A.4 a) Low magnification SEM image of Co$_8$S$_8$ nanowire grown at 490°C. b) TEM image of isolated Co$_8$S$_8$ nanowire transferred from a). c) SAED pattern of Co$_8$S$_8$ nanowire in b). d) SEM image of growth on substrate annealed at 590°C. e) TEM image of isolated nanowire from the substrate shown in d). f) SAED pattern of nanowire shown in e) .. 106

A.5 a) Low magnification SEM image of Co nanowire grown at 470°C. b) TEM image of isolated Co nanorod transferred from a). c) SAED pattern of Co nanorod in b). d) SEM image of growth on substrate annealed at 590°C. e) TEM image of isolated nanowire from the substrate shown in d). f) SAED pattern of nanowire shown in e) .. 107

A.6 In situ characterization during structure growth at a 540°C. .. 108

A.7 Histograms showing Ni$_3$S$_2$ and Ni nanowire diameter distribution. 108

A.8 a) UV-vis absorbance spectrum of the isolated CoIII bis-cysteinate complex in aqueous solution. b) Filtrate collected after isolating the CoIII bis-cysteinate from solution. 109

B.1 Nanoparticle size distribution histogram following thermolysis experiments from a starting cobalt(II) acetate (blue) and serine/cobalt(II) acetate (red) precursor solutions. 111

B.2 Pressure recorded as a function of time during annealing in a butanethiol environment. 112

B.3 SEM characterization of nanostructure morphology following annealing of a serine/cobalt(II) acetate precursor solution in a a) butanethiol and b) ammonia environment. 112

B.4 SEM characterization of nanostructure morphology at the center of the carbon fiber substrate following high temperature CVD .. 113

B.5 TEM images of Co$_8$S$_8$ nanobelts .. 113
List of Tables

4.1 CoII:Cys mole ratios, pH and reagent mass of nanowire precurser solutions .. 50
4.2 Elemental composition of Co\textsubscript{9}S\textsubscript{8} nanowires as determined from quantitative EDS .. 54
4.3 Elemental composition by quantitative EDS .. 55
4.4 NiIII:Cys mole ratios, pH and reagent mass of nanowire precurser solutions ... 61
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy Dispersive (X-ray) Spectroscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-Transform InfraRed (spectroscopy)</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected Area Electron Diffraction</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>UV-vis</td>
<td>Ultraviolet Visible Spectroscopy</td>
</tr>
<tr>
<td>DTG</td>
<td>Differential Thermal Gravimetric analysis</td>
</tr>
</tbody>
</table>
Dedicated to my mum…