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University of Technology Sydney 

Abstract 
Faculty of Science 

School of Mathematical and Physical Sciences 

Doctor of Philosophy 

Thiol-Mediated Synthesis of Transition Metal and Transition Metal 

Sulfide  Nanowires 

by John SCOTT

In this work, I discuss my investigation into the bottom-up synthesis of metal 

and metal sulfide nanowires supported by a capping reagent. Capping reagents 

are chemical species that alter the crystal growth kinetics.  Through their 

deployment, the scalable synthesis of low-symmetry nanocrystals (such as 

nanowires) can be achieved.  Here, I show the synthesis of metal (Co, Ni) 

and binary metal sulfide (Co9S8, Ni3S2) nanowires by heat-up thermolysis of 

simple molecular precursors. Detailed analysis of the precursors and the re- 

action steps leading to nanowire growth is provided. The unusual reaction 

conditions enable new insights through in situ characterisation using thermo- 

gravimetry with evolved gas analysis and field-emission scanning electron 

microscopy. This provides new understanding of the precursor conversion 

rates and identification of active chemical species that support 1D growth. 

To confirm the role ligand fragments play in shaping the crystal growth ki- 

netics, substitution of the precursors was performed. It is further shown that 

anisotropic growth can selectively be tuned by deployment of the capping 

ligand species. Based on these new understandings, the high-yield synthesis 

of technologically important Co9S8 nanowires by chemical vapour deposition 

is presented. 
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