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Abstract
Much of our understanding of the microbial world has been obtained using culture-based

methodologies, a paradigm that has stood since the 19th century. And yet it has long been
known that most of the Earth’s microbial species are resistant to laboratory culture. It is
reasonable to expect; therefore, that applying equal scrutiny to all microbial life will lead to
significant discoveries. Motivated by this, metagenomics eliminates the culturing dependency
by directly sampling DNA from an environment; successfully shedding light on the once
unseen majority.

The technical limitations of present-day sequencing technologies have meant, however,
that in achieving culture-independence, traditional shotgun metagenomic sequencing
experiments make a considerable sacrifice. That sacrifice comes in the form of information
loss where, in preparing DNA for sequencing, much of the “same-cell” and
“same-chromosome” information is destroyed; information which is essential when
reconstructing the individual genomes. Purely computational solutions to overcoming this
sacrifice have proved insufficient; surpassed instead by strategies which employ changes in
the experimental design aimed at reducing the information loss.

A recent strategy is the inclusion of a new form of sequencing data, provided by the
Hi-C sequencing technique. Originally conceived to study the three-dimensional structure
of chromatin, the Hi-C sequencing technique captures in vivo proximity interactions
between DNA loci in an all-vs-all manner. When applied to direct metagenomic sampling,
the physical structure of the microbial community (chromosome, cell and community)
strongly influences the probability of observing proximity interactions between loci, and this
pronounced modulation can be exploited to recover the information lost during shotgun
sequencing.

This thesis details the effective integration of Hi-C into metagenomic sequencing studies
to accurately reconstruct individual genomes, thereby deconvoluting the metagenome. To
accomplish this, first an in silico investigation of the effectiveness of graph clustering as a
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means of metagenome deconvolution was conducted; where Hi-C proximity interactions
defined the edges and assembly contigs defined the nodes. A parametric sweep of
experimental and community composition parameters was carried out, exploring how the
degree of evolutionary divergence (from species to strains) affected the quality of
deconvolution. For each iterate in the sweep, a ground-truth was constructed and quality
assessed using a novel external validation measure supporting overlapping clusters and
variable object weights.

This work led to the design and implementation of the first metagenomic Hi-C read-pair
simulator, sim3C, capable of simulating complex community definitions and simple
three-dimensional structural elements. While in pursuit of the final objective of
metagenome deconvolution, sim3C enabled an externally validated development process.

Lastly, as the outcome of the final objective, bin3C is demonstrated; an open-source
solution to Hi-C driven metagenome deconvolution. In an unsupervised manner, bin3C
reconstructs individual genomes from metagenomic data. Using external validation of
simulated data, bin3C is shown to have high precision and good recall. When a real human
microbiome was analysed, bin3C achieved leading performance, resolving 20 more
nearly-complete MAGs (57% gain) than its closest competitor.

Dissertation directed by Associate Professor Aaron E. Darling
ithree institute, Faculty of Science

University of Technology Sydney
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CHAPTER 1

Introduc on

1.1 Background

1.1.1 The uncultured majority

Microorganisms represent a large portion of the Earth’s biodiversity and dominate many
ecosystems in sheer biomass [1]. Their varied metabolisms play key functional roles within
biogeochemical cycles across terrestrial and aquatic ecosystems [2], [3]. Within
host-associated ecosystems, a growing body of evidence links microbiota composition to
health and disease [4], [5]. Advancing human health, foreseeing and perhaps mitigating the
impact of climate change and understanding the biosphere as a whole will require a deep
understanding of the microbial world.

While the significance and diversity of microbial life is clear today, for much of the 20th-
century microbiology focused its efforts on the study of species which were readily cultured in
the laboratory. As a depth-first rather than breadth-first discovery process, it forsook a wider
understanding of the microbial world for detailed knowledge about those organisms which
accommodated the culture-based paradigm. A direct outcome of the decades of detailed work
was the development of molecular tools which have made possible the study of all microbial
life, whether culturable or not. Redirecting a portion of the accumulated inertia behind culture-
based research to new approaches was perhaps the first task for proponents of the uncultured
majority.

Although the so-called “uncultured majority” [6]–[8] had been remarked upon as much
as nearly a century ago [9], addressing it did not begin to occur properly until the latter part
of the 20th century [10]–[12]. It was at this time that the intractable morphological approach
to bacterial phylogeny was finally overcome with the advent of DNA sequencing [13], [14]
and the demonstration that ribosomal RNA (rRNA) genes were effective molecular clocks
[12]. The development of polymerase chain reaction (PCR), and subsequently amplicon
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sequencing, both simplified and the enhanced the sensitivity of microbial marker surveys.
This increasingly refined and targeted approach to diversity studies became the de facto
standard and led to the founding of numerous publicly accessible phylogenetic databases
[15]–[18]. Since their inception, these rRNA databases have grown exponentially in size,
becoming significant information warehouses. As of release 132 the Silva SSURef database,
housing only high-quality small-subunit rRNA sequences, contains more than 2 million
records [19].

Phylogenetic marker surveys, however, do not suffice for all the questions science
would like answered. Being targeted, they provide no information about an organism save
for an indication of identity and its relative abundance. To infer function, studies must
associate observed marker sequences with sufficiently similar examples from within a
database of already well-characterised species, where characterisation might include
genome sequencing or laboratory assays. This can be problematic in that, under a
culture-based regime, species which resist cultivation are less likely to be well-characterised.
Further, with as little as 39% of genes shared within a species [20], the conservation of
phenotypic characteristics (or microbial traits) is not necessarily well reflected by
phylogenetic relatedness [21]. Important aspects such as anti-microbial resistance,
pathogenicity and niche exploitation can be acquired horizontally within an accessory
genome, rather than existing within the vertically inherited core genome [22]. Thus, even
with a fully characterised phylogenetic database, marker-based prediction of the realized
phenotypic traits in an environment is unreliable. Instead, elucidating a species global and in
situ pan-genomes is crucial to understanding both realized and potential behaviour.

1.1.2 Metagenomics

Metagenomic shotgun sequencing attempts to address these issues by sampling genetic
information directly from an environment in a culture-independentmanner. From its inception
onward [23]–[25], as the technique has been brought to bear on various ecosystems, it has
successfully shed light on the uncultured majority [4], [26], [27].

Current metagenomics relies on second-generation sequencing technologies [28] but
makes a significant sacrifice in doing so. Relative to first-generation sequencing
technologies, and even early second-generation sequencers such as the Roche 454, today’s
second-generation sequencers can produce huge yields measured both in the number of
base-pairs (bp) and the number of reads. Although these massively-parallel machines have
been steadily refined, a significant technological limitation remains in library preparation.
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Input genomic DNA used as the template in library preparation must be first sheared into
small fragments, on the order of 1000 bp or shorter. In addition, sequencing experiments are
performed in an all-at-once shotgun style, where cells are lysed and the DNA extracted and
purified.

In a clonal setting, the bulk DNA resulting from cell lysis is genomically homogeneous
and simply an amplification process prior to sequencing, where all reads derive from the
same genomic source. In a metagenomic setting, however, when the cells collected from an
environment are lysed, all the DNA from all the species becomes intermixed and there are
many potential genomic sources. Cell lysis, thus, destroys all connection between a cellular
source and the genomic content it contained. DNA shearing further complicates the
problem, destroying the long-range contiguity relationship between the resulting fragments.
Together, the steps of cellular lysis and DNA shearing represent significant information loss
in a metagenomic sequencing experiment.

Although current de novo metagenome assembly algorithms are capable of
reconstructing a portion of the contiguity relationships from short-read sequencing, the
problem is a significant challenge and the reconstructions are far from complete [29]. Even
in a clonal setting, due to repetitive elements, the complete reconstruction de novo is
unlikely without the assistance of more recent long-read sequencing technologies [30]–[32].
At present, long-read sequencing is not as well suited to metagenomics due to higher error
rates and lower sequencing depth [33]. Even when long-read sequencing becomes more
applicable to metagenomics, increased contiguity does nothing to address the lost cellular
locality. Techniques which can capture or recover cellular locality would greatly benefit
metagenome reconstruction, allowing at least the grouping of the fragmentary DNA
sequences by microbial source. Beyond more thoroughly reconstructing the genomes of in
situ species, such techniques could also be used to associate mobile elements such as
plasmids, as well as study virus to host and cell to cell interactions.

1.1.3 Metagenome-assembled genomes

By current estimates, there are approximately 1 trillion (1012) bacterial species on the
Earth [34], and this number grows larger when consideration of strains within species is
included. If a full reckoning of the planet’s diversity is to be achieved in a practical amount
of time, we must continually seek out and deploy high-throughput, low-bias knowledge
gathering processes. Using direct sampling, metagenomics already eliminates much of the
bias that exists in culture-base studies. In terms of genome sequencing, parallelism and thus
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increased throughput could be obtained by the refinement of metagenomics to the point that
the extraction of individual genomes is systematic, routine and cost-efficient.

Recently, standards were proposed for reporting genomes isolated from metagenomic
data [35], termed metagenome-assembled genomes (MAGs). Announced alongside a
similar standard for single amplified genomes (SAGs), this publication by the Genome
Standards Committee marks an increasing acceptance of genomes not determined through
the traditional process of isolation and cultivation.

From early on, metagenomic sequencing has aimed to resolve or partition the contigs from
assembly or the raw reads into genome bins. The first generation of such methods employed
only intrinsic features such as GC content, kmer frequencies and depth of coverage within a
single sequencing experiment [36], [37]. Refined implementations have managed to resolve
high abundance species from real microbiomes, but struggle as abundance decreases [38] and
possess undesirable median contamination rates (chapter 4).

Between 2004 and 2018 there has been a 10000-fold drop in the cost of DNA sequencing
and proportionate increase in base-pair yield [39]. As a result, approaches which rely on
deep sequencing have become much more accessible. Multi-sample metagenomic studies
(timeseries and transects) have sought to leverage the correlated change in abundance across
sample-points to improve the precision and accuracy of metagenome binning. These second
generation methods have shown to be powerful, having resolved metagenomes down to at
least species-level resolution [40]–[45]. Evidence of the success of these methods can be
found in the public archive deposition of thousands of, so-called, metagenome-assembled
genomes from studies where they have been employed [46]–[48].

Despite their power, however, the requirement of multiple samples (in some cases more
than 200 [47]) is a cost burden that not all labs can handle. Beyond the question of cost,
multiple samples can be a logistical barrier in cases such as clinical studies, where only a
single time-point is available from a patient.

1.1.4 Valida on of metagenome-assembled genomes

As the extraction of MAGs becomes increasingly common, a means of assessing the
quality of these constructs has become a necessity. It does not suffice to report only the
standard genomic statistics used in clonal genome sequencing studies. Isolated from a
background of potentially hundreds of other species and strains, a seemingly small error can
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result in a highly contaminated genome bin. To be of value in downstream analyses, then,
MAGs must be thoroughly validated.

Current tools which infer completeness and contamination use curated databases of
taxonomically associated single copy marker genes [49]–[51]. As with any system reliant on
an incomplete repository of reference data, these methods are imperfect. For instance, the
CheckM reference database focuses on bacterial and archaeal marker genes, with the authors
warning of its limitations with eukaryotes, phage and plasmids. BUSCO aims for wider
phyletic coverage but does so using fewer marker genes, possibly resulting in less
sensitivity. In all these approaches, the presence or absence of the non-marker gene content
is not directly assessed. In an extreme pathological scenario, the possibility exists that an
extracted MAG containing all the marker genes but only a small fraction of its entire
genome would be assessed as complete. Therefore, the marker-gene approach to validation
has its limitations, which must be kept in mind.

Reporting completeness and contamination are now enshrined in the standard most
likely to be adopted by the public sequencing archives [35]. An alternative standard has
been proposed and used in the literature concerning MAG extraction [50]. This standard is
convenient due to its simplicity (Table 4.1). Here, a nearly-complete low-contamination
genome would possess ≥ 90% of its expected marker genes and ≤ 5% with conflicting
taxonomy.

1.1.5 Chromosome conforma on capture

Chromosome conformation capture (3C) was originally conceived as a PCR based
approach for observing in vivo the frequency of interaction between two targeted genomic
loci, where these loci can be on the same or different chromosome [52]. Incorporating
additional technologies, successive method iterations (4C, 5C, and Hi-C) aimed to improve
on this original idea. Extending the one-vs-one of 3C to a one-vs-many, chromosome
conformation capture on-chip (4C) compares a single loci’s interactions against a
genome-wide microarray [53]. The next advancement, chromosome conformation capture
carbon copy (5C) extends the method to many-vs-many, comparing a wider genomic region
(< 1 Mbp) against a genome-wide microarray [54]. Utilising high-throughput sequencing,
Hi-C was the first method to perform an all-vs-all genome-wide interrogation of loci
interactions [55].

The foundation of all 3C-based methods, the Hi-C protocol begins with the step of in
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vivo formalin fixation, crosslinking proteins bound to DNA while keeping cells intact. Next,
the crosslinked DNA is extracted and purified. The purified DNA-protein complexes are
then restriction digested to expose free-ends. These free-ends are then biotinylated and
blunted. The DNA-protein complexes are placed under dilute conditions or immobilised on
a solid substrate and the free-ends ligated. In this state, while held within the complexes,
free-ends which were spatially close in vivo have a much greater probability of ligation than
the random ligation of any two free-ends in solution. The crosslinking is then reversed,
proteins digested and the DNA sheared in preparation for library construction. Biotin
affinity purification is used to enrich for DNA fragments containing the proximity-ligation
junctions (PL). Lastly, the purified PL fragments are used as the template DNA to create an
Illumina paired-end sequencing library. After sequencing is completed, each end of a PL
containing read-pair corresponds to different locations within the genome. The frequency of
proximity (or interaction) between genomic regions can be established by mapping these
read-pairs back onto a known reference sequence. This reference was originally the human
genome but less well-characterised subjects of study, such as assembly scaffolds or contigs,
can suffice (Figure 1.1).

While both 4C and 5C have subsequently been extended from relying on microarrays to
using high-throughput sequencing [56], [57], Hi-C has come to dominate in many
applications. In the seminal paper, the method was used successfully to confirm the
existence of chromosome territories and determine that human chromatin is arranged as a
fractal globule [55]. In clonal studies Hi-C has provided new insights on an array of topics
such as chromosomal topologically-associated domains (TADs) [58], haplotype phasing
[59], genome reassembly [60], supervised assembly clustering [61], centromere prediction
[62], host-virus interactions [63], and epigenetics [64]. This growing list of applications
which successfully leverage Hi-C data does well to highlight its inherent value in
overcoming the many problems in genomics which stem from NGS information loss.

1.1.6 Addressing Metagenomics with Hi-C

The potential utility of Hi-C as an approach to metagenome deconvolution has been
investigated independently by two groups [65]–[67]. By combining Hi-C read-pairs with
contigs derived from a conventional shotgun metagenome assembly, it was hoped that
proximity-based associations between contigs could be constructed and that these
associations could then be used to deconvolute the metagenome. Importantly, if this
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were supplied to MCL. However, the authors also found that the resolution of closely related
strains into separate bins was not achievable.

Since these initial experiments, Hi-C deconvolution has been employed on real microbial
communities [69], [70]. On a low-complexity yeast dominated fermenter culture, Heil et
al. [69] employed an ad hoc method to identify a novel inter-specific hybrid yeast genome.
In a more complex human gut microbiome, Press et al. [70] extracted 35 nearly-complete
metagenome-assembled genomes from a single sample. This result was encouraging when it
was compared to a state of the art genome binner which does not make use of Hi-C, MaxBin
[38], where Press et al. found that MaxBin could resolve only 20 nearly-complete genomes.
In addition, the Hi-C genome bins were on average less contaminated than those of MaxBin.
One issue of the Press et al. method, however, is that it is offered only as a proprietary service,
which raises concerns in regard to the initiatives of open science [71] and the reproducibility
of future studies which opt to use this closed service.

1.1.7 Graphical Model

Whether clonal or metagenomic in nature, the incorporation of Hi-C data into genome
sequencing workflows has frequently been done in a graph-theoretic manner. Such
representations are appealing as they can intuitively reflect the DNA-DNA proximity
information captured by Hi-C and, importantly, allow researchers to take advantage of
powerful analytical approaches from within network science, such as community detection
[72].

The simplest such construct is a contig graph, where contigs become nodes and the
strength of Hi-C interactions between contigs define edge weights. The contig graph is a
weighted undirected graph, where edge weights in their raw form equate to the observed
number of PL events between each pair of contigs. While more fine-scaled representations
are easily constructed, such as the Hi-C linked variant graph used by the haplotype phaser
HapCUT2 [59], the contig graph suffices for the purpose of metagenomic deconvolution
(genome binning) to at least the level of species.

It is, in fact, particularly desirable to employ the simplest possible representation which
elicits satisfactory solutions. The tendency for real-world problem sizes to grow
substantially with technological advances in data collection means attention must be paid to
algorithmic time and space complexity. Large datasets, full of scientific promise, can
quickly make what was a viable but inefficient approach computationally intractable.
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Computational efficiency is, therefore, an important consideration in metagenome
deconvolution as a thoroughly sequenced microbial community of moderate complexity can
possess more than half a million contigs when assembled [70], [73].

A metagenome, depicted as a contig graph, allows the deconvolution problem to be
formulated as a community structure detection problem, where inferred communities
correspond to genome bins. Here, ideally only the primary physical organisation of the
community (cell envelopes and chromosomes) would be responsible for modulating the
frequency of interaction between contigs. Other factors affecting the counting process
include the relative abundance of species in the community and experimental factors such as
differences in lysis efficiency, enzyme cut-site density and DNA accessibility. If left
unaccounted for, these confounding factors can significantly influence algorithms searching
for community structure. Deconvolution algorithms must, therefore, either account for these
factors in their model or the contig graph must be normalised beforehand. Several articles
devoted to Hi-C normalisation have been published [74]–[77]. ‘Iterative correction and
eigendecomposition’ (ICE) is a popular and parameter-free approach. Initially regarded as a
novel solution, it has since been shown [78] that ICE is equivalent to a conventional and
long-established algorithm for determining doubly-balanced matrices [79].

In matrix form, a metagenomic Hi-C contig graph is highly sparse. That is to say, for
most pairs of contigs in the assembly, no PL events will be observed between them. As the
Sinkhorn-Knopp algorithm is known to have issues with sparsity [80], it is fortunate that a
more recent and faster converging algorithm has resolved the issue [81]. Besides its use in
bin3C (chapter 4) [73], the Knight-Ruiz algorithm has been incorporated into at least one
other Hi-C analysis pipeline, Juicer [82].

1.1.8 Community Detec on

With the advent of large social networks, a combination of financial backing and human
fascination has driven progress in graph clustering. The developing field of community
detection focuses on inferring the community structure of such complex networks with
minimal reliance on a priori knowledge; this an essential feature when a researcher knows
or wishes to assume little about the subject of study.

It is here, when little is known and a minimum of prejudice is desired, that frequently
used traditional graph clustering methods are ill-suited to community detection. For
example, graph partitioning algorithms, such as Kernighan-Lin and spectral bisection,
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require the number of clusters be known. Partitional clustering algorithms such as k-means,
while also requiring the number of clusters further impose a potentially unnatural
embedding space and metric on the graph. In hierarchical clustering, such as agglomerative,
though the number of clusters is not required, a similarity measure must be chosen and the it
is left to the researcher on how best to partition the resulting hierarchy [83].

Over the last two decades, a steady stream of community detection algorithms with
increasing power and computational efficiency have been devised. They can be categorised
by their major conceptual elements, such as: flow-based [68], [84], [85], modularity-based
[86]–[88], label-propagation [89], and statistical [90]. The development of these algorithms
has been supported by work on both external validation measures [91]–[93] and the
introduction of the so-called LFR benchmarks [94], [95].

1.1.8.1 Valida on Tes ng

External validation measures (indices) compare a given clustering solution against a
ground truth, summarising its validity as a value on the unit interval. Though appearing to
be a simple procedure, a range of subtleties exist on how different modes of disagreement
are assessed. Additionally, not all measures support the notion of overlap among clusters
and some require label matching between the ground truth and clustering (an O(n3)
problem).

Work to enumerate and formalise the necessary constraints of an ideal measure has
helped to understand why different popular measures disagree by identifying their
individual deficiencies [91], [92], [96]. As no ideal measure has been devised, it is best
practice to employ multiple well-behaving measures and take the time to thoroughly
understand the strength and weakness of each. Currently, normalized information distance
(NID) [97] , adjusted mutual information (AMI) [98], Extended BCubed (B3) [92] and
adjusted Rand index (ARI) [99] are some external measures with better behaviour.

The LFR benchmarks are graph generating algorithms which parametrize the major
features of community structure (overlap, node degree and community size distributions)
[94], [95]. LFR generated graphs are intended to more closely model real-world network
characteristics and importantly the algorithms provide a ground truth of community
membership. By providing this auxiliary information, they permit straightforward external
validation testing of community detection algorithms.
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1.1.8.2 Resolu on Limits

One mathematical notion of community structure is termed Modularity [100] and
maximising modularity as an objective function has become perhaps the most common basis
used in community detection [86]–[88]. Although these methods tend to perform well, it has
been shown that the modularity relation possesses a resolution limit [101]. The result is that,
for larger and more complex graphs, modularity-based methods can struggle to detect
smaller and fainter communities. Another serious issue with modularity maximisation is
that, as an objective function, there exist many near-maximal degenerate solutions with
fundamentally different small partitions [102].

An alternative community detection algorithm which does not suffer from a resolution
limit [103] is the flow-based Infomap [85], [104]. As an information-theoretic approach,
Infomap employs the notion of minimum description length (MDL) and attempts to describe
the path taken by a random walker in the least bits. To do so, Huffman coding is used to
assign codewords to nodes, where the frequency of visitation defines code length and an
index codebook creates a 2-level system, allowing modules (communities) with the graph to
use separate codings. The premise of the method is that the optimal community definition
emerges simultaneously with the most efficient description of random walks. The authors
refer to this as inference-compression duality.

In its default hard-clustering mode, Infomap possesses efficient time and space
complexity. For example, the clustering of a contig graph with 29,653 nodes and 1,596,922
edges completed in 5 minutes and required 11.6 GB of memory on an Intel Xeon E5-2697
CPU. As Infomap does not suffer from a resolution limit, it is well suited to metagenomic
contig graphs, which frequently possess a wide range of community size and weight due, in
part, to the long-tailed abundance profiles in naturally occurring ecosystems [26], [105]. For
these reasons, Infomap is bin3C’s default community detection algorithm (chapter 4).

1.2 Research Aim

The overall aim of this research project was to investigate to what extent Hi-C DNA-DNA
proximity information could be leveraged to deconvolve a metagenome accurately into the
constituent species. As successful proofs-of-concept on simple synthetic communities had
already been demonstrated, this project’s focus was to advance and refine this basic premise.
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Concerning advancement, the aim was that the final method should possess high precision
while reconstructing as much of the community as possible with no a priori information on
community structure. In terms of refinement, the final approach is to be encapsulated in
a software tool, ready for easy use by the general research community and with sufficient
computational efficiency as to permit the analysis of large and complex metagenomes.

1.3 Outline of Thesis

1.3.1 Objec ves

The project has been divided into three primary objectives with each objective
corresponding to one chapter of this thesis. In kind, the outcome of these objectives are
detailed in chapters 2, 3 and 4; each of which represent a single peer-reviewed paper, with
the exception that chapter 4 is presently under review following a favourable presubmission
enquiry.

Objective 1 ⇔ Chapter 2 ⇔ Paper 1
An exploratory analysis of the problem space.

Objective 2 ⇔ Chapter 3 ⇔ Paper 2
Develop a refined Hi-C read simulator.

Objective 3 ⇔ Chapter 4 ⇔ Paper 3
Develop a refined solution for Hi-C metagenome deconvolution.

1.3.2 Chapter Summaries

Chapter 1

As an introduction to the topic, chapter 1 begins by outlining the major shortcomings of
adhering to a culture-based paradigm in microbial genomics and ecology. This is followed by
describing how as a culture-independent approach, metagenomics addresses these limitations
while at the same time sacrificing information. Next, describing how the application of Hi-C
to metagenomics aims to recover the lost information by means of a graph-theoretic approach.
Lastly, a brief discussion on current community detection algorithms.



15

Chapter 2

Although proofs-of-concept on synthetic communities had been demonstrated [65], [66],
it was not known how, as a system, the approach would respond to changes in depth of
sequencing, community composition or the clustering algorithm. In chapter 2, I answer this
question by way of an in silico parametric sweep, exploring how the quality of the
deconvolution solutions respond to variation in evolutionary divergence and sequencing
depth. As only non-overlapping clustering algorithms had been used in the
proofs-of-concept, the value of overlapping soft-clustering algorithms is also assessed.

To quantitatively assess the sweep two subordinate objectives were identified: 1.1 and 1.2.
The products of these suborbdinate objectives were subsequently employed in pursuit of the
third primary objective in chapter 4.

Objective 1.1: Amethod to infer deconvolution ground truths from simulated metagenomes.

Objective 1.2: The definition of an external validation measure for overlapping clusters and,
significantly, variable object value.

Aswewished to quantitatively assess how the performance of the prototype deconvolution
method responded to the sweep, this required that the simulation pipeline also produce an
overlapping ground truth. Further, as longer contigs represent proportionately larger parts of
any genome binning solution, we desired an external validation measure which could treat
the notion of object value as well as overlap.

Chapter 3

In chapter 3, I detail the implementation and use of sim3C, the first open-source
metagenomic Hi-C read simulator intended for use by the wider research community. A
major refinement of the prototype implemented to achieve objective 1, sim3C includes
support for Hi-C, meta3C and DNase Hi-C library protocols, the random simulation of
topologically-associated domains and flexible community definitions.

Chapter 4

In chapter 4, I detail the implementation and performance of bin3C, the first open-source
Hi-C driven genome binning tool. Bin3C’s performance when deconvolving both real and
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simulated metagenomes into metagenome-assembled genomes (MAGs) is assessed. A
performance comparison is made between bin3C, the commercial service ProxiMeta [70],
and the non-Hi-C genome binner MaxBin [38]. The comparison demonstrates that bin3C
currently represents the state of the art in Hi-C metagenome deconvolution.

1.4 Further Work

A question remaining in metagenomics is, for a given ecosystem, how does the degree of
genomic microheterogeneity vary between species and within species in response to
changes in environmental conditions. To answer this effectively will require deconvolution
methods with a resolution at the strain level. This should be achievable with sufficient Hi-C
depth of coverage and the progressive accumulation of variant site linkage within individual
genotypes. A remaining significant contribution to this problem is the development of a
tractable statistical model or graph construct with additional strain-level detail.

Assembly contigs are the current target of Hi-C deconvolution, however as a reduction
of the much more information-rich assembly graph, using them as the basis of deconvolution
represents another source of information loss. This is particularly the case with metagenomic
assembly graphs which are complicated by the existence of closely related genotypes and
shared sequence. Hi-C reads could, instead, be mapped directly to the assembly graph using
such tools as vg [106], which may prove effective in improving resolving power and recall.

Rather than only assign assembly fragments to genome bins, reconstructing the
chromosomal order of the fragments would be desirable in certain downstream analysis
contexts. The strong power-law decay in Hi-C interaction strength with increasing loci
separation (chapter 3) should provide sufficient signal to accomplish this task. While both
Lachesis [61] and GRAAL [60] have addressed scaffolding, this was only in the context of
clonal samples. A sscaffolder capable of functioning in a metagenomic context would be a
useful contribution.

Community detection algorithms continue to improve, however, another alternative is
consensus clustering [107]. Combining the clustering solutions of multiple algorithms, these
meta-clustering algorithms attempt to reconcile the differences and agreements to produce
improved solutions. Applying some form of consensus clustering when clustering the contig
graph, or future more complex construct may prove fruitful.

Rather than clustering the same graph with multiple algorithms, multi-layer network
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clustering utilises multiple graphs over the same set of nodes [108]. For Hi-C metagenome
deconvolution, one choice of multilayer graph would be the basic contig graph combined
with the corresponding assembly graph. This would help reduce the bias against the large
number of short contigs which suffer from mappability problems.

1.5 List of Abbrevia ons

• AMI - adjusted mutual information

• ARI - adjusted Rand index

• bp - base-pair

• CPU - central processing unit

• DNA - deoxyribonucleic acid

• GB - gigabyte

• ICE - iterative correction and eigendecomposition

• MAG - metagenome-assembled genome

• Mbp - megabase-pair

• MCL - Markov clustering

• MDL - minimum description length

• NGS - next-generation sequencing

• NID - normalized information distance

• PCR - polymerase chain reaction

• PL - proximity ligation

• rRNA - ribosomal ribonucleic acid

• SAG - single amplified genome

• TAD - topologically-associated domain
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1.7 Appendices

1.7.1 Defini ons

Read

A read is a series of sequential base-pairs inferred – read, in a sense – from a fragment
of DNA. This base-pair sequence is determined using one of a number of different DNA
sequencing technologies [13], [109]–[113]. The choice of technology establishes both the
expected accuracy of the predicted base-pairs and the overall length of each read.

Read-Set

A read-set is a collection of reads produced in a single sequencing experiment, prepared
from a single genomic or metagenomic sample. The number of reads in a single read-set has
increased dramatically since the advent of DNA sequencing. Present day high-throughput
systems can produce read-sets on the order of 109 reads. In the common form of shotgun
sequencing, the reads within a read-set are a random sampling over the source genome(s).

DNA Sequencing Technologies

Many different sequencing technologies have been devised since the dawn of the DNA
sequencing era [13]. Technologies in use today can be partitioned effectively by the form
of DNA sample used as input and by the characteristics of the resulting output sequencing
information.

Sequencing technologies can be split into two classes by the intent of sample preparation
method. These two intents being preparations that produce the efficient sequencing of bulk
DNA and, alternatively, preparations whose precision is at the level of single-cells.

Bulk DNA systems begin from a sample of DNA (1 − 5 pg) which has been extracted
from a large number cells (≈ 106 bacterial cells). These cells can be obtained from a growth
culture, an environment, or tissue source. Contrastingly, and as the name implies, single-cell
systems analyze the DNA of ideally just a single cell, however in practice might be
somewhat more. The ultra-low input of single-cell systems lend these technologies to
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experimental situations where sample size is either extremely limited or desired (such as in
studies of structural rearrangement) but are significantly hampered by high variation in
depth of coverage.

In terms of output, sequencing technologies again fall into groups: short-read systems and
long-read systems. Short-read systems (50−500 bp) have longer history than that of long-read
systems (5000−2, 000, 000 bp), which, taken along with their traditionally higher throughput,
represent the gross majority of publicly accessible DNA sequencing data. Present state of the
art short-read systems can generate as many as 20 × 109 150 bp reads or 6 × 1012 bp per
run, while current leading long-read systems are capable of yields on the order of 250 × 109

bp per run with varying but longer average read lengths. The accuracy of short- and long-
read systems also differ, with short-read systems being much more accurate (short > 99%,
long < 90%).

Depth of Coverage

Depth of coverage, or read-depth, refers to the number times a given genomic position
was observed in a sequencing experiment – the number of generated reads which cover a
given position. High read-depth is desirable as it represents increased experimental evidence.
Consistent depth of coverage is an indication that the sequencing experiment did not suffer
unduly from systematic errors or biases, while also suggesting such regions can be regarded
as having been less difficult to reconstruct (and thereby more reliable) within an assembly.

Genome Assembly

A genome assembly is the algorithmic reconstruction of the genome from one or more
read-sets produced in a shotgun (random sampling) format. With the exception of small
entities such as virus genomes, reconstruction is necessary as the length of reads produced
by current DNA sequencing technologies is much shorter than that of the individual
chromosomes.

Current genome assembly algorithms fall into two primary categories: overlap-layout-
consensus (OLC) [32], [114]–[116] and de Bruijn graph (DGB) methods [117]–[121].

In OLC, reads are first compared to find all pairwise overlaps with which to generate the
overlap graph, where reads are nodes and overlaps are edges. Next the layout stage simplifies
the overlap graph and merges unambiguous overlapping reads into longer sequences. Lastly,
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the consensus step walks the simplified graph, at each point choosing the base which is best
supported by the overlapping reads. The most computationally expensive stage of OLC is
overlap detection with a time complexity of O(N2) for N reads and O(L2) for alignments
of length L. This exponential time complexity has become prohibitively expensive with the
increasing yield of short-read sequencing technologies and motivated the adoption of DGB
based assembly algorithms. It remains, however, that OLC is more robust in the presence of
lower base-pair accuracy and so have renewed value in long-read sequencing experiments.

The central step of DBG assembly is the construction of the eponymous de Bruijn graph,
which involves finding all overlapping sequences of some length k (a kmer), which less than
the length of the reads. Two forms of DGB exist: Hamiltonian, where the kmers form nodes
and the overlaps the edges; and Eulerian, where the nodes are instead the overlaps (k−1mers)
and the edges the kmers. For either form, after the graph has been constructed, the next
stage of the algorithm is to find long paths within the graph, which define contigs. For the
Hamiltonian DBG the aim is a path with visits every node only once, whereas for the Eulerian
DGB, paths may visit nodes multiple times, but can only traverse each edge once. Both forms
have been successfully applied to genome assembly. As sequencing errors badly effect DGB
methods by producing false kmers, an error-correction step is most often applied prior to
the kmer analysis stage. A crucial benefit of DBG, in the face of the ever increasing yield
of sequencing technologies, is their exceptional time and space-efficiency as the depth of
coverage increases. Making DBG algorithms further suited to high-throughput short-read
sequencing, is that the high depth of coverage can be exploited to improve algorithm heuristics
and the impact false kmers is minimised by the higher base-pair accuracy.

Con g

A contig is a contiguous DNA sequence, without the suspicion of any gaps, inferred by a
genome assembly algorithm. Gaps may be regions for which little or no sequence information
has been generated or they may be due to unresolvable features within the assembly construct.

Scaffold

A scaffold is a series of one or more contigs whose relative order and orientation has been
inferred by a genome assembly algorithm but for which gaps of indeterminate length and
sequence composition exist between contigs.
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2.2 Abstract

Background Chromosome conformation capture, coupled with high throughput DNA
sequencing in protocols like Hi-C and meta3C, has been proposed as viable means to
generate data to resolve the genomes of microorganisms living in naturally occurring
environments. Metagenomic Hi-C and meta3C datasets have begun to emerge, but the
feasibility of resolving genomes when closely related organisms (strain-level diversity) are
present in the sample has not yet been systematically characterized.

Methods We developed a computational simulation pipeline for metagenomic 3C and
Hi-C sequencing to evaluate the accuracy of genomic reconstructions at, above, and below
an operationally defined species boundary. We simulated datasets and measured accuracy
over a wide range of parameters. Five clustering algorithms were evaluated (2 hard, 3 soft)
using an adaptation of the extended B-cubed validation measure.

Results When all genomes in a sample are below 95% sequence identity, all of the tested
clustering algorithms performed well. When sequence data contains genomes above 95%
identity (our operational definition of strain-level diversity), a naive soft-clustering extension
of the Louvain method achieves the highest performance.

Discussion Previously, only hard-clustering algorithms have been applied to metagenomic
3C and Hi-C data, yet they do not perform well when strain-level diversity exists in a
metagenomic sample. While our simple extension of the Louvain method performed the
best in these scenarios, its accuracy remained well below the levels observed for samples
without strain-level diversity. Strain resolution is also highly dependent on the amount of
available 3C sequence data, suggesting that sequencing depth must be carefully considered
during experimental design. Finally, there appears to be significant scope to improve the
accuracy of strain resolution through further algorithm development.

Keywords 3C, Hi-C, chromosome conformation capture, microbial ecology, metagenomics,
synthetic microbial communities, simulation pipeline, metagenome assembly, read mapping,
clustering, soft clustering, external index
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2.3 Introduc on

The explicit and complete determination of the genomes present in an environmental
sample is a highly prized goal in microbial community analysis. When combined with their
relative abundances, this detailed knowledge affords a great deal of power to downstream
investigations in such things as: community metabolism inference, functional ecology,
genetic exchange and temporal or inter-community comparison. Unfortunately, the current
standard methodology in high-throughput DNA sequencing is incapable of generating data
of such exquisite detail, and although raw base-pair yield has increased dramatically with
technological progress, a significant methodological source of information loss remains.

The organization of DNA into chromosomes (long-range contiguity) and cells
(localization) is almost completely lost as a direct result of two requirements of
high-throughput library based sequencing; cell lysis (during the process of DNA
purification) and the subsequent shearing (during the sequencing library preparation step).
What remains in the form of direct experimental observation is short-range contiguity
information. From this beginning, the problem of reestablishing long-range contiguity and
reconstructing the original genomic sources is handed over to genome assembly algorithms.

Though the damage done in the steps of purification and fragmentation amounts to a
tractable problem in single-genome studies, in metagenomics the whole-sample
intermingling of free chromosomes of varying genotypic abundance is an enormous blow to
assembly algorithms. Conventional whole-sample metagenome sequencing [1] thus results
in a severely underdetermined inverse problem [2], [3], where the number of unknowns
exceeds the number of observations and the degree to which a given metagenome is
underdetermined depends variously on community complexity. Accurately and precisely
inferring cellular co-locality for this highly fragmented set of sequences, particularly in an
unsupervised de novo setting, and thereby achieving genotype resolution, remains an
unsolved problem.

Recent techniques which repeatedly sample an environment, extracting a signal based on
correlated changes in abundance to identify genomic content that is likely to belong to
individual strains or populations of cells, have confidently obtained species resolution [4],
[5] and begun to work toward strain (genotype) resolution [6]. Inferring abundance
per-sample from contig coverage [4], [5] or k-mer frequencies [6] respectively, the strength
of this discriminating signal is a function of community diversity, environmental variation
and sampling depth; and represents a significant computational task.
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Chromosome conformation capture (3C), a technique first introduced to probe the three-
dimensional structure of chromatin [7], has become the technological basis for a range of 3C-
derived genomic strategies, all of which seek to detect the interaction of spatially proximate
genomic loci. The fundamental goal in all cases is to in some way capture a snapshot of the
3D structure of a DNA target.

The methodology begins by fixation (cross-linking) of DNA within intact cells or nuclei,
often by formaldehyde, to capture in-place native 3D conformational detail. The nuclei or
cells are lysed and the protein-DNA complexes subjected to restriction digestion to produce
free-ends. The resulting complex-bound free-ends are then religated under very low
concentration, where conditions favour ligation between free-ends that were in close spatial
proximity at the time of fixation. Originally, after this point, signal extraction involved
known-primer locus-specific PCR amplification (3C), posing a significant experimental
challenge [8] and limiting the scale of investigation. To extend its utility, subsequent
advances (4C, 5C, Hi-C) have successively attempted to address the issue of scale by
replacing PCR-mediated signal extraction with contemporaneous high-throughput
technologies (microarrays, next-generation sequencing (NGS)) [8].

The genome-wide strategy of Hi-C [9] exploits NGS to extract interaction signal
between all potential sites. To do so, before ligation the method inserts a step in which
overhangs are filled with biotinylated nucleotides. Blunt-end ligation is then performed and
the DNA purified and sheared. The junction-containing products are then selected for
subsequent sequencing by biotin affinity pull-down.

Hi-C and the closely related meta3C (Hi-C/3C) have recently been applied to
metagenomics [10]–[12], intended as an alternative to purely computational solutions to
community deconvolution. Here conventional metagenomic sequencing is augmented with
the information derived from Hi-C/3C read-pairs to provide strong experimental evidence of
proximity between genomic loci. This map of interactions greatly increases the power of
discrimination between community member genomes, by measuring which sequences were
spatially nearby at the time of fixation.

Given sufficient sampling depth, Hi-C/3C read-pairs have the potential to link points of
genomic variation at the genotype level at much longer ranges than has previously been
possible [10], [13]. As with any real experimental process, the generation Hi-C/3C read-sets
is imperfect. Three complications to downstream signal processing are: self-self religations
which effectively produce local read-pairs, chimeric read-throughs which span the ligation
junction and contain sequence from both ends, and spurious read-pairs involving
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non-proximity ligation products. Though not insurmountable when integrating Hi-C/3C data
with that of conventional sequencing, these flawed products do at the very least represent a
loss of efficiency in generating informative proximity ligation read-pairs.

Sequencing information generated in this way can recover a portion of the information
lost in conventional whole genome shotgun (WGS) sequencing. It has been shown that the
observational probability of intra-chromosomal read-pairs (cis) follows a long-tailed
distribution decreasing exponentially with increasing genomic separation [10].
Inter-chromosomal read-pairs (trans), modeled as uniformly distributed across chromosome
pairs, typically occur an order of magnitude less frequently than cis pairs, and inter-cellular
read-pairs are an order of magnitude less frequently again [10]. This hierarchy in
observational probability has the potential to be a precious source of information with which
to deconvolute assembled sequence fragments derived from conventionally generated
metagenomes into species and perhaps strains.

Previous work which leverages 3C data in assembly analysis has yielded algorithms
focused on scaffolding [14], [15]. In the context of clonal genome sequencing, 3C directed
scaffolding can be applied directly to the entire draft assembly with reasonable success.
Beyond monochromosomal genomes, it has been necessary to first cluster (group) assembly
contigs into chromosome (plasmid) bins, after which each bin is scaffolded in turn. A move
to metagenomics generally entails increased sample complexity and less explicit knowledge
about composition. Effectively clustering metagenomic assemblies, containing a potentially
unknown degree of both species and strain diversity, represents a challenge that to date has
not been thoroughly investigated.

In this work, we describe the accuracy of various analysis algorithms applied to resolving
the genomes of strains within metagenomic sequence data. The accuracy of these algorithms
was measured over a range of simulated experimental conditions, including varying degrees
of evolutionary divergence around our operationally defined species boundary (Figure 2.3),
and varying depths of generated sequence data. Finally, we discuss implications for the design
of metagenomic 3C experiments on systems containing strain-level diversity and describe the
limitations of the present work.
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2.4 Materials and Methods

2.4.1 Representa on

A contact map is formed by mapping proximity-ligation read-pairs to the available
reference and counting occurrences between any two genomic regions [16]; where the
definition of a genomic region is application dependent. Mathematically, the contact map is
a square symmetric matrix M , whose raw elements mij represent the set of observational
frequencies between all genomic regions. The removal of experimental bias by
normalization, inference of spatial proximity and finally prediction of chromosome
conformation represents the majority of published work in the field to date [9], [17]–[19].

Noting that the contact map is equivalent to the weighted adjacency matrix A of an
undirected graph G [20], an alternative graphical representation is obtained. Here, nodes ni

represent genomic regions and weighted edges e(ni, nj, wij) represent the observed
frequency wij of 3C read-pairs linking regions ni and nj . Expressing the sequencing data as
such, a host of graph-theoretic analysis methods can be brought to bear on domain-specific
problems.

Possibly the simplest variation, the eponymous 3C-contig graph, defines the genomic
regions (and thereby the nodes) to be the set contigs produced by WGS assembly. Fine
details such as small indels or single nucleotide variants are not considered with this
construction. Even so, the application of the 3C-contig graph to metagenomics [10]–[12]
and multichromosomal genome scaffolding [14] has previously been studied.

The chosen granularity of any construct is a crucial factor in obtaining both sufficiently
detailed answers and tractable problems. Though finer scale representations are possible when
integrating Hi-C/3C data into conventional metagenomics, the 3C-contig graph is an effective
means of controlling problem scale and can be regarded as a first step toward deeper Hi-C/3C
metagenomic analyses.

2.4.2 Clustering

Placing entities into groups by some measure of relatedness is often used to reduce a set of
objects O into a set of clusters K and ideally where the number of clusters is much less than
the number of objects (i.e. |K| ≪ |O|). When object membership within the set of clustersK
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is mutually exclusive and discrete, so that an object oi may only belong to a single cluster κk,
it is termed hard-clustering (i.e. ∀κk, κl ∈ K | k ̸= l → κk ∩ κl = ∅). When this condition
on membership is relaxed and objects are allowed to belong to multiple clusters, it is termed
soft-clustering. The outcome of this potential for multiple membership is cluster overlap, or
more formally, that the intersection between clusters κk and κl is no longer strictly empty (i.e.
|κk ∩ κl| ≥ 0).

Possibly motivated by a desire to obtain the plainest answer with maximal contrast, and
for the sake of relative mathematical simplicity, hard-clustering is the more widely applied
approach. Despite this, many problem domains exist in which cluster overlap reflects real
phenomena. For instance, in metagenomes containing closely related species or strains, there
is a tendency for the highly conserved core genome to co-assemble in single contigs while
more distinct accessory regions do not. Co-assembly implies that uniquely placing (a 1-to-1
mapping of) contigs into source-genome bins (clusters) is not possible. Rather, an overlapping
model is required, allowing co-assembled contigs to be placed multiple times in relation to
their degree of source-heterogeneity.

From the aspect of prior knowledge, classification and clustering algorithms fall into
three categories [21]. Supervised classification, where for a known set of classes, a set of
class-labelled objects are used to determine a membership function; semi-supervised
classification/clustering, which leverages additional unlabelled data as a means of
improving the supervised membership function; and unsupervised clustering, where these
prerequisites are not required. Unsupervised algorithms, in removing this a priori condition,
are preferable if not necessary in situations where prior knowledge is unavailable (perhaps
due to cost or accessibility) or the uncertainty in this information is high.

2.4.3 Appropriate Valida on Measures

Simply put, clustering algorithms attempt to group together objects when they are
similar (the same cluster) and separate those objects which differ (different clusters).
Although algorithmic complexity can ultimately dictate applicability to a given problem
domain, the quality of a clustering solution remains a primary concern in assessing an
algorithm’s value. To fully assess the quality of a given clustering solution, multiple aspects
must be considered. Measures that fail to account for one aspect or another may incorrectly
rank solutions. Five important yet often incompletely addressed aspects of clustering quality
have been proposed [22]: homogeneity, completeness, size, number and lastly the notion of
a ragbag. Here, a ragbag is when preference is given to placing uncertain assignments in a
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single catch-all cluster, rather than spreading them across otherwise potentially
homogeneous clusters or leaving them as isolated nodes.

External measures, which compare a given solution to a gold-standard are a powerful
means of assessing quality and they themselves vary in effectiveness. F1-score, the harmonic
mean (Equation 2.1) of the traditional measures precision and recall, is frequently employed
in the assessment of bioinformatics algorithms. For clustering algorithms, it is perhaps not
well known that F1-score fails to properly consider the aspect of completeness [22] and further
is sensitive to a preprocessing step where clusters and class labels must first be matched [23].
The entropy based V-measure [23] was conceived to address these shortcomings but does not
consider the ragbag notion nor the possibility of overlapping clusters and classes. The external
validation measureB3 [24] addresses all five aspects and building from this, extendedB3 [22]
supports the notion of overlapping clusters and classes. Analogous to F1-score andV-measure,
extended B3 is also the harmonic mean of a form of precision and recall.

Still, all of these measures treat the objects involved in clustering as being equal in value
when assessing correct and incorrect placements. For some problem domains, it could be
argued that correctly classifying object A may be more important than correctly classifying
object B. Conversely, that incorrectly classifying object A may represent a larger error than
incorrectly classifying object B. To this end, we introduce per-object weighting to extended
B3 (Equation 2.1) and propose using contig length (bp) as the measure of inherent value when
clustering metagenomic contigs.

2.4.4 Clustering Algorithm Selec on

Supervised algorithms require a priori descriptive detail about the subject of study prior
to analysis, while unsupervised algorithms make no such demand. This a priori knowledge
can be of crucial importance scientifically, such as informing a clustering algorithm how
many clusters exist within a dataset under study. For the genome of a single organism,
where cluster count corresponds to chromosome count, independent estimation may be
tenable. Extracting such descriptive information from an uncultured microbial community
in the face of ecological, environmental and historical variation is an onerous requirement.
For this reason, we only consider unsupervised algorithms and focus attention on both hard
and soft clustering approaches.

Four graph clustering algorithms were considered: MCL, SR-MCL, the Louvain method
and OClustR [25]–[28]. While MCL and Louvain have previously been applied to 3C-contig
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clustering [10], [12], to our knowledge SR-MCL and OClustR have not. We did not consider
the clustering algorithm employed by [11] as it requires the number of clusters to be specified
a priori.

Runtime parameters particular to each algorithm were controlled in the sweep as
necessary (Table 2.2). The widely used MCL (markov clustering) algorithm [25] uses
stochastic flow analysis to produce hard-clustering solutions, where cluster granularity is
controlled via a single parameter (“inflation”). For this parameter, a range of 1.1 to 2.0 was
chosen based on prior work [10] and the interval sampled uniformly in five steps (inflation:
1.1 - 2.0). A soft-clustering extension of MCL, SR-MCL (soft, regularized Markov
clustering) [26] attempts to sample multiple clustering solutions by iterative re-execution of
MCL, penalizing node stochastic flows between iterations depending on the previous run
state. Beyond MCL’s inflation parameter, SR-MCL introduces four additional runtime
parameters (balance, quality, redundancy and penalty ratio). It was determined that default
settings were apparently optimal for these additional parameters (results not shown), and
therefore only inflation was varied over the same range as MCL.

The Louvain modularity Q [29] quantifies the degree to which a graph is composed of
pockets of more densely interconnected subgraphs. Density is uniform across a graph when
Q = 0 and there is essentially no community structure, while as Q → 1 it indicates
significant community structure with a strong contrast in the degree to which nodes are
linked within and between communities. Louvain clustering builds upon this modularity
score [27], following a greedy heuristic to determine the best partitioning of a graph by the
measure of local modularity, identifying sets of nodes more tightly interconnected with each
other than with the remainder of the graph. Although a hierarchical solution by recursive
application of the Louvain method on the subsequent subgraphs can be obtained, at each
step the result is a hard-clustering. We implemented a one-step Louvain clustering algorithm
in Python making use of the modules python-louvain [30] and Networkx [31]. We further
extended this hard-clustering method (Louvain-hard) to optionally elicit a naive
soft-clustering solution (Louvain-soft), where after producing the hard-clustering, any two
nodes in different clusters that are connected by an edge in the original graph are made
members in both clusters.

We implemented the OClustR algorithm [28] in Python. The algorithm employs a graph
covering strategy applied to a thresholded similarity graph using the notion of node relevance
(the average of relative node compactness and density) [28]. The approach functions without
the need for runtime parameters, thus avoiding their optimization, and aims to produce clusters
of minimum overlap and maximal size.

https://bitbucket.org/taynaud/python-louvain
https://networkx.github.io/
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2.4.5 Gold Standard

A crucial element of external validation is the gold-standard (ground truth). Particularly
in the treatment of scientific data, what we call the gold-standard is frequently a “best we can
do.” Despite the powerful a priori advantages gained by the explicit nature of simulation-
based studies, practical limitations can introduce uncertainty. In particular, the loss of read
placement information in de Bruijn graph assembly means we must infer the genomic origin
of each contig rather than obtain it explicitly from assembly output metadata.

In this study, the gold-standard must accurately map the set of assembly contigs C to the
set of community source genomesG, while supporting the notion of one-to-many associations
from contig ci to some or all genomes gi ∈ G. It is this one-to-many association that represents
the overlap between genomes at low evolutionary divergence. Themappingmust also contend
with spurious overlap signal from significant local alignments due to such factors as conserved
gene content and try to minimize false positive associations.

We used LAST (v712) [32] to align the set of assembly contigs C onto the respective
set of community reference genomes G. For each contig ci ∈ C, LAST alignments were
traversed in order of descending bitscore and used to generate a mask matrix M of contig
coverage indexed by both reference genome gk ∈ G and contig base position l. Rather than
a binary representation, mask element Mkl was assigned a real value [0, 1] proportional to
the identity of the maximal covering alignment to reference genome gk at site l. Lastly, the
arithmetic mean µk was calculated over all base positions for each reference genome gk (i.e.
µk = L−1

k

∑
l Mkl, where Lk is the length of genome gk) and an association between contig ci

and reference genome gk was accepted if µk > 0.96.

2.4.6 Graph Genera on

Undirected 3C-contig graphs were generated bymapping simulated 3C read-pairs toWGS
assembly contigs using BWAMEM (v0.7.9a-r786) [33]. Read alignments were accepted only
in the case of matches with 100% coverage of each read and zero mismatches. In general, this
restriction to 100% coverage and identity should be relaxed when working with real data, and
we found the iterative strategy employed by [11] effective in this case (results not shown).
Assembly contigs defined the nodes ni and inter-contig read-pairs the edges ((ni, nj) is an
edge iff i ̸= j), while intra-contig read-pairs ((ni, nj) ⇐⇒ i = j) were ignored. Raw edge
weights wij were defined as the observed number of read-pairs linking nodes ni and nj .
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2.4.7 Valida on

To assess the quality of clustering solutions a modification to the Extended B3 external
validation measure [22] was made, wherein each clustered object was given an explicit
weight. We call the resulting measure “weighted B3” (Equation 2.1). For a uniform weight
distribution, this modification reduces to conventional Extended B3. In our work, contig
length (bp) was chosen as the weight when measuring the accuracy of clustered assembly
contigs. Remaining the harmonic mean of B3 precision and recall, the weights w(oi) are
introduced here (Equation 2.2, 2.3) and the result normalized. For an object oi, the sum is
carried out over all members of the set of objects who share at least one class H(oi) or
cluster D(oi) with object oi (Equation 3).

FB3 = 2 ⟨PB3⟩ ⟨RB3⟩
⟨PB3⟩ + ⟨RB3⟩

(2.1)

where ⟨PB3⟩ and ⟨RB3⟩ are the weighted arithmetic means of PB3(oi) and RB3(oi)
(Equation 2.2, 2.3) over all objects.

PB3(oi) = 1∑
oj∈D(oi) w(oj)

∑
oj∈D(oi)

w(oj)P ∗(oi, oj) (2.2)

RB3(oi) = 1∑
oj∈H(oi) w(oj)

∑
oj∈H(oi)

w(oj)R∗(oi, oj) (2.3)

Unchanged from ExtendedB3, the expressions for theMultiplicityB3 precision P ∗(oi, oj)
(Equation 2.4) and recall R∗(oi, oj) (Equation 2.5) account for the non-binary relationship
between any two items in the set when dealing with overlapping clustering.

P ∗(oi, oj) = min (|K(oi) ∩ K(oj)| , |Θ(oi) ∩ Θ(oj)|)
|K(oi) ∩ K(oj)|

(2.4)

R∗(oi, oj) = min (|K(oi) ∩ K(oj)| , |Θ(oi) ∩ Θ(oj)|)
|Θ(oi) ∩ Θ(oj)|

(2.5)
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where K(oi) is the set of clusters and Θ(oi) is the set of classes for which either contains
object oi.

2.4.8 Simula ng Hi-C/3C read-pairs

A tool for simulating Hi-C/3C read-pairs was implemented in Python (simForward.py).
Read-pairs were generated for a given community directly from its reference genomes,
where the relative proportion of read-pairs from a given taxon adhered to the community’s
abundance profile. Inter-chromosomal (trans) pairs were modeled as uniformly distributed
across the entire chromosomal extent of a given genome. For intra-chromosomal (cis) pairs,
a linear combination of the geometric and uniform distributions was used to approximate a
long-tailed probability distribution as a function of genomic separation and calibrated by
fitting to real experimental data [10]. For these 3C reads, the modeling of
experimental/sequencing error was not performed. Variation in intra-chomosomal
probability attributable to 3D chromosomal structure was not included. In effect,
chromosomes were treated as flat unfolded rings. The tool takes as input a seed, read length,
number of read-pairs, abundance profile and inter-chromosomal probability and outputs
reads in either interleaved FastA or FastQ format.

2.4.9 Pipeline Design

The chosen workflow (Figure 2.1) represents a simple and previously applied [10], [11]
means of incorporating 3C read data into traditional metagenomics, via de novo WGS
assembly and subsequent mapping of 3C read-pairs to assembled contigs. Inputs to this core
process are 3C read-pairs and WGS sequencing reads. Outputs are the set of assembled
contigs C and the set of “3C read-pairs to contig” mappings M3C . Although tool choices
vary between researchers, we chose to keep the assembly and mapping algorithms fixed and
focus instead on how other parameters influence the quality of metagenomic reconstructions
with 3C read data. The A5-miseq pipeline (incorporating IDBA-UD, but skipping error
correction and scaffolding via the –metagenome flag) [34] was used for assembly. BWA
MEM was used for mapping 3C read-pairs to contigs [33]. Parameters placed under control
were: WGS coverage (xfold), the number of 3C read-pairs (n3c) and a random seed (S).
Prepended to this core process are two preceding modules: community generation and read
simulation. The Python implementation of our end-to-end pipeline is available at
https://github.com/koadman/proxigenomics.

https://github.com/koadman/proxigenomics
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of descendent genomes G was produced by wrapping ART_illumina (v1.5.1) [36] within a
Python script (metaART.py) with the added dependency of an abundance profile table as input.
Hi-C/3C read-pairs were generated from community genomes as outlined above. Generation
of the two forms of read-pairs introduces the following sweep parameters: WGS depth of
coverage (xfold) and number of 3C read-pairs (n3c) (Table 2.1).

After the assembly and mapping module comes the community deconvolution module,
taking as input the set of 3C read mappings M3C . Internally, the first step of the module
generates the 3C-contig graph G(n, e, w(e)). Deconvolution is achieved by application of
graph clustering algorithms, where the set of output clusters K reflect predicted genomes of
individual community members [10], [11].

Lastly, the validation module takes as inputs: a clustering solution, a gold-standard and a
set of assembly contigs. The first two inputs are compared by way of weighted B3

(Equation 2.1), while the set of contigs is supplied to QUAST (v3.1) [37] for the
determination of conventional assembly statistics. The results from both clustering and
assembly validation are then joined together to form a final output.

2.4.10 Simula on

Variational studies require careful attention to the number of parameters under control and
their sampling granularity, so as to strike a balance between potential value to observational
insight and computational effort. Even so, the combinatorial explosion in the total number of
variations makes a seemingly small number of parameters and steps quickly exceed available
computational resources. Further, an overly ambitious simulation can itself present significant
challenges to the interpretation of fundamental system behaviour under the induced changes.

End-to-end, the simulation pipeline makes a large number of variables available for
manipulation, and the size and dimensionality of the resulting space is much larger than can
be explored with available computational resources. Therefore we decided to focus our
initial exploration on a small part of this space. We used two simple phylogenetic tree
topologies (a four taxon ladder and a four taxon star) (Figure 2.2), to develop insight into the
challenges that face metagenomics researchers choosing to apply 3C to communities which
contain closely related taxa.
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2.4.12 Assembly Entropy

A normalized entropy based formulation Smixing (Equation 2.6) was used to quantify the
degree to which a contig within an assembly is amixture of source genomes, averaged over the
assembly with terms weighted in proportion to contig length. For simulated communities, the
maximum attainable value is equal to the logarithm of the sum of the relative abundances qi,
the effective number of genomes Neff (uniform profile Neff = 4, 1/e profile Neff ≈ 1.37).
Here NC is the number of contigs within an assembly, NG the number of genomes within a
community and Lasm simply the total extent of an assembly, pij is the proportion of reads
belonging to ith genome mapping to the jth contig, lj the length of the jth contig, and h the
step size in αBL.

When each contig in an assembly is derived purely from a single genomic source
Smixing = 0, conversely when all contigs possess a proportion of reads equal to the relative
abundance the respective source genome Smixing = 1. A forward finite difference was used
to approximate the first order derivative ∆Smixing (Equation 2.7), where mixing was
regarded as a function of αBL and the difference taken between successive sample points in
the sweep.

Smixing = − 1
Lasm log2(Neff )

NC∑
j=1

lj

NG∑
i=1

pij log2(pij)

Lasm =
NC∑
j=1

lj, Neff =
NG∑
i=1

qi

(2.6)

∆Smixing(αBL) = 1
h

(Smixing(αBL + h) − Smixing(αBL)) (2.7)

2.4.13 Graph Complexity

Although simple intrinsic graph properties such as order, size and density can provide a
sense of complexity, they do not consider the internal structure or information content present
in a graph. One information-theoretic formulation with acceptable computational complexity
is the non-parametric entropy HL (Equation 2.8) associated with the non-zero eigenvalue
spectrum of the normalized Laplacian matrix N = D−1/2LD−1/2, where L = D − A is
the regular Laplacian matrix, D is the degree matrix and A the adjacency matrix of a graph



55

[41]–[43].

HL =
∑

λi∈{λ:λ>0}
|λi| log2 |λi| (2.8)

where {λ : λ > 0} is set the non-zero eigenvalues of the normalized Laplacian N .

Level Name Description Type Number Total Values

1 tree Phylogenetic tree
topology

factor 2 2 star, ladder

2 profile Relative abundance
profile

factor 2 4 uniform, 1/e

3 αBL Branch length scale
factor

numeric 10 40 0.025-1 (log scale)

4 xfold WGS paired-end
depth of coverage

numeric 3 120 10, 50, 100

5 n3c Number of 3C
read-pairs

numeric 5 600 10000, 20000, 50000,
100000, 1000000

6 algo Clustering algorithm factor 5 MCL, SM-MCL,
Louvain-hard,
Louvain-soft,
OClustR

Table 2.1: Primary parameters under control in the sweep. In total, each clustering algorithm
is presented with 600 combinations which may further increase depending on whether a
clustering algorithm also has runtime parameters under control.

2.5 Results

2.5.1 Experimental Design

We implemented a computational pipeline which is capable of simulating arbitrary
metagenomic Hi-C/3C sequencing experiments (Figure 2.1). The pipeline exposes
parameters governing both the process of sequencing and community composition for
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Algorithm Name Description Type Number Total Values Sampling

MCL infl Inflation parameter numeric 5 3000 1.1 − 2 linear
SR-MCL infl Inflation parameter numeric 5 3000 1.1 − 2 linear
Louvain-hard 1 600
Louvain-soft 1 600
OClustR 1 600

Table 2.2: Clustering algorithm dependent parameters explored in the sweep, where the base
set of combinations begins with the fundamental 600 combinations. Only MCL and SR-MCL
were swept through additional runtime parameters.

control by the researcher and further, provides the facility for performing parametric sweeps
on these parameters (Table 2.1).

The pipeline was used to vary community composition, in particular, the degree of
within-community evolutionary divergence, and evaluate its impact on the accuracy of
genomic reconstruction. Starting from an ancestral sequence, a phylogenetic tree and an
abundance profile; 10 communities were generated with varying evolutionary divergence by
scaling branch length (Figure 2.2). The range of evolutionary divergence was chosen so as
to go from a region of easily separable species (≈ 85% ANI) to that of very closely related
strains (≈ 99.5% ANI) (Figure 2.3). The sweep included variation of both WGS coverage
(xfold: 10x, 50x, 100x) and the number of Hi-C/3C read-pairs (n3c: 104 to 106) to assess the
impact of increased sampling on reconstruction.

Genomic reconstruction was performed using five different graph clustering algorithms
(Table 2.2) on the 600 3C-contig graphs resulting from the sweep. The quality of each solution
was then evaluated using our weighted B3 metric FB3 (Equation 2.1), where the relevant
gold-standard as also generated by the pipeline. The resulting dataset is publicly available at
http://doi.org/10.4225/59/57b0f832e013c.

2.5.2 Assembly Complexity

Along with traditional assembly validation statistics (N50, L50) (Figure 2.4A, 2.4B),
assembly entropy Smixing and its approximate first order derivative ∆Smixing (Equation 2.6,
2.7) (Figure 2.4C) were calculated for all 120 combinations resulting from the first four
levels of the sweep (parameters: tree, profile, αBL, xfold) (Table 2.1).

http://doi.org/10.4225/59/57b0f832e013c
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As community composition moved from the realm of distinct species (αBL=1.0,
ANI≈85%) to well below the conventional definition of strains (αBL=0.025, ANI≈99.5%),
the degree of contig mixing increased more or less monotonically, and was delayed by
increased read-depth. After αBL, the only significant continuous variable influencing
mixing was read-depth (Spearman’s ρ=-0.26, P < 4 × 10−3), while abundance profile was
the only significant categorical variable (one-factor ANOVA R2=0.0774, P < 3 × 10−3)
[44]. In all cases, as αBL decreased mixing approached unity; implying that as genomic
sources became more closely related, the resulting metagenomic assembly contigs were of
increasingly mixed origin.

Regarding the assembly process as a dynamic system in terms of evolutionary divergence,
the turning point evident in ∆Smixing (Figure 2.4C dashed lines) could be regarded as the
critical point in a continuous phase transition from a state of high purity (Smixing ≈ 0) to
a state dominated by completely mixed contigs (Smixing → 1). This point in evolutionary
divergence coincided with the region where assemblies were the most fragmented (max L50,
min N50) (Figure 2.4A, 2.4B) and ∆Smixing was well correlated with both N50 (Spearman’s
ρ = 0.72, P < 1 × 10−5) and L50 (Spearman’s ρ = −0.83, P < 1 × 10−7), implying that as
community divergence decreased through this critical point, traditional notions of assembly
quality followed suit.

2.5.3 Graph Complexity

The introduction of 3C sampling depth (number of read-pairs) at the next level within the
sweep (parameter: n3c) generated 480 3C-contig graphs (Table 2.1). To assess how assembly
outcome affects the derived graph: order, size, density, and entropy HL (Equation 2.8) were
calculated and subsequently joined with the associated factors from assembly (Figure 2.4D).

Per the definition of the 3C-contig graph, there was a strong linear correlation between
graph order |n| and L50 (Pearson’s r = 0.96, P < 3 × 10−16) and a weaker but still
significant linear correlation between graph size |e| and 3C sampling depth (parameter: n3c)
(Pearson’s r = 0.66, P < 3 × 10−16). Graphical density was moderately linearly correlated
with graphical complexity HL (Pearson’s r = −0.63, P < 3 × 10−16), and strongly
correlated with assembly statistics N50 (Spearman’s ρ = −0.97, P < 3 × 10−16), L50
(Spearman’s ρ = 0.96, P < 3 × 10−16) and ∆Smixing (Spearman’s ρ = −0.73,
P =< 1 × 10−16).

The knock-on effect of evolutionary divergence on the 3C-contig graphs derived from
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metagenomic assemblies was clear; fragmented assemblies comprised of contigs of mixed
heritage resulted in increased 3C-contig graph complexity. As 3C read-pairs are the direct
observations used to infer an association between contigs, it could be expected that the
correlation between 3C sampling depth and graphical size (|e|) would be high (r → 1). In
fact, we observed a more moderate correlation (r = 0.66) and, because spurious read-pairs
were excluded in our simulations, what might be perceived as a shortfall in efficiency was
simply the accumulation of repeated observations of read pairs linking the same contig pairs.
Therefore by the nature of the experiment, increased 3C sampling depth did not lead to
increased graphical complexity in the same way that a more fragmented assembly would.
Instead, increased 3C sampling depth can significantly improve the quality of clustering
solutions by increasing the probability of observing rare associations and repeat
observations of existing associations.

2.5.4 Clustering Valida on

The 300 contig graphs resulting from the sweep at uniform abundance were used to assess
the influence of the various parameters on the performance of five clustering algorithms. For
each clustering algorithm, overall performance scores, using FB3 (Equation 2.1), were joined
with their relevant sweep parameters and PCA performed in R (FactoMineR v1.32) [44]. The
first three principal components explained 75% of the variation, where PC1 was primarily
involved with factors describing graphical complexity (αBL: r = 0.91, P < 2 × 10−118;
density: r = 0.67, P < 8 × 10−41; order: r = −0.75, P < 3 × 10−56; ANIb: r = −0.91,
P < 2 × 10−117; HL: r = −0.91, P < 3 × 10−113), PC2 factors described the sampling of
contig-contig associations and overall connectedness of the 3C-contig graph (size: r = 0.84,
P < 2 × 10−79; n3c: r = 0.84, P < 7 × 10−82; modularity: r = −0.40, P < 9 × 10−13)
and PC3 pertained to local community structure (modularity: r = 0.73, P < 1 × 10−49; and
xfold: r = 0.53, P < 3 × 10−23) (Figure 2.5).

Of the five clustering algorithms, the performance of four (MCL, SR-MCL, Louvain-hard
and OClustR) was strongly correlated with PC1 and so their solution quality was inversely
governed by the degree of complexity in the input graph, which in turn was largely influenced
by within-community evolutionary divergence. The fifth algorithm, our naive Louvain-soft,
though also correlatedwith PC1 and so negatively affected by graphical complexity, possessed
significant correlation with PC2 (r = 0.53, P < 5 × 10−23) and thus noticeably benefited
from increasing the number of 3C read-pairs (Figure 2.5).
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Figure 2.4: Plotted as a function of evolutionary divergence (measured by ANIb) for the
star and ladder communities at three depths of WGS coverage (10, 50 and 100x); assembly
validation statistics N50 (A) and L50 (B), the degree of genome intermixing Smixing and its
approximate first order derivative ∆Smixing (dashed lines) (C), lastly graphical complexity
HL (D). The vertical grey dashed line in each panel marks our operationally defined species
boundary (ANIb = 95%). As evolutionary divergence decreased from easily separable
species (ANIb ≈ 85%) to very closely related strains (ANIb → 1), assemblies went through
a transition from a state of high purity (Smixing ≈0) to a highly degenerate state (Smixing ≈1),
where many contigs were composed of reads from all community members. A crisis point
was observed for small evolutionary divergence (αBL < 0.2924, ANIb < 95%), where a
sharp change in contiguity (implied by N50 and L50) occured. At very low divergence, N50
and L50 statistics implied that assemblies were recovering, while source degeneracy (Smixing)
monotonically increased. Graphical complexity (HL) exhibited a similar turning point to L50
and was dominated by graph order |n| (number of contigs/nodes).
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Figure 2.5: For the 300 3C-contig graphs pertaining to uniform abundance, a PCA biplot
is shown for the two most significant components (PC1, PC2). Respectively, PC1 and
PC2 explain 53% and 13.6% of the variation within the data-set. Here vectors represent
sweep variables, while points represent individual 3C-contigs graphs and are coloured by 3C
sequencing depth (n3c: 10k - 1M pairs). Double-sized points show mean values of these
n3c groupings. Vectors labelled after the five clustering algorithms represent performance as
measured by scoring metric FB3 (Equation 2.1) PC1 and PC2) explained 53% and 13.6%
of the variation within the data-set respectively. PC1 was most strongly correlated with
graphical complexity (HL) and the number of graph nodes (order), which come about
with decreasing evolutionary divergence (ANIb and αBL) and explained the majority of
variation in performance for four out of five clustering algorithms. The notable exception was
Louvain-soft which had significant support on PC2. PC2 was related to Hi-C/3C sampling
depth (n3c), which correlated strongly with the number of graph edges (size). The positive
response Louvain-soft had to increasing the number of Hi-C/3C read-pairs (n3c) relative to
the remaining four algorithms is evident.
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Figure 2.6: Performance of the five clustering algorithms (MCL, Louvain-hard, OClustR, SR-
MCL, Louvain-soft), as measured by weighted extended B3 precision PB3 (A), recall RB3 (B)
and their harmonic mean FB3 (C) (Equation 2.1 - 2.3). The slice from the sweep pertained to
uniform abundance and 100x WGS coverage and the best performing runtime parameters
specific to algorithms (i.e. for MCL and SR-MCL inflation=1.1). (A) Louvain-hard
demonstrated high precision throughout, while our simple modification Louvain-soft lead
to a drop, particular in the region of intermediate evolutionary divergence. (B) All algorithms
struggled to recall the four individual genomes as evolutionary divergence decreased and
cluster overlap grew. Within the region of overlap, Louvain-soft performed best and clearly
benefited from increasing the number of Hi-C/3C read-pairs (n3c: 104 − 106). (C) In
terms of FB3 , the harmonic mean of Recall and Precision, only Louvain-soft appeared to
be an appropriate choice when it might be expected that strain-level diversity exists within a
microbial community.
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2.6 Discussion

By selecting a slice from within the sweep and the best-scoring runtime configuration
for each algorithm, a qualitative per-algorithm comparison of clustering performance under
ideal conditions can be made (Figure 2.6). For evolutionary divergence well above the level
of strains and prior to the critical region of assembly (αBL ≫ 0.292, ANIb ≪ 95%), all
algorithms achieved their best performance (FB3 → 1) (Figure 2.6C). As evolutionary
divergence decreased toward the level of strains and the assembly process approached the
critical region, a fall-off in performance was evident for all algorithms and this performance
drop is largely attributable to the loss of recall (Figure 2.6B). Hard-clustering algorithms
(MCL, Louvain-hard) in general exhibited superior precision (Figure 2.6A) to that of
soft-clustering algorithms (SR-MCL, OClustR, Louvain-soft) and the precision of
soft-clustering algorithms was worst in the critical region where graphical complexity was
highest.

A hundred-fold increase in the number of 3C read-pairs (104 − 106) had only a modest
effect on clustering performance for four of the five algorithms, the exception being our
naive Louvain-soft. Louvain-soft made substantial gains in recall from increased Hi-C/3C
sampling depth at evolutionary divergences well below the level of strains (αBL < 0.085,
ANIb < 98%), but sacrificed precision at large and intermediate evolutionary divergence.
The soft-clustering SR-MCL also sacrificed precision but failed to make similar gains in
recall as compared to Louvain-soft. Recall for all three hard-clustering algorithms (MCL,
Louvain-hard, OClustR) decreased with decreasing evolutionary divergence as the
prevalence of degenerate contigs grew. This drop in recall was particularly abrupt for the
star topology where, within the assembly process, all taxa approached the transitional region
simultaneously. Being primarily limited by their inability to infer overlap, increase in 3C
sampling depth for the hard-clustering algorithms had little effect on recall.

Our results have implications for the design of metagenomic 3C sequencing experiments.
When genomes with >95% ANI exist in the sample, the power to resolve differences among
those genomes can benefit greatly from the generation of additional sequence data beyond
what would be required to resolve genomes below 95% ANI. In our experiments, the best
results were achieved with 100x WGS coverage and 1 million Hi-C/3C read-pairs. For the
simple communities of four genomes each of roughly 3Mbp considered here, 100x coverage
corresponds to generating approximately 1.2Gbp of Illumina shotgun data. In a
metagenomic 3C protocol [12], obtaining 100,000 proximity ligation read-pairs would
require approximately 107 read-pairs in total; when we assume a proximity ligation read-pair
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rate of 1% [45]. We note that current Illumina MiSeq V3 kits are specified to produce up to
≈ 2 × 107 read-pairs, while HiSeq 2500 V4 lanes are specified to yield up to ≈ 5 × 108

read-pairs per lane. Therefore, while it may be possible to resolve closely related genomes
in very simple microbial communities with the capacity of a MiSeq, the scale of the HiSeq is
likely to be required in many cases. Alternatively, the more technically complicated Hi-C
protocol [10] may be advantageous to achieve higher proximity ligation read rates, with up
to 50% of read pairs spanning over 1kbp.

2.6.1 Limita ons and Future Work

Our simulation of 3C read-pairs did not include modeling of experimental noise in the
form basic sequencing error nor spurious ligation products that do not reflect true DNA:DNA
interactions. Such aberrant products have been estimated to occur in real experiments at levels
up to 10% of total yield in 3C read-pairs [45]. As a first approximation, we feel it reasonable
to assume that these erroneous read-pairs are a result of uniformly random ligation events
between any two DNA strands present in the sample. The sampling of any such spurious
read-pair will be sparse in comparison to the spatially constrained true 3C read-pairs and
therefore amount to weak background noise. As currently implemented, the Louvain-soft
clustering method would be prone to creating false cluster joins in the presence of such noise,
but a simple low-frequency threshold removal (e.g. requiring some constant number N links
to join communities instead of 1) could in principle resolve the problem.

Only 3C read-pairs were used when inferring the associations between contigs, while
conventional WGS read-pairs were used exclusively in assembly. It could be argued that
also including WGS read-pairs during edge inference would have had positive benefits,
particularly when assemblies were highly fragmented in the critical region. Simulated
communities were chosen to be particularly simple for the sake of downstream
comprehension. Larger and more complex phylogenetic topologies are called for in fully
assessing real-world performance. For the entire sweep, only a single ancestral genome
(Escherichia coli K12 substr. MG1655) was used in generating the simulated communities
and its particular characteristics represent will have biased genome assembly and sequence
alignment tasks within the work-flow. As future work, a more thorough sampling of
available microbial genomes and more complicated community structures could be
investigated.

Only raw edge weights were used in our analysis because normalization procedures, such
as have been previously employed [10]–[12], proved only weakly beneficial at higher 3C
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sampling depths and occasionally detrimental in situations of low sampling depth (results not
shown). For higher sampling depth, the weak response can likely be attributed to a lack of
complexity and the low noise environment inherent in the simulation. For low sampling depth,
observation counts are biased to small values (mode [w(ni, nj)] → 1) and simple counting
statistics would suggest there is high uncertainty (±

√
w(ni, nj)) in these values. As such,

this uncertainty is propagated via any normalization function f(w(ni, nj)) that attempts to
map observation counts to the real numbers (f : N → R). Even under conditions for high
sampling depth, pruning very infrequently observed low-weight edges can prove beneficial
to clustering performance as, beyond this source of uncertainty, some clustering algorithms
appear to unduly regard the mere existence of an edge even when its weight is vanishingly
small relative to the mean.

For the sake of standardization and to focus efforts on measuring clustering algorithm
performance we elected to use a single assembly and mapping algorithm. However, many
alternative methods for assembly and mapping exist. In the case of assembly, there are a
growing number of tools intended explicitly for metagenomes, such as metaSPAdes [46],
MEGAHIT [47], or populations of related genomes (Cortex) [48], while the modular
MetAMOS suite [49] at once offers tantalising best-practice access to the majority of
alternatives. For Hi-C/3C analysis, a desirable feature of read mapping tools is the capability
to report split read alignments (e.g. BWA MEM) [33]. Because of the potential for 3C reads
to span the ligation junction, mappers reporting such alignments permit the experimenter the
choice to discard or otherwise handle such events. Though we explored the effects of
substituting alternative methods to a limited extent (not shown), both in terms of result
quality and practical runtime considerations, a thorough investigation remains to be made.

The present implementation state of the simulation pipeline does not meet our desired
goal for ease of configuration and broader utility. Of the numerous high-throughput
execution environments (SLURM, PBS, SGE, Condor) in use, the pipeline is at present
tightly coupled to PBS and SGE. It is our intention to introduce a grid-agnostic layer so that
redeployment in varying environments is only a configuration detail. Although a single
global seed is used in all random sampling processes, the possibility for irreproducibility
remains due to side-effects brought on by variance in a deployment target’s operating
system and codebase. Additionally, though the pipeline and its ancillary tools are under
version control, numerous deployment-specific configuration settings are required post
checkout. Preparation of a pre-configured instance within a software container such as
Docker would permit the elimination of many such sources of variance and greatly lower the
configurational barrier to carrying out or reproducing an experiment.

https://www.docker.com/
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Many commonly used external validation measures (e.g. F-measure, V-measure) have
traditionally not handled cluster overlap and were inappropriate for this study. Ongoing
development within the field of soft-clustering (also known as community detection in
networks) has, however, led to the reformulation of some measures to support overlap [50]
or re-expression of soft-clustering solutions into a non-overlapping context [51]. While a
soft-clustering reformulation of normalized mutual information (NMI) [50] has become
frequently relied on in clustering literature [52], alongside B3 the two have been shown to be
complementary measures [53]. Therefore, although the choice to rely on the single measure
we proposed here (Equation 2.1) is a possible limitation, it simultaneously avoids doubling
the number of results to collate and interpret.

We chose to limit the representation of the combined WGS and 3C read data to a
3C-contig graph. While other representations built around smaller genomic features, such as
SNVs, could in principle offer greater power to resolve strains, they bring with them a
significant increase in graphical complexity. How more detailed representations might
impact downstream algorithmic scaling, or simply increase the difficulty in accurately
estimating a gold-standard remains to be investigated.

Benchmark graph generators (so called LFR benchmarks) have been developed that
execute in the realm of seconds [54], [55]. Parameterizing the mesoscopic structure of the
resulting graph, their introduction is intended to address the inadequate evaluation of
soft-clustering algorithms, which too often relied on unrepresentative generative models or
ad hoc testing against real networks. Our pipeline may suffice as a pragmatic, albeit much
more computationally intensive means of generating a domain specific benchmark on which
to test clustering algorithms. Whether it is feasible to calibrate the LFR benchmarks so as to
resemble 3C graphs emitted by our pipeline could be explored. Ultimately, the parameter set
we defined for the pipeline (Table 2.1) has the benefit of being domain-specific and
therefore meaningful to experimental researchers.

Detection of overlapping communities in networks is a developing field and much recent
work has left the performance of many clustering algorithms untested for the purpose of
deconvolving microbial communities via 3C read data. Not all algorithms are wholly
unsupervised. Individually they fall into various algorithmic classes (i.e. clique percolation,
link partitioning, local expansion, fuzzy detection and label propagation). Label propagation
methods have shown promise with respect to highly overlapped communities [51], [56],
[57], which we might reasonably expect to confront when resolving microbial strains.
Empirically determined probability distributions, such as those governing the production of
intra-chromosomal (cis) read-pairs as a function of genomic separation, might naturally lend
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themselves to methods from within the fuzzy-detection class. With a generative community
model in hand, exploring the performance of gaussian mixture models (GMM),
mixed-membership stochastic block models (SBM) or non-negative matrix factorization
(NMF) could be pursued.

The incomplete nature of graphs derived from experimental data can result in edge
absence or edge weight uncertainty for rare interactions, with the knock-on effect that
clustering algorithms can then suffer. We have shown that increasing 3C sampling depth
(Figure 2.6) can significantly improve the quality of the resulting clustering solutions. A
computational approach, which could potentially alleviate some of the demand for increased
depth has been proposed (EdgeBoost) [58] and shown to improve both Louvain and label
propagation methods, is a clear candidate for future assessment.

2.7 Conclusion

For a microbial community, as evolutionary divergence decreases within the community,
contigs derived from WGS metagenomic assembly increasingly become a mixture of source
genomes. When combined with 3C information to form a 3C-contig graph, evolutionary
divergence is directly reflected by the degree of community overlap. We tested the
performance of both hard and soft clustering algorithms to deconvolute simulated
metagenomic assemblies into their constituent genomes from this most simple
3C-augmented representation. Performance was assessed by our proposed weighted
variation of extended B3 validation measure (Equation 2.1), where here weights were set
proportional to contig length. We have shown that soft-clustering algorithms can
significantly outperform hard-clustering algorithms when intra-community evolutionary
divergence approaches a level traditionally regarded as existing between microbial strains.
In addition, although increasing sampling depth of 3C read-pairs does little to improve the
quality of hard-clustering solutions, it can noticeably improve the quality of soft-clustering
solutions. Of the tested algorithms, the precision of the hard-clustering algorithms often
equalled or exceeded that of the soft-clustering algorithms across a wide range of
evolutionary divergence. However, the poor recall of hard-clustering algorithms at low
divergence greatly reduces their value in genomic reconstruction. We recommend that
future work focuses on the application of recent advances in soft-clustering methods.
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• ANI - average nucleotide identity

• ANOVA - analysis of variance

• B3 - an extrinsic validation measure

• bp - base-pair

• cis - intra-chromosomal

• DNA - deoxyribonucleic acid

• GMM - Gaussian mixture model

• Hi-C - high throughput sequencing 3C

• Mbp - mega base-pair

• MCL - Markov clustering

• meta3C - metagenomic 3C

• NGS - next generation sequencing

• NMF - non-negative matrix factorization

• PCA - principal component analysis

• SBM - stochastic block model

• SR-MCL - Soft regularised Markov clustering

• trans - inter-chromosomal

• WGS - whole genome shotgun
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2.12 Appendices

Star Ladder
αBL ANI 1 - ANI d∗,∗ dA,[B|C|D] dB,[C|D] dC,D

0.0250 0.9950 0.0050 0.0050 0.0075 0.0050 0.0025
0.0377 0.9930 0.0070 0.0075 0.0113 0.0075 0.0038
0.0568 0.9890 0.0110 0.0114 0.0171 0.0114 0.0057
0.0855 0.9830 0.0170 0.0171 0.0257 0.0171 0.0086
0.1288 0.9750 0.0250 0.0258 0.0387 0.0258 0.0129
0.1941 0.9630 0.0370 0.0388 0.0582 0.0388 0.0194
0.2924 0.9460 0.0540 0.0585 0.0877 0.0585 0.0292
0.4405 0.9230 0.0770 0.0881 0.1322 0.0881 0.0441
0.6637 0.8900 0.1100 0.1327 0.1991 0.1327 0.0664
1.0000 0.8470 0.1530 0.2000 0.3000 0.2000 0.1000

Table 2.S1: The relationship between the scale factor (αBL) and the phylogenetic distance
(d) between taxa in the resulting tree. Additionally for the star we report ANI as calculated
using BLAST alignments. As the Star is isotropic, only a single distance is reported; while for
the Ladder all three distinct distance combinations are reported. The two underlined columns
indicate the taxon pairs for which the Star and Ladder have equivalent evolutionary divergence
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3.2 Abstract

Background Chromosome conformation capture (3C) and Hi-C DNA sequencing
methods have rapidly advanced our understanding of the spatial organization of genomes
and metagenomes. Many variants of these protocols have been developed, each with their
own strengths. Currently there is no systematic means for simulating sequence data from
this family of sequencing protocols, potentially hindering the advancement of algorithms to
exploit this new datatype.

Findings We describe a computational simulator that, given simple parameters and
reference genome sequences, will simulate Hi-C sequencing on those sequences. The
simulator models the basic spatial structure in genomes that is commonly observed in Hi-C
and 3C datasets, including the distance-decay relationship in proximity ligation, differences
in the frequency of interaction within and across chromosomes, and the structure imposed
by cells. A means to model the 3D structure of randomly generated topologically
associating domains (TADs) is provided. The simulator considers several sources of error
common to 3C and Hi-C library preparation and sequencing methods, including spurious
proximity ligation events and sequencing error.

Conclusions We have introduced the first comprehensive simulator for 3C and Hi-C
sequencing protocols. We expect the simulator to have use in testing of Hi-C data analysis
algorithms, as well as more general value for experimental design, where questions such as
the required depth of sequencing, enzyme choice, and other decisions can be made in
advance in order to ensure adequate statistical power with respect to experimental
hypothesis testing.

Keywords Hi-C, Meta3C, 3C, DNA sequencing, simulation, metagenomics
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3.3 Findings

3.3.1 So ware tes ng

To the casual observer, formal software testing is often thought to begin and end with the
validation of fine-grained behavioural (functional) aspects; such as the correct execution of
individual methods. In day to day use however, what can matter most to end-users are broader
system attributes such as speed, scalability, reproducibility and ease of use. To ensure a project
offers maximum value, a thorough testing process would collectively examine all aspects.

For inferential software within scientific fields, the system-level attributes of precision
and accuracy are of primary interest, and their quantification is best accomplished by
comparison to a known truth (gold standard). Therefore, any testing methodology capable
of providing an a priori gold standard, particularly without estimation, improves this facet
of testing significantly.

Purpose-built bioinformatics software ultimately acts on experimentally collected
observations. The inherent noise and variation that comes with experimental data means
achieving testing thoroughness is a great challenge. Ready access to sufficient data sources
is a fundamental necessity for adequate software testing.

For established experimental methods, public data archives are a first choice for the
necessary testing data. When high quality metadata is available, testing driven by real data
becomes possible. However, even when sufficient depth and description of data is available,
difficulty can remain in matching desired test data characteristics to what actually exists in
one or several public dataset(s). Further, fine-grained whole-corpus querying of metadata on
remote data archives is not always possible, frequently making the up-front job of data
selection a difficult task. Once selected, obtaining said real data can be time-consuming or
even infeasible in locations with lower network speeds and/or high bandwidth costs. In
advancing fields such as DNA sequencing, new experimental datatypes can appear for
which the public data archives contain only a handful of examples and few researchers
would have the time and financial resources to commit to experimental generation of new
data purely for software testing.

Though performance on real data is the ultimate arbiter of analytical value, advantaged
by explicit control over its characteristics, a faithful simulation of real data can act as a
valuable proxy. Simulation-driven development and testing has proven to be a highly cost



82

effective and time efficient approach. It offers the possibility to explore a near continuum of
data characteristics, subjecting software to an otherwise unavailable degree of testing
thoroughness. Certainty and control makes attaining the twin objectives of rigorous testing
and an a priori gold standard straightforward. This enables us not only to be more certain
about when we have failed, but also to extrapolate this process to infer the limits of success
within the experimental parameter space.

Tools for simulating DNA sequencing reads have existed from the very early days of
genomics, beginning with the many anonymous implementations of simple DNA shearing
algorithms, up to the most recent highly detailed empirical model simulators [1]–[4]. From
read simulation in isolation, field advancements such as metagenomics have been
accompanied soon after by simulators reflecting their specific data characteristics and
evolving experimental methodology [5]–[7].

We introduce sim3C, a software package designed to simulate data generated by Hi-C
and other 3C-based proximity ligation (PL) sequencing protocols. The software includes
flexible support for a range of sequencing project scenarios and choice of three 3C methods
Hi-C, Meta3C, DNase Hi-C). The resulting output (paired-end FastQ) is easily assimilated
into existing analysis workflows. It is our intention that sim3C provide the Hi-C/3C research
community with means to further validate existing software projects, to support new
experimental or analysis development initiatives and as a platform for exploration, such as
the comparative analysis of clustering algorithms [8].

3.3.2 3C sequencing

3C-based sequencing protocols, including Hi-C, 4C-seq, and Meta3C, have great
potential to address questions directed at the spatial organization of DNA in samples ranging
from eukaryotic tissue, to single cells, to microbial communities. The growing use of these
protocols creates a legitimate need for a simulator capable of generating data with relevant
characteristics.

Chromosome conformation capture (3C) was originally designed as a PCR-based assay
to measure interactions among a small number of defined regions of eukaryotic chromosomes
[9]. In 2009 Lieberman-Aiden [10] reported an extension of the protocol to high throughput
sequencing, enabling the global spatial arrangement of chromosomes to be reconstructed at
unprecedented resolution. All 3C protocols depend on an initial formalin fixation step, which
crosslinks proteins bound to DNA in vivo. Subsequently cells are lysed and the DNA:protein
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complexes are sheared enzymatically and/or physically to create free ends in the bound DNA
strands. These free ends are then subjected to a proximity ligation reaction, in which ligation
of free ends preferentially occurs among DNA strands cobound in a protein complex. The
DNA:protein crosslinks are then reversed, the DNA is purified, and an Illumina-compatible
sequencing library is constructed. In Hi-C protocols, the proximity ligation junctions can then
be further purified in the sequencing library.

3C-derived methods have found several applications beyond their initial use to
reconstruct 3D chromosome structure. For example, it has been shown that 3C-derived data
provide a valuable signal for genome scaffolding [11], [12], as well as a signal that can
support genome-wide haplotype phasing [13], [14]. 3C-derived data has also proven
valuable for metagenomics, where initial studies on mock communities demonstrated that
highly accurate genome reconstruction in mixed microbial communities could be facilitated
by proximity ligation sequence data [15]–[17]. Subsequent application to naturally
occurring microbial communities has also suggested that bacteriophage can be linked to
their hosts with this data type [18].

In the remainder of this manuscript we describe the sim3C software and demonstrate how
it can be used to simulate data for various 3C-derived experiments.

3.3.3 Experiment scenarios

Beyond simple monochromosomal genome sequencing experiments, sim3C offers
support for the more complex scenarios of multi-chromosomal genomes and metagenomes.
A scenario is defined by way of a community profile; assigning a copy-number and
containing genome to each chromosome and a relative abundance to each genome. The
profile and supporting reference sequences form a skeleton definition with which to
initialize the weighted random sampling process within a simulation. The user can elect to
supply a profile either as an explicit table (Listing 3.1, 3.2) or allow sim3C to draw
abundances at runtime from one of three distributions (equal abundance, uniformly random,
log-normal distribution) for communities made up of strictly mono-chromosomal genomes.
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�
#chrom c e l l abund copynum
chr1 bac1 0 . 4 1
p l a s 1 bac1 0 . 4 1
ch r2 bac2 0 . 6 1 �

Listing 3.1: A mock two genome community. For demonstration purposes, we assume that
the plasmid (plas1) is present in four copies and that there is a 0.4/0.6 relative abundance split
between the two organisms (bac1, bac2) in the community

�
#chrom c e l l abund copynum
chr1 euk1 1 1
ch r2 euk1 1 1
ch r3 euk1 1 1
ch r4 euk1 1 2 �

Listing 3.2: Amock four chromosome genome. Cellular abundance is a constant across the
profile, while chr4 exists in two copies. Note that relative abundances specified in a profile
are not required to sum to 1, but are normalised internally.

3.3.4 Error Modelling

Sim3C models three forms of experimental noise: machine-based sequencing error, the
formation of spurious ligation products and the contamination of PL libraries with WGS read-
pairs.

To simulate machine-based sequencing error, the paired-end mode from art_illumina [2]
has been reimplemented as a Python module (Art.py). This approach was taken as
delegating read-pair generation to native invocations of art_illumina proved cumbersome.
More explicitly, a loosely coupled solution (via subprocess calls but without an IPC
mechanism) lacked sufficient control to generate PL read-pairs in an efficient and robust
manner. On the other hand, tightly coupling sim3C to the ART C/C++ source code (i.e.
implementing hooks) would have left sim3C vulnerable to changes in a non-public external
API (i.e. a codebase without formal definition or guarantee of stability). Reimplementation
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also meant Art’s many empirically derived machine profiles are available for use by sim3C,
allowing equivalent treatment of machine-error when experiments involve both PL (sim3C)
and pure WGS (art_illumina) libraries.

The production of spurious ligation products is an inherent source of noise in PL library
construction [19]. Sim3C models spurious pairs as the uniformly random ligation of any two
cut-sites across all source genomes. While this process disregards cellular organisation, it
respects the relative abundance of chromosomes. Spurious pairs, and to a lesser extent
sequencing error, represent an important confounding signal to downstream analyses that
attempt to infer the cellular or chromosomal organisation of DNA sequences.

Lastly, conventional WGS read-pairs represent a source of contamination within a PL
library, which even after Hi-C enrichment steps, are not completely eliminated. The rates at
which spurious and WGS read-pairs are injected into a simulation run are controllable by the
end-user.

3.3.5 Simula on modes

Since Hi-C was first introduced [10], the development of variants and extensions has
been continual [17], [20]–[22]. Variants have often strived to further enhance the
discriminatory power of the original experiment, while seemingly adding yet more
complexity to an already challenging protocol (in-situ DNase Hi-C, sciHi-C) [22]. Others
instead have sought compromise, with the aim of lessening the burden on the laboratory
(Meta3C). While not considering more recent and complex extensions, sim3C offers three
simulation modes: traditional Hi-C, Meta3C and DNase Hi-C. The first two of these modes
were chosen as representing the fundamental basis (traditional Hi-C) and an attractive and
pragmatic simplification of the original (Meta3C). The third mode (DNase Hi-C) replaces
the restriction endonuclease driven production of the free-ends, used to form PL products,
with an ideally-free process of DNA fragmentation. In the laboratory, this ideally-free
process could be carried out by DNase digestion or mechanical shearing via sonication.

The most notable difference between the methods of Hi-C and the more recent Meta3C, is
that after restriction digest,Hi-C employs additional steps leading to the incorporation of biotin
tags at each PL junction. This biotinylation permits Hi-C libraries to be subsequently enriched
for fragments containing PL junctions by streptavidin-mediated affinity purification. Without
enrichment, the simpler Meta3C protocol results in a gross mixture of bothWGS and PL read-
pairs, where only a small percentage of the total read-pair yield (approx. 1%) will possess
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PL junctions [23]. The enrichment process within Hi-C, however, is not perfectly efficient
and WGS read-pairs are still observed (approx. 10-50% of reads contain a PL product) [23].
DNase Hi-C replaces restriction digest with a non-specific endonuclease (e.g. DNase I) [24]
or mechanical DNA shearing process (e.g. sonication) [20]. In this operational mode, sim3C
treats DNA cleavage as a completely unbiased (free) process and as such all genomic positions
have equal probability of participating in proximity ligation events.

Within sim3C, each of the three methodological variations is conceptualised as a
sequencing strategy (Figure 3.1) and each iteration of a strategy produces one read-pair (PL
or WGS in origin). For all strategies, an iteration begins by drawing a 3-tuple of insert
parameters: length, direction and junction point (Lins, dir, xjunc).

After obtaining insert parameters, the Hi-C strategy (Figure 3.1a) first tests if the insert
will represent a WGS or PL read-pair (∼ Bern(peff )), where efficiency peff is defined in
the sense of enrichment. When peff = 1, there is perfect filtering and all WGS read-pairs
are eliminated from the experiment. In the case of WGS, the iteration reaches an end-point
and the simulation emits a conventional read-pair drawn from the community definition. In
the case of PL, a cut-site 3-tuple is drawn (gen1, chr1, x1), where the categorical distribution
over chromosomes is weighted by relative abundances (A) and chromosomal copy-numbers
(ncpy); genomic position is sampled uniformly from the set of restriction sites (sites(chr1));
and parent genome (gen1) is implicit from the chromosome. Next, a spurious ligation test is
performed (∼ Bern(pspur)). If a spurious event has occurred, the 3-tuple defining the
second cut-site (gen2, chr2, x2) is drawn i.i.d. as the first. If not spurious, next a test for
inter-chromosomal (trans) ligation is performed. Only source chromosome and position
(chr2, x2) need be drawn as the second genome is implicitly the same as the first
(gen2 = gen1). Here, chr2 is selected without replacement from the set of chromosomes of
genome (gen1), where the categorical distribution is adjusted by removal of chr1. Finally,
an intra-chromosomal (cis) ligation must have occurred. As now both genome and
chromosome are implicit (gen2 = gen1, chr2 = chr1), all that is left is to draw genomic
position x2. The pair of positions (x1, x2) are constrained by their separation
(s = |x2 − x1|), which is represented by a mixture model of the geometric and uniform
distributions (Equation 3.1). This relation possesses rapid falloff with increasing separation
and non-zero probability for all chromosomal positions, as has been commonly observed in
real experimental data [10], [25].

Pr(X = s|α, β, l) = β(1 − α)sα + (1 − β)/l (3.1)
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where β is a mixing parameter, α the geometric distribution shape parameter and l

chromosome length.

For Meta3C (Figure 3.1b) after insert parameters are determined, in the same fashion as a
regular WGS read, an initial free genomic position is drawn (chr1, x∗

1), uniformly distributed
over the extent of chr1 rather than only over its cut-sites. In real datasets, it has been observed
that neither the restriction digestion nor the re-ligation of free ends are perfectly efficient.
Taken as independent probabilities, in our model we conceptualise their joint occurrence as
an efficiency factor, peff and a Bernoulli trial (Bern(peff )) determines whether a sequence
read is successful in containing an observable proximity ligation event. Failing this coverage
test relegates the iteration and end-point and emit a WGS read-pair. Successful candidates
instead continue akin to the Hi-C decision tree, beginning with the test for spurious ligation.

For both Hi-C and Meta3C, PL read-pairs are produced by joining the free-ends drawn
above as defined by the fragment parameters (Figure 3.2a). Here the location of the PL
junction within the insert is determined by xjunc. At the junction,Hi-C differs from Meta3C
as the process of biotinylation results in the duplication of the restriction cut-site overhang
sequence. The overhang duplication in Hi-C is included in the simulation.

DNase Hi-C is handled similarly to traditional Hi-C, with the exception that, as in-silico
digestion trivially leads to all sites, the simulated digestion is unnecessary to perform and
positions can be drawn directly from the uniform distribution over the interval [0..Lchr). Site
duplication, attributable to the likely production of random overhangs in this scenario, is not
presently simulated.
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a b

Figure 3.1: Logical schema used within sim3C. (a)Hi-C and (b) Meta3C simulation
strategies. Gold diamonds represent simple Bernoulli trials. Blue boxes represent sampling
distributions defined by runtime input data (community profile, genomic sequences, enzyme)
and the empirically derived distribution for intra-chromosome (cis) interaction probability
(equation 1). Logical end-points to a single iteration of either algorithm are represented as
red (producing a WGS read-pair) and green boxes (producing a PL read-pair). Due to the
elimination of the biotinylation step, Meta3C does not produce a duplication of the restriction
cut-site overhang (grey boxes).
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3.3.6 Structurally related interac ons

Independent of any 3D structure that might exist, the primary and most frequently
observed interactions are those which occur along a chromosome (intra-arm) (Figure 3.2b),
seen as the primary (y ≃ x) diagonal in the contact map. sim3C can approximate the less
frequent interactions occurring between chromosomal arms (inter-arm) [26], which are
visible as anti-diagonal (y ≃ L − x) in the contact map.

At progressively smaller scales, the hierarchical 3D folding of DNA into topologically
associated domains (TADs) produces overlapping regions of interaction visible in the contact
map as block-like intensity modulations. Though the agents responsible for their formation
vary [27], [28], the characteristic patterns evident in real-data derived 3C contact maps have
been observed across all three domains [25], [26], [29]. Sim3C can optionally approximate
the sense of TAD related modulation by means of a recursive stochastic process.

Our approximation of hierarchical folding begins from the full extent L of a
chromosome (Figure 3.2c). Folding is portrayed by the division of the interval [0..L) into a
set of non-overlapping sub-intervals {[0, x1), [x1, x2), · · · , [xn−1, xn)}, the number and
widths of which are drawn at random (U(lmin, lmax), U(nmin, nmax)). The procedure is then
recursively applied to each sub-interval until a depth d, producing a nested set of coverings
of the full interval [0..L) at progressively finer scales. Across this hierarchical collection
each interval is assigned a uniformly distributed random probability pi and empirical
distribution fi(s|θi) (equation 1) for separation s parameterised by shape parameter αT AD

and interval length linv = xi+1 − xi, where θ = (αT AD, β, linv).

The process of drawing samples of separation begins by determining the set of intervals
{linv} which contain an initial point x0. The intervals, as tuples (pi, fi(s|θi)), then form a
categorical distribution (equation (3.7)), fromwhich a governing distribution fi(s|θi) is drawn
and finally a sample of separation is taken, s ∼ fi(s|θi). To efficiently sample from the full
collection, an interval-tree data structure is employed. When queried, an interval-tree returns
the set of intervals {l} overlapping a position x in order O(log n + m), where n is number of
intervals and m is number of intervals returned by the query.
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f = {f0(s|θ0), f1(s|θ1), · · · , fi(s|θi)} (3.2)

N = number of distributions = |f | (3.3)

p = {p0, p1, · · · , pi} (3.4)

pi ∼ U(0, 1) and
∑

pi = 1 (3.5)

n ∼ Cat(N, p) (3.6)

f(s|n) =
N−1∏
i=0

fi(s|θi)[i=n] (3.7)

where [i = n] is the Iverson bracket.
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3.3.7 Example scenarios

In the following, three use-cases are presented to demonstrate aspects of the resulting
simulation output: bacterial genome, multi-chromosomal eukaryotic (yeast) genome, and
metagenome. For each use-case, 3C contact maps have been used to pit simulation output
against the corresponding real experimental data (Table 3.1).

3.3.8 Bacterial

A monochromosomal bacterial genome is perhaps the simplest scenario to which
proximity ligation methods have been applied, making for a sensible entry point from which
to make comparison. Due to the smaller extent, a bright and high resolution contact map (10
kbp bin size) is possible for a practical volume of sequencing data, potentially revealing fine
detail not easily discerned with larger bin sizes (50-100 kbp bin size).

The genome of Caulobacter crescentus NA1000, a model organism in the study of
cellular differentiation and regulation of the cell cycle, is comprised of a single 4 Mbp
circular chromosome [30]. Deep Hi-C sequencing of C. crescentus has been used to explore
the degree to which bacterial chromosomes can be regarded as organised and provided
evidence for the existence of so called chromosomal interaction domains (CIDs) [26]. As a
prokaryotic analog of topologically associated domains (TADs) from eukaryotic literature
[28], [31], [32], these regions are believed to promote intra-domain loci interactions and
thereby act to functionally compartmentalize the genome. The chromosomal structure was
observed to have boundaries defined, at least in part, by highly expressed genes and these
boundaries were found to disruptable through rifampicin mediated inhibition of transcription
[26].

For the raw contact map of C. crescentus, prominent rectilinear features are apparent for
both real and simulated traditional Hi-C sequencing data (Figure 3.3a,b), while notably for
simulated unrestricted Hi-C the field is much smoother (Figure 3.3c). Within the sim3C
model, a single distribution governs both intra- and inter-arm interactions. Inspection of the
real-data contact map (Figure 3.3a) suggests that the true relationship governing inter-arm
interactions is more dispersed. This perhaps is not surprising, where different arms
associating spatially possess a greater number of potential configurations than can be taken
on by the primary chromosome backbone. Additionally for the real contact map, long-range
interactions away from either diagonal can be seen to drop to a lower threshold than that
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produced from simulation.

Within the unrestricted Hi-C map, the fine zero-intensity rectilinear features are a direct
result of poor mappability (non-unique sequence), where their small size reflects the extent
of the non-unique regions (example: rRNA genes) and the single base-pair resolution of the
less constrained read generation process. The process of enzymatic digestion is the only
difference between the unrestricted and traditional Hi-C simulation models. The clear
contrast in their contact maps is thus a combination of factors either directly inherent to
digestion (cut-site density) or a byproduct of downstream bioinformatics analysis (e.g.
filtering heuristics). Though the problem of mappability exists for any reference based
representation, for real and simulated traditional Hi-C, zero-intensity rectilinear features
mark regions devoid of cut-sites over at least 10 kbp.

Enabling TAD approximation in simulated traditional Hi-C (Figure 3.3d) has the effect
of modulating map intensity in a manner not particularly distinct from that produced purely
from experimental/workflow bias. Discriminating between these two feature sources; one
representing experimental signal, the other representing noise; demands attention when
developing solutions to problems such as normalisation. Contact map normalisation
methods, whether based upon explicit or implicit bias models [33], may leave behind
remnants of noise-related features from either a lack of convergence or model limitations.
Downstream inferencing should therefore not be made under an assumption of bias-free
signal.
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3.3.9 Eukaryo c

The eight chromosomes of the 15.4 Mbp genome of the native xylose-fermenting yeast
Scheffersomyces stipitis CBS 6054 [34] range in size from 970 kbp to 3.5 Mbp. The organism
was one of 16 yeasts included in a synthetic community to explore the application of Hi-C
sequencing to deconvolving metagenomic assemblies [16] and is divergent enough from other
synthetic community members to permit unambiguous read mapping, and thus act as a proxy
for a clonal experiment.

From the contact map of real Hi-C data (Figure 3.4a), it can be seen that the rates of
intra-chromosomal and inter-chromosomal interactions are roughly equivalent in magnitude.
Across the eight chromosomes of S. stipitis, there is significant uniformity in the degree of
physical intimacy within and between all chromosomes. The subtleties of this chromosomal
organisation reveals a self-similar “fuzzy-x” pattern repeated between all chromosomes
across the contact map. The convergence point within the pattern is attributed to
centromere-SPB binding and has been used to predict centromere locations [35]. It has been
shown that the physical constraints generated from the interaction of centromeres to the
spindle pole body (SPB) and telomeres to the nuclear envelope are sufficient to explain a
number of experimental observations in real data [36], [37]. As sim3C was derived from
study of bacterial datasets, our simulation model does not currently include a notion of these
higher organism physical constraints. Consequently, the contact map derived from
simulated traditional Hi-C sequencing elicits a flat field (Figure 3.4b), where the intensity
variation that does exist is a byproduct of aforementioned factors such as mappability and
cut-site density. For the runtime parameters employed, the rate of intra-chromosomal
contact is higher than that of inter-chromosomal, making clear the boundaries between the
eight chromosomes (Figure 3.4b). Though our model is presently incomplete for higher
organisms, there remains a potential utility as an analytical or simply observational prior.
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Relative to the single genome experiments above, a lower depth of sequencing resulted in a
lower overall contact map intensity (Figure 3.5). This is particularly the case for Meta3C,
where, by the nature of the method, a large proportion (approx. 99%) of the sequencing
yield is in reality conventional WGS read-pair data [17]. As a direct result, in binning the
Meta3C dataset, there were insufficient counts to fully establish finer detail within the
contact maps, leaving a smoother appearance.

As with single-genome experiments, metagenomic contact maps are locally modulated
by factors such as mappability and cut-site density. Importantly now for metagenomes, the
factors of relative abundance and GC content interact to alter the observed intensity of each
chromosome within the contact map.

As a first approximation and assuming agreement in nucleotide sampling frequency, we
expect n0 = L/4λ recognition sites for an enzyme of site length λ and DNA sequence length
L. The degree to which an enzyme and DNA sequence deviate from this estimate could be
described as how well they match, m = nx/n0. Poorer quality matches (m < 1) occur when
an enzyme’s recognition site is underrepresented, while conversely, better quality matches
(m > 1) describe a situation of more recognition sites than expected.

When multiple chromosomes are taken as a community, the relative proportion of sites
from each represents an observational bias when conducting 3C-based experiments. For
community C, the number of sites nx from chromosome x determines the number of
potential PL pairings Nx within C which involve x (Equation 3.8). The number of
intra-chromosomal and inter-chromosomal potential pairs thus respectively vary
quadratically and linearly with nx. Regarding the process of observing a PL event
(read-pair) from the community as a random draw with replacement, and the selection pool
as comprised of all potential events from all chromosomes, then variation in match quality
constitutes a per-chromosome bias. In real laboratory experiments, the composition of the
selection pool is further modified by variation in other factors, such as cellular lysis
efficiency, unintended DNA fragmentation and relative abundance. In particular, when
relative abundances A are introduced, the odds of observing a PL event involving
chromosome x is then proportional the product px ∝ AxNx/NC . Although the processes of
intra-chromosomal, inter-chromosomal, and inter-cellular (spurious) ligation are treated
independently in our simulation model, in this manner, per-chromosome intensity
(observation rate of chromosome x) can vary significantly within a metagenome.
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Nx = n2
x + nx

∑
ny∈C\nx

ny (3.8)

Though the original laboratory experiments reported by Beitel et al. 2014 and Marbouty
et al. 2014 intended to create synthetic communities with uniform relative abundances, in
practice each possesses a non-uniform profile. The variation in GC content is largest for the
Hi-C experiment and together with non-uniform relative abundances produces a wide range
of chromosome intensity for both real and simulated data (Figure 3.5a,b). For both the real
and simulated Hi-C maps, the frequent observation of PL events involving P. pentosaceus
(Pp) and L. brevis (Lb), suggests the possibility that inter-cellular interaction is significant.
Within the simulated map at least, inter-cellular pairs are produced exclusively through the
process of spurious ligation (noise) and are observed at a higher rate than in the real data,
indicating that as expected, spurious ligation rates across species are correlated with their
relative abundances.

Further for the Hi-C data, the two-chromosome genome of B. thailandensis (Bt1, Bt2)
(Figure 3.5a) has a greater rate of inter-chromosomal interaction than expected from
comparing it to simulation (Figure 3.5b). Meanwhile, the clear delineation of E. coli strains
BL21 and K12 (ANI > 99%), with little inter-cellular signal, helps to support the notion
that the inter-chromosomal interactions observed between B. thailandensis chromosomes
(ANI ≃ 83%) are real and not a by-product of inadequate filtering.
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3.3.11 Limita ons and future work

Sim3C in its current form has several limitations, some of which present opportunities
for future work. Sim3C’s repertoire of structural features is currently limited to those found
in microbes - circular and linear chromosomes with randomly generated approximations of
self-associating domains (CIDs/TADs). Sim3C does not model structural features observed
in larger, more complex genomes (CTCF/cohesin loops, A/B compartments, chromosome
territories) [10], [38]. Such features are becoming increasingly well characterised [39] and a
simulator capable of modelling these features would surely be valuable. Mammalian genomes
are much larger than microbial genomes however, and additional work to improve scalability
of sim3C will likely be required.

Some features of microbial eukaryotes, such as the point centromeres found in budding
yeast genomes [40] are computationally simpler [35], [36] yet remain unmodelled in sim3C.
The addition of these sorts of model details would be best supported by introducing model
initialisation via external data (experimental observations, motif detection, cell phase), which
subsequently would require extension of the community profile definition. Careful design
would be required to ensure these features could be added without compromising ease-of-use.

3.4 Methods

3.4.1 Reference Data

To compare sim3C against real experiments, we obtained previously published
experimental read-pair datasets (Table 3.1) and their accompanying reference genomes
(Table 3.2, 3.3) from public archives. In the case of the single genome project of
Caulobacter crescentus CB15 [26], sequencing data derived from untreated swarmer cells
was chosen and the laboratory strain C. crescentus NA1000 (acc: NC_011916) was used as
the reference genome. For the yeast genome, the completed eight chromosome genome of
Scheffersomyces stipitis CBS 6054 was used as a reference (acc: PRJNA18881) and the
respective reads were extracted from the MY16 yeast synthetic metagenome [16] by direct
mapping with BWA MEM. Extraction by mapping in isolation was employed as S. stipitis
was the second furthest phylogenetically removed yeast in the synthetic community and was
the most contiguous (N50: 60kbp) from the whole synthetic community de novo
metagenomic WGS assembly.
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Authors Type Method Accession Sequencing
details

Mapped
reads

Beitel et al[15] Synthetic bacterial
metagenome

Hi-C SRX377733
MiSeq 160bp PE
insert range: 280-420bp
enzyme: HindIII

20552775

Burton et al[16] Synthetic yeast
metagenome

Hi-C SRX527868
HiSeq2500 100bp PE
insert range: 450-550bp
enzyme: HindIII

9704944

Le et al[26] Single bacterial
genome

Hi-C SRX263925
HiSeq2000 40bp PE
insert range: 200-600bp
enzyme: NcoI

22324360

Marbouty et
al[41]

Synthetic bacterial
metagenome

Meta3C doi:10.5061/
dryad.gv595

HiSeq2000 100bp PE
insert range: 400-800bp
enzyme: HpaII

7975740

Table 3.1: Real Hi-C and Meta3C data-sets used within this work. The total off-diagonal
weight of the contact map was used to calibrate the amount of simulated sequencing required
to approximately match the outcome of the real experiments.

3.4.2 Read Genera on

Experimental parameters used in read simulation were set to agree as closely as
reasonably possible to the respective real experiments, employing the same read length and
restriction enzyme (Table 3.1). In each experiment, the published fragment size range was
approximated by a normal distribution (Table 3.4). For ease of reproducibility, a single
random seed (1234) was used in all simulations. As our intent was primarily to demonstrate
functionality, rates of inter-chromosomal and spurious events were adjusted per-experiment
only through a qualitative process. For simulation of metagenomic datasets, relative
abundances were estimated by mapping real experimental reads to the respective reference
genomes. From each real experiment, the off-diagonal weight of the resulting contact map
was used to calibrate the amount of simulated sequencing required to achieve roughly
equivalent intensity (Table 3.4). Both real and simulated read-pair datasets were mapped to
their respective reference genomes using BWA MEM (v0.7.15-r1140, RRID:SCR_010910)
[42]
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Name Replicons Accession Chr abbr. A ncpy %GC nx m

Burkholderia
thailandensis E264

2 NC_007651
NC_007650

Bt1
Bt2 0.054 1 67.29

68.07
225
144

0.24
0.20

Escherichia coli BL21 1 NC_012892 BL21 0.242 1 50.83 508 0.46

Escherichia coli K12
DH10B

1 NC_010473 K12 0.166 1 50.78 568 0.50

Lactobacillus brevis
ATCC 367

3
NC_008497
NC_008498
NC_008499

Lb
-
-

0.436 1
46.22
38.64
38.51

629
3
16

1.12
0.92
1.84

Pediococcus
pentosaceus ATCC
25745

1 NC_008525 Pp 0.102 1 37.36 863 1.93

Table 3.2: Synthetic Hi-C community. A synthetic community used to demonstrate the
utility of Hi-C sequencing data in resolving a microbial metagenome [15]. It is composed
of 5 bacteria, including two closely related strains (E. coli K12 and BL21), a genome with
two plasmids (L. brevis) and a two-chromosome genome (B. thailandensis). A is relative
abundance, ncpy is copy number, nx is number of restriction sites, and m = nx/n0 is match
quality between chromosome and enzyme choice: m < 1 is worse, m > 1 is better.

Name Replicons Accession Chr abbr. A ncpy %GC nx m

Bacillus subtilis subsp.
subtilis str. 168

1 NC_000964 Bs 0.123 1 43.51 14529 0.88

Escherichia coli str.
K-12 substr. MG1655

1 NC_000913 K12 0.562 1 50.79 24311 1.34

Vibrio cholerae O1
biovar El Tor str.
N16961

2 NC_002505
NC_002506

Vc1
Vc2 0.332 1 47.70

46.91
5909
1802

0.51
0.43

Table 3.3: Synthetic Meta3C community. A synthetic community used to demonstrate
the utility of Meta3C sequencing data in resolving a microbial metagenome [17], [41]. It is
composed of three bacteria with one possessing two chromosomes. A is relative abundance,
ncpy is copy number, nx is number of restriction sites, and m = nx/n0 is match quality
between chromosome and enzyme choice: m < 1 is worse, m > 1 is better.
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Experiment Insert µ
(bp)

Insert σ
(bp)

Anti
rate

Spurious
rate

Trans
rate

Reads
(×106)

Beitel et al 300 50 0.2 0.05 0.1 7

Burton et al 400 50 0.2 0.5 0.15 1.5

Le et al 400 100 0.2 0.2 0.1 22

Marbouty et al 600 100 0.2 0.2 0.2 7.5

Table 3.4: Runtime simulation. Parameters supplied to sim3C during read generation.

3.4.3 Contact Maps

Contact maps were produced using our own tool (contact_map.py), where heatmap
intensity was plotted as log-scaled observational frequency. To reduce the potential for
spurious assignment, aligned reads were subject to the same basic filtering criteria: BWA
MEM mapq > 5 and alignment length ≥ 50% of read length, with the added restriction that
read alignments must have begun with a match. For methods which employed a restriction
enzyme (traditional Hi-C, Meta3C), we constrained the maximum allowable distance from
an aligned read to the nearest upstream cut-site. Calculated per chromosome, this distance
constraint could not exceed two-fold the median cut-site spacing. Rather than simply delete
the primary diagonal for the sake of reducing the displayed dynamic range in figures, we
instead to reduced its intensity by categorizing properly paired reads with an estimated
fragment size of less than 2 of the reported mean as being conventional WGS (non-PL)
reads and ignored them. The resolution of contact maps was adjusted between experiments
so as to present a sufficiently bright image without undue loss of resolution. The contact
map bin sizes employed were: 10000 bp for the single bacterial genome, 25000 bp for the
yeast genome and 40000 bp for the Hi-C and Meta3C metagenomes (Table 3.2, 3.3).

3.5 Availability of data and materials

Snapshots of the supporting code are available from the GigaScience repository, GigaDB
[43].
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3.6 Availability of suppor ng source code and requirements

• Project name: sim3C

• Release version: 0.1

• Project homepage: https://github.com/cerebis/sim3C

• RRID: SCR_015772

• DOI: https://doi.org/10.5281/zenodo.1030812

• Operating system: Platform independent

• Programming languages: Python 2.7

• License: GNU GPL v3

3.7 List of abbrevia ons

• IPC - interprocess communication

• PL - proximity ligation

• WGS - whole genome shotgun

• CID - chromosomal interaction domain

• TAD - topologically associated domain

• Bern(x) - Bernoulli distribution

• U(x) - uniform distribution

• N(µ, σ) - normal distribution

• cis - intra-chromosomal

• trans - inter-chromosomal

https://github.com/cerebis/sim3C
https://doi.org/10.5281/zenodo.1030812
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4.2 Abstract

Most microbes inhabiting the planet cannot be easily grown in the lab. Metagenomic
techniques provide a means to study these organisms, and recent advances in the field have
enabled the resolution of individual genomes from metagenomes, so-called Metagenome
Assembled Genomes (MAGs). In addition to expanding the catalog of known microbial
diversity, the systematic retrieval of MAGs stands as a tenable divide and conquer reduction
of metagenome analysis to the simpler problem of single genome analysis. Many leading
approaches to MAG retrieval depend upon time-series or transect data, whose effectiveness
is a function of community complexity, target abundance and depth of sequencing. Without
the need for time-series data, promising alternative methods are based upon the
high-throughput sequencing technique called Hi-C.

The Hi-C technique produces read-pairs which capture in-vivo DNA-DNA proximity
interactions (contacts). The physical structure of the community modulates the signal
derived from these interactions and a hierarchy of interaction rates exists
(Intra-chromosomal > Inter-chromosomal > Inter-cellular).

We describe an unsupervised method that exploits the hierarchical nature of Hi-C
interaction rates to resolve MAGs from a single time-point. As a quantitative demonstration,
next, we validate the method against the ground truth of a simulated human faecal
microbiome. Lastly, we directly compare our method against a recently announced
proprietary service ProxiMeta, which also performs MAG retrieval using Hi-C data.

Bin3C has been implemented as a simple open-source pipeline and makes use of the
unsupervised community detection algorithm Infomap
(https://github.com/cerebis/bin3C).

Keywords Metagenomics, Hi-C, clustering, next generation sequencing,
metagenome-assembled genome

https://github.com/cerebis/bin3C
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4.3 Background

The number of microbial organisms which can be readily investigated using
culture-based techniques is relatively small in proportion to the Earth’s apparent total
diversity [1], [2]. Although concerted efforts have found the individual conditions necessary
to cultivate a relatively small number of species in the laboratory [3]–[5], scaling-up this
discovery process to the remaining majority is daunting, if not intractable.

Beyond the issue of cultivation, an environmental population can possess at once
phenotypic microdiversity and within that group large differences in gene content. With as
little as 40% of genes shared within a species [6], this accessory genome is thought to
contribute significantly to the dynamics of microbial adaptation in the environment [7]–[9].
Phylogenetic marker surveys (16S amplicon sequencing), while still informative, stand
essentially as a proxy for broader discovery processes of the genomic landscape, should they
exist. The systematic extraction of entire genomes from an environment will enable a more
thorough determination of the constituent species core and accessory gene content
(pangenome). The extracted pangenome and community profile will enable investigation of
the functional basis of species fitness and niche partitioning within an environment, and
further longitudinal experiments will permit studying the dynamics.

Metagenomics offers a direct culture-independent sampling approach as a means to
study the unculturable majority. Recent advances in this field have begun to make possible
the systematic resolution of genomes from metagenomes; so-called Metagenome Assembled
Genomes (MAGs). Tools designed to assess the quality of retrieved MAGs [10], [11] have
brought with them suggestions for categorical quality rankings (Table 4.1). Marking an
increasing acceptance, the Genomic Standards Consortium (GSC) recently introduced
standardised reporting criteria (Table 4.2) for the submission of MAGs to public archives
[12], and as of mid-2018 there are more than 5200 MAGs registered in the Genomes Online
(GOLD) database [13]. As retrieval methodologies improve and new complex environments
are studied, the registration rate of new MAGs is expected to eventually exceed that of
culture-based studies [12].

Most current approaches to the accurate retrieval of MAGs (also called genome binning
or clustering) depend on longitudinal or transect data series, operating either directly on
WGS sequencing reads (LSA) [14] or on assembly contigs (CONCOCT, GroopM,
metaBAT, MaxBin2, Cocacola) [15]–[19]. The need for multiple samples can, however,
pose a barrier both in terms of cost of sequencing and the logistics of obtaining multiple
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Rank Completeness (%) Rank Contamination (%)

Near ≥ 90 Low ≤ 5
Substantial ≥ 70 to < 90 Medium > 5 to ≤ 10
Moderate ≥ 50 to < 70 High > 10 to ≤ 15
Partial < 50 Very high > 15

Table 4.1: A proposed standard for reporting the quality of retrieved MAGs which uses
only estimates of completeness and contamination [10]. Completeness and contamination
are independently ranked and are intended to be used in conjunction, e.g. “nearly complete
and low contamination.”

Rank Assembly Quality Criteria

Finished Single, validated contiguous sequence per replicon without gaps or
ambiguities, with consensus error rate or equivalent > Q50.

Completeness and
Contamination (%)

Additionally

High-quality draft > 90, < 5 Presence of 23S, 16S and 5S and
≥ 18 tRNAs.

Medium-quality draft ≥ 50, < 10
Low-quality draft < 50, < 10

Table 4.2: A small component of the reporting details for MAGs as proposed by the Genomic
Standards Consortium include ranks of quality [12]. The “finished” rank is left to future
advances, while lower ranks are achievable now by Hi-C based genome binning methods.
The additional criterion of rRNA genes makes the “high-quality” rank challenging to achieve
with current methods.
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samples as, for instance, with clinical studies. As an alternative single-sample approach,
Hi-C (a high throughput sequencing technique which captures in-vivo DNA-DNA
proximity) can provide significant resolving power from a single time-point when combined
with conventional shotgun sequencing.

The first step of the Hi-C library preparation protocol is to crosslink proteins bound to
DNA in vivo using formalin fixation. Next, cells are lysed and the DNA-protein complexes
are digested with a restriction enzyme to create free ends in the bound DNA strands. The free
ends are then biotin labelled and filled to make blunt ends. Next is the important proximity-
ligation step, where blunt ends are ligated under dilute conditions. This situation permits
ligation to occur preferentially among DNA strands bound in the same protein complex, that
is to say, DNA fragments which were in close proximity in vivo at the time of crosslinking.
Crosslinking is then reversed, the DNA is purified and a biotin pull-down step employed
to enrich for proximity junction containing products. Lastly, an Illumina-compatible paired-
end sequencing library is constructed. After sequencing, each end of a proximity-ligation
containing read-pair is composed of DNA from two potentially different intra-chromosomal,
inter-chromosomal or even inter-cellular loci.

As a high-throughput sequencing adaptation of the original 3C (chromosome
conformation capture) protocol, Hi-C was originally conceived as a means to determine, at
once, the 3-dimensional structure of the whole human genome [20]. The richness of
information captured in Hi-C experiments is such that the technique has subsequently been
applied to a wide range of problems in genomics, such as: genome reassembly [21],
haplotype reconstruction [22], [23], assembly clustering [24], centromere prediction [25].
The potential of Hi-C (and other 3C methods) as a means to cluster or deconvolute
metagenomes into genome bins has been demonstrated on simulated communities [26]–[28]
and real microbiomes [29], [30].

Most recently, commercial Hi-C products ranging from library preparation kits through
to analysis services [30], [31] have been announced. These products aim to lessen the
experimental challenge in library preparation for non-specialist laboratories, while also
raising the quality of data produced. In particular, one recently introduced commercial
offering is a proprietary metagenome genome binning service called ProxiMeta, which was
demonstrated on a real human gut microbiome, yielding state of the art results [30].

Here we describe a new open software tool bin3C which can retrieve MAGs from
metagenomes, by combining conventional metagenome shotgun and Hi-C sequencing data.
Using a simulated human faecal microbiome, we externally validate the binning
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performance of bin3C in terms of adjusted mutual information, and B3 Precision and Recall
against a ground truth. Finally, for a real microbiome from human faeces, we compare the
retrieval performance of bin3C against that published for the ProxiMeta service [30].

4.4 Method

4.4.1 Simulated Community

To test the performance of our tool on the task of genome binning, we designed a
simulated human gut microbiome from 63 high-quality draft or better bacterial genomes
randomly chosen from the Genome Taxonomy Database (GTDB) [32]. Candidate genomes
were required to possess an isolation source of faeces or feces, while not specifying a host
other than human. To include only higher quality drafts, the associated metadata of each was
used to impose the following criteria: contig count ≤ 200, CheckM completeness > 98%,
MIMAG quality rank of “High” or better and lastly a total gap length < 500 bp. For these
metadata based criteria, there were 223 candidate genomes.

In addition to the metadata based criteria, FastANI (v1.0) [33] was used to calculate
pairwise average nucleotide identity (ANI) between the 223 candidate genome sequences.
As we desired a diversity of species and mostly unambiguous ground truth, a maximum
pairwise ANI of 96% was imposed on the final set of genomes. This constraint controlled
for the over-representation of some species within the GTDB. Additionally, when two or
more genomes have high sequence identity, the assignment process becomes more difficult
and error-prone as it challenges both the assembler [34] and creates ambiguity when
assigning assembly contigs back to source genomes.

The resulting 63 selected genomes had an ANI range of 74.8% to 95.8% (median:
77.1%) and GC content range of 28.3% to 73.8% (median: 44.1%) (Figure 4.1) (Table 4.S1).
A long-tailed community abundance profile was modelled using a Generalized Pareto
distribution (parameters: shape=20, scale=31, location=0) (Figure 4.S1), where there
was approximately a 50:1 reduction in abundance from most to least abundant. Lastly,
before read simulation, genomes in multiple contigs were converted to a closed circular
form by concatenation, thereby simplifying downstream interpretation.
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Figure 4.1: Taxonomic distribution at the order rank of 63 selected bacterial genomes used in
the simulated community. The number of each order is a product of the taxonomic distribution
of genomes existing in the GTDB, while the constraint that no two genomes be more similar
than 96% ANI restricts the over-representation of deeply sequenced species.

4.4.2 Read-set genera on

To explore how increasing depth of coverage affects bin3C’s ability to correctly retrieve
MAGs, Hi-C read-sets were generated over a range of depths while keeping shotgun coverage
constant. Hi-C depth was parameterised simply by the total number of pairs generated, while
shotgun depth was parameterised by the depth of the most abundant community member.

From this definition, an initial read-set with high depth of coverage was produced with
250x shotgun and 200 million Hi-C pairs. The shotgun dataset at this depth constituted 18.2M
pairs.

Shotgun reads were generated using the metagenomic shotgun simulator MetaART which
wraps the short-read simulator art_illumina (v2.5.1) [35], [36] (options: -M 100 -S 12345 -l

150 -m 350 -s 20 -z 1).
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Hi-C reads were generated in two equal parts from two different 4-cutter restriction
enzymes (NEB names: MluCI and Sau3AI) using Sim3C [36] (options: -e ${enzyme} -m

hic -r 12345 -l 150 –insert-sd 20 –insert-mean 350 –insert-min 150 –linear

–simple-reads). Two enzymes were used to mimic the library construction of the real
data-set we also analyzed.

From the initial read-set, a parameter sweep was produced by serially downsampling the
initial read-set by factors of 2 using BBTools (v37.25) [37]. The initial Hi-C read-set was
reduced 4 times for a total of 5 different depths or 200M, 100M, 50M, 25M, 12.5M pairs
(command: reformat.sh sampleseed=12345 samplerate=${d}). In terms of the community
genomes, depth of coverage for the subsampling with the greatest reduction factor ranged
from 3.5x to 171x for Hi-C.

4.4.3 Ground Truth Inference

For the task of the whole-community genome binning, a ground truth was constructed by
aligning scaffolds resulting from the SPAdes assembly to the ’closed’ reference genomes
using LAST (v941) [38]. From the LAST alignments, overlapping source assignment was
determined using a methodology we have described previously [34] and implemented as the
program alignmentToTruth.py (see availability section). An overlapping (soft) ground
truth better reflects the possibility of co-assembly of sufficiently similar regions among
reference genomes and the tendency that these regions cause breakpoints in assembly
algorithms, leading to highly connected assembly fragments which belong equally well to
more than one source.

4.4.4 Performance Metrics

To validate genome binning, we employed two extrinsic measures; adjusted mutual
information (AMI) (sklearn v0.19.2) and weighted Bcubed (B3). AMI is a normalized
variant of mutual information which corrects for the tendency that the number of agreements
between clusters by random chance tends to increase with increasing problem size [39].
Weighted B3 is a soft extrinsic metric which, analogous to the F-measure, is the harmonic
mean of the B3 formulation of Precision and Recall. Here, precision is a measure of cluster
homogeneity (like with like), while recall is a measure of the cluster completeness. The B3

measure handles overlapping (soft) clusters and better satisfies the constraints that an ideal
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metric should possess; i.e. homogeneity, completeness, rag-bag and size vs quantity when
compared to other metrics. Weighted B3 extends the definition to allow the objects under
study to have variable values, for which contig length is a natural choice with genome
binning problems [34], [40], [41].

In employing two measures, we seek to gain confidence in their agreement while also
obtaining the additional insight afforded by the separate facets B3 Precision and Recall.

4.4.5 Real Microbiome

To demonstrate bin3C on real data and make a direct comparison to the proprietary Hi-C
based genome binning service (ProxiMeta), we obtained the publicly available high-quality
combined whole-metagenome shotgun and Hi-C sequencing data-set used in the previous
study [30]. The data-set derives from the microbiome of a human gut (BioProject:
PRJNA413092, Acc: SRR6131122, SRR6131123 and SRR6131124).

For this data-set, two separate Hi-C libraries (SRR6131122, SRR6131124) were created
using two different 4-cutter restriction enzymes (MluCI and Sau3AI respectively). In using
two enzymes, the recognition sites were chosen to be complementary in terms of GC content.
When the libraries were subsequently combined during the generation of the contact map,
site complementarity provided a higher and more uniform site density over a wider range of
target sequence. We conjecture that for metagenome deconvolution, site complementarity
is particularly helpful in obtaining a consistent signal from all community members, while
higher site density improves recovery of smaller assembly fragments.

All read-sets were obtained from an Illumina HiSeq X Ten at 150 bp. After clean-up
(described below), the shotgun read-set (SRR6131123) consisted of 248.8 million paired-end
reads, while the two Hi-C libraries consisted of 43.7 million (SRR6131122) and 40.8 million
(SRR6131124) paired-end reads.

4.4.6 Ini al Processing

Read clean-up is occasionally overlooked in the pursuit of completing the early stages
of genomic analysis. This initial processing step is however essential for optimal shotgun
assembly and particularly for Hi-C read mapping where remnants of adapter sequence, PhiX
or other contaminants can be a significant noise source.
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Data Set N50 L50 Contigs
≥ 1kbp

All
contigs

Scaffolds
≥ 1kbp

All
scaffolds

Total extent
(bp)

Real human gut 56,282 1277 97,760 670,379 95,521 652,723 719,550,669

Simulated
human gut

29,009 1170 24,324 116,696 23,364 41,704 240,133,820

Table 4.3: Assembly statistics for real and simulated human gut microbiomes.

A standard cleaning procedure was applied to all WGS and Hi-C read-sets using bbduk
from the BBTools suite (v37.25) [37], where each was screened for PhiX and Illumina
adapter remnants by reference and by kmer (options: k=23 hdist=1 mink=11 ktrim=r tpe

tbo), quality trimmed (options: ftm=5 qtrim=r trimq=10). For Hi-C read-sets, only paired
reads are kept to expedite later stages of analysis. Shotgun assemblies for both simulated
and read read-sets (Table 4.3) were produced using SPAdes (v.3.11.1) [42] in metagenomic
mode with a maximum kmer size of 61 (options: –meta -k 21,33,55,61).

4.4.7 Hi-C Read Mapping

As bin3C is not aimed at assembly correction, we opted to use assembly scaffolds rather
than contigs as the target for genome binning, electing to trust any groupings of contigs into
scaffolds done by SPAdes.

Both simulated and real Hi-C reads were mapped to their respective scaffolds using
BWA MEM (v0.7.17-r1188) [43]. During mapping with BWA MEM, read pairing and
mate-pair rescue functions were disabled and primary alignments forced to be the alignment
with lowest read coordinate (5’ end) (options: -5SP). This latter option is a recent
introduction to BWA at the request of the Hi-C bioinformatics community. The resulting
BAM files were subsequently processed using samtools (v1.9) [44] to remove unmapped
reads, supplementary and secondary alignments (option: -F 0x904), then sorted by name
and merged.

4.4.8 Contact Map Genera on

The large number of contigs (> 500,000) typically returned from metagenomic shotgun
assemblies for non-trivial communities is a potential algorithmic scaling problem. At the same
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time, biologically important contigs can be on the order of 1000 bp or smaller, challenging
the effective analysis of metagenomic datasets from both sides.

A Hi-C analysis, when conducted in the presence of experimental biases, involves the
observation of proximity-ligation events, which in turn rely on the occurrence of restriction
sites. The signal we desire to exploit is therefore not smoothly and uniformly distributed
between and across all contigs. As a counting experiment, the shortest contigs can be
problematic as they tend to possess a weaker signal with higher variance; as a result, they
can have a deleterious effect on normalisation and clustering if included. Therefore, bin3C
imposes constraints on minimum acceptable length (default: 1000 bp) and minimum
acceptable raw signal (default: 5 non-self observations) for contig inclusion. Any contig
which fails to meet these criteria is excluded from the clustering analysis.

With this in mind, bin3C constructs a contact map from the Hi-C read-pairs. As in
previous work [26], the bins pertain to whole contigs and capture global interactions, which
work effectively to cluster a metagenome into genome bins. In doing so, we make the
implicit assumption that assembly contigs contain few misassemblies that would confound
or otherwise invalidate the process of partitioning a metagenome into genome bins.

Bin3C can also optionally construct a contact map binned on windows of genomic extent.
These maps are not used in the analysis per se but can be used to plot visual representation of
the result in the form of a heatmap (Figure 4.S2).

4.4.9 Bias Removal

The observed interaction counts within raw Hi-C contact maps contain experimental
biases, due in part to factors such as mappability of reads, enzyme digestion efficiency, in
vivo conformational constraints on accessibility, and restriction site density. In order to
apply Hi-C data to genome binning, a uniform signal over all DNA molecules would be
ideal, free of any bias introduced by the factors mentioned above. Correcting for these
biases is an important step in our analysis, which is done using a two-stage process. First,
for each enzyme used in library preparation, the number of enzymatic cut sites are tallied for
each contig. Next, each pairwise raw Hi-C interaction count cij between contigs i and j is
divided by the product of the number of cut sites found for each contig ni, nj . This first
correction is then followed by general bistochastic matrix balancing using the Knight-Ruiz
algorithm [45].
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4.4.10 Genome binning

After bias removal, the wc-contact map (whole contig) is transformed to a graph where
nodes are contigs and edge weights are normalized interaction strength between contigs i

and j. It has been shown that DNA-DNA interactions between loci within a single physical
cell (intra-cellular proximity interactions) occur an order of magnitude more frequently than
interactions between cells (inter-cellular) [26] and, in practice, the signal from inter-cellular
interactions is on par with experimental noise. The wc-graph derived from a microbial
metagenome is then of low density (far from fully connected), being composed of tightly
interacting groups (highly modular) representing intra-cellular interactions and against a
much weaker background of experimental noise. Graphs with these characteristics are
particularly well suited to unsupervised cluster analysis, also known as community
detection.

Unsupervised clustering of the wc-graph has previously been demonstrated using
Markov clustering [26], [46] and the Louvain method [28], [47]. In a thorough investigation
using ground truth validation, we previously found neither method to be sufficiently
efficacious in general practice [34]. Despite the high signal to noise from recent advances in
library preparation methods, accurate and precise clustering of the wc-graph remains a
challenge. This is because resolving all of the structural detail (all of the communities)
becomes an increasingly fine-grained task as graphs grow in size and number of
communities. Clustering algorithms can, in turn, possess a resolution limit if a scale exists
below which they cannot recover finer detail. As it happens, modularity-based methods
such as Louvain have been identified as possessing such a limit [48]. For Hi-C based
microbiome studies, the complexity of the community and the experiment are sufficient to
introduce significant structural variance within the wc-graph. A wide variation such aspects
as in the size of clusters and weight of intra-cluster edges relative to the whole graph make a
complete reconstruction difficult for algorithms with limited resolution.

The state of unsupervised clustering algorithms has however been advancing.
Benchmarking standards have made thorough extrinsic validation of new methods
commonplace [49], and comparative studies have demonstrated the capability of available
methods [50]. Infomap is another clustering algorithm, which like Markov clustering is
based upon flow [51], [52]. Rather than considering the connectivity of groups of nodes
versus the whole, flow models consider the tendency for random walks to persist in some
regions of the graph longer than others. Considering the dynamics rather than the structure
of a graph, flow models can be less susceptible to resolution limits as graph size increases
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[53]. Additionally, the reasonable time-complexity and the ability to accurately resolve
clusters without parameter tuning makes Infomap well suited to a discovery science where
unsupervised learning is required.

We have therefore employed Infomap (v0.19.25) to cluster the wc-graph into genome
bins (options: -u -z -i link-list -N 10). Genome bins greater than a user-controlled
minimum extent (measured in base-pairs) are subsequently written out as multi-FASTA in
descending cluster size. A per-bin statistics report is generated detailing bin extent, size, GC
content, N50, and read depth statistics. By default, a whole sample contact map plot is
produced for qualitative assessment.

In the following analyses, we have imposed a 50 kbp minimum extent on genome bins,
partly for the sake of figure clarity and as a practical working limit for prokaryotic MAG
retrieval. That is to say, being less than half the minimum length of the shortest known
bacterial genome [54], it is unlikely that this threshold would exclude a candidate of
moderate or better completeness. If a user is in doubt or has another objective in mind, the
constraint can be removed.

4.5 Results

4.5.1 Simulated Community Analysis

We validated the quality of bin3C solutions as Hi-C depth of coverage was swept from
12.5M to 200M pairs on an assembly (Figure 4.2). A sharp gain in AMI, B3 Recall and
B3 F-score was evident as Hi-C coverage rose from 12.5M to 100M pairs, while the gain
between 100M and 200M pairs was less pronounced. Accompanying the upward trend for
these first three measures was an inverse but relatively small change inB3 Precision. In terms
of AMI, the highest scoring solution of 0.848 was at the greatest simulated depth of 200M
pairs. Concomitantly this solution had B3 Precision, Recall and F-scores of 0.909, 0.839 and
0.873 respectively. For this highest depth sample, 22,279 contigs passed the bin3C filtering
criteria and represented 95.4% of all assembly contigs over 1000 bp. There were 62 genome
bins with an extent greater than 50 kbp, with total extent 229,473,556 bp. This was 95.6%
of the extent of the entire shotgun assembly, which itself was 91.1% of the extent of the
set of reference genomes. The remaining small clusters of less than 50 kb extent totalled
1,413,596 bp or 0.6% of the assembly extent (Table 4.3), while unanalyzed contigs below
1000 bp represented 8,103,486 bp or 3.4%.
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As a soft clustering measure, B3 can consider overlaps both within predicted clusters and
the ground truth. Regions of shared sequence within our simulated community meant that for
4.4% of assembly contigs the assignment in the ground truth was ambiguous, being shared by
two or more source genomes. Meanwhile, bin3C solutions are hard clusters placing contigs
in only one genome bin. Even without mistakes, this leaves a small but unbridgeable gap
between the ground truth and the best possible bin3C solution. Due to this, when overlap
exists in the ground truth, the maximum achievable B3 Precision and Recall will be less than
unity. Conversely, AMI is a hard clustering measure that requires assigning each of these
shared contigs in the ground truth to a single source genome through a coin-toss process. It
remains, however, that when bin3C selects a bin for such contigs, either source would be
equally valid. For this reason, AMI scores are also unlikely to achieve unity in the presence
of overlapping genomes.

Despite these technicalities, a quantitative assessment of overall completeness and
contamination is robustly inferred using B3 Recall and Precision, as they consider contig
assignments for the entirety of the metagenomic assembly. This is in contrast to marker
gene based measures of completeness and contamination, where only those contigs
containing marker genes contribute to the score. The overall completeness of bin3C
solutions, as inferred using B3 Recall, rose monotonically from 0.189 to 0.839 as Hi-C depth
of coverage was increased from 12.5M to 200M pairs. At the same time, the overall
contamination, as inferred using B3 Precision, dropped slightly from 0.977 to 0.909. Thus
bin3C responded positively to increased depth of Hi-C coverage while maintaining an
overall low degree of contamination.

We validated our simulation sweep using the marker gene tool CheckM [10]. CheckM
estimated that bin3C retrieved 33 nearly complete MAGs using 12.5M Hi-C pairs, while 39
nearly complete were retrieved using 200M pairs (Figure 4.3). For the deepest run with the
most retrieved MAGs, genome bins deemed nearly complete had a total extent which ranged
from 1.56 Mbp to 6.97 Mbp, shotgun depth of coverage from 3.34x to 161.2x, N50 from
5797 bp to 2.24 Mbp, GC content from 28.0% to 73.9% and number of contigs from 4 to 787
(Figure 4.S3) (Table 4.S2).

Broadening the count to includeMAGs of all three ranks: moderate, substantial and nearly
(Table 4.1); 37 were retrieved at 12.5M Hi-C pairs, which increased to 48 when using 200M
Hi-C pairs. The small increase in the number of retrieved MAGs for the relatively large
increase in Hi-C depth of coverage may seem perplexing, particularly in the face of a large
change in the extrinsic validation measures AMI, B3 Recall and F-score. To explain this, we
referred to the cluster reports provided by bin3C, where we found that the average number
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of contigs in nearly complete MAGs increased from 94 at 12.5M pairs to 179 at 200M pairs.
Thus, although marker gene associated contigs are efficiently found at lower Hi-C depth of
coverage, obtaining a more complete representation of each MAG can require significantly
more depth.

With respect to contamination as inferred by marker genes, CheckM estimated a low
median contamination rate of 1.08% across all genome bins with completeness greater than
70%. CheckM, however, also identified four bins where contamination was estimated to be
higher than 10% and for which marker gene counting suggested that two genomes had
merged into a single bin. We interrogated the ground truth to determine the heritage of these
bins and found that each was a composite of two source genomes, whose pairwise ANI
values ranged from 93.1% to 95.8%. Each pair shared an average of 131 contigs within the
ground truth with an average Jaccard index of 0.19, which was significant when compared
against the community-wide average Jaccard of 6.5 × 10−4. Thus, a few members of the
simulated community possessed sufficiently similar or shared sequence to produce
co-assembled contigs. Although the co-assembled contigs were short, with a median length
of 2011 bp, the degree of overlap within each pair was enough to produce single clusters for
sufficiently deep Hi-C coverage. Reference genomes corresponding to two of these merged
bins fall within the definition of intraspecies, with pairwise ANI values of 95.80% and
95.85% respectively. The reference genomes involved with remaining two bins are close to
this threshold, with ANI values of 93.1% and 93.5%. From this, we would concede that
although bin3C is precise, it is not capable of resolving strains.

4.5.2 Library Recommenda ons

The time, effort and cost of producing a combined shotgun and Hi-C metagenomic dataset
should be rewarded with good results. As bin3C is reliant on both the quality and quantity
of data supplied, we felt it important to highlight two factors beyond Hi-C depth of coverage
which can influence results.

Shotgun sequencing data forms the basis on which Hi-C associations are made and
therefore, the more thoroughly a community is sampled, the better. To demonstrate how this
affects bin3C, we reduced the shotgun depth of coverage of our simulated community by
half (to 125x) and reassembled the metagenome. Basic assembly statistics for this
half-depth assembly were N50 6289 bp and L50 4353. There were 43,712 contigs longer
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Figure 4.2: Validation of bin3C solutions using extrinsic measures and a ground truth. Bin3C
was run against five simulated experiments, with increasing Hi-C depth of coverage while
keeping shotgun coverage fixed. With diminishing returns from 100M to 200M pairs, the
highest depth of coverage produced the best scoring genome binning solution, with an AMI
0.849 and B3 Precision, Recall and F-score of 0.909, 0.839 and 0.873 respectively.

than 1000 bp with an extent of 187,388,993 bp and overall, there were 113,754 contigs with
the total extent of 222,522,774 bp. This contrasts to the full-depth (250x) assembly, which
had N50 30,402 bp and L50 1105, with 23,364 contigs over 1000 bp with an extent of
232,030,334 bp, and 41,704 total contigs with an extent of 240,133,820 bp. Clearly, the
reduction in shotgun depth has resulted in a more fragmented assembly. In particular, the
decrease in depth has lead to a 45 Mbp drop in total extent for contigs longer than 1000 bp.
This large proportional shift of assembly extent to fragments smaller than 1000 bp is
significant as we have found that this length is an effective working limit within bin3C.

We then analysed the resulting contigs with bin3C over the same range of Hi-C depth of
coverage as before. Comparison of the AMI validation scores using the half and full depth
assemblies (Figure 4.4) shows that, for the more deeply sampled community, bin3C’s
reconstruction of the community greatly improved. CheckM estimation of completeness and
contamination followed a similar trend (Figure 4.S4), where the best result at half depth
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Sau3AI and MluCI. While the Sau3AI restriction site ^GATC is GC balanced, the ^AATT
restriction site of MluCI is AT-rich. For our simulated community, source genomes ranged
in GC content from 28.3% to 73.8% and their abundances were randomly distributed. For
Sau3AI, these extremes of GC content translated to expected cut-site frequencies of 1 in every
338 bp at 28.3% and 1 in every 427 bp at 73.8%. For the less balanced MluCI, the expected
cut-site frequencies were instead 1 in every 61 bp at 28.3% and 1 in every 3396 bp at 73.8%.
Thus, relative to a naive 4-cutter frequency of 1 in every 256 bp, while the predicted density
of sites from Sau3AI is not ideal at either extreme, the site density of MluCI will be very high
in the low GC range but very sparse at the high GC range.

For the simulated community full depth assembly, we used bin3C to analyze three Hi-C
scenarios: two single enzyme libraries generated using either Sau3AI or MluCI, and a
two-enzyme library using Sau3AI and MluCI together. The performance of bin3C was then
assessed against the libraries at equal Hi-C depth of coverage using our ground truth. In
terms of AMI, the performance of bin3C for the single enzyme libraries was less than that of
the combined Sau3AI+MluCI library (Figure 4.5). Although the gain was small at lower
depth, the advantage of a two enzyme model grew as depth increased, where at 100M Hi-C
pairs the AMI scores were MluCI: 0.63, Sau3AI: 0.71 and Sau3AI+MluCI: 0.78.

4.5.3 Real Microbiome Analysis

We analyzed the real human gut microbiome (Table 4.3) with bin3C using the same
parameters as with the simulated community along with a randomly generated seed (options:
–min-map 60 –min-len 1000 –min-signal 5 -e Sau3AI -e MluCI –seed 9878132).
Executed on a 2.6GHz Intel Xeon E5-2697, contact map generation required 586 MB of
memory and 15m26s of CPU time, while the clustering stage required 11.6 GB of memory
and 9m06s of CPU time. Of the 95,521 contigs longer than 1000 bp, 29,653 had sufficient
signal to be included in clustering. The total extent of contigs greater than 1000 bp was
517,309,710 bp for the whole assembly, while those with sufficient Hi-C observations
totalled 339,181,288 bp or 65.6% of all those in the assembly.

Clustering the contact map into genome bins, bin3C identified 296 genome bins with
extents longer than 50 kbp and 2013 longer than 10 kbp. The 296 clusters longer than 50 kbp
had a total extent of 290,643,239 bp, representing 40.4% of the total extent of the assembly,
while clusters longer than 10 kbp totalled 324,223,887 bp in extent or 45.1% of the assembly.
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Figure 4.4: Adjusted mutual information (AMI) scores for bin3C solutions at two different
shotgun depths of coverage. For our simulated community, shotgun libraries generated at
125x and 250x coverage demonstrate that although the depth of Hi-C coverage is crucial, so
too is the depth of shotgun sequencing.

For clusters greater than 50 kb, shotgun depth of coverage ranged from 3.4x to 498x, N50
ranged from 3119 bp to 297,079 bp, GC content from 28.2% to 65.0%, total extent from
50,315 bp to 5,460,325 bp and number of contigs from 1 to 495 (Table 4.S3).

We analyzed these 296 genome bins using CheckM (Figure 4.6) [10]. For the proposed
MAG ranking standard based on only measures of completeness and contamination
(Table 4.1), bin3C retrieved 55 nearly, 29 substantially and 12 moderately complete MAGs.
In terms of total extent, MAGs ranked as nearly complete ranged from 1.68 Mbp to 4.97
Mbp, while for the substantially complete ranged from 1.56 Mbp to 5.46 Mbp and
moderately complete ranged from 1.22 Mbp to 3.40 Mbp (Table 4.S4). In terms of shotgun
coverage, MAGs ranked as nearly complete ranged from 5.9x to 447.5x, substantially from
4.3x to 416.4x and moderately from 3.7x to 83.4x.

Using the more detailed ranking instead from the recently proposed extension to MIxS
(Table 4.2) [12], the bin3C solution represented 17 high quality, 78 medium quality and 105
low-quality MAGs. For the high-quality MAGs, shotgun coverage ranged from 10.7x to
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Figure 4.5: For a simulated community whose GC content varied between 28.3% to 73.8%,
bin3C retrieval performance improved when simulated reads were generated as if from a
library prepared using a two enzyme digestion model (Sau3AI+MluCI), rather than if the
library was prepared using either enzyme in isolation.

447.5x, extent from 1.86 Mbp to 4.10 Mbp (Table 4.S5).

4.5.4 Comparison to previous work

The real microbiome we analyzed with bin3C was first described in a previous study to
demonstrate a metagenomic Hi-C analysis service called ProxiMeta [30]. ProxiMeta is the
only other complete solution for Hi-C based metagenome deconvolution with which to
compare bin3C. As ProxiMeta is a proprietary service rather than open source software, the
comparison was made by reanalysis of the same dataset as used in their work (Bioproject:
PRJNA413092). As their study included a comparison to the conventional metagenomic
binner MaxBin (v2.2.4) [55], which was one of the best performing MAG retrieval tools
evaluated in the first CAMI challenge [56], we have included those results here as well. It
should be noted that although MaxBin 2 is capable of multi-sample analysis, all software
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Figure 4.6: Bin3C retrievedMAGs from a real human gutmicrobiome, ordered by descending
estimate of completeness (black circles). Plotted along with completeness is estimated
contamination (gold circles). The y-axis grid lines pertain to thresholds used in quality
assessment standards: completeness of 50%, 70% and 90% and contamination of 5%, 10%
and 15%. Although there is a sharp fall-off in completeness after roughly 75MAGs, estimated
contamination remains consistently low.

was run against a single shotgun sequencing sample. We have compared the CheckM
validation of bin3C results to the CheckM validation of ProxiMeta and MaxBin as provided
in their supplementary data [57].

Regarding the simple ranking standard (Table 4.1), it was reported that ProxiMeta
retrieved 35 nearly, 29 substantially and 13 moderately complete MAGs, while MaxBin
retrieved 20 nearly, 22 substantially and 17 moderately complete MAGs. On the same
metagenomic Hi-C dataset, we found that bin3C retrieved 55 nearly, 29 substantially and 12
moderately complete MAGs (Figure 4.7A). Against MaxBin, bin3C retrieved fewer
moderately complete MAGs but otherwise bettered its performance. Against ProxiMeta,
bin3C had equivalent performance for the substantially and moderately complete ranks,
while retrieving 20 additional nearly complete genomes, representing an improvement of
57%.

In terms of the more complex MIMAG standard (Table 4.2), it was reported that





134

4.6 Discussion

We have introduced bin3C, an openly implemented and generic algorithm which
reproducibly and effectively retrieves MAGs on both simulated and real metagenomic data.

To demonstrate this, we assessed bin3C’s retrieval performance on a simulated human
gut microbiome, by way of a ground truth and the extrinsic validation measures of AMI, as
well as B3 Precision, Recall and F-score (Figure 4.2). Bin3C proved to be consistently
precise over a wide range of Hi-C depth of coverage, while recall and the overall quality of
solutions improved substantially as more Hi-C data was included. Although a high shotgun
depth of coverage is not necessary to obtain low contamination MAGs, greater depth of
shotgun sequencing has a strongly positive influence on the recall and overall completeness
of MAG retrieval (Figure 4.4).

Hi-C MAGs have a characteristically low rate of contamination by foreign genomic
content [30]. On a real human gut microbiome, we have shown that bin3C achieves a lower
estimated rate of contamination than both the conventional metagenome binner MaxBin
[55] and the recently introduced commercial Hi-C analysis service ProxiMeta [30]. For all
bins over 1 Mbp as determined by each approach, bin3C’s median contamination rate was
0.8%, while MaxBin was 9.5% and ProxiMeta was 3.5%.

This low contamination rate is a primary reason why bin3C attained the most complete
retrieval of MAGs from the real human gut dataset when compared to MaxBin and ProxiMeta
(Figure 4.6). Retrieving 20 more nearly complete MAGs than ProxiMeta, bin3C achieved a
gain of 57% on this previous best result (Figure 4.7A). For the stringent GSC MIMAG high-
quality ranking, bin3C retrieved 17 MAGs from the gut microbiome, a gain of 70% against
the previous best result (Figure 4.7B).

For best results, we recommend that Hi-C metagenomic libraries be constructed using a
two enzyme digestion model.

4.6.1 Limita ons and future work

The ground truth as determined in our work is imperfect, notably when a simulated
community possesses multiple strains of a single species. The plethora of extrinsic
validation measures from which to choose also have their limitations and differences [40],
[41], [50]. Though we chose measures which we felt best suited our problem space, these
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are not in widespread use. Different measures can have significantly different opinions on
the agreement between a ground truth and a given solution. Those with the lowest scoring
results are not always the most readily chosen for publication.

The use of non-trivial simulated microbial communities makes determining ground truth
and measuring accuracy difficult, and yet these are a crucial element of the development
process if the resulting methods are to be robust in real experimental use. Under such
circumstances, we work from the premise that achieving close to unity on strong validation
measures is unlikely to be possible. In our work here, bin3C demonstrated a B3 Precision
varying between 0.909 and 0.977, while in work pertaining to metagenome binning with
multiple samples, precision values as high as 0.998 were reported using a different
formulation of the measure [17]. In practical terms by using CheckM as an operational
measure of precision, bin3C achieved a much lower rate of MAG contamination on real data
than has previously been reported.

Thoughmarker gene based validation with tools such as CheckM or BUSCO [10], [11] are
of great value and easily applied to our work, as validators, their perception is limited only
to those sequences which contain marker genes. Ideally, metagenome binning approaches
should aim to gather together all the sequence fragments pertaining to a given genome and not
only those which contained marker genes. The generalizability of an approach is not assured
when the validation measure used in development is systematically insensitive to some aspect
of the problem. Therefore, we believe refining the ground truth determination process, to be
independent of community complexity, is warranted and would be a useful contribution.

Although bin3C can analyze sequences shorter than 1000 bp, it is our experience that
allowing them into the analysis does not lead to improvements in MAG retrieval. We believe
the weaker signal and higher variance in the raw observations for Hi-C contacts involving
shorter sequences is to blame. A weakness here is relying on the final assembly contigs or
scaffolds as the subject of read mapping, where the ends of sequences interrupt alignment. In
future work, we believe aligning Hi-C reads to an assembly graph has the potential to achieve
better results.

Against the simulated community, the performance of bin3C as indicated by the validation
scores AMI and B3 Recall, suggests that further gains in retrieval completeness are possible
(Figure 4.2). In particular, strains of the same species can fail to be resolved into separate bins.
Improving the resolving power of bin3C or the addition of a post hoc reconciliation process
to separate these merged bins would be worthwhile.
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4.7 List of abbrevia ons

• AMI - adjusted mutual information

• ANI - average nucleotide identity

• bp - base-pairs

• CPU - central processing unit

• DNA - deoxyribonucleic acid

• GOLD - Genomes Online Database

• GSC - Genomic Standards Consortium

• GTDB - Genome Taxonomy Database

• M - million

• Mbp - mega base-pairs

• kbp - kilo base-pairs

• MAG - metagenome-assembled genome

• MIMAG - Minimum information about a metagenome-assembled genome

• MIxS - Minimum information about “some” sequence

• 3C - chromosome conformation capture
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4.8.7 Suppor ng tools

• sim3C metagenomic Hi-C reads simulator

– Repository: https://github.com/cerebis/sim3C

– Manuscript DOI: https://doi.org/10.5281/zenodo.1035049

• MetaART metagenomic shotgun reads simulator and alignmentToTruth.py

– Repository: https://github.com/cerebis/meta-sweeper

– Manuscript DOI: https://doi.org/10.5281/zenodo.1341441

Simulated datasets used in this study are available at
https://doi.org/10.5281/zenodo.1342169. The real human gut microbiome used in this
study was downloaded from the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) under the accession numbers: shotgun read-set
SRR6131123, Hi-C libraries SRR6131122 and SRR6131124 [30]. Supporting material from
a previous study used in comparison is available at https://doi.org/10.1101/198713.
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4.11 Appendices

Figure 4.S1: Relative abundance of the simulated community was modelled as a Generalized
Pareto distribution (red curve). After genome binning was completed, the estimated coverage
of MAGs (black circles) agrees closely with the input abundances. Here we have defined the
most abundant member as equal to unity.
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Table 4.S1: Download GTDB metadata associated with genomes selected for the simulated
community.

 

 

https://www.doi.org/10.5281/zenodo.1400996
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Table 4.S2: Download CheckM validation result for the simulated community.

 

 

https://www.doi.org/10.5281/zenodo.1401002
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Table 4.S3: Download cluster report and CheckM validation result for the real human gut
microbiome.

 

 

https://www.doi.org/10.5281/zenodo.1401008
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Simple MAG Rank
Nearly Substantially Moderately

Statistic min max median min max median min max median

Contigs 14 294 83 35 495 109 41 416 151
Coverage 5.9 447.5 34.4 4.3 416.4 22.1 3.7 83.4 21.6
N50 13,103 297,079 73,278 6,203 169,501 38,287 5,009 74,774 17,627
Extent 1,681,638 4,967,006 2,810,566 1,555,274 5,460,325 2,480,584 1,224,207 3,402,418 1,836,393
gc_expect 34.40 62.82 52.88 28.18 64.99 44.54 35.92 60.07 49.60

Table 4.S4: Summary statistics for MAGs retrieved using bin3C from a real human gut
microbiome, divided into ranks as defined by Parks et al based only on completeness and
contamination

GSC MIMAG Rank
High quality Medium quality

Statistic min max median min max median

Contigs 27 275 85 14 495 92
Coverage 10.7 447.5 68.38 3.7 416.4 25.6
N50 31,316 221,523 75159 5,009 297,079 52,246
Extent 1,863,635 4,099,346 2549586 1,224,207 5,460,325 2,623,866

Table 4.S5: Summary statistics for MAGs retrieved using bin3C from a real human gut
microbiome, divided into ranks defined by the GSC MIMAG standard.
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Figure 4.S2: The contact map of the simulated community at 250x shotgun and 200M Hi-C
pairs. Here, intensity of a pixel is equal to the natural log of the normalized interaction strength
between two contigs. When clustered, the the heatmap appears in block diagonal form, where
each block represents a cluster. Each cluster is sorted largest to smallest contig, giving the
impression of a gradient which is only an artefact. Blocks are proportional to the number of
contigs.
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Figure 4.S3: Completeness and contamination plot of the full depth 250x/200M pair run of
the simulated community. There were 62 clusters in the solution from an initial 63 genomes.
Ticks along the y-axis mark thresholds used in the simple CheckM standard for MAG quality.
Completeness (>90, >70, >50) and Contamination (>5, >10, >15).




	Title Page
	Certificate of Authorship
	Acknowledgments
	Thesis Format
	List of Publications
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Background
	1.1.1 The uncultured majority
	1.1.2 Metagenomics
	1.1.3 Metagenome-assembled genomes
	1.1.4 Validation of metagenome-assembled genomes
	1.1.5 Chromosome conformation capture
	1.1.6 Addressing Metagenomics with Hi-C
	1.1.7 Graphical Model
	1.1.8 Community Detection
	1.1.8.1 Validation Testing
	1.1.8.2 Resolution Limits


	1.2 Research Aim
	1.3 Outline of Thesis
	1.3.1 Objectives
	1.3.2 Chapter Summaries

	1.4 Further Work
	1.5 List of Abbreviations
	1.6 References
	1.7 Appendices
	1.7.1 Definitions


	2 Deconvoluting simulated metagenomes: the performance of hard- and soft- clustering algorithms applied to metagenomic chromosome conformation capture (3C)
	2.1 Authorship Declaration
	2.2 Abstract
	2.3 Introduction
	2.4 Materials and Methods
	2.4.1 Representation
	2.4.2 Clustering
	2.4.3 Appropriate Validation Measures
	2.4.4 Clustering Algorithm Selection
	2.4.5 Gold Standard
	2.4.6 Graph Generation
	2.4.7 Validation
	2.4.8 Simulating Hi-C/3C read-pairs
	2.4.9 Pipeline Design
	2.4.10 Simulation
	2.4.11 Parameter Sweep
	2.4.12 Assembly Entropy
	2.4.13 Graph Complexity

	2.5 Results
	2.5.1 Experimental Design
	2.5.2 Assembly Complexity
	2.5.3 Graph Complexity
	2.5.4 Clustering Validation

	2.6 Discussion
	2.6.1 Limitations and Future Work

	2.7 Conclusion
	2.8 Additional Information and Declarations
	2.8.1 Competing Interests
	2.8.2 Author Contributions
	2.8.3 Data Availability
	2.8.4 Funding

	2.9 List of abbreviations
	2.10 Acknowledgments
	2.11 References
	2.12 Appendices

	3 sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies
	3.1 Authorship Declaration
	3.2 Abstract
	3.3 Findings
	3.3.1 Software testing
	3.3.2 3C sequencing
	3.3.3 Experiment scenarios
	3.3.4 Error Modelling
	3.3.5 Simulation modes
	3.3.6 Structurally related interactions
	3.3.7 Example scenarios
	3.3.8 Bacterial
	3.3.9 Eukaryotic
	3.3.10 Metagenomic
	3.3.11 Limitations and future work

	3.4 Methods
	3.4.1 Reference Data
	3.4.2 Read Generation
	3.4.3 Contact Maps

	3.5 Availability of data and materials
	3.6 Availability of supporting source code and requirements
	3.7 List of abbreviations
	3.8 Declarations
	3.8.1 Funding
	3.8.2 Authors contributions

	3.9 Acknowledgements
	3.10 References

	4 bin3C : exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes (MAGs)
	4.1 Authorship Declaration
	4.2 Abstract
	4.3 Background
	4.4 Method
	4.4.1 Simulated Community
	4.4.2 Read-set generation
	4.4.3 Ground Truth Inference
	4.4.4 Performance Metrics
	4.4.5 Real Microbiome
	4.4.6 Initial Processing
	4.4.7 Hi-C Read Mapping
	4.4.8 Contact Map Generation
	4.4.9 Bias Removal
	4.4.10 Genome binning

	4.5 Results
	4.5.1 Simulated Community Analysis
	4.5.2 Library Recommendations
	4.5.3 Real Microbiome Analysis
	4.5.4 Comparison to previous work

	4.6 Discussion
	4.6.1 Limitations and future work

	4.7 List of abbreviations
	4.8 Declarations
	4.8.1 Author contributions
	4.8.2 Competing interests
	4.8.3 Consent for publication
	4.8.4 Ethics approval and consent to participate
	4.8.5 Funding
	4.8.6 Availability of data and materials
	4.8.7 Supporting tools

	4.9 Acknowledgements
	4.10 References
	4.11 Appendices




